Spdk/lib/env_dpdk/memory.c
paul luse a6dbe3721e update Intel copyright notices
per Intel policy to include file commit date using git cmd
below.  The policy does not apply to non-Intel (C) notices.

git log --follow -C90% --format=%ad --date default <file> | tail -1

and then pull just the 4 digit year from the result.

Intel copyrights were not added to files where Intel either had
no contribution ot the contribution lacked substance (ie license
header updates, formatting changes, etc).  Contribution date used
"--follow -C95%" to get the most accurate date.

Note that several files in this patch didn't end the license/(c)
block with a blank comment line so these were added as the vast
majority of files do have this last blank line.  Simply there for
consistency.

Signed-off-by: paul luse <paul.e.luse@intel.com>
Change-Id: Id5b7ce4f658fe87132f14139ead58d6e285c04d4
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/15192
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Community-CI: Mellanox Build Bot
2022-11-10 08:28:53 +00:00

1547 lines
38 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2017 Intel Corporation.
* All rights reserved.
*/
#include "spdk/stdinc.h"
#include "env_internal.h"
#include "pci_dpdk.h"
#include <rte_config.h>
#include <rte_memory.h>
#include <rte_eal_memconfig.h>
#include <rte_dev.h>
#include <rte_pci.h>
#include "spdk_internal/assert.h"
#include "spdk/assert.h"
#include "spdk/likely.h"
#include "spdk/queue.h"
#include "spdk/util.h"
#include "spdk/memory.h"
#include "spdk/env_dpdk.h"
#include "spdk/log.h"
#ifdef __linux__
#include <linux/version.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0)
#include <linux/vfio.h>
#include <rte_vfio.h>
struct spdk_vfio_dma_map {
struct vfio_iommu_type1_dma_map map;
TAILQ_ENTRY(spdk_vfio_dma_map) tailq;
};
struct vfio_cfg {
int fd;
bool enabled;
bool noiommu_enabled;
unsigned device_ref;
TAILQ_HEAD(, spdk_vfio_dma_map) maps;
pthread_mutex_t mutex;
};
static struct vfio_cfg g_vfio = {
.fd = -1,
.enabled = false,
.noiommu_enabled = false,
.device_ref = 0,
.maps = TAILQ_HEAD_INITIALIZER(g_vfio.maps),
.mutex = PTHREAD_MUTEX_INITIALIZER
};
#endif
#endif
#if DEBUG
#define DEBUG_PRINT(...) SPDK_ERRLOG(__VA_ARGS__)
#else
#define DEBUG_PRINT(...)
#endif
#define FN_2MB_TO_4KB(fn) (fn << (SHIFT_2MB - SHIFT_4KB))
#define FN_4KB_TO_2MB(fn) (fn >> (SHIFT_2MB - SHIFT_4KB))
#define MAP_256TB_IDX(vfn_2mb) ((vfn_2mb) >> (SHIFT_1GB - SHIFT_2MB))
#define MAP_1GB_IDX(vfn_2mb) ((vfn_2mb) & ((1ULL << (SHIFT_1GB - SHIFT_2MB)) - 1))
/* Page is registered */
#define REG_MAP_REGISTERED (1ULL << 62)
/* A notification region barrier. The 2MB translation entry that's marked
* with this flag must be unregistered separately. This allows contiguous
* regions to be unregistered in the same chunks they were registered.
*/
#define REG_MAP_NOTIFY_START (1ULL << 63)
/* Translation of a single 2MB page. */
struct map_2mb {
uint64_t translation_2mb;
};
/* Second-level map table indexed by bits [21..29] of the virtual address.
* Each entry contains the address translation or error for entries that haven't
* been retrieved yet.
*/
struct map_1gb {
struct map_2mb map[1ULL << (SHIFT_1GB - SHIFT_2MB)];
};
/* Top-level map table indexed by bits [30..47] of the virtual address.
* Each entry points to a second-level map table or NULL.
*/
struct map_256tb {
struct map_1gb *map[1ULL << (SHIFT_256TB - SHIFT_1GB)];
};
/* Page-granularity memory address translation */
struct spdk_mem_map {
struct map_256tb map_256tb;
pthread_mutex_t mutex;
uint64_t default_translation;
struct spdk_mem_map_ops ops;
void *cb_ctx;
TAILQ_ENTRY(spdk_mem_map) tailq;
};
/* Registrations map. The 64 bit translations are bit fields with the
* following layout (starting with the low bits):
* 0 - 61 : reserved
* 62 - 63 : flags
*/
static struct spdk_mem_map *g_mem_reg_map;
static TAILQ_HEAD(spdk_mem_map_head, spdk_mem_map) g_spdk_mem_maps =
TAILQ_HEAD_INITIALIZER(g_spdk_mem_maps);
static pthread_mutex_t g_spdk_mem_map_mutex = PTHREAD_MUTEX_INITIALIZER;
static bool g_legacy_mem;
/*
* Walk the currently registered memory via the main memory registration map
* and call the new map's notify callback for each virtually contiguous region.
