Spdk/module/bdev/nvme/bdev_nvme.c
Shuhei Matsumoto dd3460582b bdev/nvme: Rename check_multipath_params by check_io_error_resiliency_params
These checked parameters are necessary themselves even for single path
configuration.

Signed-off-by: Shuhei Matsumoto <smatsumoto@nvidia.com>
Change-Id: Ie1eb2f51eeec1dbc634c6bae462a41d4c209d6ac
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/12052
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Aleksey Marchuk <alexeymar@nvidia.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Dong Yi <yidong0635@126.com>
Community-CI: Mellanox Build Bot
2022-09-09 12:56:12 +00:00

6726 lines
180 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (c) Intel Corporation. All rights reserved.
* Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
* Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*/
#include "spdk/stdinc.h"
#include "bdev_nvme.h"
#include "spdk/accel.h"
#include "spdk/config.h"
#include "spdk/endian.h"
#include "spdk/bdev.h"
#include "spdk/json.h"
#include "spdk/likely.h"
#include "spdk/nvme.h"
#include "spdk/nvme_ocssd.h"
#include "spdk/nvme_zns.h"
#include "spdk/opal.h"
#include "spdk/thread.h"
#include "spdk/trace.h"
#include "spdk/string.h"
#include "spdk/util.h"
#include "spdk/bdev_module.h"
#include "spdk/log.h"
#include "spdk_internal/usdt.h"
#include "spdk_internal/trace_defs.h"
#define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
#define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS (10000)
static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
struct nvme_bdev_io {
/** array of iovecs to transfer. */
struct iovec *iovs;
/** Number of iovecs in iovs array. */
int iovcnt;
/** Current iovec position. */
int iovpos;
/** Offset in current iovec. */
uint32_t iov_offset;
/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
* being reset in a reset I/O.
*/
struct nvme_io_path *io_path;
/** array of iovecs to transfer. */
struct iovec *fused_iovs;
/** Number of iovecs in iovs array. */
int fused_iovcnt;
/** Current iovec position. */
int fused_iovpos;
/** Offset in current iovec. */
uint32_t fused_iov_offset;
/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
struct spdk_nvme_cpl cpl;
/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
/** Originating thread */
struct spdk_thread *orig_thread;
/** Keeps track if first of fused commands was submitted */
bool first_fused_submitted;
/** Keeps track if first of fused commands was completed */
bool first_fused_completed;
/** Temporary pointer to zone report buffer */
struct spdk_nvme_zns_zone_report *zone_report_buf;
/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
uint64_t handled_zones;
/** Expiration value in ticks to retry the current I/O. */
uint64_t retry_ticks;
/* How many times the current I/O was retried. */
int32_t retry_count;
};
struct nvme_probe_skip_entry {
struct spdk_nvme_transport_id trid;
TAILQ_ENTRY(nvme_probe_skip_entry) tailq;
};
/* All the controllers deleted by users via RPC are skipped by hotplug monitor */
static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
g_skipped_nvme_ctrlrs);
static struct spdk_bdev_nvme_opts g_opts = {
.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
.timeout_us = 0,
.timeout_admin_us = 0,
.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
.transport_retry_count = 4,
.arbitration_burst = 0,
.low_priority_weight = 0,
.medium_priority_weight = 0,
.high_priority_weight = 0,
.nvme_adminq_poll_period_us = 10000ULL,
.nvme_ioq_poll_period_us = 0,
.io_queue_requests = 0,
.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
.bdev_retry_count = 3,
.transport_ack_timeout = 0,
.ctrlr_loss_timeout_sec = 0,
.reconnect_delay_sec = 0,
.fast_io_fail_timeout_sec = 0,
.disable_auto_failback = false,
};
#define NVME_HOTPLUG_POLL_PERIOD_MAX 10000000ULL
#define NVME_HOTPLUG_POLL_PERIOD_DEFAULT 100000ULL
static int g_hot_insert_nvme_controller_index = 0;
static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
static bool g_nvme_hotplug_enabled = false;
static struct spdk_thread *g_bdev_nvme_init_thread;
static struct spdk_poller *g_hotplug_poller;
static struct spdk_poller *g_hotplug_probe_poller;
static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
struct nvme_async_probe_ctx *ctx);
static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
struct nvme_async_probe_ctx *ctx);
static int bdev_nvme_library_init(void);
static void bdev_nvme_library_fini(void);
static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
struct spdk_bdev_io *bdev_io);
static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts);
static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
void *md, uint64_t lba_count, uint64_t lba);
static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts);
static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
void *md, uint64_t lba_count,
uint64_t zslba, uint32_t flags);
static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags);
static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags);
static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
uint32_t num_zones, struct spdk_bdev_zone_info *info);
static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
enum spdk_bdev_zone_action action);
static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
void *buf, size_t nbytes);
static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
void *buf, size_t nbytes, void *md_buf, size_t md_len);
static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
static int bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr);
static int bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove);
static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
static int nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
static int
nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
{
return ns1->id < ns2->id ? -1 : ns1->id > ns2->id;
}
RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
struct spdk_nvme_qpair *
bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
{
struct nvme_ctrlr_channel *ctrlr_ch;
assert(ctrlr_io_ch != NULL);
ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
return ctrlr_ch->qpair->qpair;
}
static int
bdev_nvme_get_ctx_size(void)
{
return sizeof(struct nvme_bdev_io);
}
static struct spdk_bdev_module nvme_if = {
.name = "nvme",
.async_fini = true,
.module_init = bdev_nvme_library_init,
.module_fini = bdev_nvme_library_fini,
.config_json = bdev_nvme_config_json,
.get_ctx_size = bdev_nvme_get_ctx_size,
};
SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
bool g_bdev_nvme_module_finish;
struct nvme_bdev_ctrlr *
nvme_bdev_ctrlr_get_by_name(const char *name)
{
struct nvme_bdev_ctrlr *nbdev_ctrlr;
TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
if (strcmp(name, nbdev_ctrlr->name) == 0) {
break;
}
}
return nbdev_ctrlr;
}
static struct nvme_ctrlr *
nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
const struct spdk_nvme_transport_id *trid)
{
struct nvme_ctrlr *nvme_ctrlr;
TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
break;
}
}
return nvme_ctrlr;
}
static struct nvme_bdev *
nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
{
struct nvme_bdev *bdev;
pthread_mutex_lock(&g_bdev_nvme_mutex);
TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
if (bdev->nsid == nsid) {
break;
}
}
pthread_mutex_unlock(&g_bdev_nvme_mutex);
return bdev;
}
struct nvme_ns *
nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
{
struct nvme_ns ns;
assert(nsid > 0);
ns.id = nsid;
return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
}
struct nvme_ns *
nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
{
return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
}
struct nvme_ns *
nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
{
if (ns == NULL) {
return NULL;
}
return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
}
static struct nvme_ctrlr *
nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
{
struct nvme_bdev_ctrlr *nbdev_ctrlr;
struct nvme_ctrlr *nvme_ctrlr = NULL;
pthread_mutex_lock(&g_bdev_nvme_mutex);
TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
if (nvme_ctrlr != NULL) {
break;
}
}
pthread_mutex_unlock(&g_bdev_nvme_mutex);
return nvme_ctrlr;
}
struct nvme_ctrlr *
nvme_ctrlr_get_by_name(const char *name)
{
struct nvme_bdev_ctrlr *nbdev_ctrlr;
struct nvme_ctrlr *nvme_ctrlr = NULL;
if (name == NULL) {
return NULL;
}
pthread_mutex_lock(&g_bdev_nvme_mutex);
nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
if (nbdev_ctrlr != NULL) {
nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
}
pthread_mutex_unlock(&g_bdev_nvme_mutex);
return nvme_ctrlr;
}
void
nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
{
struct nvme_bdev_ctrlr *nbdev_ctrlr;
pthread_mutex_lock(&g_bdev_nvme_mutex);
TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
fn(nbdev_ctrlr, ctx);
}
pthread_mutex_unlock(&g_bdev_nvme_mutex);
}
void
nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
{
const char *trtype_str;
const char *adrfam_str;
trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
if (trtype_str) {
spdk_json_write_named_string(w, "trtype", trtype_str);
}
adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
if (adrfam_str) {
spdk_json_write_named_string(w, "adrfam", adrfam_str);
}
if (trid->traddr[0] != '\0') {
spdk_json_write_named_string(w, "traddr", trid->traddr);
}
if (trid->trsvcid[0] != '\0') {
spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
}
if (trid->subnqn[0] != '\0') {
spdk_json_write_named_string(w, "subnqn", trid->subnqn);
}
}
static void
nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
struct nvme_ctrlr *nvme_ctrlr)
{
SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_delete, nvme_ctrlr->nbdev_ctrlr->name);
pthread_mutex_lock(&g_bdev_nvme_mutex);
TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
pthread_mutex_unlock(&g_bdev_nvme_mutex);
return;
}
TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
pthread_mutex_unlock(&g_bdev_nvme_mutex);
assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
free(nbdev_ctrlr->name);
free(nbdev_ctrlr);
}
static void
_nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
{
struct nvme_path_id *path_id, *tmp_path;
struct nvme_ns *ns, *tmp_ns;
free(nvme_ctrlr->copied_ana_desc);
spdk_free(nvme_ctrlr->ana_log_page);
if (nvme_ctrlr->opal_dev) {
spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
nvme_ctrlr->opal_dev = NULL;
}
if (nvme_ctrlr->nbdev_ctrlr) {
nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
}
RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
free(ns);
}
TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
free(path_id);
}
pthread_mutex_destroy(&nvme_ctrlr->mutex);
free(nvme_ctrlr);
pthread_mutex_lock(&g_bdev_nvme_mutex);
if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
pthread_mutex_unlock(&g_bdev_nvme_mutex);
spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
spdk_bdev_module_fini_done();
return;
}
pthread_mutex_unlock(&g_bdev_nvme_mutex);
}
static int
nvme_detach_poller(void *arg)
{
struct nvme_ctrlr *nvme_ctrlr = arg;
int rc;
rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
if (rc != -EAGAIN) {
spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
_nvme_ctrlr_delete(nvme_ctrlr);
}
return SPDK_POLLER_BUSY;
}
static void
nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
{
int rc;
spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
/* If we got here, the reset/detach poller cannot be active */
assert(nvme_ctrlr->reset_detach_poller == NULL);
nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
nvme_ctrlr, 1000);
if (nvme_ctrlr->reset_detach_poller == NULL) {
SPDK_ERRLOG("Failed to register detach poller\n");
goto error;
}
rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
if (rc != 0) {
SPDK_ERRLOG("Failed to detach the NVMe controller\n");
goto error;
}
return;
error:
/* We don't have a good way to handle errors here, so just do what we can and delete the
* controller without detaching the underlying NVMe device.
*/
spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
_nvme_ctrlr_delete(nvme_ctrlr);
}
static void
nvme_ctrlr_unregister_cb(void *io_device)
{
struct nvme_ctrlr *nvme_ctrlr = io_device;
nvme_ctrlr_delete(nvme_ctrlr);
}
static void
nvme_ctrlr_unregister(void *ctx)
{
struct nvme_ctrlr *nvme_ctrlr = ctx;
spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
}
static bool
nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
{
if (!nvme_ctrlr->destruct) {
return false;
}
if (nvme_ctrlr->ref > 0) {
return false;
}
if (nvme_ctrlr->resetting) {
return false;
}
if (nvme_ctrlr->ana_log_page_updating) {
return false;
}
if (nvme_ctrlr->io_path_cache_clearing) {
return false;
}
return true;
}
static void
nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
{
pthread_mutex_lock(&nvme_ctrlr->mutex);
SPDK_DTRACE_PROBE2(bdev_nvme_ctrlr_release, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ref);
assert(nvme_ctrlr->ref > 0);
nvme_ctrlr->ref--;
if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
return;
}
pthread_mutex_unlock(&nvme_ctrlr->mutex);
spdk_thread_exec_msg(nvme_ctrlr->thread, nvme_ctrlr_unregister, nvme_ctrlr);
}
static struct nvme_io_path *
_bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
{
struct nvme_io_path *io_path;
STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
if (io_path->nvme_ns == nvme_ns) {
break;
}
}
return io_path;
}
static int
_bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
{
struct nvme_io_path *io_path;
struct spdk_io_channel *ch;
struct nvme_ctrlr_channel *ctrlr_ch;
struct nvme_qpair *nvme_qpair;
io_path = calloc(1, sizeof(*io_path));
if (io_path == NULL) {
SPDK_ERRLOG("Failed to alloc io_path.\n");
return -ENOMEM;
}
io_path->nvme_ns = nvme_ns;
ch = spdk_get_io_channel(nvme_ns->ctrlr);
if (ch == NULL) {
free(io_path);
SPDK_ERRLOG("Failed to alloc io_channel.\n");
return -ENOMEM;
}
ctrlr_ch = spdk_io_channel_get_ctx(ch);
nvme_qpair = ctrlr_ch->qpair;
assert(nvme_qpair != NULL);
io_path->qpair = nvme_qpair;
TAILQ_INSERT_TAIL(&nvme_qpair->io_path_list, io_path, tailq);
io_path->nbdev_ch = nbdev_ch;
STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
nbdev_ch->current_io_path = NULL;
return 0;
}
static void
_bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
{
struct spdk_io_channel *ch;
struct nvme_qpair *nvme_qpair;
struct nvme_ctrlr_channel *ctrlr_ch;
nbdev_ch->current_io_path = NULL;
STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
nvme_qpair = io_path->qpair;
assert(nvme_qpair != NULL);
TAILQ_REMOVE(&nvme_qpair->io_path_list, io_path, tailq);
ctrlr_ch = nvme_qpair->ctrlr_ch;
assert(ctrlr_ch != NULL);
ch = spdk_io_channel_from_ctx(ctrlr_ch);
spdk_put_io_channel(ch);
free(io_path);
}
static void
_bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
{
struct nvme_io_path *io_path, *tmp_io_path;
STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
_bdev_nvme_delete_io_path(nbdev_ch, io_path);
}
}
static int
bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
{
struct nvme_bdev_channel *nbdev_ch = ctx_buf;
struct nvme_bdev *nbdev = io_device;
struct nvme_ns *nvme_ns;
int rc;
STAILQ_INIT(&nbdev_ch->io_path_list);
TAILQ_INIT(&nbdev_ch->retry_io_list);
pthread_mutex_lock(&nbdev->mutex);
nbdev_ch->mp_policy = nbdev->mp_policy;
TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
if (rc != 0) {
pthread_mutex_unlock(&nbdev->mutex);
_bdev_nvme_delete_io_paths(nbdev_ch);
return rc;
}
}
pthread_mutex_unlock(&nbdev->mutex);
return 0;
}
/* If cpl != NULL, complete the bdev_io with nvme status based on 'cpl'.
