Spdk/examples/accel/perf/accel_perf.c
paul luse a738acd505 examples/accel_perf: use local task element for CRC destination
For all CRC related functions.  Does not need to be DMA'able memory
as DSA returns the CRC to it's completion record and the lib
copies it to this address.  Done for consistency as this element
was added as part of adding the copy+CRC API.

Signed-off-by: paul luse <paul.e.luse@intel.com>
Change-Id: Iefedcbc0a1c4e211eeb8aaf5c52f2881e9173bad
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/8230
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Community-CI: Broadcom CI <spdk-ci.pdl@broadcom.com>
Community-CI: Mellanox Build Bot
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Ziye Yang <ziye.yang@intel.com>
2021-07-15 21:04:08 +00:00

1112 lines
30 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/thread.h"
#include "spdk/env.h"
#include "spdk/event.h"
#include "spdk/log.h"
#include "spdk/string.h"
#include "spdk/accel_engine.h"
#include "spdk/crc32.h"
#include "spdk/util.h"
#define DATA_PATTERN 0x5a
#define ALIGN_4K 0x1000
static bool g_using_sw_engine = false;
static uint64_t g_tsc_rate;
static uint64_t g_tsc_end;
static int g_rc;
static int g_xfer_size_bytes = 4096;
static int g_queue_depth = 32;
/* g_allocate_depth indicates how many tasks we allocate per worker. It will
* be at least as much as the queue depth.
*/
static int g_allocate_depth = 0;
static int g_ops_per_batch = 0;
static int g_threads_per_core = 1;
static int g_time_in_sec = 5;
static uint32_t g_crc32c_seed = 0;
static uint32_t g_crc32c_chained_count = 1;
static int g_fail_percent_goal = 0;
static uint8_t g_fill_pattern = 255;
static bool g_verify = false;
static const char *g_workload_type = NULL;
static enum accel_capability g_workload_selection;
static struct worker_thread *g_workers = NULL;
static int g_num_workers = 0;
static pthread_mutex_t g_workers_lock = PTHREAD_MUTEX_INITIALIZER;
struct worker_thread;
static void accel_done(void *ref, int status);
struct display_info {
int core;
int thread;
};
struct ap_task {
void *src;
struct iovec *iovs;
uint32_t iov_cnt;
void *dst;
void *dst2;
uint32_t crc_dst;
struct worker_thread *worker;
int status;
int expected_status; /* used for the compare operation */
TAILQ_ENTRY(ap_task) link;
};
struct accel_batch {
int status;
int cmd_count;
struct spdk_accel_batch *batch;
struct worker_thread *worker;
TAILQ_ENTRY(accel_batch) link;
};
struct worker_thread {
struct spdk_io_channel *ch;
uint64_t xfer_completed;
uint64_t xfer_failed;
uint64_t injected_miscompares;
uint64_t current_queue_depth;
TAILQ_HEAD(, ap_task) tasks_pool;
struct worker_thread *next;
unsigned core;
struct spdk_thread *thread;
bool is_draining;
struct spdk_poller *is_draining_poller;
struct spdk_poller *stop_poller;
void *task_base;
struct accel_batch *batch_base;
struct display_info display;
TAILQ_HEAD(, accel_batch) in_prep_batches;
TAILQ_HEAD(, accel_batch) in_use_batches;
TAILQ_HEAD(, accel_batch) to_submit_batches;
};
static void
dump_user_config(struct spdk_app_opts *opts)
{
printf("SPDK Configuration:\n");
printf("Core mask: %s\n\n", opts->reactor_mask);
printf("Accel Perf Configuration:\n");
printf("Workload Type: %s\n", g_workload_type);
if (g_workload_selection == ACCEL_CRC32C || g_workload_selection == ACCEL_COPY_CRC32C) {
printf("CRC-32C seed: %u\n", g_crc32c_seed);
printf("vector count %u\n", g_crc32c_chained_count);
} else if (g_workload_selection == ACCEL_FILL) {
printf("Fill pattern: 0x%x\n", g_fill_pattern);
} else if ((g_workload_selection == ACCEL_COMPARE) && g_fail_percent_goal > 0) {
printf("Failure inject: %u percent\n", g_fail_percent_goal);
}
if (g_workload_selection == ACCEL_COPY_CRC32C) {