*/
static int
mem_map_notify_walk(struct spdk_mem_map *map, enum spdk_mem_map_notify_action action)
{
size_t idx_256tb;
uint64_t idx_1gb;
uint64_t contig_start = UINT64_MAX;
uint64_t contig_end = UINT64_MAX;
struct map_1gb *map_1gb;
int rc;
if (!g_mem_reg_map) {
return -EINVAL;
}
/* Hold the memory registration map mutex so no new registrations can be added while we are looping. */
pthread_mutex_lock(&g_mem_reg_map->mutex);
for (idx_256tb = 0;
idx_256tb < sizeof(g_mem_reg_map->map_256tb.map) / sizeof(g_mem_reg_map->map_256tb.map[0]);
idx_256tb++) {
map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb];
if (!map_1gb) {
if (contig_start != UINT64_MAX) {
/* End of of a virtually contiguous range */
rc = map->ops.notify_cb(map->cb_ctx, map, action,
(void *)contig_start,
contig_end - contig_start + VALUE_2MB);
/* Don't bother handling unregister failures. It can't be any worse */
if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) {
goto err_unregister;
}
}
contig_start = UINT64_MAX;
continue;
}
for (idx_1gb = 0; idx_1gb < sizeof(map_1gb->map) / sizeof(map_1gb->map[0]); idx_1gb++) {
if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) &&
(contig_start == UINT64_MAX ||
(map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) {
/* Rebuild the virtual address from the indexes */
uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB);
if (contig_start == UINT64_MAX) {
contig_start = vaddr;
}
contig_end = vaddr;
} else {
if (contig_start != UINT64_MAX) {
/* End of of a virtually contiguous range */
rc = map->ops.notify_cb(map->cb_ctx, map, action,
(void *)contig_start,
contig_end - contig_start + VALUE_2MB);
/* Don't bother handling unregister failures. It can't be any worse */
if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) {
goto err_unregister;
}
/* This page might be a part of a neighbour region, so process
* it again. The idx_1gb will be incremented immediately.
*/
idx_1gb--;
}
contig_start = UINT64_MAX;
}
}
}
pthread_mutex_unlock(&g_mem_reg_map->mutex);
return 0;
err_unregister:
/* Unwind to the first empty translation so we don't unregister
* a region that just failed to register.
*/
idx_256tb = MAP_256TB_IDX((contig_start >> SHIFT_2MB) - 1);
idx_1gb = MAP_1GB_IDX((contig_start >> SHIFT_2MB) - 1);
contig_start = UINT64_MAX;
contig_end = UINT64_MAX;
/* Unregister any memory we managed to register before the failure */
for (; idx_256tb < SIZE_MAX; idx_256tb--) {
map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb];
if (!map_1gb) {
if (contig_end != UINT64_MAX) {
/* End of of a virtually contiguous range */
map->ops.notify_cb(map->cb_ctx, map,
SPDK_MEM_MAP_NOTIFY_UNREGISTER,
(void *)contig_start,
contig_end - contig_start + VALUE_2MB);
}
contig_end = UINT64_MAX;
continue;
}
for (; idx_1gb < UINT64_MAX; idx_1gb--) {
/* Rebuild the virtual address from the indexes */
uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB);
if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) &&
(contig_end == UINT64_MAX || (map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) {
if (contig_end == UINT64_MAX) {
contig_end = vaddr;
}
contig_start = vaddr;
} else {
if (contig_end != UINT64_MAX) {
if (map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) {
contig_start = vaddr;
}
/* End of of a virtually contiguous range */
map->ops.notify_cb(map->cb_ctx, map,
SPDK_MEM_MAP_NOTIFY_UNREGISTER,
(void *)contig_start,
contig_end - contig_start + VALUE_2MB);
}
contig_end = UINT64_MAX;
}
}
idx_1gb = sizeof(map_1gb->map) / sizeof(map_1gb->map[0]) - 1;
}
pthread_mutex_unlock(&g_mem_reg_map->mutex);
return rc;
}
struct spdk_mem_map *
spdk_mem_map_alloc(uint64_t default_translation, const struct spdk_mem_map_ops *ops, void *cb_ctx)
{
struct spdk_mem_map *map;
int rc;
size_t i;
map = calloc(1, sizeof(*map));
if (map == NULL) {
return NULL;
}
if (pthread_mutex_init(&map->mutex, NULL)) {
free(map);
return NULL;
}
map->default_translation = default_translation;
map->cb_ctx = cb_ctx;
if (ops) {
map->ops = *ops;
}
if (ops && ops->notify_cb) {
pthread_mutex_lock(&g_spdk_mem_map_mutex);
rc = mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_REGISTER);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
DEBUG_PRINT("Initial mem_map notify failed\n");
pthread_mutex_destroy(&map->mutex);
for (i = 0; i < sizeof(map->map_256tb.map) / sizeof(map->map_256tb.map[0]); i++) {
free(map->map_256tb.map[i]);
}
free(map);
return NULL;
}
TAILQ_INSERT_TAIL(&g_spdk_mem_maps, map, tailq);
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
}
return map;
}
void
spdk_mem_map_free(struct spdk_mem_map **pmap)
{
struct spdk_mem_map *map;
size_t i;
if (!pmap) {
return;
}
map = *pmap;
if (!map) {
return;
}
if (map->ops.notify_cb) {
pthread_mutex_lock(&g_spdk_mem_map_mutex);
mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_UNREGISTER);
TAILQ_REMOVE(&g_spdk_mem_maps, map, tailq);
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
}
for (i = 0; i < sizeof(map->map_256tb.map) / sizeof(map->map_256tb.map[0]); i++) {
free(map->map_256tb.map[i]);
}
pthread_mutex_destroy(&map->mutex);
free(map);
*pmap = NULL;
}
int
spdk_mem_register(void *vaddr, size_t len)
{
struct spdk_mem_map *map;
int rc;
void *seg_vaddr;
size_t seg_len;
uint64_t reg;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
__func__, vaddr, len);
return -EINVAL;
}
if (len == 0) {
return 0;
}
pthread_mutex_lock(&g_spdk_mem_map_mutex);
seg_vaddr = vaddr;
seg_len = len;
while (seg_len > 0) {
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
if (reg & REG_MAP_REGISTERED) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -EBUSY;
}
seg_vaddr += VALUE_2MB;
seg_len -= VALUE_2MB;
}
seg_vaddr = vaddr;
seg_len = 0;
while (len > 0) {
spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB,
seg_len == 0 ? REG_MAP_REGISTERED | REG_MAP_NOTIFY_START : REG_MAP_REGISTERED);
seg_len += VALUE_2MB;
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_REGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return 0;
}
int
spdk_mem_unregister(void *vaddr, size_t len)
{
struct spdk_mem_map *map;
int rc;
void *seg_vaddr;
size_t seg_len;
uint64_t reg, newreg;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
__func__, vaddr, len);
return -EINVAL;
}
pthread_mutex_lock(&g_spdk_mem_map_mutex);
/* The first page must be a start of a region. Also check if it's
* registered to make sure we don't return -ERANGE for non-registered
* regions.