* If cpl == NULL, complete the bdev_io with bdev status based on 'status'.
*/
static inline void
__bdev_nvme_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status,
const struct spdk_nvme_cpl *cpl)
{
spdk_trace_record(TRACE_BDEV_NVME_IO_DONE, 0, 0, (uintptr_t)bdev_io->driver_ctx,
(uintptr_t)bdev_io);
if (cpl) {
spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
} else {
spdk_bdev_io_complete(bdev_io, status);
}
}
static void
bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
{
struct spdk_bdev_io *bdev_io, *tmp_io;
TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_io) {
TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
}
spdk_poller_unregister(&nbdev_ch->retry_io_poller);
}
static void
bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
{
struct nvme_bdev_channel *nbdev_ch = ctx_buf;
bdev_nvme_abort_retry_ios(nbdev_ch);
_bdev_nvme_delete_io_paths(nbdev_ch);
}
static inline bool
bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
{
switch (io_type) {
case SPDK_BDEV_IO_TYPE_RESET:
case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
case SPDK_BDEV_IO_TYPE_ABORT:
return true;
default:
break;
}
return false;
}
static inline bool
nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
{
if (spdk_unlikely(nvme_ns->ana_state_updating)) {
return false;
}
switch (nvme_ns->ana_state) {
case SPDK_NVME_ANA_OPTIMIZED_STATE:
case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
return true;
default:
break;
}
return false;
}
static inline bool
nvme_io_path_is_connected(struct nvme_io_path *io_path)
{
if (spdk_unlikely(io_path->qpair->qpair == NULL)) {
return false;
}
if (spdk_unlikely(spdk_nvme_qpair_get_failure_reason(io_path->qpair->qpair) !=
SPDK_NVME_QPAIR_FAILURE_NONE)) {
return false;
}
if (spdk_unlikely(io_path->qpair->ctrlr_ch->reset_iter != NULL)) {
return false;
}
if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(io_path->qpair->ctrlr->ctrlr) !=
SPDK_NVME_QPAIR_FAILURE_NONE) {
return false;
}
return true;
}
static inline bool
nvme_io_path_is_available(struct nvme_io_path *io_path)
{
if (spdk_unlikely(!nvme_io_path_is_connected(io_path))) {
return false;
}
if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
return false;
}
return true;
}
static inline bool
nvme_io_path_is_failed(struct nvme_io_path *io_path)
{
struct nvme_ctrlr *nvme_ctrlr;
nvme_ctrlr = io_path->qpair->ctrlr;
if (nvme_ctrlr->destruct) {
return true;
}
if (nvme_ctrlr->fast_io_fail_timedout) {
return true;
}
if (nvme_ctrlr->resetting) {
if (nvme_ctrlr->opts.reconnect_delay_sec != 0) {
return false;
} else {
return true;
}
}
if (nvme_ctrlr->reconnect_is_delayed) {
return false;
}
if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
return true;
} else {
return false;
}
}
static bool
nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
{
if (nvme_ctrlr->destruct) {
return false;
}
if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
return false;
}
if (nvme_ctrlr->resetting || nvme_ctrlr->reconnect_is_delayed) {
return false;
}
return true;
}
/* Simulate circular linked list. */
static inline struct nvme_io_path *
nvme_io_path_get_next(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *prev_path)
{
struct nvme_io_path *next_path;
next_path = STAILQ_NEXT(prev_path, stailq);
if (next_path != NULL) {
return next_path;
} else {
return STAILQ_FIRST(&nbdev_ch->io_path_list);
}
}
static struct nvme_io_path *
bdev_nvme_find_next_io_path(struct nvme_bdev_channel *nbdev_ch,
struct nvme_io_path *prev)
{
struct nvme_io_path *io_path, *start, *non_optimized = NULL;
start = nvme_io_path_get_next(nbdev_ch, prev);
io_path = start;
do {
if (spdk_likely(nvme_io_path_is_connected(io_path) &&
!io_path->nvme_ns->ana_state_updating)) {
switch (io_path->nvme_ns->ana_state) {
case SPDK_NVME_ANA_OPTIMIZED_STATE:
nbdev_ch->current_io_path = io_path;
return io_path;
case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
if (non_optimized == NULL) {
non_optimized = io_path;
}
break;
default:
break;
}
}
io_path = nvme_io_path_get_next(nbdev_ch, io_path);
} while (io_path != start);
/* We come here only if there is no optimized path. Cache even non_optimized
* path for load balance across multiple non_optimized paths.
*/
nbdev_ch->current_io_path = non_optimized;
return non_optimized;
}
static struct nvme_io_path *
_bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
{
struct nvme_io_path *io_path, *non_optimized = NULL;
STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
if (spdk_unlikely(!nvme_io_path_is_connected(io_path))) {
/* The device is currently resetting. */
continue;
}
if (spdk_unlikely(io_path->nvme_ns->ana_state_updating)) {
continue;
}
switch (io_path->nvme_ns->ana_state) {
case SPDK_NVME_ANA_OPTIMIZED_STATE:
nbdev_ch->current_io_path = io_path;
return io_path;
case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
if (non_optimized == NULL) {
non_optimized = io_path;
}
break;
default:
break;
}
}
return non_optimized;
}
static inline struct nvme_io_path *
bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
{
if (spdk_unlikely(nbdev_ch->current_io_path == NULL)) {
return _bdev_nvme_find_io_path(nbdev_ch);
}
if (spdk_likely(nbdev_ch->mp_policy == BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE)) {
return nbdev_ch->current_io_path;
} else {
return bdev_nvme_find_next_io_path(nbdev_ch, nbdev_ch->current_io_path);
}
}
/* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
* or false otherwise.
*
* If any io_path has an active qpair but find_io_path() returned NULL, its namespace
* is likely to be non-accessible now but may become accessible.
*
* If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
* is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
* when starting to reset it but it is set to failed when the reset failed. Hence, if
* a ctrlr is unfailed, it is likely that it works fine or is resetting.
*/
static bool
any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
{
struct nvme_io_path *io_path;
STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
if (io_path->nvme_ns->ana_transition_timedout) {
continue;
}
if (nvme_io_path_is_connected(io_path) ||
!nvme_io_path_is_failed(io_path)) {
return true;
}
}
return false;
}
static int
bdev_nvme_retry_ios(void *arg)
{
struct nvme_bdev_channel *nbdev_ch = arg;
struct spdk_io_channel *ch = spdk_io_channel_from_ctx(nbdev_ch);
struct spdk_bdev_io *bdev_io, *tmp_bdev_io;
struct nvme_bdev_io *bio;
uint64_t now, delay_us;
now = spdk_get_ticks();
TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_bdev_io) {
bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
if (bio->retry_ticks > now) {
break;
}
TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
bdev_nvme_submit_request(ch, bdev_io);
}
spdk_poller_unregister(&nbdev_ch->retry_io_poller);
bdev_io = TAILQ_FIRST(&nbdev_ch->retry_io_list);
if (bdev_io != NULL) {
bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
delay_us);
}
return SPDK_POLLER_BUSY;
}
static void
bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
struct nvme_bdev_io *bio, uint64_t delay_ms)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
struct spdk_bdev_io *tmp_bdev_io;
struct nvme_bdev_io *tmp_bio;
bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
TAILQ_FOREACH_REVERSE(tmp_bdev_io, &nbdev_ch->retry_io_list, retry_io_head, module_link) {
tmp_bio = (struct nvme_bdev_io *)tmp_bdev_io->driver_ctx;
if (tmp_bio->retry_ticks <= bio->retry_ticks) {
TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bdev_io, bdev_io,
module_link);
return;
}
}
/* No earlier I/Os were found. This I/O must be the new head. */
TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bdev_io, module_link);
spdk_poller_unregister(&nbdev_ch->retry_io_poller);
nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
delay_ms * 1000ULL);
}
static inline void
bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
const struct spdk_nvme_cpl *cpl)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
struct nvme_bdev_channel *nbdev_ch;
struct nvme_ctrlr *nvme_ctrlr;
const struct spdk_nvme_ctrlr_data *cdata;
uint64_t delay_ms;
assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
goto complete;
}
if (cpl->status.dnr != 0 || spdk_nvme_cpl_is_aborted_by_request(cpl) ||
(g_opts.bdev_retry_count != -1 && bio->retry_count >= g_opts.bdev_retry_count)) {
goto complete;
}
nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
assert(bio->io_path != NULL);
nvme_ctrlr = bio->io_path->qpair->ctrlr;
if (spdk_nvme_cpl_is_path_error(cpl) ||
spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
!nvme_io_path_is_available(bio->io_path) ||
!nvme_ctrlr_is_available(nvme_ctrlr)) {
nbdev_ch->current_io_path = NULL;
if (spdk_nvme_cpl_is_ana_error(cpl)) {
if (nvme_ctrlr_read_ana_log_page(nvme_ctrlr) == 0) {
bio->io_path->nvme_ns->ana_state_updating = true;
}
}
delay_ms = 0;
} else {
bio->retry_count++;
cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
if (cpl->status.crd != 0) {
delay_ms = cdata->crdt[cpl->status.crd] * 100;
} else {
delay_ms = 0;
}
}
if (any_io_path_may_become_available(nbdev_ch)) {
bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
return;
}
complete:
bio->retry_count = 0;
__bdev_nvme_io_complete(bdev_io, 0, cpl);
}
static inline void
bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
struct nvme_bdev_channel *nbdev_ch;
enum spdk_bdev_io_status io_status;
switch (rc) {
case 0:
io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
break;
case -ENOMEM:
io_status = SPDK_BDEV_IO_STATUS_NOMEM;
break;
case -ENXIO:
nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
nbdev_ch->current_io_path = NULL;
if (any_io_path_may_become_available(nbdev_ch)) {
bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
return;
}
/* fallthrough */
default:
io_status = SPDK_BDEV_IO_STATUS_FAILED;
break;
}
bio->retry_count = 0;
__bdev_nvme_io_complete(bdev_io, io_status, NULL);
}
static inline void
bdev_nvme_admin_passthru_complete(struct nvme_bdev_io *bio, int rc)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
enum spdk_bdev_io_status io_status;
switch (rc) {
case 0:
io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
break;
case -ENOMEM:
io_status = SPDK_BDEV_IO_STATUS_NOMEM;
break;
case -ENXIO:
/* fallthrough */
default:
io_status = SPDK_BDEV_IO_STATUS_FAILED;
break;
}
__bdev_nvme_io_complete(bdev_io, io_status, NULL);
}
static void
bdev_nvme_clear_io_path_caches_done(struct spdk_io_channel_iter *i, int status)
{
struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
pthread_mutex_lock(&nvme_ctrlr->mutex);
assert(nvme_ctrlr->io_path_cache_clearing == true);
nvme_ctrlr->io_path_cache_clearing = false;
if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
return;
}
pthread_mutex_unlock(&nvme_ctrlr->mutex);
nvme_ctrlr_unregister(nvme_ctrlr);
}
static void
_bdev_nvme_clear_io_path_cache(struct nvme_qpair *nvme_qpair)
{
struct nvme_io_path *io_path;
TAILQ_FOREACH(io_path, &nvme_qpair->io_path_list, tailq) {
io_path->nbdev_ch->current_io_path = NULL;
}
}
static void
bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
assert(ctrlr_ch->qpair != NULL);
_bdev_nvme_clear_io_path_cache(ctrlr_ch->qpair);
spdk_for_each_channel_continue(i, 0);
}
static void
bdev_nvme_clear_io_path_caches(struct nvme_ctrlr *nvme_ctrlr)
{
pthread_mutex_lock(&nvme_ctrlr->mutex);
if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
nvme_ctrlr->io_path_cache_clearing) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
return;
}
nvme_ctrlr->io_path_cache_clearing = true;
pthread_mutex_unlock(&nvme_ctrlr->mutex);
spdk_for_each_channel(nvme_ctrlr,
bdev_nvme_clear_io_path_cache,
NULL,
bdev_nvme_clear_io_path_caches_done);
}
static struct nvme_qpair *
nvme_poll_group_get_qpair(struct nvme_poll_group *group, struct spdk_nvme_qpair *qpair)
{
struct nvme_qpair *nvme_qpair;
TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
if (nvme_qpair->qpair == qpair) {
break;
}
}
return nvme_qpair;
}
static void nvme_qpair_delete(struct nvme_qpair *nvme_qpair);
static void
bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
{
struct nvme_poll_group *group = poll_group_ctx;
struct nvme_qpair *nvme_qpair;
struct nvme_ctrlr_channel *ctrlr_ch;
nvme_qpair = nvme_poll_group_get_qpair(group, qpair);
if (nvme_qpair == NULL) {
return;
}
if (nvme_qpair->qpair != NULL) {
spdk_nvme_ctrlr_free_io_qpair(nvme_qpair->qpair);
nvme_qpair->qpair = NULL;
}
_bdev_nvme_clear_io_path_cache(nvme_qpair);
ctrlr_ch = nvme_qpair->ctrlr_ch;
if (ctrlr_ch != NULL) {
if (ctrlr_ch->reset_iter != NULL) {
/* If we are already in a full reset sequence, we do not have
* to restart it. Just move to the next ctrlr_channel.