printf("Vector size: %u bytes\n", g_xfer_size_bytes);
printf("Transfer size: %u bytes\n", g_xfer_size_bytes * g_crc32c_chained_count);
} else {
printf("Transfer size: %u bytes\n", g_xfer_size_bytes);
}
printf("Queue depth: %u\n", g_queue_depth);
printf("Allocate depth: %u\n", g_allocate_depth);
printf("# threads/core: %u\n", g_threads_per_core);
printf("Run time: %u seconds\n", g_time_in_sec);
if (g_ops_per_batch > 0) {
printf("Batching: %u operations\n", g_ops_per_batch);
} else {
printf("Batching: Disabled\n");
}
printf("Verify: %s\n\n", g_verify ? "Yes" : "No");
}
static void
usage(void)
{
printf("accel_perf options:\n");
printf("\t[-h help message]\n");
printf("\t[-q queue depth per core]\n");
printf("\t[-C for crc32c workload, use this value to configure the io vector size to test (default 1)\n");
printf("\t[-T number of threads per core\n");
printf("\t[-n number of channels]\n");
printf("\t[-o transfer size in bytes]\n");
printf("\t[-t time in seconds]\n");
printf("\t[-w workload type must be one of these: copy, fill, crc32c, copy_crc32c, compare, dualcast\n");
printf("\t[-s for crc32c workload, use this seed value (default 0)\n");
printf("\t[-P for compare workload, percentage of operations that should miscompare (percent, default 0)\n");
printf("\t[-f for fill workload, use this BYTE value (default 255)\n");
printf("\t[-y verify result if this switch is on]\n");
printf("\t[-b batch this number of operations at a time (default 0 = disabled)]\n");
printf("\t[-a tasks to allocate per core (default: same value as -q)]\n");
printf("\t\tCan be used to spread operations across a wider range of memory.\n");
}
static int
parse_args(int argc, char *argv)
{
int argval = 0;
switch (argc) {
case 'a':
case 'b':
case 'C':
case 'f':
case 'T':
case 'o':
case 'P':
case 'q':
case 's':
case 't':
argval = spdk_strtol(optarg, 10);
if (argval < 0) {
fprintf(stderr, "-%c option must be non-negative.\n", argc);
usage();
return 1;
}
break;
default:
break;
};
switch (argc) {
case 'a':
g_allocate_depth = argval;
break;
case 'b':
g_ops_per_batch = argval;
break;
case 'C':
g_crc32c_chained_count = argval;
break;
case 'f':
g_fill_pattern = (uint8_t)argval;
break;
case 'T':
g_threads_per_core = argval;
break;
case 'o':
g_xfer_size_bytes = argval;
break;
case 'P':
g_fail_percent_goal = argval;
break;
case 'q':
g_queue_depth = argval;
break;
case 's':
g_crc32c_seed = argval;
break;
case 't':
g_time_in_sec = argval;
break;
case 'y':
g_verify = true;
break;
case 'w':
g_workload_type = optarg;
if (!strcmp(g_workload_type, "copy")) {
g_workload_selection = ACCEL_COPY;
} else if (!strcmp(g_workload_type, "fill")) {
g_workload_selection = ACCEL_FILL;
} else if (!strcmp(g_workload_type, "crc32c")) {
g_workload_selection = ACCEL_CRC32C;
} else if (!strcmp(g_workload_type, "copy_crc32c")) {
g_workload_selection = ACCEL_COPY_CRC32C;
} else if (!strcmp(g_workload_type, "compare")) {
g_workload_selection = ACCEL_COMPARE;
} else if (!strcmp(g_workload_type, "dualcast")) {
g_workload_selection = ACCEL_DUALCAST;
}
break;
default:
usage();
return 1;
}
return 0;
}
static int dump_result(void);
static void
unregister_worker(void *arg1)
{
struct worker_thread *worker = arg1;
free(worker->task_base);
free(worker->batch_base);
spdk_put_io_channel(worker->ch);
pthread_mutex_lock(&g_workers_lock);
assert(g_num_workers >= 1);
if (--g_num_workers == 0) {
pthread_mutex_unlock(&g_workers_lock);
g_rc = dump_result();
spdk_app_stop(0);
}
pthread_mutex_unlock(&g_workers_lock);
}
static int
_get_task_data_bufs(struct ap_task *task)
{
uint32_t align = 0;
uint32_t i = 0;
int dst_buff_len = g_xfer_size_bytes;
/* For dualcast, the DSA HW requires 4K alignment on destination addresses but
* we do this for all engines to keep it simple.