*/
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL);
if ((reg & REG_MAP_REGISTERED) && (reg & REG_MAP_NOTIFY_START) == 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -ERANGE;
}
seg_vaddr = vaddr;
seg_len = len;
while (seg_len > 0) {
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
if ((reg & REG_MAP_REGISTERED) == 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -EINVAL;
}
seg_vaddr += VALUE_2MB;
seg_len -= VALUE_2MB;
}
newreg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
/* If the next page is registered, it must be a start of a region as well,
* otherwise we'd be unregistering only a part of a region.
*/
if ((newreg & REG_MAP_NOTIFY_START) == 0 && (newreg & REG_MAP_REGISTERED)) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -ERANGE;
}
seg_vaddr = vaddr;
seg_len = 0;
while (len > 0) {
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL);
spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, 0);
if (seg_len > 0 && (reg & REG_MAP_NOTIFY_START)) {
TAILQ_FOREACH_REVERSE(map, &g_spdk_mem_maps, spdk_mem_map_head, tailq) {
rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
seg_vaddr = vaddr;
seg_len = VALUE_2MB;
} else {
seg_len += VALUE_2MB;
}
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
if (seg_len > 0) {
TAILQ_FOREACH_REVERSE(map, &g_spdk_mem_maps, spdk_mem_map_head, tailq) {
rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
}
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return 0;
}
int
spdk_mem_reserve(void *vaddr, size_t len)
{
struct spdk_mem_map *map;
void *seg_vaddr;
size_t seg_len;
uint64_t reg;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
__func__, vaddr, len);
return -EINVAL;
}
if (len == 0) {
return 0;
}
pthread_mutex_lock(&g_spdk_mem_map_mutex);
/* Check if any part of this range is already registered */
seg_vaddr = vaddr;
seg_len = len;
while (seg_len > 0) {
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
if (reg & REG_MAP_REGISTERED) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -EBUSY;
}
seg_vaddr += VALUE_2MB;
seg_len -= VALUE_2MB;
}
/* Simply set the translation to the memory map's default. This allocates the space in the
* map but does not provide a valid translation. */
spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, len,
g_mem_reg_map->default_translation);
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
spdk_mem_map_set_translation(map, (uint64_t)vaddr, len, map->default_translation);
}
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return 0;
}
static struct map_1gb *
mem_map_get_map_1gb(struct spdk_mem_map *map, uint64_t vfn_2mb)
{
struct map_1gb *map_1gb;
uint64_t idx_256tb = MAP_256TB_IDX(vfn_2mb);
size_t i;
if (spdk_unlikely(idx_256tb >= SPDK_COUNTOF(map->map_256tb.map))) {
return NULL;
}
map_1gb = map->map_256tb.map[idx_256tb];
if (!map_1gb) {
pthread_mutex_lock(&map->mutex);
/* Recheck to make sure nobody else got the mutex first. */
map_1gb = map->map_256tb.map[idx_256tb];
if (!map_1gb) {
map_1gb = malloc(sizeof(struct map_1gb));
if (map_1gb) {
/* initialize all entries to default translation */
for (i = 0; i < SPDK_COUNTOF(map_1gb->map); i++) {
map_1gb->map[i].translation_2mb = map->default_translation;
}
map->map_256tb.map[idx_256tb] = map_1gb;
}
}
pthread_mutex_unlock(&map->mutex);
if (!map_1gb) {
DEBUG_PRINT("allocation failed\n");
return NULL;
}
}
return map_1gb;
}
int
spdk_mem_map_set_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size,
uint64_t translation)
{
uint64_t vfn_2mb;
struct map_1gb *map_1gb;
uint64_t idx_1gb;
struct map_2mb *map_2mb;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %" PRIu64 "\n", vaddr);
return -EINVAL;
}
/* For now, only 2 MB-aligned registrations are supported */
if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%" PRIu64 " len=%" PRIu64 "\n",
__func__, vaddr, size);
return -EINVAL;
}
vfn_2mb = vaddr >> SHIFT_2MB;
while (size) {
map_1gb = mem_map_get_map_1gb(map, vfn_2mb);
if (!map_1gb) {
DEBUG_PRINT("could not get %p map\n", (void *)vaddr);
return -ENOMEM;
}
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_2mb = &map_1gb->map[idx_1gb];
map_2mb->translation_2mb = translation;
size -= VALUE_2MB;
vfn_2mb++;
}
return 0;
}
int
spdk_mem_map_clear_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size)