*/
SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed in a reset ctrlr sequence.\n",
qpair);
spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
ctrlr_ch->reset_iter = NULL;
} else {
/* qpair was disconnected unexpectedly. Reset controller for recovery. */
SPDK_NOTICELOG("qpair %p was disconnected and freed. reset controller.\n", qpair);
bdev_nvme_failover(nvme_qpair->ctrlr, false);
}
} else {
/* In this case, ctrlr_channel is already deleted. */
SPDK_DEBUGLOG(bdev_nvme, "qpair %p was disconnected and freed. delete nvme_qpair.\n", qpair);
nvme_qpair_delete(nvme_qpair);
}
}
static void
bdev_nvme_check_io_qpairs(struct nvme_poll_group *group)
{
struct nvme_qpair *nvme_qpair;
TAILQ_FOREACH(nvme_qpair, &group->qpair_list, tailq) {
if (nvme_qpair->qpair == NULL || nvme_qpair->ctrlr_ch == NULL) {
continue;
}
if (spdk_nvme_qpair_get_failure_reason(nvme_qpair->qpair) !=
SPDK_NVME_QPAIR_FAILURE_NONE) {
_bdev_nvme_clear_io_path_cache(nvme_qpair);
}
}
}
static int
bdev_nvme_poll(void *arg)
{
struct nvme_poll_group *group = arg;
int64_t num_completions;
if (group->collect_spin_stat && group->start_ticks == 0) {
group->start_ticks = spdk_get_ticks();
}
num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
bdev_nvme_disconnected_qpair_cb);
if (group->collect_spin_stat) {
if (num_completions > 0) {
if (group->end_ticks != 0) {
group->spin_ticks += (group->end_ticks - group->start_ticks);
group->end_ticks = 0;
}
group->start_ticks = 0;
} else {
group->end_ticks = spdk_get_ticks();
}
}
if (spdk_unlikely(num_completions < 0)) {
bdev_nvme_check_io_qpairs(group);
}
return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
}
static int bdev_nvme_poll_adminq(void *arg);
static void
bdev_nvme_change_adminq_poll_period(struct nvme_ctrlr *nvme_ctrlr, uint64_t new_period_us)
{
spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq,
nvme_ctrlr, new_period_us);
}
static int
bdev_nvme_poll_adminq(void *arg)
{
int32_t rc;
struct nvme_ctrlr *nvme_ctrlr = arg;
nvme_ctrlr_disconnected_cb disconnected_cb;
assert(nvme_ctrlr != NULL);
rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
if (rc < 0) {
disconnected_cb = nvme_ctrlr->disconnected_cb;
nvme_ctrlr->disconnected_cb = NULL;
if (rc == -ENXIO && disconnected_cb != NULL) {
bdev_nvme_change_adminq_poll_period(nvme_ctrlr,
g_opts.nvme_adminq_poll_period_us);
disconnected_cb(nvme_ctrlr);
} else {
bdev_nvme_failover(nvme_ctrlr, false);
}
} else if (spdk_nvme_ctrlr_get_admin_qp_failure_reason(nvme_ctrlr->ctrlr) !=
SPDK_NVME_QPAIR_FAILURE_NONE) {
bdev_nvme_clear_io_path_caches(nvme_ctrlr);
}
return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
}
static void
_bdev_nvme_unregister_dev_cb(void *io_device)
{
struct nvme_bdev *nvme_disk = io_device;
free(nvme_disk->disk.name);
free(nvme_disk);
}
static int
bdev_nvme_destruct(void *ctx)
{
struct nvme_bdev *nvme_disk = ctx;
struct nvme_ns *nvme_ns, *tmp_nvme_ns;
SPDK_DTRACE_PROBE2(bdev_nvme_destruct, nvme_disk->nbdev_ctrlr->name, nvme_disk->nsid);
TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
nvme_ns->bdev = NULL;
assert(nvme_ns->id > 0);
if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
nvme_ctrlr_release(nvme_ns->ctrlr);
free(nvme_ns);
} else {
pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
}
}
pthread_mutex_lock(&g_bdev_nvme_mutex);
TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
pthread_mutex_unlock(&g_bdev_nvme_mutex);
spdk_io_device_unregister(nvme_disk, _bdev_nvme_unregister_dev_cb);
return 0;
}
static int
bdev_nvme_flush(struct nvme_bdev_io *bio, uint64_t offset, uint64_t nbytes)
{
bdev_nvme_io_complete(bio, 0);
return 0;
}
static int
bdev_nvme_create_qpair(struct nvme_qpair *nvme_qpair)
{
struct nvme_ctrlr *nvme_ctrlr;
struct spdk_nvme_io_qpair_opts opts;
struct spdk_nvme_qpair *qpair;
int rc;
nvme_ctrlr = nvme_qpair->ctrlr;
spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
opts.delay_cmd_submit = g_opts.delay_cmd_submit;
opts.create_only = true;
opts.async_mode = true;
opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
g_opts.io_queue_requests = opts.io_queue_requests;
qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
if (qpair == NULL) {
return -1;
}
SPDK_DTRACE_PROBE3(bdev_nvme_create_qpair, nvme_ctrlr->nbdev_ctrlr->name,
spdk_nvme_qpair_get_id(qpair), spdk_thread_get_id(nvme_ctrlr->thread));
assert(nvme_qpair->group != NULL);
rc = spdk_nvme_poll_group_add(nvme_qpair->group->group, qpair);
if (rc != 0) {
SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
goto err;
}
rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
if (rc != 0) {
SPDK_ERRLOG("Unable to connect I/O qpair.\n");
goto err;
}
nvme_qpair->qpair = qpair;
if (!g_opts.disable_auto_failback) {
_bdev_nvme_clear_io_path_cache(nvme_qpair);
}
return 0;
err:
spdk_nvme_ctrlr_free_io_qpair(qpair);
return rc;
}
static void
bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
enum spdk_bdev_io_status status = SPDK_BDEV_IO_STATUS_SUCCESS;
struct spdk_bdev_io *bdev_io;
if (spdk_io_channel_iter_get_ctx(i) != NULL) {
status = SPDK_BDEV_IO_STATUS_FAILED;
}
while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets);
TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link);
__bdev_nvme_io_complete(bdev_io, status, NULL);
}
spdk_for_each_channel_continue(i, 0);
}
static void
bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove)
{
struct nvme_path_id *path_id, *next_path;
int rc __attribute__((unused));
path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
assert(path_id);
assert(path_id == nvme_ctrlr->active_path_id);
next_path = TAILQ_NEXT(path_id, link);
path_id->is_failed = true;
if (next_path) {
assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
path_id->trid.trsvcid, next_path->trid.traddr, next_path->trid.trsvcid);
spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
nvme_ctrlr->active_path_id = next_path;
rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
assert(rc == 0);
TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
if (!remove) {
/** Shuffle the old trid to the end of the list and use the new one.
* Allows for round robin through multiple connections.
*/
TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
} else {
free(path_id);
}
}
}
static bool
bdev_nvme_check_ctrlr_loss_timeout(struct nvme_ctrlr *nvme_ctrlr)
{
int32_t elapsed;
if (nvme_ctrlr->opts.ctrlr_loss_timeout_sec == 0 ||
nvme_ctrlr->opts.ctrlr_loss_timeout_sec == -1) {
return false;
}
elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
if (elapsed >= nvme_ctrlr->opts.ctrlr_loss_timeout_sec) {
return true;
} else {
return false;
}
}
static bool
bdev_nvme_check_fast_io_fail_timeout(struct nvme_ctrlr *nvme_ctrlr)
{
uint32_t elapsed;
if (nvme_ctrlr->opts.fast_io_fail_timeout_sec == 0) {
return false;
}
elapsed = (spdk_get_ticks() - nvme_ctrlr->reset_start_tsc) / spdk_get_ticks_hz();
if (elapsed >= nvme_ctrlr->opts.fast_io_fail_timeout_sec) {
return true;
} else {
return false;
}
}
static void
nvme_ctrlr_disconnect(struct nvme_ctrlr *nvme_ctrlr, nvme_ctrlr_disconnected_cb cb_fn)
{
int rc __attribute__((unused));
/* spdk_nvme_ctrlr_disconnect() may complete asynchronously later by polling adminq.
* Set callback here to execute the specified operation after ctrlr is really disconnected.
*/
assert(nvme_ctrlr->disconnected_cb == NULL);
nvme_ctrlr->disconnected_cb = cb_fn;
/* Disconnect fails if ctrlr is already resetting or removed. Both cases are
* not possible. Reset is controlled and the callback to hot remove is called
* when ctrlr is hot removed.
*/
rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
assert(rc == 0);
/* During disconnection, reduce the period to poll adminq more often. */
bdev_nvme_change_adminq_poll_period(nvme_ctrlr, 0);
}
enum bdev_nvme_op_after_reset {
OP_NONE,
OP_COMPLETE_PENDING_DESTRUCT,
OP_DESTRUCT,
OP_DELAYED_RECONNECT,
};
typedef enum bdev_nvme_op_after_reset _bdev_nvme_op_after_reset;
static _bdev_nvme_op_after_reset
bdev_nvme_check_op_after_reset(struct nvme_ctrlr *nvme_ctrlr, bool success)
{
if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
/* Complete pending destruct after reset completes. */
return OP_COMPLETE_PENDING_DESTRUCT;
} else if (success || nvme_ctrlr->opts.reconnect_delay_sec == 0) {
nvme_ctrlr->reset_start_tsc = 0;
return OP_NONE;
} else if (bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
return OP_DESTRUCT;
} else {
if (bdev_nvme_check_fast_io_fail_timeout(nvme_ctrlr)) {
nvme_ctrlr->fast_io_fail_timedout = true;
}
bdev_nvme_failover_trid(nvme_ctrlr, false);
return OP_DELAYED_RECONNECT;
}
}
static int _bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, bool hotplug);
static void bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr);
static int
bdev_nvme_reconnect_delay_timer_expired(void *ctx)
{
struct nvme_ctrlr *nvme_ctrlr = ctx;
SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect_delay, nvme_ctrlr->nbdev_ctrlr->name);
pthread_mutex_lock(&nvme_ctrlr->mutex);
spdk_poller_unregister(&nvme_ctrlr->reconnect_delay_timer);
assert(nvme_ctrlr->reconnect_is_delayed == true);
nvme_ctrlr->reconnect_is_delayed = false;
if (nvme_ctrlr->destruct) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
return SPDK_POLLER_BUSY;
}
assert(nvme_ctrlr->resetting == false);
nvme_ctrlr->resetting = true;
pthread_mutex_unlock(&nvme_ctrlr->mutex);
spdk_poller_resume(nvme_ctrlr->adminq_timer_poller);
bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
return SPDK_POLLER_BUSY;
}
static void
bdev_nvme_start_reconnect_delay_timer(struct nvme_ctrlr *nvme_ctrlr)
{
spdk_poller_pause(nvme_ctrlr->adminq_timer_poller);
assert(nvme_ctrlr->reconnect_is_delayed == false);
nvme_ctrlr->reconnect_is_delayed = true;
assert(nvme_ctrlr->reconnect_delay_timer == NULL);
nvme_ctrlr->reconnect_delay_timer = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_delay_timer_expired,
nvme_ctrlr,
nvme_ctrlr->opts.reconnect_delay_sec * SPDK_SEC_TO_USEC);
}
static void
_bdev_nvme_reset_complete(struct spdk_io_channel_iter *i, int status)
{
struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
struct nvme_path_id *path_id;
bdev_nvme_reset_cb reset_cb_fn = nvme_ctrlr->reset_cb_fn;
void *reset_cb_arg = nvme_ctrlr->reset_cb_arg;
enum bdev_nvme_op_after_reset op_after_reset;
assert(nvme_ctrlr->thread == spdk_get_thread());
nvme_ctrlr->reset_cb_fn = NULL;
nvme_ctrlr->reset_cb_arg = NULL;
if (!success) {
SPDK_ERRLOG("Resetting controller failed.\n");
} else {
SPDK_NOTICELOG("Resetting controller successful.\n");
}
pthread_mutex_lock(&nvme_ctrlr->mutex);
nvme_ctrlr->resetting = false;
path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
assert(path_id != NULL);
assert(path_id == nvme_ctrlr->active_path_id);
path_id->is_failed = !success;
op_after_reset = bdev_nvme_check_op_after_reset(nvme_ctrlr, success);
pthread_mutex_unlock(&nvme_ctrlr->mutex);
if (reset_cb_fn) {
reset_cb_fn(reset_cb_arg, success);
}
switch (op_after_reset) {
case OP_COMPLETE_PENDING_DESTRUCT:
nvme_ctrlr_unregister(nvme_ctrlr);
break;
case OP_DESTRUCT:
_bdev_nvme_delete(nvme_ctrlr, false);
break;
case OP_DELAYED_RECONNECT:
nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_start_reconnect_delay_timer);
break;
default:
break;
}
}
static void
bdev_nvme_reset_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
{
/* Make sure we clear any pending resets before returning. */
spdk_for_each_channel(nvme_ctrlr,
bdev_nvme_complete_pending_resets,
success ? NULL : (void *)0x1,
_bdev_nvme_reset_complete);
}
static void
bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
{
struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
bdev_nvme_reset_complete(nvme_ctrlr, false);
}
static void
bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
struct nvme_qpair *nvme_qpair;
nvme_qpair = ctrlr_ch->qpair;
assert(nvme_qpair != NULL);
_bdev_nvme_clear_io_path_cache(nvme_qpair);
if (nvme_qpair->qpair != NULL) {
spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
/* The current full reset sequence will move to the next
* ctrlr_channel after the qpair is actually disconnected.