*/
if (g_workload_selection == ACCEL_DUALCAST) {
align = ALIGN_4K;
}
if (g_workload_selection == ACCEL_CRC32C || g_workload_selection == ACCEL_COPY_CRC32C) {
assert(g_crc32c_chained_count > 0);
task->iov_cnt = g_crc32c_chained_count;
task->iovs = calloc(task->iov_cnt, sizeof(struct iovec));
if (!task->iovs) {
fprintf(stderr, "cannot allocated task->iovs fot task=%p\n", task);
return -ENOMEM;
}
if (g_workload_selection == ACCEL_COPY_CRC32C) {
dst_buff_len = g_xfer_size_bytes * g_crc32c_chained_count;
}
for (i = 0; i < task->iov_cnt; i++) {
task->iovs[i].iov_base = spdk_dma_zmalloc(g_xfer_size_bytes, 0, NULL);
if (task->iovs[i].iov_base == NULL) {
return -ENOMEM;
}
memset(task->iovs[i].iov_base, DATA_PATTERN, g_xfer_size_bytes);
task->iovs[i].iov_len = g_xfer_size_bytes;
}
} else {
task->src = spdk_dma_zmalloc(g_xfer_size_bytes, 0, NULL);
if (task->src == NULL) {
fprintf(stderr, "Unable to alloc src buffer\n");
return -ENOMEM;
}
/* For fill, set the entire src buffer so we can check if verify is enabled. */
if (g_workload_selection == ACCEL_FILL) {
memset(task->src, g_fill_pattern, g_xfer_size_bytes);
} else {
memset(task->src, DATA_PATTERN, g_xfer_size_bytes);
}
}
if (g_workload_selection != ACCEL_COPY_CRC32C) {
task->dst = spdk_dma_zmalloc(dst_buff_len, align, NULL);
if (task->dst == NULL) {
fprintf(stderr, "Unable to alloc dst buffer\n");
return -ENOMEM;
}
/* For compare we want the buffers to match, otherwise not. */
if (g_workload_selection == ACCEL_COMPARE) {
memset(task->dst, DATA_PATTERN, dst_buff_len);
} else {
memset(task->dst, ~DATA_PATTERN, dst_buff_len);
}
}
if (g_workload_selection == ACCEL_DUALCAST) {
task->dst2 = spdk_dma_zmalloc(g_xfer_size_bytes, align, NULL);
if (task->dst2 == NULL) {
fprintf(stderr, "Unable to alloc dst buffer\n");
return -ENOMEM;
}
memset(task->dst2, ~DATA_PATTERN, g_xfer_size_bytes);
}
return 0;
}
inline static struct ap_task *
_get_task(struct worker_thread *worker)
{
struct ap_task *task;
if (!TAILQ_EMPTY(&worker->tasks_pool)) {
task = TAILQ_FIRST(&worker->tasks_pool);
TAILQ_REMOVE(&worker->tasks_pool, task, link);
} else {
fprintf(stderr, "Unable to get ap_task\n");
return NULL;
}
return task;
}
/* Submit one operation using the same ap task that just completed. */
static void
_submit_single(struct worker_thread *worker, struct ap_task *task)
{
int random_num;
int rc = 0;
assert(worker);
switch (g_workload_selection) {
case ACCEL_COPY:
rc = spdk_accel_submit_copy(worker->ch, task->dst, task->src,
g_xfer_size_bytes, accel_done, task);
break;
case ACCEL_FILL:
/* For fill use the first byte of the task->dst buffer */
rc = spdk_accel_submit_fill(worker->ch, task->dst, *(uint8_t *)task->src,
g_xfer_size_bytes, accel_done, task);
break;
case ACCEL_CRC32C:
rc = spdk_accel_submit_crc32cv(worker->ch, &task->crc_dst,
task->iovs, task->iov_cnt, g_crc32c_seed,
accel_done, task);
break;
case ACCEL_COPY_CRC32C:
rc = spdk_accel_submit_copy_crc32cv(worker->ch, task->dst, task->iovs, task->iov_cnt,
&task->crc_dst, g_crc32c_seed, accel_done, task);
break;