{
return spdk_mem_map_set_translation(map, vaddr, size, map->default_translation);
}
inline uint64_t
spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr, uint64_t *size)
{
const struct map_1gb *map_1gb;
const struct map_2mb *map_2mb;
uint64_t idx_256tb;
uint64_t idx_1gb;
uint64_t vfn_2mb;
uint64_t cur_size;
uint64_t prev_translation;
uint64_t orig_translation;
if (spdk_unlikely(vaddr & ~MASK_256TB)) {
DEBUG_PRINT("invalid usermode virtual address %p\n", (void *)vaddr);
return map->default_translation;
}
vfn_2mb = vaddr >> SHIFT_2MB;
idx_256tb = MAP_256TB_IDX(vfn_2mb);
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_1gb = map->map_256tb.map[idx_256tb];
if (spdk_unlikely(!map_1gb)) {
return map->default_translation;
}
cur_size = VALUE_2MB - _2MB_OFFSET(vaddr);
map_2mb = &map_1gb->map[idx_1gb];
if (size == NULL || map->ops.are_contiguous == NULL ||
map_2mb->translation_2mb == map->default_translation) {
if (size != NULL) {
*size = spdk_min(*size, cur_size);
}
return map_2mb->translation_2mb;
}
orig_translation = map_2mb->translation_2mb;
prev_translation = orig_translation;
while (cur_size < *size) {
vfn_2mb++;
idx_256tb = MAP_256TB_IDX(vfn_2mb);
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_1gb = map->map_256tb.map[idx_256tb];
if (spdk_unlikely(!map_1gb)) {
break;
}
map_2mb = &map_1gb->map[idx_1gb];
if (!map->ops.are_contiguous(prev_translation, map_2mb->translation_2mb)) {
break;
}
cur_size += VALUE_2MB;
prev_translation = map_2mb->translation_2mb;
}
*size = spdk_min(*size, cur_size);
return orig_translation;
}
static void
memory_hotplug_cb(enum rte_mem_event event_type,
const void *addr, size_t len, void *arg)
{
if (event_type == RTE_MEM_EVENT_ALLOC) {
spdk_mem_register((void *)addr, len);
if (!spdk_env_dpdk_external_init()) {
return;
}
/* When the user initialized DPDK separately, we can't
* be sure that --match-allocations RTE flag was specified.
* Without this flag, DPDK can free memory in different units
* than it was allocated. It doesn't work with things like RDMA MRs.
*
* For such cases, we mark segments so they aren't freed.
*/
while (len > 0) {
struct rte_memseg *seg;
seg = rte_mem_virt2memseg(addr, NULL);
assert(seg != NULL);
seg->flags |= RTE_MEMSEG_FLAG_DO_NOT_FREE;
addr = (void *)((uintptr_t)addr + seg->hugepage_sz);
len -= seg->hugepage_sz;
}
} else if (event_type == RTE_MEM_EVENT_FREE) {
spdk_mem_unregister((void *)addr, len);
}
}
static int
memory_iter_cb(const struct rte_memseg_list *msl,
const struct rte_memseg *ms, size_t len, void *arg)
{
return spdk_mem_register(ms->addr, len);
}
int
mem_map_init(bool legacy_mem)
{
g_legacy_mem = legacy_mem;
g_mem_reg_map = spdk_mem_map_alloc(0, NULL, NULL);
if (g_mem_reg_map == NULL) {
DEBUG_PRINT("memory registration map allocation failed\n");
return -ENOMEM;
}
/*
* Walk all DPDK memory segments and register them
* with the main memory map
*/
rte_mem_event_callback_register("spdk", memory_hotplug_cb, NULL);
rte_memseg_contig_walk(memory_iter_cb, NULL);
return 0;
}
bool
spdk_iommu_is_enabled(void)
{
#if VFIO_ENABLED
return g_vfio.enabled && !g_vfio.noiommu_enabled;
#else
return false;
#endif
}
struct spdk_vtophys_pci_device {
struct rte_pci_device *pci_device;
TAILQ_ENTRY(spdk_vtophys_pci_device) tailq;
};
static pthread_mutex_t g_vtophys_pci_devices_mutex = PTHREAD_MUTEX_INITIALIZER;
static TAILQ_HEAD(, spdk_vtophys_pci_device) g_vtophys_pci_devices =
TAILQ_HEAD_INITIALIZER(g_vtophys_pci_devices);
static struct spdk_mem_map *g_vtophys_map;
static struct spdk_mem_map *g_phys_ref_map;
#if VFIO_ENABLED
static int
_vfio_iommu_map_dma(uint64_t vaddr, uint64_t iova, uint64_t size)
{
struct spdk_vfio_dma_map *dma_map;
int ret;
dma_map = calloc(1, sizeof(*dma_map));
if (dma_map == NULL) {
return -ENOMEM;
}
dma_map->map.argsz = sizeof(dma_map->map);
dma_map->map.flags = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE;
dma_map->map.vaddr = vaddr;
dma_map->map.iova = iova;
dma_map->map.size = size;
if (g_vfio.device_ref == 0) {
/* VFIO requires at least one device (IOMMU group) to be added to
* a VFIO container before it is possible to perform any IOMMU
* operations on that container. This memory will be mapped once
* the first device (IOMMU group) is hotplugged.