*/
assert(ctrlr_ch->reset_iter == NULL);
ctrlr_ch->reset_iter = i;
} else {
spdk_for_each_channel_continue(i, 0);
}
}
static void
bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
{
struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
if (status == 0) {
bdev_nvme_reset_complete(nvme_ctrlr, true);
} else {
/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
spdk_for_each_channel(nvme_ctrlr,
bdev_nvme_reset_destroy_qpair,
NULL,
bdev_nvme_reset_create_qpairs_failed);
}
}
static void
bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
int rc;
rc = bdev_nvme_create_qpair(ctrlr_ch->qpair);
spdk_for_each_channel_continue(i, rc);
}
static int
bdev_nvme_reconnect_ctrlr_poll(void *arg)
{
struct nvme_ctrlr *nvme_ctrlr = arg;
int rc = -ETIMEDOUT;
if (!bdev_nvme_check_ctrlr_loss_timeout(nvme_ctrlr)) {
rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
if (rc == -EAGAIN) {
return SPDK_POLLER_BUSY;
}
}
spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
if (rc == 0) {
/* Recreate all of the I/O queue pairs */
spdk_for_each_channel(nvme_ctrlr,
bdev_nvme_reset_create_qpair,
NULL,
bdev_nvme_reset_create_qpairs_done);
} else {
bdev_nvme_reset_complete(nvme_ctrlr, false);
}
return SPDK_POLLER_BUSY;
}
static void
bdev_nvme_reconnect_ctrlr(struct nvme_ctrlr *nvme_ctrlr)
{
spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reconnect, nvme_ctrlr->nbdev_ctrlr->name);
assert(nvme_ctrlr->reset_detach_poller == NULL);
nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_reconnect_ctrlr_poll,
nvme_ctrlr, 0);
}
static void
bdev_nvme_reset_ctrlr(struct spdk_io_channel_iter *i, int status)
{
struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
SPDK_DTRACE_PROBE1(bdev_nvme_ctrlr_reset, nvme_ctrlr->nbdev_ctrlr->name);
assert(status == 0);
if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
bdev_nvme_reconnect_ctrlr(nvme_ctrlr);
} else {
nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reconnect_ctrlr);
}
}
static void
bdev_nvme_reset_destroy_qpairs(struct nvme_ctrlr *nvme_ctrlr)
{
spdk_for_each_channel(nvme_ctrlr,
bdev_nvme_reset_destroy_qpair,
NULL,
bdev_nvme_reset_ctrlr);
}
static void
_bdev_nvme_reset(void *ctx)
{
struct nvme_ctrlr *nvme_ctrlr = ctx;
assert(nvme_ctrlr->resetting == true);
assert(nvme_ctrlr->thread == spdk_get_thread());
if (!spdk_nvme_ctrlr_is_fabrics(nvme_ctrlr->ctrlr)) {
nvme_ctrlr_disconnect(nvme_ctrlr, bdev_nvme_reset_destroy_qpairs);
} else {
bdev_nvme_reset_destroy_qpairs(nvme_ctrlr);
}
}
static int
bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr)
{
pthread_mutex_lock(&nvme_ctrlr->mutex);
if (nvme_ctrlr->destruct) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
return -ENXIO;
}
if (nvme_ctrlr->resetting) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
return -EBUSY;
}
if (nvme_ctrlr->reconnect_is_delayed) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
SPDK_NOTICELOG("Reconnect is already scheduled.\n");
return -EBUSY;
}
nvme_ctrlr->resetting = true;
assert(nvme_ctrlr->reset_start_tsc == 0);
nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
pthread_mutex_unlock(&nvme_ctrlr->mutex);
spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset, nvme_ctrlr);
return 0;
}
int
bdev_nvme_reset_rpc(struct nvme_ctrlr *nvme_ctrlr, bdev_nvme_reset_cb cb_fn, void *cb_arg)
{
int rc;
rc = bdev_nvme_reset(nvme_ctrlr);
if (rc == 0) {
nvme_ctrlr->reset_cb_fn = cb_fn;
nvme_ctrlr->reset_cb_arg = cb_arg;
}
return rc;
}
static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
static void
bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
{
enum spdk_bdev_io_status io_status;
if (bio->cpl.cdw0 == 0) {
io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
} else {
io_status = SPDK_BDEV_IO_STATUS_FAILED;
}
__bdev_nvme_io_complete(spdk_bdev_io_from_ctx(bio), io_status, NULL);
}
static void
_bdev_nvme_reset_io_continue(void *ctx)
{
struct nvme_bdev_io *bio = ctx;
struct nvme_io_path *prev_io_path, *next_io_path;
int rc;
prev_io_path = bio->io_path;
bio->io_path = NULL;
if (bio->cpl.cdw0 != 0) {
goto complete;
}
next_io_path = STAILQ_NEXT(prev_io_path, stailq);
if (next_io_path == NULL) {
goto complete;
}
rc = _bdev_nvme_reset_io(next_io_path, bio);
if (rc == 0) {
return;
}
bio->cpl.cdw0 = 1;
complete:
bdev_nvme_reset_io_complete(bio);
}
static void
bdev_nvme_reset_io_continue(void *cb_arg, bool success)
{
struct nvme_bdev_io *bio = cb_arg;
bio->cpl.cdw0 = !success;
spdk_thread_send_msg(bio->orig_thread, _bdev_nvme_reset_io_continue, bio);
}
static int
_bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
{
struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
struct nvme_ctrlr_channel *ctrlr_ch;
struct spdk_bdev_io *bdev_io;
int rc;
rc = bdev_nvme_reset(nvme_ctrlr);
if (rc == 0) {
assert(bio->io_path == NULL);
bio->io_path = io_path;
assert(nvme_ctrlr->reset_cb_fn == NULL);
assert(nvme_ctrlr->reset_cb_arg == NULL);
nvme_ctrlr->reset_cb_fn = bdev_nvme_reset_io_continue;
nvme_ctrlr->reset_cb_arg = bio;
} else if (rc == -EBUSY) {
ctrlr_ch = io_path->qpair->ctrlr_ch;
assert(ctrlr_ch != NULL);
/*
* Reset call is queued only if it is from the app framework. This is on purpose so that
* we don't interfere with the app framework reset strategy. i.e. we are deferring to the
* upper level. If they are in the middle of a reset, we won't try to schedule another one.
*/
bdev_io = spdk_bdev_io_from_ctx(bio);
TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link);
} else {
return rc;
}
return 0;
}
static void
bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
{
struct nvme_io_path *io_path;
int rc;
bio->cpl.cdw0 = 0;
bio->orig_thread = spdk_get_thread();
/* Reset only the first nvme_ctrlr in the nvme_bdev_ctrlr for now.
*
* TODO: Reset all nvme_ctrlrs in the nvme_bdev_ctrlr sequentially.
* This will be done in the following patches.
*/
io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
assert(io_path != NULL);
rc = _bdev_nvme_reset_io(io_path, bio);
if (rc != 0) {
bio->cpl.cdw0 = 1;
bdev_nvme_reset_io_complete(bio);
}
}
static int
bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove)
{
pthread_mutex_lock(&nvme_ctrlr->mutex);
if (nvme_ctrlr->destruct) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
/* Don't bother resetting if the controller is in the process of being destructed. */
return -ENXIO;
}
if (nvme_ctrlr->resetting) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
return -EBUSY;
}
bdev_nvme_failover_trid(nvme_ctrlr, remove);
if (nvme_ctrlr->reconnect_is_delayed) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
SPDK_NOTICELOG("Reconnect is already scheduled.\n");
/* We rely on the next reconnect for the failover. */
return 0;
}
nvme_ctrlr->resetting = true;
assert(nvme_ctrlr->reset_start_tsc == 0);
nvme_ctrlr->reset_start_tsc = spdk_get_ticks();
pthread_mutex_unlock(&nvme_ctrlr->mutex);
spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset, nvme_ctrlr);
return 0;
}
static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
uint64_t num_blocks);
static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
uint64_t num_blocks);
static void
bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
bool success)
{
struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
struct spdk_bdev *bdev = bdev_io->bdev;
int ret;
if (!success) {
ret = -EINVAL;
goto exit;
}
if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
ret = -ENXIO;
goto exit;
}
ret = bdev_nvme_readv(bio,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags,
bdev_io->u.bdev.ext_opts);
exit:
if (spdk_unlikely(ret != 0)) {
bdev_nvme_io_complete(bio, ret);
}
}
static void
bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
{
struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
struct spdk_bdev *bdev = bdev_io->bdev;
struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
struct nvme_bdev_io *nbdev_io_to_abort;
int rc = 0;
spdk_trace_record(TRACE_BDEV_NVME_IO_START, 0, 0, (uintptr_t)nbdev_io, (uintptr_t)bdev_io);
nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
if (spdk_unlikely(!nbdev_io->io_path)) {
if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
rc = -ENXIO;
goto exit;
}
/* Admin commands do not use the optimal I/O path.
* Simply fall through even if it is not found.
*/
}
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_READ:
if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
rc = bdev_nvme_readv(nbdev_io,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags,
bdev_io->u.bdev.ext_opts);
} else {
spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
bdev_io->u.bdev.num_blocks * bdev->blocklen);
rc = 0;
}
break;
case SPDK_BDEV_IO_TYPE_WRITE:
rc = bdev_nvme_writev(nbdev_io,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags,
bdev_io->u.bdev.ext_opts);
break;
case SPDK_BDEV_IO_TYPE_COMPARE:
rc = bdev_nvme_comparev(nbdev_io,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags);
break;
case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
rc = bdev_nvme_comparev_and_writev(nbdev_io,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.fused_iovs,
bdev_io->u.bdev.fused_iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags);
break;
case SPDK_BDEV_IO_TYPE_UNMAP:
rc = bdev_nvme_unmap(nbdev_io,
bdev_io->u.bdev.offset_blocks,
bdev_io->u.bdev.num_blocks);
break;
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
rc = bdev_nvme_write_zeroes(nbdev_io,
bdev_io->u.bdev.offset_blocks,
bdev_io->u.bdev.num_blocks);
break;
case SPDK_BDEV_IO_TYPE_RESET:
nbdev_io->io_path = NULL;
bdev_nvme_reset_io(nbdev_ch, nbdev_io);
break;
case SPDK_BDEV_IO_TYPE_FLUSH:
rc = bdev_nvme_flush(nbdev_io,
bdev_io->u.bdev.offset_blocks,
bdev_io->u.bdev.num_blocks);
break;
case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
rc = bdev_nvme_zone_appendv(nbdev_io,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags);
break;
case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
rc = bdev_nvme_get_zone_info(nbdev_io,
bdev_io->u.zone_mgmt.zone_id,
bdev_io->u.zone_mgmt.num_zones,
bdev_io->u.zone_mgmt.buf);
break;
case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
rc = bdev_nvme_zone_management(nbdev_io,
bdev_io->u.zone_mgmt.zone_id,
bdev_io->u.zone_mgmt.zone_action);
break;
case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
nbdev_io->io_path = NULL;
bdev_nvme_admin_passthru(nbdev_ch,
nbdev_io,
&bdev_io->u.nvme_passthru.cmd,
bdev_io->u.nvme_passthru.buf,
bdev_io->u.nvme_passthru.nbytes);
break;
case SPDK_BDEV_IO_TYPE_NVME_IO:
rc = bdev_nvme_io_passthru(nbdev_io,
&bdev_io->u.nvme_passthru.cmd,
bdev_io->u.nvme_passthru.buf,
bdev_io->u.nvme_passthru.nbytes);
break;
case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
rc = bdev_nvme_io_passthru_md(nbdev_io,
&bdev_io->u.nvme_passthru.cmd,
bdev_io->u.nvme_passthru.buf,
bdev_io->u.nvme_passthru.nbytes,
bdev_io->u.nvme_passthru.md_buf,
bdev_io->u.nvme_passthru.md_len);
break;
case SPDK_BDEV_IO_TYPE_ABORT:
nbdev_io->io_path = NULL;
nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
bdev_nvme_abort(nbdev_ch,
nbdev_io,
nbdev_io_to_abort);
break;
default:
rc = -EINVAL;
break;
}
exit:
if (spdk_unlikely(rc != 0)) {
bdev_nvme_io_complete(nbdev_io, rc);
}
}
static bool
bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
{
struct nvme_bdev *nbdev = ctx;
struct nvme_ns *nvme_ns;
struct spdk_nvme_ns *ns;
struct spdk_nvme_ctrlr *ctrlr;
const struct spdk_nvme_ctrlr_data *cdata;
nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
assert(nvme_ns != NULL);
ns = nvme_ns->ns;
ctrlr = spdk_nvme_ns_get_ctrlr(ns);
switch (io_type) {
case SPDK_BDEV_IO_TYPE_READ:
case SPDK_BDEV_IO_TYPE_WRITE:
case SPDK_BDEV_IO_TYPE_RESET:
case SPDK_BDEV_IO_TYPE_FLUSH:
case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
case SPDK_BDEV_IO_TYPE_NVME_IO:
case SPDK_BDEV_IO_TYPE_ABORT:
return true;
case SPDK_BDEV_IO_TYPE_COMPARE:
return spdk_nvme_ns_supports_compare(ns);
case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
return spdk_nvme_ns_get_md_size(ns) ? true : false;
case SPDK_BDEV_IO_TYPE_UNMAP:
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
return cdata->oncs.dsm;
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
return cdata->oncs.write_zeroes;
case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
if (spdk_nvme_ctrlr_get_flags(ctrlr) &
SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
return true;
}
return false;
case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
default:
return false;
}
}
static int
nvme_qpair_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ctrlr_channel *ctrlr_ch)
{
struct nvme_qpair *nvme_qpair;
struct spdk_io_channel *pg_ch;
int rc;
nvme_qpair = calloc(1, sizeof(*nvme_qpair));
if (!nvme_qpair) {
SPDK_ERRLOG("Failed to alloc nvme_qpair.\n");
return -1;
}
TAILQ_INIT(&nvme_qpair->io_path_list);
nvme_qpair->ctrlr = nvme_ctrlr;
nvme_qpair->ctrlr_ch = ctrlr_ch;
pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
if (!pg_ch) {
free(nvme_qpair);
return -1;
}
nvme_qpair->group = spdk_io_channel_get_ctx(pg_ch);
#ifdef SPDK_CONFIG_VTUNE
nvme_qpair->group->collect_spin_stat = true;
#else
nvme_qpair->group->collect_spin_stat = false;
#endif
rc = bdev_nvme_create_qpair(nvme_qpair);
if (rc != 0) {
/* nvme_ctrlr can't create IO qpair if connection is down. If nvme_ctrlr is
* being reset or scheduled to reconnect later, ignore this failure.
* Then IO qpair will be created later when reconnect completes.
* If the user submits IO requests in the meantime, they will be queued and
* resubmitted later */
if (!nvme_ctrlr->resetting && !nvme_ctrlr->reconnect_is_delayed) {
spdk_put_io_channel(pg_ch);
free(nvme_qpair);
return rc;
}
}
TAILQ_INSERT_TAIL(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
ctrlr_ch->qpair = nvme_qpair;
pthread_mutex_lock(&nvme_qpair->ctrlr->mutex);
nvme_qpair->ctrlr->ref++;
pthread_mutex_unlock(&nvme_qpair->ctrlr->mutex);
return 0;
}
static int
bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
{
struct nvme_ctrlr *nvme_ctrlr = io_device;
struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
TAILQ_INIT(&ctrlr_ch->pending_resets);
return nvme_qpair_create(nvme_ctrlr, ctrlr_ch);
}
static void
nvme_qpair_delete(struct nvme_qpair *nvme_qpair)
{
assert(nvme_qpair->group != NULL);
TAILQ_REMOVE(&nvme_qpair->group->qpair_list, nvme_qpair, tailq);
spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_qpair->group));
nvme_ctrlr_release(nvme_qpair->ctrlr);
free(nvme_qpair);
}
static void
bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
{
struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
struct nvme_qpair *nvme_qpair;
nvme_qpair = ctrlr_ch->qpair;
assert(nvme_qpair != NULL);
_bdev_nvme_clear_io_path_cache(nvme_qpair);
if (nvme_qpair->qpair != NULL) {
if (ctrlr_ch->reset_iter == NULL) {
spdk_nvme_ctrlr_disconnect_io_qpair(nvme_qpair->qpair);
} else {
/* Skip current ctrlr_channel in a full reset sequence because
* it is being deleted now. The qpair is already being disconnected.
* We do not have to restart disconnecting it.
*/
spdk_for_each_channel_continue(ctrlr_ch->reset_iter, 0);
}
/* We cannot release a reference to the poll group now.
* The qpair may be disconnected asynchronously later.
* We need to poll it until it is actually disconnected.
* Just detach the qpair from the deleting ctrlr_channel.