case ACCEL_COMPARE:
random_num = rand() % 100;
if (random_num < g_fail_percent_goal) {
task->expected_status = -EILSEQ;
*(uint8_t *)task->dst = ~DATA_PATTERN;
} else {
task->expected_status = 0;
*(uint8_t *)task->dst = DATA_PATTERN;
}
rc = spdk_accel_submit_compare(worker->ch, task->dst, task->src,
g_xfer_size_bytes, accel_done, task);
break;
case ACCEL_DUALCAST:
rc = spdk_accel_submit_dualcast(worker->ch, task->dst, task->dst2,
task->src, g_xfer_size_bytes, accel_done, task);
break;
default:
assert(false);
break;
}
if (rc) {
accel_done(task, rc);
}
}
static int
_batch_prep_cmd(struct worker_thread *worker, struct ap_task *task,
struct accel_batch *worker_batch)
{
struct spdk_accel_batch *batch = worker_batch->batch;
int rc = 0;
worker_batch->cmd_count++;
assert(worker_batch->cmd_count <= g_ops_per_batch);
switch (g_workload_selection) {
case ACCEL_COPY:
rc = spdk_accel_batch_prep_copy(worker->ch, batch, task->dst,
task->src, g_xfer_size_bytes, accel_done, task);
break;
case ACCEL_DUALCAST:
rc = spdk_accel_batch_prep_dualcast(worker->ch, batch, task->dst, task->dst2,
task->src, g_xfer_size_bytes, accel_done, task);
break;
case ACCEL_COMPARE:
rc = spdk_accel_batch_prep_compare(worker->ch, batch, task->dst, task->src,
g_xfer_size_bytes, accel_done, task);
break;
case ACCEL_FILL:
rc = spdk_accel_batch_prep_fill(worker->ch, batch, task->dst,
*(uint8_t *)task->src,
g_xfer_size_bytes, accel_done, task);
break;
case ACCEL_COPY_CRC32C:
rc = spdk_accel_batch_prep_copy_crc32c(worker->ch, batch, task->dst, task->src, &task->crc_dst,
g_crc32c_seed, g_xfer_size_bytes, accel_done, task);
break;
case ACCEL_CRC32C:
rc = spdk_accel_batch_prep_crc32cv(worker->ch, batch, &task->crc_dst,
task->iovs, task->iov_cnt, g_crc32c_seed, accel_done, task);
break;
default:
assert(false);
break;
}
return rc;
}
static void
_free_task_buffers(struct ap_task *task)
{
uint32_t i;
if (g_workload_selection == ACCEL_CRC32C) {
if (task->iovs) {
for (i = 0; i < task->iov_cnt; i++) {
if (task->iovs[i].iov_base) {
spdk_dma_free(task->iovs[i].iov_base);
}
}
free(task->iovs);
}
} else {
spdk_dma_free(task->src);
}
spdk_dma_free(task->dst);
if (g_workload_selection == ACCEL_DUALCAST) {
spdk_dma_free(task->dst2);
}
}
static void _batch_done(void *cb_arg);
static void
_build_batch(struct worker_thread *worker, struct ap_task *task)
{
struct accel_batch *worker_batch = NULL;
int rc;
assert(!TAILQ_EMPTY(&worker->in_prep_batches));
worker_batch = TAILQ_FIRST(&worker->in_prep_batches);
/* If an accel batch hasn't been created yet do so now. */
if (worker_batch->batch == NULL) {
worker_batch->batch = spdk_accel_batch_create(worker->ch);
if (worker_batch->batch == NULL) {
fprintf(stderr, "error unable to create new batch\n");
return;
}
}
/* Prep the command re-using the last completed command's task */
rc = _batch_prep_cmd(worker, task, worker_batch);
if (rc) {
fprintf(stderr, "error preping command for batch\n");
goto error;
}
/* If this batch is full move it to the to_submit list so it gets
* submitted as batches complete.