*
* Since the vfio container is managed internally by DPDK, it is
* also possible that some device is already in that container, but
* it's not managed by SPDK - e.g. an NIC attached internally
* inside DPDK. We could map the memory straight away in such
* scenario, but there's no need to do it. DPDK devices clearly
* don't need our mappings and hence we defer the mapping
* unconditionally until the first SPDK-managed device is
* hotplugged.
*/
goto out_insert;
}
ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map);
if (ret) {
/* There are cases the vfio container doesn't have IOMMU group, it's safe for this case */
SPDK_NOTICELOG("Cannot set up DMA mapping, error %d, ignored\n", errno);
}
out_insert:
TAILQ_INSERT_TAIL(&g_vfio.maps, dma_map, tailq);
return 0;
}
static int
vtophys_iommu_map_dma(uint64_t vaddr, uint64_t iova, uint64_t size)
{
uint64_t refcount;
int ret;
refcount = spdk_mem_map_translate(g_phys_ref_map, iova, NULL);
assert(refcount < UINT64_MAX);
if (refcount > 0) {
spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount + 1);
return 0;
}
pthread_mutex_lock(&g_vfio.mutex);
ret = _vfio_iommu_map_dma(vaddr, iova, size);
pthread_mutex_unlock(&g_vfio.mutex);
if (ret) {
return ret;
}
spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount + 1);
return 0;
}
int
vtophys_iommu_map_dma_bar(uint64_t vaddr, uint64_t iova, uint64_t size)
{
int ret;
pthread_mutex_lock(&g_vfio.mutex);
ret = _vfio_iommu_map_dma(vaddr, iova, size);
pthread_mutex_unlock(&g_vfio.mutex);
return ret;
}
static int
_vfio_iommu_unmap_dma(struct spdk_vfio_dma_map *dma_map)
{
struct vfio_iommu_type1_dma_unmap unmap = {};
int ret;
if (g_vfio.device_ref == 0) {
/* Memory is not mapped anymore, just remove it's references */
goto out_remove;
}
unmap.argsz = sizeof(unmap);
unmap.flags = 0;
unmap.iova = dma_map->map.iova;
unmap.size = dma_map->map.size;
ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &unmap);
if (ret) {
SPDK_NOTICELOG("Cannot clear DMA mapping, error %d, ignored\n", errno);
}
out_remove:
TAILQ_REMOVE(&g_vfio.maps, dma_map, tailq);
free(dma_map);
return 0;
}
static int
vtophys_iommu_unmap_dma(uint64_t iova, uint64_t size)
{
struct spdk_vfio_dma_map *dma_map;
uint64_t refcount;
int ret;
pthread_mutex_lock(&g_vfio.mutex);
TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
if (dma_map->map.iova == iova) {
break;
}
}
if (dma_map == NULL) {
DEBUG_PRINT("Cannot clear DMA mapping for IOVA %"PRIx64" - it's not mapped\n", iova);
pthread_mutex_unlock(&g_vfio.mutex);
return -ENXIO;
}
refcount = spdk_mem_map_translate(g_phys_ref_map, iova, NULL);
assert(refcount < UINT64_MAX);
if (refcount > 0) {
spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount - 1);
}
/* We still have outstanding references, don't clear it. */
if (refcount > 1) {
pthread_mutex_unlock(&g_vfio.mutex);
return 0;
}
/** don't support partial or multiple-page unmap for now */
assert(dma_map->map.size == size);
ret = _vfio_iommu_unmap_dma(dma_map);
pthread_mutex_unlock(&g_vfio.mutex);
return ret;
}
int
vtophys_iommu_unmap_dma_bar(uint64_t vaddr)
{
struct spdk_vfio_dma_map *dma_map;
int ret;
pthread_mutex_lock(&g_vfio.mutex);
TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
if (dma_map->map.vaddr == vaddr) {
break;
}
}
if (dma_map == NULL) {
DEBUG_PRINT("Cannot clear DMA mapping for address %"PRIx64" - it's not mapped\n", vaddr);
pthread_mutex_unlock(&g_vfio.mutex);
return -ENXIO;
}
ret = _vfio_iommu_unmap_dma(dma_map);
pthread_mutex_unlock(&g_vfio.mutex);
return ret;
}
#endif
static uint64_t
vtophys_get_paddr_memseg(uint64_t vaddr)
{
uintptr_t paddr;
struct rte_memseg *seg;
seg = rte_mem_virt2memseg((void *)(uintptr_t)vaddr, NULL);
if (seg != NULL) {
paddr = seg->iova;
if (paddr == RTE_BAD_IOVA) {
return SPDK_VTOPHYS_ERROR;
}
paddr += (vaddr - (uintptr_t)seg->addr);
return paddr;
}
return SPDK_VTOPHYS_ERROR;
}
/* Try to get the paddr from /proc/self/pagemap */
static uint64_t
vtophys_get_paddr_pagemap(uint64_t vaddr)
{
uintptr_t paddr;
/* Silence static analyzers */
assert(vaddr != 0);
paddr = rte_mem_virt2iova((void *)vaddr);
if (paddr == RTE_BAD_IOVA) {
/*
* The vaddr may be valid but doesn't have a backing page
* assigned yet. Touch the page to ensure a backing page
* gets assigned, then try to translate again.