*/
nvme_qpair->ctrlr_ch = NULL;
} else {
assert(ctrlr_ch->reset_iter == NULL);
nvme_qpair_delete(nvme_qpair);
}
}
static void
bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
uint32_t iov_cnt, uint32_t seed,
spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
{
struct nvme_poll_group *group = ctx;
int rc;
assert(group->accel_channel != NULL);
assert(cb_fn != NULL);
rc = spdk_accel_submit_crc32cv(group->accel_channel, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
if (rc) {
/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
if (rc == -ENOMEM || rc == -EINVAL) {
cb_fn(cb_arg, rc);
}
SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
}
}
static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
.table_size = sizeof(struct spdk_nvme_accel_fn_table),
.submit_accel_crc32c = bdev_nvme_submit_accel_crc32c,
};
static int
bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
{
struct nvme_poll_group *group = ctx_buf;
TAILQ_INIT(&group->qpair_list);
group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
if (group->group == NULL) {
return -1;
}
group->accel_channel = spdk_accel_get_io_channel();
if (!group->accel_channel) {
spdk_nvme_poll_group_destroy(group->group);
SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
group);
return -1;
}
group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
if (group->poller == NULL) {
spdk_put_io_channel(group->accel_channel);
spdk_nvme_poll_group_destroy(group->group);
return -1;
}
return 0;
}
static void
bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
{
struct nvme_poll_group *group = ctx_buf;
assert(TAILQ_EMPTY(&group->qpair_list));
if (group->accel_channel) {
spdk_put_io_channel(group->accel_channel);
}
spdk_poller_unregister(&group->poller);
if (spdk_nvme_poll_group_destroy(group->group)) {
SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
assert(false);
}
}
static struct spdk_io_channel *
bdev_nvme_get_io_channel(void *ctx)
{
struct nvme_bdev *nvme_bdev = ctx;
return spdk_get_io_channel(nvme_bdev);
}
static void *
bdev_nvme_get_module_ctx(void *ctx)
{
struct nvme_bdev *nvme_bdev = ctx;
struct nvme_ns *nvme_ns;
if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
return NULL;
}
nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
if (!nvme_ns) {
return NULL;
}
return nvme_ns->ns;
}
static const char *
_nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
{
switch (ana_state) {
case SPDK_NVME_ANA_OPTIMIZED_STATE:
return "optimized";
case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
return "non_optimized";
case SPDK_NVME_ANA_INACCESSIBLE_STATE:
return "inaccessible";
case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
return "persistent_loss";
case SPDK_NVME_ANA_CHANGE_STATE:
return "change";
default:
return NULL;
}
}
static int
bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
{
struct nvme_bdev *nbdev = ctx;
struct nvme_ns *nvme_ns;
nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
assert(nvme_ns != NULL);
return spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, domains, array_size);
}
static const char *
nvme_ctrlr_get_state_str(struct nvme_ctrlr *nvme_ctrlr)
{
if (nvme_ctrlr->destruct) {
return "deleting";
} else if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
return "failed";
} else if (nvme_ctrlr->resetting) {
return "resetting";
} else if (nvme_ctrlr->reconnect_is_delayed > 0) {
return "reconnect_is_delayed";
} else {
return "enabled";
}
}
void
nvme_ctrlr_info_json(struct spdk_json_write_ctx *w, struct nvme_ctrlr *nvme_ctrlr)
{
struct spdk_nvme_transport_id *trid;
const struct spdk_nvme_ctrlr_opts *opts;
const struct spdk_nvme_ctrlr_data *cdata;
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "state", nvme_ctrlr_get_state_str(nvme_ctrlr));
#ifdef SPDK_CONFIG_NVME_CUSE
size_t cuse_name_size = 128;
char cuse_name[cuse_name_size];
int rc = spdk_nvme_cuse_get_ctrlr_name(nvme_ctrlr->ctrlr, cuse_name, &cuse_name_size);
if (rc == 0) {
spdk_json_write_named_string(w, "cuse_device", cuse_name);
}
#endif
trid = &nvme_ctrlr->active_path_id->trid;
spdk_json_write_named_object_begin(w, "trid");
nvme_bdev_dump_trid_json(trid, w);
spdk_json_write_object_end(w);
cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
opts = spdk_nvme_ctrlr_get_opts(nvme_ctrlr->ctrlr);
spdk_json_write_named_object_begin(w, "host");
spdk_json_write_named_string(w, "nqn", opts->hostnqn);
spdk_json_write_named_string(w, "addr", opts->src_addr);
spdk_json_write_named_string(w, "svcid", opts->src_svcid);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
}
static void
nvme_namespace_info_json(struct spdk_json_write_ctx *w,
struct nvme_ns *nvme_ns)
{
struct spdk_nvme_ns *ns;
struct spdk_nvme_ctrlr *ctrlr;
const struct spdk_nvme_ctrlr_data *cdata;
const struct spdk_nvme_transport_id *trid;
union spdk_nvme_vs_register vs;
const struct spdk_nvme_ns_data *nsdata;
char buf[128];
ns = nvme_ns->ns;
ctrlr = spdk_nvme_ns_get_ctrlr(ns);
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
spdk_json_write_object_begin(w);
if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
spdk_json_write_named_string(w, "pci_address", trid->traddr);
}
spdk_json_write_named_object_begin(w, "trid");
nvme_bdev_dump_trid_json(trid, w);
spdk_json_write_object_end(w);
#ifdef SPDK_CONFIG_NVME_CUSE
size_t cuse_name_size = 128;
char cuse_name[cuse_name_size];
int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
cuse_name, &cuse_name_size);
if (rc == 0) {
spdk_json_write_named_string(w, "cuse_device", cuse_name);
}
#endif
spdk_json_write_named_object_begin(w, "ctrlr_data");
spdk_json_write_named_uint16(w, "cntlid", cdata->cntlid);
spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
spdk_str_trim(buf);
spdk_json_write_named_string(w, "model_number", buf);
snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
spdk_str_trim(buf);
spdk_json_write_named_string(w, "serial_number", buf);
snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
spdk_str_trim(buf);
spdk_json_write_named_string(w, "firmware_revision", buf);
if (cdata->subnqn[0] != '\0') {
spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
}
spdk_json_write_named_object_begin(w, "oacs");
spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
spdk_json_write_object_end(w);
spdk_json_write_named_bool(w, "multi_ctrlr", cdata->cmic.multi_ctrlr);
spdk_json_write_named_bool(w, "ana_reporting", cdata->cmic.ana_reporting);
spdk_json_write_object_end(w);
spdk_json_write_named_object_begin(w, "vs");
spdk_json_write_name(w, "nvme_version");
if (vs.bits.ter) {
spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
} else {
spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
}
spdk_json_write_object_end(w);
nsdata = spdk_nvme_ns_get_data(ns);
spdk_json_write_named_object_begin(w, "ns_data");
spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
if (cdata->cmic.ana_reporting) {
spdk_json_write_named_string(w, "ana_state",
_nvme_ana_state_str(nvme_ns->ana_state));
}
spdk_json_write_named_bool(w, "can_share", nsdata->nmic.can_share);
spdk_json_write_object_end(w);
if (cdata->oacs.security) {
spdk_json_write_named_object_begin(w, "security");
spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
spdk_json_write_object_end(w);
}
spdk_json_write_object_end(w);
}
static const char *
nvme_bdev_get_mp_policy_str(struct nvme_bdev *nbdev)
{
switch (nbdev->mp_policy) {
case BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE:
return "active_passive";
case BDEV_NVME_MP_POLICY_ACTIVE_ACTIVE:
return "active_active";
default:
assert(false);
return "invalid";
}
}
static int
bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
{
struct nvme_bdev *nvme_bdev = ctx;
struct nvme_ns *nvme_ns;
pthread_mutex_lock(&nvme_bdev->mutex);
spdk_json_write_named_array_begin(w, "nvme");
TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
nvme_namespace_info_json(w, nvme_ns);
}
spdk_json_write_array_end(w);
spdk_json_write_named_string(w, "mp_policy", nvme_bdev_get_mp_policy_str(nvme_bdev));
pthread_mutex_unlock(&nvme_bdev->mutex);
return 0;
}
static void
bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
{
/* No config per bdev needed */
}
static uint64_t
bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
{
struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
struct nvme_io_path *io_path;
struct nvme_poll_group *group;
uint64_t spin_time = 0;
STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
group = io_path->qpair->group;
if (!group || !group->collect_spin_stat) {
continue;
}
if (group->end_ticks != 0) {
group->spin_ticks += (group->end_ticks - group->start_ticks);
group->end_ticks = 0;
}
spin_time += group->spin_ticks;
group->start_ticks = 0;
group->spin_ticks = 0;
}
return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
}
static const struct spdk_bdev_fn_table nvmelib_fn_table = {
.destruct = bdev_nvme_destruct,
.submit_request = bdev_nvme_submit_request,
.io_type_supported = bdev_nvme_io_type_supported,
.get_io_channel = bdev_nvme_get_io_channel,
.dump_info_json = bdev_nvme_dump_info_json,
.write_config_json = bdev_nvme_write_config_json,
.get_spin_time = bdev_nvme_get_spin_time,
.get_module_ctx = bdev_nvme_get_module_ctx,
.get_memory_domains = bdev_nvme_get_memory_domains,
};
typedef int (*bdev_nvme_parse_ana_log_page_cb)(
const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
static int
bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
{
struct spdk_nvme_ana_group_descriptor *copied_desc;
uint8_t *orig_desc;
uint32_t i, desc_size, copy_len;
int rc = 0;
if (nvme_ctrlr->ana_log_page == NULL) {
return -EINVAL;
}
copied_desc = nvme_ctrlr->copied_ana_desc;
orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
copy_len = nvme_ctrlr->max_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
memcpy(copied_desc, orig_desc, copy_len);
rc = cb_fn(copied_desc, cb_arg);
if (rc != 0) {
break;
}
desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
copied_desc->num_of_nsid * sizeof(uint32_t);
orig_desc += desc_size;
copy_len -= desc_size;
}
return rc;
}
static int
nvme_ns_ana_transition_timedout(void *ctx)
{
struct nvme_ns *nvme_ns = ctx;
spdk_poller_unregister(&nvme_ns->anatt_timer);
nvme_ns->ana_transition_timedout = true;
return SPDK_POLLER_BUSY;
}
static void
_nvme_ns_set_ana_state(struct nvme_ns *nvme_ns,
const struct spdk_nvme_ana_group_descriptor *desc)
{
const struct spdk_nvme_ctrlr_data *cdata;
nvme_ns->ana_group_id = desc->ana_group_id;
nvme_ns->ana_state = desc->ana_state;
nvme_ns->ana_state_updating = false;
switch (nvme_ns->ana_state) {
case SPDK_NVME_ANA_OPTIMIZED_STATE:
case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
nvme_ns->ana_transition_timedout = false;
spdk_poller_unregister(&nvme_ns->anatt_timer);
break;
case SPDK_NVME_ANA_INACCESSIBLE_STATE:
case SPDK_NVME_ANA_CHANGE_STATE:
if (nvme_ns->anatt_timer != NULL) {
break;
}
cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
nvme_ns->anatt_timer = SPDK_POLLER_REGISTER(nvme_ns_ana_transition_timedout,
nvme_ns,
cdata->anatt * SPDK_SEC_TO_USEC);
break;
default:
break;
}
}
static int
nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
{
struct nvme_ns *nvme_ns = cb_arg;
uint32_t i;
for (i = 0; i < desc->num_of_nsid; i++) {
if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
continue;
}
_nvme_ns_set_ana_state(nvme_ns, desc);
return 1;
}
return 0;
}
static int
nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
uint32_t prchk_flags, void *ctx)
{
const struct spdk_uuid *uuid;
const uint8_t *nguid;
const struct spdk_nvme_ctrlr_data *cdata;
const struct spdk_nvme_ns_data *nsdata;
const struct spdk_nvme_ctrlr_opts *opts;
enum spdk_nvme_csi csi;
uint32_t atomic_bs, phys_bs, bs;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
csi = spdk_nvme_ns_get_csi(ns);
opts = spdk_nvme_ctrlr_get_opts(ctrlr);
switch (csi) {
case SPDK_NVME_CSI_NVM:
disk->product_name = "NVMe disk";
break;
case SPDK_NVME_CSI_ZNS:
disk->product_name = "NVMe ZNS disk";
disk->zoned = true;
disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
spdk_nvme_ns_get_extended_sector_size(ns);
disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
break;
default:
SPDK_ERRLOG("unsupported CSI: %u\n", csi);
return -ENOTSUP;
}
disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
if (!disk->name) {
return -ENOMEM;
}
disk->write_cache = 0;
if (cdata->vwc.present) {
/* Enable if the Volatile Write Cache exists */
disk->write_cache = 1;
}
if (cdata->oncs.write_zeroes) {
disk->max_write_zeroes = UINT16_MAX + 1;
}
disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
disk->max_segment_size = spdk_nvme_ctrlr_get_max_xfer_size(ctrlr);
/* NVMe driver will split one request into multiple requests
* based on MDTS and stripe boundary, the bdev layer will use
* max_segment_size and max_num_segments to split one big IO
* into multiple requests, then small request can't run out
* of NVMe internal requests data structure.