*/
if (worker_batch->cmd_count == g_ops_per_batch) {
TAILQ_REMOVE(&worker->in_prep_batches, worker_batch, link);
TAILQ_INSERT_TAIL(&worker->to_submit_batches, worker_batch, link);
}
return;
error:
spdk_accel_batch_cancel(worker->ch, worker_batch->batch);
}
static void batch_done(void *cb_arg, int status);
static void
_drain_batch(struct worker_thread *worker)
{
struct accel_batch *worker_batch, *tmp;
int rc;
/* submit any batches that were being built up. */
TAILQ_FOREACH_SAFE(worker_batch, &worker->in_prep_batches, link, tmp) {
if (worker_batch->cmd_count == 0) {
continue;
}
worker->current_queue_depth += worker_batch->cmd_count + 1;
TAILQ_REMOVE(&worker->in_prep_batches, worker_batch, link);
TAILQ_INSERT_TAIL(&worker->in_use_batches, worker_batch, link);
rc = spdk_accel_batch_submit(worker->ch, worker_batch->batch, batch_done, worker_batch);
if (rc == 0) {
worker_batch->cmd_count = 0;
} else {
fprintf(stderr, "error sending final batch\n");
worker->current_queue_depth -= worker_batch->cmd_count + 1;
break;
}
}
}
static void
_batch_done(void *cb_arg)
{
struct accel_batch *worker_batch = (struct accel_batch *)cb_arg;
struct worker_thread *worker = worker_batch->worker;
int rc;
assert(TAILQ_EMPTY(&worker->in_use_batches) == 0);
if (worker_batch->status) {
SPDK_ERRLOG("error %d\n", worker_batch->status);
}
worker->current_queue_depth--;
TAILQ_REMOVE(&worker->in_use_batches, worker_batch, link);
TAILQ_INSERT_TAIL(&worker->in_prep_batches, worker_batch, link);
worker_batch->batch = NULL;
worker_batch->cmd_count = 0;
if (!worker->is_draining) {
worker_batch = TAILQ_FIRST(&worker->to_submit_batches);
if (worker_batch != NULL) {
assert(worker_batch->cmd_count == g_ops_per_batch);
/* Add one for the batch command itself. */
worker->current_queue_depth += g_ops_per_batch + 1;
TAILQ_REMOVE(&worker->to_submit_batches, worker_batch, link);
TAILQ_INSERT_TAIL(&worker->in_use_batches, worker_batch, link);
rc = spdk_accel_batch_submit(worker->ch, worker_batch->batch, batch_done, worker_batch);
if (rc) {
fprintf(stderr, "error ending batch\n");
worker->current_queue_depth -= g_ops_per_batch + 1;
return;
}
}
} else {
_drain_batch(worker);
}
}
static void
batch_done(void *cb_arg, int status)
{
struct accel_batch *worker_batch = (struct accel_batch *)cb_arg;
assert(worker_batch->worker);
worker_batch->status = status;
spdk_thread_send_msg(worker_batch->worker->thread, _batch_done, worker_batch);
}
static int
_vector_memcmp(void *_dst, struct iovec *src_iovs, uint32_t iovcnt)
{
uint32_t i;
uint32_t ttl_len = 0;
uint8_t *dst = (uint8_t *)_dst;
for (i = 0; i < iovcnt; i++) {
if (memcmp(dst, src_iovs[i].iov_base, src_iovs[i].iov_len)) {
return -1;
}
dst += src_iovs[i].iov_len;
ttl_len += src_iovs[i].iov_len;
}
if (ttl_len != iovcnt * g_xfer_size_bytes) {
return -1;
}
return 0;
}
static void
_accel_done(void *arg1)
{
struct ap_task *task = arg1;
struct worker_thread *worker = task->worker;
uint32_t sw_crc32c;
assert(worker);
assert(worker->current_queue_depth > 0);
if (g_verify && task->status == 0) {
switch (g_workload_selection) {
case ACCEL_COPY_CRC32C:
sw_crc32c = spdk_crc32c_iov_update(task->iovs, task->iov_cnt, ~g_crc32c_seed);
if (task->crc_dst != sw_crc32c) {
SPDK_NOTICELOG("CRC-32C miscompare\n");
worker->xfer_failed++;
}
if (_vector_memcmp(task->dst, task->iovs, task->iov_cnt)) {
SPDK_NOTICELOG("Data miscompare\n");
worker->xfer_failed++;
}
break;
case ACCEL_CRC32C:
sw_crc32c = spdk_crc32c_iov_update(task->iovs, task->iov_cnt, ~g_crc32c_seed);
if (task->crc_dst != sw_crc32c) {