*/
rte_atomic64_read((rte_atomic64_t *)vaddr);
paddr = rte_mem_virt2iova((void *)vaddr);
}
if (paddr == RTE_BAD_IOVA) {
/* Unable to get to the physical address. */
return SPDK_VTOPHYS_ERROR;
}
return paddr;
}
static uint64_t
pci_device_vtophys(struct rte_pci_device *dev, uint64_t vaddr, size_t len)
{
struct rte_mem_resource *res;
uint64_t paddr;
unsigned r;
for (r = 0; r < PCI_MAX_RESOURCE; r++) {
res = dpdk_pci_device_get_mem_resource(dev, r);
if (res->phys_addr == 0 || vaddr < (uint64_t)res->addr ||
(vaddr + len) >= (uint64_t)res->addr + res->len) {
continue;
}
#if VFIO_ENABLED
if (spdk_iommu_is_enabled() && rte_eal_iova_mode() == RTE_IOVA_VA) {
/*
* The IOMMU is on and we're using IOVA == VA. The BAR was
* automatically registered when it was mapped, so just return
* the virtual address here.
*/
return vaddr;
}
#endif
paddr = res->phys_addr + (vaddr - (uint64_t)res->addr);
return paddr;
}
return SPDK_VTOPHYS_ERROR;
}
/* Try to get the paddr from pci devices */
static uint64_t
vtophys_get_paddr_pci(uint64_t vaddr, size_t len)
{
struct spdk_vtophys_pci_device *vtophys_dev;
uintptr_t paddr;
struct rte_pci_device *dev;
pthread_mutex_lock(&g_vtophys_pci_devices_mutex);
TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) {
dev = vtophys_dev->pci_device;
paddr = pci_device_vtophys(dev, vaddr, len);
if (paddr != SPDK_VTOPHYS_ERROR) {
pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
return paddr;
}
}
pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
return SPDK_VTOPHYS_ERROR;
}
static int
vtophys_notify(void *cb_ctx, struct spdk_mem_map *map,
enum spdk_mem_map_notify_action action,
void *vaddr, size_t len)
{
int rc = 0;
uint64_t paddr;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
DEBUG_PRINT("invalid parameters, vaddr=%p len=%ju\n",
vaddr, len);
return -EINVAL;
}
/* Get the physical address from the DPDK memsegs */
paddr = vtophys_get_paddr_memseg((uint64_t)vaddr);
switch (action) {
case SPDK_MEM_MAP_NOTIFY_REGISTER:
if (paddr == SPDK_VTOPHYS_ERROR) {
/* This is not an address that DPDK is managing. */
/* Check if this is a PCI BAR. They need special handling */
paddr = vtophys_get_paddr_pci((uint64_t)vaddr, len);
if (paddr != SPDK_VTOPHYS_ERROR) {
/* Get paddr for each 2MB chunk in this address range */
while (len > 0) {
paddr = vtophys_get_paddr_pci((uint64_t)vaddr, VALUE_2MB);
if (paddr == SPDK_VTOPHYS_ERROR) {
DEBUG_PRINT("could not get phys addr for %p\n", vaddr);
return -EFAULT;
}
rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr);
if (rc != 0) {
return rc;
}
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
return 0;
}
#if VFIO_ENABLED
enum rte_iova_mode iova_mode;
iova_mode = rte_eal_iova_mode();
if (spdk_iommu_is_enabled() && iova_mode == RTE_IOVA_VA) {
/* We'll use the virtual address as the iova to match DPDK. */
paddr = (uint64_t)vaddr;
rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, len);
if (rc) {
return -EFAULT;
}
while (len > 0) {
rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr);
if (rc != 0) {
return rc;
}
vaddr += VALUE_2MB;
paddr += VALUE_2MB;
len -= VALUE_2MB;
}
} else
#endif
{
/* Get the physical address from /proc/self/pagemap. */
paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr);
if (paddr == SPDK_VTOPHYS_ERROR) {
DEBUG_PRINT("could not get phys addr for %p\n", vaddr);
return -EFAULT;
}
/* Get paddr for each 2MB chunk in this address range */
while (len > 0) {
/* Get the physical address from /proc/self/pagemap. */
paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr);
if (paddr == SPDK_VTOPHYS_ERROR) {
DEBUG_PRINT("could not get phys addr for %p\n", vaddr);
return -EFAULT;
}
if (paddr & MASK_2MB) {
DEBUG_PRINT("invalid paddr 0x%" PRIx64 " - must be 2MB aligned\n", paddr);
return -EINVAL;
}
#if VFIO_ENABLED
/* If the IOMMU is on, but DPDK is using iova-mode=pa, we want to register this memory
* with the IOMMU using the physical address to match. */
if (spdk_iommu_is_enabled()) {
rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, VALUE_2MB);
if (rc) {
DEBUG_PRINT("Unable to assign vaddr %p to paddr 0x%" PRIx64 "\n", vaddr, paddr);
return -EFAULT;
}
}
#endif
rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr);
if (rc != 0) {
return rc;
}
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
}
} else {
/* This is an address managed by DPDK. Just setup the translations. */
while (len > 0) {
paddr = vtophys_get_paddr_memseg((uint64_t)vaddr);
if (paddr == SPDK_VTOPHYS_ERROR) {
DEBUG_PRINT("could not get phys addr for %p\n", vaddr);
return -EFAULT;
}
rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr);
if (rc != 0) {
return rc;
}
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
}
break;
case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
#if VFIO_ENABLED
if (paddr == SPDK_VTOPHYS_ERROR) {
/*
* This is not an address that DPDK is managing.