*/
if (opts && opts->io_queue_requests) {
disk->max_num_segments = opts->io_queue_requests / 2;
}
disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
nguid = spdk_nvme_ns_get_nguid(ns);
if (!nguid) {
uuid = spdk_nvme_ns_get_uuid(ns);
if (uuid) {
disk->uuid = *uuid;
}
} else {
memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
}
nsdata = spdk_nvme_ns_get_data(ns);
bs = spdk_nvme_ns_get_sector_size(ns);
atomic_bs = bs;
phys_bs = bs;
if (nsdata->nabo == 0) {
if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
atomic_bs = bs * (1 + nsdata->nawupf);
} else {
atomic_bs = bs * (1 + cdata->awupf);
}
}
if (nsdata->nsfeat.optperf) {
phys_bs = bs * (1 + nsdata->npwg);
}
disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
disk->md_len = spdk_nvme_ns_get_md_size(ns);
if (disk->md_len != 0) {
disk->md_interleave = nsdata->flbas.extended;
disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
if (disk->dif_type != SPDK_DIF_DISABLE) {
disk->dif_is_head_of_md = nsdata->dps.md_start;
disk->dif_check_flags = prchk_flags;
}
}
if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
disk->acwu = 0;
} else if (nsdata->nsfeat.ns_atomic_write_unit) {
disk->acwu = nsdata->nacwu + 1; /* 0-based */
} else {
disk->acwu = cdata->acwu + 1; /* 0-based */
}
disk->ctxt = ctx;
disk->fn_table = &nvmelib_fn_table;
disk->module = &nvme_if;
return 0;
}
static int
nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
{
struct nvme_bdev *bdev;
int rc;
bdev = calloc(1, sizeof(*bdev));
if (!bdev) {
SPDK_ERRLOG("bdev calloc() failed\n");
return -ENOMEM;
}
rc = pthread_mutex_init(&bdev->mutex, NULL);
if (rc != 0) {
free(bdev);
return rc;
}
bdev->ref = 1;
bdev->mp_policy = BDEV_NVME_MP_POLICY_ACTIVE_PASSIVE;
TAILQ_INIT(&bdev->nvme_ns_list);
TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
bdev->opal = nvme_ctrlr->opal_dev != NULL;
rc = nvme_disk_create(&bdev->disk, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
nvme_ns->ns, nvme_ctrlr->opts.prchk_flags, bdev);
if (rc != 0) {
SPDK_ERRLOG("Failed to create NVMe disk\n");
pthread_mutex_destroy(&bdev->mutex);
free(bdev);
return rc;
}
spdk_io_device_register(bdev,
bdev_nvme_create_bdev_channel_cb,
bdev_nvme_destroy_bdev_channel_cb,
sizeof(struct nvme_bdev_channel),
bdev->disk.name);
rc = spdk_bdev_register(&bdev->disk);
if (rc != 0) {
SPDK_ERRLOG("spdk_bdev_register() failed\n");
spdk_io_device_unregister(bdev, NULL);
pthread_mutex_destroy(&bdev->mutex);
free(bdev->disk.name);
free(bdev);
return rc;
}
nvme_ns->bdev = bdev;
bdev->nsid = nvme_ns->id;
bdev->nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
TAILQ_INSERT_TAIL(&nvme_ctrlr->nbdev_ctrlr->bdevs, bdev, tailq);
return 0;
}
static bool
bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
{
const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
const struct spdk_uuid *uuid1, *uuid2;
nsdata1 = spdk_nvme_ns_get_data(ns1);
nsdata2 = spdk_nvme_ns_get_data(ns2);
uuid1 = spdk_nvme_ns_get_uuid(ns1);
uuid2 = spdk_nvme_ns_get_uuid(ns2);
return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
nsdata1->eui64 == nsdata2->eui64 &&
((uuid1 == NULL && uuid2 == NULL) ||
(uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0)) &&
spdk_nvme_ns_get_csi(ns1) == spdk_nvme_ns_get_csi(ns2);
}
static bool
hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
struct nvme_probe_skip_entry *entry;
TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
return false;
}
}
opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
opts->disable_read_ana_log_page = true;
SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
return true;
}
static void
nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
{
struct nvme_ctrlr *nvme_ctrlr = ctx;
if (spdk_nvme_cpl_is_error(cpl)) {
SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
cpl->status.sct);
bdev_nvme_reset(nvme_ctrlr);
} else if (cpl->cdw0 & 0x1) {
SPDK_WARNLOG("Specified command could not be aborted.\n");
bdev_nvme_reset(nvme_ctrlr);
}
}
static void
timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *qpair, uint16_t cid)
{
struct nvme_ctrlr *nvme_ctrlr = cb_arg;
union spdk_nvme_csts_register csts;
int rc;
assert(nvme_ctrlr->ctrlr == ctrlr);
SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
* queue. (Note: qpair == NULL when there's an admin cmd timeout.) Otherwise we
* would submit another fabrics cmd on the admin queue to read CSTS and check for its
* completion recursively.
*/
if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
if (csts.bits.cfs) {
SPDK_ERRLOG("Controller Fatal Status, reset required\n");
bdev_nvme_reset(nvme_ctrlr);
return;
}
}
switch (g_opts.action_on_timeout) {
case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
if (qpair) {
/* Don't send abort to ctrlr when ctrlr is not available. */
pthread_mutex_lock(&nvme_ctrlr->mutex);
if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
return;
}
pthread_mutex_unlock(&nvme_ctrlr->mutex);
rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
nvme_abort_cpl, nvme_ctrlr);
if (rc == 0) {
return;
}
SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
}
/* FALLTHROUGH */
case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
bdev_nvme_reset(nvme_ctrlr);
break;
case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
break;
default:
SPDK_ERRLOG("An invalid timeout action value is found.\n");
break;
}
}
static void
nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
{
struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
if (rc == 0) {
nvme_ns->probe_ctx = NULL;
pthread_mutex_lock(&nvme_ctrlr->mutex);
nvme_ctrlr->ref++;
pthread_mutex_unlock(&nvme_ctrlr->mutex);
} else {
RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
free(nvme_ns);
}
if (ctx) {
ctx->populates_in_progress--;
if (ctx->populates_in_progress == 0) {
nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
}
}
}
static void
bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
int rc;
rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
if (rc != 0) {
SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
}
spdk_for_each_channel_continue(i, rc);
}
static void
bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
struct nvme_io_path *io_path;
io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
if (io_path != NULL) {
_bdev_nvme_delete_io_path(nbdev_ch, io_path);
}
spdk_for_each_channel_continue(i, 0);
}
static void
bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
{
struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
}
static void
bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
{
struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
if (status == 0) {
nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
} else {
/* Delete the added io_paths and fail populating the namespace. */
spdk_for_each_channel(bdev,
bdev_nvme_delete_io_path,
nvme_ns,
bdev_nvme_add_io_path_failed);
}
}
static int
nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
{
struct nvme_ns *tmp_ns;
const struct spdk_nvme_ns_data *nsdata;
nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
if (!nsdata->nmic.can_share) {
SPDK_ERRLOG("Namespace cannot be shared.\n");
return -EINVAL;
}
pthread_mutex_lock(&bdev->mutex);
tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
assert(tmp_ns != NULL);
if (!bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
pthread_mutex_unlock(&bdev->mutex);
SPDK_ERRLOG("Namespaces are not identical.\n");
return -EINVAL;
}
bdev->ref++;
TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
nvme_ns->bdev = bdev;
pthread_mutex_unlock(&bdev->mutex);
/* Add nvme_io_path to nvme_bdev_channels dynamically. */
spdk_for_each_channel(bdev,
bdev_nvme_add_io_path,
nvme_ns,
bdev_nvme_add_io_path_done);
return 0;
}
static void
nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
{
struct spdk_nvme_ns *ns;
struct nvme_bdev *bdev;
int rc = 0;
ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
if (!ns) {
SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
rc = -EINVAL;
goto done;
}
nvme_ns->ns = ns;
nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
if (nvme_ctrlr->ana_log_page != NULL) {
bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
}
bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
if (bdev == NULL) {
rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
} else {
rc = nvme_bdev_add_ns(bdev, nvme_ns);
if (rc == 0) {
return;
}
}
done:
nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
}
static void
nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
{
struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
assert(nvme_ctrlr != NULL);
pthread_mutex_lock(&nvme_ctrlr->mutex);
RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
if (nvme_ns->bdev != NULL) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
return;
}
free(nvme_ns);
pthread_mutex_unlock(&nvme_ctrlr->mutex);
nvme_ctrlr_release(nvme_ctrlr);
}
static void
bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
{
struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
nvme_ctrlr_depopulate_namespace_done(nvme_ns);
}
static void
nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
{
struct nvme_bdev *bdev;
spdk_poller_unregister(&nvme_ns->anatt_timer);
bdev = nvme_ns->bdev;
if (bdev != NULL) {
pthread_mutex_lock(&bdev->mutex);
assert(bdev->ref > 0);
bdev->ref--;
if (bdev->ref == 0) {
pthread_mutex_unlock(&bdev->mutex);
spdk_bdev_unregister(&bdev->disk, NULL, NULL);
} else {
/* spdk_bdev_unregister() is not called until the last nvme_ns is
* depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
* and clear nvme_ns->bdev here.
*/
TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
nvme_ns->bdev = NULL;
pthread_mutex_unlock(&bdev->mutex);
/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
* we call depopulate_namespace_done() to avoid use-after-free.
*/
spdk_for_each_channel(bdev,
bdev_nvme_delete_io_path,
nvme_ns,
bdev_nvme_delete_io_path_done);
return;
}
}
nvme_ctrlr_depopulate_namespace_done(nvme_ns);
}
static void
nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
struct nvme_async_probe_ctx *ctx)
{
struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
struct nvme_ns *nvme_ns, *next;
struct spdk_nvme_ns *ns;
struct nvme_bdev *bdev;
uint32_t nsid;
int rc;
uint64_t num_sectors;
if (ctx) {
/* Initialize this count to 1 to handle the populate functions
* calling nvme_ctrlr_populate_namespace_done() immediately.
*/
ctx->populates_in_progress = 1;
}
/* First loop over our existing namespaces and see if they have been
* removed. */
nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
while (nvme_ns != NULL) {
next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
/* NS is still there but attributes may have changed */
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
num_sectors = spdk_nvme_ns_get_num_sectors(ns);
bdev = nvme_ns->bdev;
assert(bdev != NULL);
if (bdev->disk.blockcnt != num_sectors) {
SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
nvme_ns->id,
bdev->disk.name,
bdev->disk.blockcnt,
num_sectors);
rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
if (rc != 0) {
SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
bdev->disk.name, rc);
}
}
} else {
/* Namespace was removed */
nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
}
nvme_ns = next;
}
/* Loop through all of the namespaces at the nvme level and see if any of them are new */
nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
while (nsid != 0) {
nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
if (nvme_ns == NULL) {
/* Found a new one */
nvme_ns = calloc(1, sizeof(struct nvme_ns));
if (nvme_ns == NULL) {
SPDK_ERRLOG("Failed to allocate namespace\n");
/* This just fails to attach the namespace. It may work on a future attempt. */
continue;
}
nvme_ns->id = nsid;
nvme_ns->ctrlr = nvme_ctrlr;
nvme_ns->bdev = NULL;
if (ctx) {
ctx->populates_in_progress++;
}
nvme_ns->probe_ctx = ctx;
RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
}
nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
}
if (ctx) {
/* Decrement this count now that the loop is over to account
* for the one we started with. If the count is then 0, we
* know any populate_namespace functions completed immediately,
* so we'll kick the callback here.
*/
ctx->populates_in_progress--;
if (ctx->populates_in_progress == 0) {
nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
}
}
}
static void
nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
{
struct nvme_ns *nvme_ns, *tmp;
RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
}
}
static uint32_t
nvme_ctrlr_get_ana_log_page_size(struct nvme_ctrlr *nvme_ctrlr)
{
struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
const struct spdk_nvme_ctrlr_data *cdata;
uint32_t nsid, ns_count = 0;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
ns_count++;
}
return sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
sizeof(struct spdk_nvme_ana_group_descriptor) + ns_count *
sizeof(uint32_t);
}
static int
nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
void *cb_arg)
{
struct nvme_ctrlr *nvme_ctrlr = cb_arg;
struct nvme_ns *nvme_ns;
uint32_t i, nsid;
for (i = 0; i < desc->num_of_nsid; i++) {
nsid = desc->nsid[i];
if (nsid == 0) {
continue;
}
nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
assert(nvme_ns != NULL);
if (nvme_ns == NULL) {
/* Target told us that an inactive namespace had an ANA change */
continue;
}
_nvme_ns_set_ana_state(nvme_ns, desc);
}
return 0;
}
static void
bdev_nvme_disable_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
{
struct nvme_ns *nvme_ns;
spdk_free(nvme_ctrlr->ana_log_page);
nvme_ctrlr->ana_log_page = NULL;
for (nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
nvme_ns != NULL;
nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns)) {
nvme_ns->ana_state_updating = false;
nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
}
}
static void
nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
{
struct nvme_ctrlr *nvme_ctrlr = ctx;
if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
nvme_ctrlr);
} else {
bdev_nvme_disable_read_ana_log_page(nvme_ctrlr);
}
pthread_mutex_lock(&nvme_ctrlr->mutex);
assert(nvme_ctrlr->ana_log_page_updating == true);
nvme_ctrlr->ana_log_page_updating = false;
if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
nvme_ctrlr_unregister(nvme_ctrlr);
} else {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
bdev_nvme_clear_io_path_caches(nvme_ctrlr);
}
}
static int
nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
{
uint32_t ana_log_page_size;
int rc;
if (nvme_ctrlr->ana_log_page == NULL) {
return -EINVAL;
}
ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
return -EINVAL;
}
pthread_mutex_lock(&nvme_ctrlr->mutex);
if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
nvme_ctrlr->ana_log_page_updating) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
return -EBUSY;
}
nvme_ctrlr->ana_log_page_updating = true;
pthread_mutex_unlock(&nvme_ctrlr->mutex);
rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
SPDK_NVME_GLOBAL_NS_TAG,
nvme_ctrlr->ana_log_page,
ana_log_page_size, 0,
nvme_ctrlr_read_ana_log_page_done,
nvme_ctrlr);
if (rc != 0) {
nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
}
return rc;
}
static void
dummy_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
{
}
struct bdev_nvme_set_preferred_path_ctx {
struct spdk_bdev_desc *desc;
struct nvme_ns *nvme_ns;
bdev_nvme_set_preferred_path_cb cb_fn;
void *cb_arg;
};
static void
bdev_nvme_set_preferred_path_done(struct spdk_io_channel_iter *i, int status)
{
struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
assert(ctx != NULL);
assert(ctx->desc != NULL);
assert(ctx->cb_fn != NULL);
spdk_bdev_close(ctx->desc);
ctx->cb_fn(ctx->cb_arg, status);
free(ctx);
}
static void
_bdev_nvme_set_preferred_path(struct spdk_io_channel_iter *i)
{
struct bdev_nvme_set_preferred_path_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
struct nvme_io_path *io_path, *prev;
prev = NULL;
STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
if (io_path->nvme_ns == ctx->nvme_ns) {
break;
}
prev = io_path;
}
if (io_path != NULL) {
if (prev != NULL) {
STAILQ_REMOVE_AFTER(&nbdev_ch->io_path_list, prev, stailq);
STAILQ_INSERT_HEAD(&nbdev_ch->io_path_list, io_path, stailq);
}
/* We can set io_path to nbdev_ch->current_io_path directly here.
* However, it needs to be conditional. To simplify the code,
* just clear nbdev_ch->current_io_path and let find_io_path()
* fill it.
*
* Automatic failback may be disabled. Hence even if the io_path is
* already at the head, clear nbdev_ch->current_io_path.
*/
nbdev_ch->current_io_path = NULL;
}
spdk_for_each_channel_continue(i, 0);
}
static struct nvme_ns *
bdev_nvme_set_preferred_ns(struct nvme_bdev *nbdev, uint16_t cntlid)
{
struct nvme_ns *nvme_ns, *prev;
const struct spdk_nvme_ctrlr_data *cdata;
prev = NULL;
TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
cdata = spdk_nvme_ctrlr_get_data(nvme_ns->ctrlr->ctrlr);
if (cdata->cntlid == cntlid) {
break;
}
prev = nvme_ns;
}
if (nvme_ns != NULL && prev != NULL) {
TAILQ_REMOVE(&nbdev->nvme_ns_list, nvme_ns, tailq);
TAILQ_INSERT_HEAD(&nbdev->nvme_ns_list, nvme_ns, tailq);
}
return nvme_ns;
}
/* This function supports only multipath mode. There is only a single I/O path
* for each NVMe-oF controller. Hence, just move the matched I/O path to the
* head of the I/O path list for each NVMe bdev channel.