SPDK_NOTICELOG("CRC-32C miscompare\n");
worker->xfer_failed++;
}
break;
case ACCEL_COPY:
if (memcmp(task->src, task->dst, g_xfer_size_bytes)) {
SPDK_NOTICELOG("Data miscompare\n");
worker->xfer_failed++;
}
break;
case ACCEL_DUALCAST:
if (memcmp(task->src, task->dst, g_xfer_size_bytes)) {
SPDK_NOTICELOG("Data miscompare, first destination\n");
worker->xfer_failed++;
}
if (memcmp(task->src, task->dst2, g_xfer_size_bytes)) {
SPDK_NOTICELOG("Data miscompare, second destination\n");
worker->xfer_failed++;
}
break;
case ACCEL_FILL:
if (memcmp(task->dst, task->src, g_xfer_size_bytes)) {
SPDK_NOTICELOG("Data miscompare\n");
worker->xfer_failed++;
}
break;
case ACCEL_COMPARE:
break;
default:
assert(false);
break;
}
}
if (task->expected_status == -EILSEQ) {
assert(task->status != 0);
worker->injected_miscompares++;
} else if (task->status) {
/* Expected to pass but the accel engine reported an error (ex: COMPARE operation). */
worker->xfer_failed++;
}
worker->xfer_completed++;
worker->current_queue_depth--;
if (!worker->is_draining) {
TAILQ_INSERT_TAIL(&worker->tasks_pool, task, link);
task = _get_task(worker);
if (g_ops_per_batch == 0) {
_submit_single(worker, task);
worker->current_queue_depth++;
} else {
_build_batch(worker, task);
}
} else if (g_ops_per_batch > 0) {
_drain_batch(worker);
} else {
TAILQ_INSERT_TAIL(&worker->tasks_pool, task, link);
}
}
static int
dump_result(void)
{
uint64_t total_completed = 0;
uint64_t total_failed = 0;
uint64_t total_miscompared = 0;
uint64_t total_xfer_per_sec, total_bw_in_MiBps;
struct worker_thread *worker = g_workers;
printf("\nCore,Thread Transfers Bandwidth Failed Miscompares\n");
printf("------------------------------------------------------------------------\n");
while (worker != NULL) {
uint64_t xfer_per_sec = worker->xfer_completed / g_time_in_sec;
uint64_t bw_in_MiBps = (worker->xfer_completed * g_xfer_size_bytes) /
(g_time_in_sec * 1024 * 1024);
total_completed += worker->xfer_completed;
total_failed += worker->xfer_failed;
total_miscompared += worker->injected_miscompares;
if (xfer_per_sec) {
printf("%u,%u%17" PRIu64 "/s%9" PRIu64 " MiB/s%7" PRIu64 " %11" PRIu64 "\n",
worker->display.core, worker->display.thread, xfer_per_sec,
bw_in_MiBps, worker->xfer_failed, worker->injected_miscompares);
}
worker = worker->next;
}
total_xfer_per_sec = total_completed / g_time_in_sec;
total_bw_in_MiBps = (total_completed * g_xfer_size_bytes) /
(g_time_in_sec * 1024 * 1024);
printf("=========================================================================\n");
printf("Total:%15" PRIu64 "/s%9" PRIu64 " MiB/s%6" PRIu64 " %11" PRIu64"\n\n",
total_xfer_per_sec, total_bw_in_MiBps, total_failed, total_miscompared);
return total_failed ? 1 : 0;
}
static inline void
_free_task_buffers_in_pool(struct worker_thread *worker)
{
struct ap_task *task;
assert(worker);
while ((task = TAILQ_FIRST(&worker->tasks_pool))) {
TAILQ_REMOVE(&worker->tasks_pool, task, link);
_free_task_buffers(task);
}
}
static int
_check_draining(void *arg)
{
struct worker_thread *worker = arg;
assert(worker);
if (worker->current_queue_depth == 0) {
_free_task_buffers_in_pool(worker);
spdk_poller_unregister(&worker->is_draining_poller);
unregister_worker(worker);
}
return -1;
}
static int
_worker_stop(void *arg)
{
struct worker_thread *worker = arg;
assert(worker);
spdk_poller_unregister(&worker->stop_poller);
/* now let the worker drain and check it's outstanding IO with a poller */
worker->is_draining = true;
worker->is_draining_poller = SPDK_POLLER_REGISTER(_check_draining, worker, 0);