*/
/* Check if this is a PCI BAR. They need special handling */
paddr = vtophys_get_paddr_pci((uint64_t)vaddr, len);
if (paddr != SPDK_VTOPHYS_ERROR) {
/* Get paddr for each 2MB chunk in this address range */
while (len > 0) {
paddr = vtophys_get_paddr_pci((uint64_t)vaddr, VALUE_2MB);
if (paddr == SPDK_VTOPHYS_ERROR) {
DEBUG_PRINT("could not get phys addr for %p\n", vaddr);
return -EFAULT;
}
rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, VALUE_2MB);
if (rc != 0) {
return rc;
}
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
return 0;
}
/* If vfio is enabled,
* we need to unmap the range from the IOMMU
*/
if (spdk_iommu_is_enabled()) {
uint64_t buffer_len = len;
uint8_t *va = vaddr;
enum rte_iova_mode iova_mode;
iova_mode = rte_eal_iova_mode();
/*
* In virtual address mode, the region is contiguous and can be done in
* one unmap.
*/
if (iova_mode == RTE_IOVA_VA) {
paddr = spdk_mem_map_translate(map, (uint64_t)va, &buffer_len);
if (buffer_len != len || paddr != (uintptr_t)va) {
DEBUG_PRINT("Unmapping %p with length %lu failed because "
"translation had address 0x%" PRIx64 " and length %lu\n",
va, len, paddr, buffer_len);
return -EINVAL;
}
rc = vtophys_iommu_unmap_dma(paddr, len);
if (rc) {
DEBUG_PRINT("Failed to iommu unmap paddr 0x%" PRIx64 "\n", paddr);
return -EFAULT;
}
} else if (iova_mode == RTE_IOVA_PA) {
/* Get paddr for each 2MB chunk in this address range */
while (buffer_len > 0) {
paddr = spdk_mem_map_translate(map, (uint64_t)va, NULL);
if (paddr == SPDK_VTOPHYS_ERROR || buffer_len < VALUE_2MB) {
DEBUG_PRINT("could not get phys addr for %p\n", va);
return -EFAULT;
}
rc = vtophys_iommu_unmap_dma(paddr, VALUE_2MB);
if (rc) {
DEBUG_PRINT("Failed to iommu unmap paddr 0x%" PRIx64 "\n", paddr);
return -EFAULT;
}
va += VALUE_2MB;
buffer_len -= VALUE_2MB;
}
}
}
}
#endif
while (len > 0) {
rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, VALUE_2MB);
if (rc != 0) {
return rc;
}
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
break;
default:
SPDK_UNREACHABLE();
}
return rc;
}
static int
vtophys_check_contiguous_entries(uint64_t paddr1, uint64_t paddr2)
{
/* This function is always called with paddrs for two subsequent
* 2MB chunks in virtual address space, so those chunks will be only
* physically contiguous if the physical addresses are 2MB apart
* from each other as well.
*/
return (paddr2 - paddr1 == VALUE_2MB);
}
#if VFIO_ENABLED
static bool
vfio_enabled(void)
{
return rte_vfio_is_enabled("vfio_pci");
}
/* Check if IOMMU is enabled on the system */
static bool
has_iommu_groups(void)
{
int count = 0;
DIR *dir = opendir("/sys/kernel/iommu_groups");
if (dir == NULL) {
return false;
}
while (count < 3 && readdir(dir) != NULL) {
count++;
}
closedir(dir);
/* there will always be ./ and ../ entries */
return count > 2;
}
static bool
vfio_noiommu_enabled(void)
{
return rte_vfio_noiommu_is_enabled();
}
static void
vtophys_iommu_init(void)
{
char proc_fd_path[PATH_MAX + 1];
char link_path[PATH_MAX + 1];
const char vfio_path[] = "/dev/vfio/vfio";
DIR *dir;
struct dirent *d;
if (!vfio_enabled()) {
return;
}
if (vfio_noiommu_enabled()) {
g_vfio.noiommu_enabled = true;
} else if (!has_iommu_groups()) {
return;
}
dir = opendir("/proc/self/fd");
if (!dir) {
DEBUG_PRINT("Failed to open /proc/self/fd (%d)\n", errno);
return;
}
while ((d = readdir(dir)) != NULL) {
if (d->d_type != DT_LNK) {
continue;
}
snprintf(proc_fd_path, sizeof(proc_fd_path), "/proc/self/fd/%s", d->d_name);
if (readlink(proc_fd_path, link_path, sizeof(link_path)) != (sizeof(vfio_path) - 1)) {
continue;
}
if (memcmp(link_path, vfio_path, sizeof(vfio_path) - 1) == 0) {
sscanf(d->d_name, "%d", &g_vfio.fd);
break;
}
}
closedir(dir);
if (g_vfio.fd < 0) {
DEBUG_PRINT("Failed to discover DPDK VFIO container fd.\n");
return;
}
g_vfio.enabled = true;
return;
}
#endif
void
vtophys_pci_device_added(struct rte_pci_device *pci_device)
{
struct spdk_vtophys_pci_device *vtophys_dev;
pthread_mutex_lock(&g_vtophys_pci_devices_mutex);
vtophys_dev = calloc(1, sizeof(*vtophys_dev));
if (vtophys_dev) {
vtophys_dev->pci_device = pci_device;
TAILQ_INSERT_TAIL(&g_vtophys_pci_devices, vtophys_dev, tailq);
} else {
DEBUG_PRINT("Memory allocation error\n");
}
pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
#if VFIO_ENABLED
struct spdk_vfio_dma_map *dma_map;
int ret;
if (!g_vfio.enabled) {
return;
}
pthread_mutex_lock(&g_vfio.mutex);
g_vfio.device_ref++;
if (g_vfio.device_ref > 1) {
pthread_mutex_unlock(&g_vfio.mutex);
return;
}
/* This is the first SPDK device using DPDK vfio. This means that the first
* IOMMU group might have been just been added to the DPDK vfio container.