*
* NVMe bdev channel may be acquired after completing this function. move the
* matched namespace to the head of the namespace list for the NVMe bdev too.
*/
void
bdev_nvme_set_preferred_path(const char *name, uint16_t cntlid,
bdev_nvme_set_preferred_path_cb cb_fn, void *cb_arg)
{
struct bdev_nvme_set_preferred_path_ctx *ctx;
struct spdk_bdev *bdev;
struct nvme_bdev *nbdev;
int rc = 0;
assert(cb_fn != NULL);
ctx = calloc(1, sizeof(*ctx));
if (ctx == NULL) {
SPDK_ERRLOG("Failed to alloc context.\n");
rc = -ENOMEM;
goto err_alloc;
}
ctx->cb_fn = cb_fn;
ctx->cb_arg = cb_arg;
rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
if (rc != 0) {
SPDK_ERRLOG("Failed to open bdev %s.\n", name);
goto err_open;
}
bdev = spdk_bdev_desc_get_bdev(ctx->desc);
if (bdev->module != &nvme_if) {
SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
rc = -ENODEV;
goto err_bdev;
}
nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
pthread_mutex_lock(&nbdev->mutex);
ctx->nvme_ns = bdev_nvme_set_preferred_ns(nbdev, cntlid);
if (ctx->nvme_ns == NULL) {
pthread_mutex_unlock(&nbdev->mutex);
SPDK_ERRLOG("bdev %s does not have namespace to controller %u.\n", name, cntlid);
rc = -ENODEV;
goto err_bdev;
}
pthread_mutex_unlock(&nbdev->mutex);
spdk_for_each_channel(nbdev,
_bdev_nvme_set_preferred_path,
ctx,
bdev_nvme_set_preferred_path_done);
return;
err_bdev:
spdk_bdev_close(ctx->desc);
err_open:
free(ctx);
err_alloc:
cb_fn(cb_arg, rc);
}
struct bdev_nvme_set_multipath_policy_ctx {
struct spdk_bdev_desc *desc;
bdev_nvme_set_multipath_policy_cb cb_fn;
void *cb_arg;
};
static void
bdev_nvme_set_multipath_policy_done(struct spdk_io_channel_iter *i, int status)
{
struct bdev_nvme_set_multipath_policy_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
assert(ctx != NULL);
assert(ctx->desc != NULL);
assert(ctx->cb_fn != NULL);
spdk_bdev_close(ctx->desc);
ctx->cb_fn(ctx->cb_arg, status);
free(ctx);
}
static void
_bdev_nvme_set_multipath_policy(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
struct nvme_bdev *nbdev = spdk_io_channel_get_io_device(_ch);
nbdev_ch->mp_policy = nbdev->mp_policy;
nbdev_ch->current_io_path = NULL;
spdk_for_each_channel_continue(i, 0);
}
void
bdev_nvme_set_multipath_policy(const char *name, enum bdev_nvme_multipath_policy policy,
bdev_nvme_set_multipath_policy_cb cb_fn, void *cb_arg)
{
struct bdev_nvme_set_multipath_policy_ctx *ctx;
struct spdk_bdev *bdev;
struct nvme_bdev *nbdev;
int rc;
assert(cb_fn != NULL);
ctx = calloc(1, sizeof(*ctx));
if (ctx == NULL) {
SPDK_ERRLOG("Failed to alloc context.\n");
rc = -ENOMEM;
goto err_alloc;
}
ctx->cb_fn = cb_fn;
ctx->cb_arg = cb_arg;
rc = spdk_bdev_open_ext(name, false, dummy_bdev_event_cb, NULL, &ctx->desc);
if (rc != 0) {
SPDK_ERRLOG("Failed to open bdev %s.\n", name);
rc = -ENODEV;
goto err_open;
}
bdev = spdk_bdev_desc_get_bdev(ctx->desc);
if (bdev->module != &nvme_if) {
SPDK_ERRLOG("bdev %s is not registered in this module.\n", name);
rc = -ENODEV;
goto err_module;
}
nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
pthread_mutex_lock(&nbdev->mutex);
nbdev->mp_policy = policy;
pthread_mutex_unlock(&nbdev->mutex);
spdk_for_each_channel(nbdev,
_bdev_nvme_set_multipath_policy,
ctx,
bdev_nvme_set_multipath_policy_done);
return;
err_module:
spdk_bdev_close(ctx->desc);
err_open:
free(ctx);
err_alloc:
cb_fn(cb_arg, rc);
}
static void
aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct nvme_ctrlr *nvme_ctrlr = arg;
union spdk_nvme_async_event_completion event;
if (spdk_nvme_cpl_is_error(cpl)) {
SPDK_WARNLOG("AER request execute failed\n");
return;
}
event.raw = cpl->cdw0;
if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
(event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
(event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
}
}
static void
populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, size_t count, int rc)
{
if (ctx->cb_fn) {
ctx->cb_fn(ctx->cb_ctx, count, rc);
}
ctx->namespaces_populated = true;
if (ctx->probe_done) {
/* The probe was already completed, so we need to free the context
* here. This can happen for cases like OCSSD, where we need to
* send additional commands to the SSD after attach.
*/
free(ctx);
}
}
static void
nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
struct nvme_async_probe_ctx *ctx)
{
spdk_io_device_register(nvme_ctrlr,
bdev_nvme_create_ctrlr_channel_cb,
bdev_nvme_destroy_ctrlr_channel_cb,
sizeof(struct nvme_ctrlr_channel),
nvme_ctrlr->nbdev_ctrlr->name);
nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
}
static void
nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
{
struct nvme_ctrlr *nvme_ctrlr = _ctx;
struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
nvme_ctrlr->probe_ctx = NULL;
if (spdk_nvme_cpl_is_error(cpl)) {
nvme_ctrlr_delete(nvme_ctrlr);
if (ctx != NULL) {
populate_namespaces_cb(ctx, 0, -1);
}
return;
}
nvme_ctrlr_create_done(nvme_ctrlr, ctx);
}
static int
nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
struct nvme_async_probe_ctx *ctx)
{
struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
const struct spdk_nvme_ctrlr_data *cdata;
uint32_t ana_log_page_size;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
/* Set buffer size enough to include maximum number of allowed namespaces. */
ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->mnan *
sizeof(uint32_t);
nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
if (nvme_ctrlr->ana_log_page == NULL) {
SPDK_ERRLOG("could not allocate ANA log page buffer\n");
return -ENXIO;
}
/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
* Hence copy each descriptor to a temporary area when parsing it.
*
* Allocate a buffer whose size is as large as ANA log page buffer because
* we do not know the size of a descriptor until actually reading it.
*/
nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
if (nvme_ctrlr->copied_ana_desc == NULL) {
SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
return -ENOMEM;
}
nvme_ctrlr->max_ana_log_page_size = ana_log_page_size;
nvme_ctrlr->probe_ctx = ctx;
/* Then, set the read size only to include the current active namespaces. */
ana_log_page_size = nvme_ctrlr_get_ana_log_page_size(nvme_ctrlr);
if (ana_log_page_size > nvme_ctrlr->max_ana_log_page_size) {
SPDK_ERRLOG("ANA log page size %" PRIu32 " is larger than allowed %" PRIu32 "\n",
ana_log_page_size, nvme_ctrlr->max_ana_log_page_size);
return -EINVAL;
}
return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
SPDK_NVME_GLOBAL_NS_TAG,
nvme_ctrlr->ana_log_page,
ana_log_page_size, 0,
nvme_ctrlr_init_ana_log_page_done,
nvme_ctrlr);
}
/* hostnqn and subnqn were already verified before attaching a controller.
* Hence check only the multipath capability and cntlid here.
*/
static bool
bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_ctrlr *tmp;
const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (!cdata->cmic.multi_ctrlr) {
SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
return false;
}
TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
if (!tmp_cdata->cmic.multi_ctrlr) {
SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
return false;
}
if (cdata->cntlid == tmp_cdata->cntlid) {
SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
return false;
}
}
return true;
}
static int
nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
{
struct nvme_bdev_ctrlr *nbdev_ctrlr;
struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
int rc = 0;
pthread_mutex_lock(&g_bdev_nvme_mutex);
nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
if (nbdev_ctrlr != NULL) {
if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
rc = -EINVAL;
goto exit;
}
} else {
nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
if (nbdev_ctrlr == NULL) {
SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
rc = -ENOMEM;
goto exit;
}
nbdev_ctrlr->name = strdup(name);
if (nbdev_ctrlr->name == NULL) {
SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
free(nbdev_ctrlr);
goto exit;
}
TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
TAILQ_INIT(&nbdev_ctrlr->bdevs);
TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
}
nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
exit:
pthread_mutex_unlock(&g_bdev_nvme_mutex);
return rc;
}
static int
nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
const char *name,
const struct spdk_nvme_transport_id *trid,
struct nvme_async_probe_ctx *ctx)
{
struct nvme_ctrlr *nvme_ctrlr;
struct nvme_path_id *path_id;
const struct spdk_nvme_ctrlr_data *cdata;
int rc;
nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
if (nvme_ctrlr == NULL) {
SPDK_ERRLOG("Failed to allocate device struct\n");
return -ENOMEM;
}
rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
if (rc != 0) {
free(nvme_ctrlr);
return rc;
}
TAILQ_INIT(&nvme_ctrlr->trids);
RB_INIT(&nvme_ctrlr->namespaces);
path_id = calloc(1, sizeof(*path_id));
if (path_id == NULL) {
SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
rc = -ENOMEM;
goto err;
}
path_id->trid = *trid;
if (ctx != NULL) {
memcpy(path_id->hostid.hostaddr, ctx->drv_opts.src_addr, sizeof(path_id->hostid.hostaddr));
memcpy(path_id->hostid.hostsvcid, ctx->drv_opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
}
nvme_ctrlr->active_path_id = path_id;
TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
nvme_ctrlr->thread = spdk_get_thread();
nvme_ctrlr->ctrlr = ctrlr;
nvme_ctrlr->ref = 1;
if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
SPDK_ERRLOG("OCSSDs are not supported");
rc = -ENOTSUP;
goto err;
}
if (ctx != NULL) {
memcpy(&nvme_ctrlr->opts, &ctx->bdev_opts, sizeof(ctx->bdev_opts));
} else {
bdev_nvme_get_default_ctrlr_opts(&nvme_ctrlr->opts);
}
nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
g_opts.nvme_adminq_poll_period_us);
if (g_opts.timeout_us > 0) {
/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
g_opts.timeout_us : g_opts.timeout_admin_us;
spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
adm_timeout_us, timeout_cb, nvme_ctrlr);
}
spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
if (spdk_nvme_ctrlr_get_flags(ctrlr) &
SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
}
rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
if (rc != 0) {
goto err;
}
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (cdata->cmic.ana_reporting) {
rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
if (rc == 0) {
return 0;
}
} else {
nvme_ctrlr_create_done(nvme_ctrlr, ctx);
return 0;
}
err:
nvme_ctrlr_delete(nvme_ctrlr);
return rc;
}
void
bdev_nvme_get_default_ctrlr_opts(struct nvme_ctrlr_opts *opts)
{
opts->prchk_flags = 0;
opts->ctrlr_loss_timeout_sec = g_opts.ctrlr_loss_timeout_sec;
opts->reconnect_delay_sec = g_opts.reconnect_delay_sec;
opts->fast_io_fail_timeout_sec = g_opts.fast_io_fail_timeout_sec;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *drv_opts)
{
char *name;
name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
if (!name) {
SPDK_ERRLOG("Failed to assign name to NVMe device\n");
return;
}
SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
nvme_ctrlr_create(ctrlr, name, trid, NULL);
free(name);
}
static void
_nvme_ctrlr_destruct(void *ctx)
{
struct nvme_ctrlr *nvme_ctrlr = ctx;
nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
nvme_ctrlr_release(nvme_ctrlr);
}
static int
_bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
{
struct nvme_probe_skip_entry *entry;
pthread_mutex_lock(&nvme_ctrlr->mutex);
/* The controller's destruction was already started */
if (nvme_ctrlr->destruct) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
return 0;
}
if (!hotplug &&
nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
entry = calloc(1, sizeof(*entry));
if (!entry) {
pthread_mutex_unlock(&nvme_ctrlr->mutex);
return -ENOMEM;
}
entry->trid = nvme_ctrlr->active_path_id->trid;
TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
}
nvme_ctrlr->destruct = true;
pthread_mutex_unlock(&nvme_ctrlr->mutex);
_nvme_ctrlr_destruct(nvme_ctrlr);
return 0;
}
static void
remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
_bdev_nvme_delete(nvme_ctrlr, true);
}
static int
bdev_nvme_hotplug_probe(void *arg)
{
if (g_hotplug_probe_ctx == NULL) {
spdk_poller_unregister(&g_hotplug_probe_poller);
return SPDK_POLLER_IDLE;
}
if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
g_hotplug_probe_ctx = NULL;
spdk_poller_unregister(&g_hotplug_probe_poller);
}
return SPDK_POLLER_BUSY;
}
static int
bdev_nvme_hotplug(void *arg)
{
struct spdk_nvme_transport_id trid_pcie;
if (g_hotplug_probe_ctx) {
return SPDK_POLLER_BUSY;
}
memset(&trid_pcie, 0, sizeof(trid_pcie));
spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
hotplug_probe_cb, attach_cb, NULL);
if (g_hotplug_probe_ctx) {
assert(g_hotplug_probe_poller == NULL);
g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
}
return SPDK_POLLER_BUSY;
}
void
bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
{
*opts = g_opts;
}
static bool bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
uint32_t reconnect_delay_sec,
uint32_t fast_io_fail_timeout_sec);
static int
bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
{
if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
/* Can't set timeout_admin_us without also setting timeout_us */
SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
return -EINVAL;
}
if (opts->bdev_retry_count < -1) {
SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
return -EINVAL;
}
if (!bdev_nvme_check_io_error_resiliency_params(opts->ctrlr_loss_timeout_sec,
opts->reconnect_delay_sec,
opts->fast_io_fail_timeout_sec)) {
return -EINVAL;
}
return 0;
}
int
bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
{
int ret = bdev_nvme_validate_opts(opts);
if (ret) {
SPDK_WARNLOG("Failed to set nvme opts.\n");
return ret;
}
if (g_bdev_nvme_init_thread != NULL) {
if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
return -EPERM;
}
}
g_opts = *opts;
return 0;
}
struct set_nvme_hotplug_ctx {
uint64_t period_us;
bool enabled;
spdk_msg_fn fn;
void *fn_ctx;
};
static void
set_nvme_hotplug_period_cb(void *_ctx)
{
struct set_nvme_hotplug_ctx *ctx = _ctx;
spdk_poller_unregister(&g_hotplug_poller);
if (ctx->enabled) {
g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
}
g_nvme_hotplug_poll_period_us = ctx->period_us;
g_nvme_hotplug_enabled = ctx->enabled;
if (ctx->fn) {
ctx->fn(ctx->fn_ctx);
}
free(ctx);
}
int
bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
{
struct set_nvme_hotplug_ctx *ctx;
if (enabled == true && !spdk_process_is_primary()) {
return -EPERM;
}
ctx = calloc(1, sizeof(*ctx));
if (ctx == NULL) {
return -ENOMEM;
}
period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
ctx->enabled = enabled;
ctx->fn = cb;
ctx->fn_ctx = cb_ctx;
spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
return 0;
}
static void
nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
struct nvme_async_probe_ctx *ctx)
{
struct nvme_ns *nvme_ns;
struct nvme_bdev *nvme_bdev;
size_t j;
assert(nvme_ctrlr != NULL);
if (ctx->names == NULL) {
populate_namespaces_cb(ctx, 0, 0);
return;
}
/*
* Report the new bdevs that were created in this call.