return 0;
}
static void
_init_thread(void *arg1)
{
struct worker_thread *worker;
struct ap_task *task;
int i, rc, num_batches;
int max_per_batch;
int remaining = g_queue_depth;
int num_tasks = g_allocate_depth;
struct accel_batch *tmp;
struct accel_batch *worker_batch = NULL;
struct display_info *display = arg1;
uint64_t capabilities;
worker = calloc(1, sizeof(*worker));
if (worker == NULL) {
fprintf(stderr, "Unable to allocate worker\n");
free(display);
return;
}
worker->display.core = display->core;
worker->display.thread = display->thread;
free(display);
worker->core = spdk_env_get_current_core();
worker->thread = spdk_get_thread();
pthread_mutex_lock(&g_workers_lock);
g_num_workers++;
worker->next = g_workers;
g_workers = worker;
pthread_mutex_unlock(&g_workers_lock);
worker->ch = spdk_accel_engine_get_io_channel();
if (g_num_workers == 1) {
capabilities = spdk_accel_get_capabilities(worker->ch);
if ((capabilities & g_workload_selection) != g_workload_selection) {
g_using_sw_engine = true;
SPDK_WARNLOG("The selected workload is not natively supported by the current engine\n");
SPDK_WARNLOG("The software engine will be used instead.\n\n");
}
}
TAILQ_INIT(&worker->tasks_pool);
if (g_ops_per_batch > 0) {
max_per_batch = spdk_accel_batch_get_max(worker->ch);
assert(max_per_batch > 0);
if (g_ops_per_batch > max_per_batch) {
fprintf(stderr, "Reducing requested batch amount to max supported of %d\n", max_per_batch);
g_ops_per_batch = max_per_batch;
}
if (g_ops_per_batch > g_queue_depth) {
fprintf(stderr, "Batch amount > queue depth, resetting to %d\n", g_queue_depth);
g_ops_per_batch = g_queue_depth;
}
TAILQ_INIT(&worker->in_prep_batches);
TAILQ_INIT(&worker->to_submit_batches);
TAILQ_INIT(&worker->in_use_batches);
/* A worker_batch will live on one of 3 lists:
* IN_PREP: as individual IOs complete new ones are built on on a
* worker_batch on this list until it reaches g_ops_per_batch.
* TO_SUBMIT: as batches are built up on IO completion they are moved
* to this list once they are full. This list is used in
* batch completion to start new batches.
* IN_USE: the worker_batch is outstanding and will be moved to in prep
* list when the batch is completed.
*
* So we need enough to cover Q depth loading and then one to replace
* each one of those and for when everything is outstanding there needs
* to be one extra batch to build up while the last batch is completing
* IO but before it's completed the batch command.
*/
num_batches = (g_queue_depth / g_ops_per_batch * 2) + 1;
worker->batch_base = calloc(num_batches, sizeof(struct accel_batch));
worker_batch = worker->batch_base;
for (i = 0; i < num_batches; i++) {
worker_batch->worker = worker;
TAILQ_INSERT_TAIL(&worker->in_prep_batches, worker_batch, link);
worker_batch++;
}
}
worker->task_base = calloc(num_tasks, sizeof(struct ap_task));
if (worker->task_base == NULL) {
fprintf(stderr, "Could not allocate task base.\n");
goto error;
}
task = worker->task_base;
for (i = 0; i < num_tasks; i++) {
TAILQ_INSERT_TAIL(&worker->tasks_pool, task, link);
task->worker = worker;
if (_get_task_data_bufs(task)) {
fprintf(stderr, "Unable to get data bufs\n");
goto error;
}
task++;
}
/* Register a poller that will stop the worker at time elapsed */
worker->stop_poller = SPDK_POLLER_REGISTER(_worker_stop, worker,
g_time_in_sec * 1000000ULL);
/* If batching is enabled load up to the full Q depth before
* processing any completions, then ping pong between two batches,
* one processing and one being built up for when the other completes.