* From this point it is certain that the memory can be mapped now.
*/
TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map);
if (ret) {
DEBUG_PRINT("Cannot update DMA mapping, error %d\n", errno);
break;
}
}
pthread_mutex_unlock(&g_vfio.mutex);
#endif
}
void
vtophys_pci_device_removed(struct rte_pci_device *pci_device)
{
struct spdk_vtophys_pci_device *vtophys_dev;
pthread_mutex_lock(&g_vtophys_pci_devices_mutex);
TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) {
if (vtophys_dev->pci_device == pci_device) {
TAILQ_REMOVE(&g_vtophys_pci_devices, vtophys_dev, tailq);
free(vtophys_dev);
break;
}
}
pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
#if VFIO_ENABLED
struct spdk_vfio_dma_map *dma_map;
int ret;
if (!g_vfio.enabled) {
return;
}
pthread_mutex_lock(&g_vfio.mutex);
assert(g_vfio.device_ref > 0);
g_vfio.device_ref--;
if (g_vfio.device_ref > 0) {
pthread_mutex_unlock(&g_vfio.mutex);
return;
}
/* This is the last SPDK device using DPDK vfio. If DPDK doesn't have
* any additional devices using it's vfio container, all the mappings
* will be automatically removed by the Linux vfio driver. We unmap
* the memory manually to be able to easily re-map it later regardless
* of other, external factors.
*/
TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
struct vfio_iommu_type1_dma_unmap unmap = {};
unmap.argsz = sizeof(unmap);
unmap.flags = 0;
unmap.iova = dma_map->map.iova;
unmap.size = dma_map->map.size;
ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &unmap);
if (ret) {
DEBUG_PRINT("Cannot unmap DMA memory, error %d\n", errno);
break;
}
}
pthread_mutex_unlock(&g_vfio.mutex);
#endif
}
int
vtophys_init(void)
{
const struct spdk_mem_map_ops vtophys_map_ops = {
.notify_cb = vtophys_notify,
.are_contiguous = vtophys_check_contiguous_entries,
};
const struct spdk_mem_map_ops phys_ref_map_ops = {
.notify_cb = NULL,
.are_contiguous = NULL,
};
#if VFIO_ENABLED
vtophys_iommu_init();
#endif
g_phys_ref_map = spdk_mem_map_alloc(0, &phys_ref_map_ops, NULL);
if (g_phys_ref_map == NULL) {
DEBUG_PRINT("phys_ref map allocation failed.\n");
return -ENOMEM;
}
g_vtophys_map = spdk_mem_map_alloc(SPDK_VTOPHYS_ERROR, &vtophys_map_ops, NULL);
if (g_vtophys_map == NULL) {
DEBUG_PRINT("vtophys map allocation failed\n");
spdk_mem_map_free(&g_phys_ref_map);
return -ENOMEM;
}
return 0;
}
uint64_t
spdk_vtophys(const void *buf, uint64_t *size)
{
uint64_t vaddr, paddr_2mb;
vaddr = (uint64_t)buf;
paddr_2mb = spdk_mem_map_translate(g_vtophys_map, vaddr, size);
/*
* SPDK_VTOPHYS_ERROR has all bits set, so if the lookup returned SPDK_VTOPHYS_ERROR,
* we will still bitwise-or it with the buf offset below, but the result will still be
* SPDK_VTOPHYS_ERROR. However now that we do + rather than | (due to PCI vtophys being
* unaligned) we must now check the return value before addition.
*/
SPDK_STATIC_ASSERT(SPDK_VTOPHYS_ERROR == UINT64_C(-1), "SPDK_VTOPHYS_ERROR should be all 1s");
if (paddr_2mb == SPDK_VTOPHYS_ERROR) {
return SPDK_VTOPHYS_ERROR;
} else {
return paddr_2mb + (vaddr & MASK_2MB);
}
}
int
spdk_mem_get_fd_and_offset(void *vaddr, uint64_t *offset)
{
struct rte_memseg *seg;
int ret, fd;
seg = rte_mem_virt2memseg(vaddr, NULL);
if (!seg) {
SPDK_ERRLOG("memory %p doesn't exist\n", vaddr);
return -ENOENT;
}
fd = rte_memseg_get_fd_thread_unsafe(seg);
if (fd < 0) {
return fd;
}
ret = rte_memseg_get_fd_offset_thread_unsafe(seg, offset);
if (ret < 0) {
return ret;
}
return fd;
}