*/
if (g_ops_per_batch > 0) {
do {
worker_batch = TAILQ_FIRST(&worker->in_prep_batches);
if (worker_batch == NULL) {
goto error;
}
worker_batch->batch = spdk_accel_batch_create(worker->ch);
if (worker_batch->batch == NULL) {
raise(SIGINT);
break;
}
for (i = 0; i < g_ops_per_batch; i++) {
task = _get_task(worker);
worker->current_queue_depth++;
if (task == NULL) {
goto error;
}
rc = _batch_prep_cmd(worker, task, worker_batch);
if (rc) {
fprintf(stderr, "error preping command\n");
goto error;
}
}
/* for the batch operation itself. */
task->worker->current_queue_depth++;
TAILQ_REMOVE(&worker->in_prep_batches, worker_batch, link);
TAILQ_INSERT_TAIL(&worker->in_use_batches, worker_batch, link);
rc = spdk_accel_batch_submit(worker->ch, worker_batch->batch, batch_done, worker_batch);
if (rc) {
fprintf(stderr, "error ending batch\n");
goto error;
}
assert(remaining >= g_ops_per_batch);
remaining -= g_ops_per_batch;
} while (remaining > 0);
}
/* Submit as singles when no batching is enabled or we ran out of batches. */
for (i = 0; i < remaining; i++) {
task = _get_task(worker);
worker->current_queue_depth++;
if (task == NULL) {
goto error;
}
_submit_single(worker, task);
}
return;
error:
if (worker_batch && worker_batch->batch) {
TAILQ_FOREACH_SAFE(worker_batch, &worker->in_use_batches, link, tmp) {
spdk_accel_batch_cancel(worker->ch, worker_batch->batch);
TAILQ_REMOVE(&worker->in_use_batches, worker_batch, link);
}
}
_free_task_buffers_in_pool(worker);
free(worker->batch_base);
free(worker->task_base);
free(worker);
spdk_app_stop(-1);
}
static void
accel_done(void *cb_arg, int status)
{
struct ap_task *task = (struct ap_task *)cb_arg;
struct worker_thread *worker = task->worker;
assert(worker);
task->status = status;
if (g_using_sw_engine == false) {
_accel_done(task);
} else {
spdk_thread_send_msg(worker->thread, _accel_done, task);
}
}
static void
accel_perf_start(void *arg1)
{
struct spdk_cpuset tmp_cpumask = {};
char thread_name[32];
uint32_t i;
int j;
struct spdk_thread *thread;
struct display_info *display;
g_tsc_rate = spdk_get_ticks_hz();
g_tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate;
printf("Running for %d seconds...\n", g_time_in_sec);
fflush(stdout);
/* Create worker threads for each core that was specified. */
SPDK_ENV_FOREACH_CORE(i) {
for (j = 0; j < g_threads_per_core; j++) {
snprintf(thread_name, sizeof(thread_name), "ap_worker_%u_%u", i, j);
spdk_cpuset_zero(&tmp_cpumask);
spdk_cpuset_set_cpu(&tmp_cpumask, i, true);
thread = spdk_thread_create(thread_name, &tmp_cpumask);
display = calloc(1, sizeof(*display));
if (display == NULL) {
fprintf(stderr, "Unable to allocate memory\n");
spdk_app_stop(-1);
return;
}
display->core = i;
display->thread = j;
spdk_thread_send_msg(thread, _init_thread, display);
}
}
}
int
main(int argc, char **argv)
{
struct spdk_app_opts opts = {};
struct worker_thread *worker, *tmp;
pthread_mutex_init(&g_workers_lock, NULL);
spdk_app_opts_init(&opts, sizeof(opts));
opts.reactor_mask = "0x1";
if (spdk_app_parse_args(argc, argv, &opts, "a:C:o:q:t:yw:P:f:b:T:", NULL, parse_args,
usage) != SPDK_APP_PARSE_ARGS_SUCCESS) {
g_rc = -1;
goto cleanup;
}
if ((g_workload_selection != ACCEL_COPY) &&
(g_workload_selection != ACCEL_FILL) &&
(g_workload_selection != ACCEL_CRC32C) &&
(g_workload_selection != ACCEL_COPY_CRC32C) &&
(g_workload_selection != ACCEL_COMPARE) &&
(g_workload_selection != ACCEL_DUALCAST)) {
usage();
g_rc = -1;
goto cleanup;
}
if (g_ops_per_batch > 0 && (g_queue_depth % g_ops_per_batch > 0)) {
fprintf(stdout, "batch size must be a multiple of queue depth\n");
usage();
g_rc = -1;
goto cleanup;
}
if (g_allocate_depth > 0 && g_queue_depth > g_allocate_depth) {
fprintf(stdout, "allocate depth must be at least as big as queue depth\n");
usage();
g_rc = -1;
goto cleanup;
}
if (g_allocate_depth == 0) {
g_allocate_depth = g_queue_depth;
}
if ((g_workload_selection == ACCEL_CRC32C || g_workload_selection == ACCEL_COPY_CRC32C) &&
g_crc32c_chained_count == 0) {
usage();
g_rc = -1;
goto cleanup;
}
dump_user_config(&opts);
g_rc = spdk_app_start(&opts, accel_perf_start, NULL);
if (g_rc) {
SPDK_ERRLOG("ERROR starting application\n");
}
pthread_mutex_destroy(&g_workers_lock);
worker = g_workers;
while (worker) {
tmp = worker->next;
free(worker);
worker = tmp;
}
cleanup:
spdk_app_fini();
return g_rc;
}