* There can be more than one bdev per NVMe controller.
*/
j = 0;
nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
while (nvme_ns != NULL) {
nvme_bdev = nvme_ns->bdev;
if (j < ctx->count) {
ctx->names[j] = nvme_bdev->disk.name;
j++;
} else {
SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
ctx->count);
populate_namespaces_cb(ctx, 0, -ERANGE);
return;
}
nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
}
populate_namespaces_cb(ctx, j, 0);
}
static int
bdev_nvme_compare_trids(struct nvme_ctrlr *nvme_ctrlr,
struct spdk_nvme_ctrlr *new_ctrlr,
struct spdk_nvme_transport_id *trid)
{
struct nvme_path_id *tmp_trid;
if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
SPDK_ERRLOG("PCIe failover is not supported.\n");
return -ENOTSUP;
}
/* Currently we only support failover to the same transport type. */
if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
return -EINVAL;
}
/* Currently we only support failover to the same NQN. */
if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
return -EINVAL;
}
/* Skip all the other checks if we've already registered this path. */
TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
return -EEXIST;
}
}
return 0;
}
static int
bdev_nvme_compare_namespaces(struct nvme_ctrlr *nvme_ctrlr,
struct spdk_nvme_ctrlr *new_ctrlr)
{
struct nvme_ns *nvme_ns;
struct spdk_nvme_ns *new_ns;
nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
while (nvme_ns != NULL) {
new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
assert(new_ns != NULL);
if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
return -EINVAL;
}
nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
}
return 0;
}
static int
_bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
struct spdk_nvme_transport_id *trid)
{
struct nvme_path_id *new_trid, *tmp_trid;
new_trid = calloc(1, sizeof(*new_trid));
if (new_trid == NULL) {
return -ENOMEM;
}
new_trid->trid = *trid;
new_trid->is_failed = false;
TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
if (tmp_trid->is_failed && tmp_trid != nvme_ctrlr->active_path_id) {
TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
return 0;
}
}
TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
return 0;
}
/* This is the case that a secondary path is added to an existing
* nvme_ctrlr for failover. After checking if it can access the same
* namespaces as the primary path, it is disconnected until failover occurs.
*/
static int
bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
struct spdk_nvme_ctrlr *new_ctrlr,
struct spdk_nvme_transport_id *trid)
{
int rc;
assert(nvme_ctrlr != NULL);
pthread_mutex_lock(&nvme_ctrlr->mutex);
rc = bdev_nvme_compare_trids(nvme_ctrlr, new_ctrlr, trid);
if (rc != 0) {
goto exit;
}
rc = bdev_nvme_compare_namespaces(nvme_ctrlr, new_ctrlr);
if (rc != 0) {
goto exit;
}
rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
exit:
pthread_mutex_unlock(&nvme_ctrlr->mutex);
spdk_nvme_detach(new_ctrlr);
return rc;
}
static void
connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
struct nvme_async_probe_ctx *ctx;
int rc;
ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
ctx->ctrlr_attached = true;
rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx);
if (rc != 0) {
populate_namespaces_cb(ctx, 0, rc);
}
}
static void
connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr,
const struct spdk_nvme_ctrlr_opts *opts)
{
struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
struct nvme_ctrlr *nvme_ctrlr;
struct nvme_async_probe_ctx *ctx;
int rc;
ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, drv_opts);
ctx->ctrlr_attached = true;
nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
if (nvme_ctrlr) {
rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
} else {
rc = -ENODEV;
}
populate_namespaces_cb(ctx, 0, rc);
}
static int
bdev_nvme_async_poll(void *arg)
{
struct nvme_async_probe_ctx *ctx = arg;
int rc;
rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
if (spdk_unlikely(rc != -EAGAIN)) {
ctx->probe_done = true;
spdk_poller_unregister(&ctx->poller);
if (!ctx->ctrlr_attached) {
/* The probe is done, but no controller was attached.
* That means we had a failure, so report -EIO back to
* the caller (usually the RPC). populate_namespaces_cb()
* will take care of freeing the nvme_async_probe_ctx.
*/
populate_namespaces_cb(ctx, 0, -EIO);
} else if (ctx->namespaces_populated) {
/* The namespaces for the attached controller were all
* populated and the response was already sent to the
* caller (usually the RPC). So free the context here.
*/
free(ctx);
}
}
return SPDK_POLLER_BUSY;
}
static bool
bdev_nvme_check_io_error_resiliency_params(int32_t ctrlr_loss_timeout_sec,
uint32_t reconnect_delay_sec,
uint32_t fast_io_fail_timeout_sec)
{
if (ctrlr_loss_timeout_sec < -1) {
SPDK_ERRLOG("ctrlr_loss_timeout_sec can't be less than -1.\n");
return false;
} else if (ctrlr_loss_timeout_sec == -1) {
if (reconnect_delay_sec == 0) {
SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
return false;
} else if (fast_io_fail_timeout_sec != 0 &&
fast_io_fail_timeout_sec < reconnect_delay_sec) {
SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io-fail_timeout_sec.\n");
return false;
}
} else if (ctrlr_loss_timeout_sec != 0) {
if (reconnect_delay_sec == 0) {
SPDK_ERRLOG("reconnect_delay_sec can't be 0 if ctrlr_loss_timeout_sec is not 0.\n");
return false;
} else if (reconnect_delay_sec > (uint32_t)ctrlr_loss_timeout_sec) {
SPDK_ERRLOG("reconnect_delay_sec can't be more than ctrlr_loss_timeout_sec.\n");
return false;
} else if (fast_io_fail_timeout_sec != 0) {
if (fast_io_fail_timeout_sec < reconnect_delay_sec) {
SPDK_ERRLOG("reconnect_delay_sec can't be more than fast_io_fail_timeout_sec.\n");
return false;
} else if (fast_io_fail_timeout_sec > (uint32_t)ctrlr_loss_timeout_sec) {
SPDK_ERRLOG("fast_io_fail_timeout_sec can't be more than ctrlr_loss_timeout_sec.\n");
return false;
}
}
} else if (reconnect_delay_sec != 0 || fast_io_fail_timeout_sec != 0) {
SPDK_ERRLOG("Both reconnect_delay_sec and fast_io_fail_timeout_sec must be 0 if ctrlr_loss_timeout_sec is 0.\n");
return false;
}
return true;
}
int
bdev_nvme_create(struct spdk_nvme_transport_id *trid,
const char *base_name,
const char **names,
uint32_t count,
spdk_bdev_create_nvme_fn cb_fn,
void *cb_ctx,
struct spdk_nvme_ctrlr_opts *drv_opts,
struct nvme_ctrlr_opts *bdev_opts,
bool multipath)
{
struct nvme_probe_skip_entry *entry, *tmp;
struct nvme_async_probe_ctx *ctx;
spdk_nvme_attach_cb attach_cb;
/* TODO expand this check to include both the host and target TRIDs.
* Only if both are the same should we fail.
*/
if (nvme_ctrlr_get(trid) != NULL) {
SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
return -EEXIST;
}
if (bdev_opts != NULL &&
!bdev_nvme_check_io_error_resiliency_params(bdev_opts->ctrlr_loss_timeout_sec,
bdev_opts->reconnect_delay_sec,
bdev_opts->fast_io_fail_timeout_sec)) {
return -EINVAL;
}
ctx = calloc(1, sizeof(*ctx));
if (!ctx) {
return -ENOMEM;
}
ctx->base_name = base_name;
ctx->names = names;
ctx->count = count;
ctx->cb_fn = cb_fn;
ctx->cb_ctx = cb_ctx;
ctx->trid = *trid;
if (bdev_opts) {
memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
} else {
bdev_nvme_get_default_ctrlr_opts(&ctx->bdev_opts);
}
if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
free(entry);
break;
}
}
}
if (drv_opts) {
memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
} else {
spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->drv_opts, sizeof(ctx->drv_opts));
}
ctx->drv_opts.transport_retry_count = g_opts.transport_retry_count;
ctx->drv_opts.transport_ack_timeout = g_opts.transport_ack_timeout;
ctx->drv_opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
ctx->drv_opts.disable_read_ana_log_page = true;
if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
attach_cb = connect_attach_cb;
} else {
attach_cb = connect_set_failover_cb;
}
ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, attach_cb);
if (ctx->probe_ctx == NULL) {
SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
free(ctx);
return -ENODEV;
}
ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
return 0;
}
int
bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id)
{
struct nvme_bdev_ctrlr *nbdev_ctrlr;
struct nvme_ctrlr *nvme_ctrlr, *tmp_nvme_ctrlr;
struct nvme_path_id *p, *t;
int rc = -ENXIO;
if (name == NULL || path_id == NULL) {
return -EINVAL;
}
nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
if (nbdev_ctrlr == NULL) {
SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
return -ENODEV;
}
TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
if (path_id->trid.trtype != 0) {
if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
continue;
}
} else {
if (path_id->trid.trtype != p->trid.trtype) {
continue;
}
}
}
if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
continue;
}
}
if (path_id->trid.adrfam != 0) {
if (path_id->trid.adrfam != p->trid.adrfam) {
continue;
}
}
if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
continue;
}
}
if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
continue;
}
}
if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
continue;
}
}
if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
continue;
}
}
/* If we made it here, then this path is a match! Now we need to remove it. */
if (p == nvme_ctrlr->active_path_id) {
/* This is the active path in use right now. The active path is always the first in the list. */
if (!TAILQ_NEXT(p, link)) {
/* The current path is the only path. */
rc = _bdev_nvme_delete(nvme_ctrlr, false);
} else {
/* There is an alternative path. */
rc = bdev_nvme_failover(nvme_ctrlr, true);
}
} else {
/* We are not using the specified path. */
TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
free(p);
rc = 0;
}
if (rc < 0 && rc != -ENXIO) {
return rc;
}
}
}
/* All nvme_ctrlrs were deleted or no nvme_ctrlr which had the trid was found. */
return rc;
}
#define DISCOVERY_INFOLOG(ctx, format, ...) \
SPDK_INFOLOG(bdev_nvme, "Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
#define DISCOVERY_ERRLOG(ctx, format, ...) \
SPDK_ERRLOG("Discovery[%s:%s] " format, ctx->trid.traddr, ctx->trid.trsvcid, ##__VA_ARGS__);
struct discovery_entry_ctx {
char name[128];
struct spdk_nvme_transport_id trid;
struct spdk_nvme_ctrlr_opts drv_opts;
struct spdk_nvmf_discovery_log_page_entry entry;
TAILQ_ENTRY(discovery_entry_ctx) tailq;
struct discovery_ctx *ctx;
};
struct discovery_ctx {
char *name;
spdk_bdev_nvme_start_discovery_fn start_cb_fn;
spdk_bdev_nvme_stop_discovery_fn stop_cb_fn;
void *cb_ctx;
struct spdk_nvme_probe_ctx *probe_ctx;
struct spdk_nvme_detach_ctx *detach_ctx;
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_transport_id trid;
struct discovery_entry_ctx *entry_ctx_in_use;
struct spdk_poller *poller;
struct spdk_nvme_ctrlr_opts drv_opts;
struct nvme_ctrlr_opts bdev_opts;
struct spdk_nvmf_discovery_log_page *log_page;
TAILQ_ENTRY(discovery_ctx) tailq;
TAILQ_HEAD(, discovery_entry_ctx) nvm_entry_ctxs;
TAILQ_HEAD(, discovery_entry_ctx) discovery_entry_ctxs;
int rc;
bool wait_for_attach;
uint64_t timeout_ticks;
/* Denotes that the discovery service is being started. We're waiting
* for the initial connection to the discovery controller to be
* established and attach discovered NVM ctrlrs.
*/
bool initializing;
/* Denotes if a discovery is currently in progress for this context.
* That includes connecting to newly discovered subsystems. Used to
* ensure we do not start a new discovery until an existing one is
* complete.
*/
bool in_progress;
/* Denotes if another discovery is needed after the one in progress
* completes. Set when we receive an AER completion while a discovery
* is already in progress.
*/
bool pending;
/* Signal to the discovery context poller that it should stop the
* discovery service, including detaching from the current discovery
* controller.
*/
bool stop;
struct spdk_thread *calling_thread;
uint32_t index;
uint32_t attach_in_progress;
char *hostnqn;
};
TAILQ_HEAD(discovery_ctxs, discovery_ctx);
static struct discovery_ctxs g_discovery_ctxs = TAILQ_HEAD_INITIALIZER(g_discovery_ctxs);
static void get_discovery_log_page(struct discovery_ctx *ctx);
static void
free_discovery_ctx(struct discovery_ctx *ctx)
{
free(ctx->log_page);
free(ctx->hostnqn);
free(ctx->name);
free(ctx);
}
static void
discovery_complete(struct discovery_ctx *ctx)
{
ctx->initializing = false;
ctx->in_progress = false;
if (ctx->pending) {
ctx->pending = false;
get_discovery_log_page(ctx);
}
}
static void
build_trid_from_log_page_entry(struct spdk_nvme_transport_id *trid,
struct spdk_nvmf_discovery_log_page_entry *entry)
{
char *space;
trid->trtype = entry->trtype;
trid->adrfam = entry->adrfam;
memcpy(trid->traddr, entry->traddr, sizeof(trid->traddr));
memcpy(trid->trsvcid, entry->trsvcid, sizeof(trid->trsvcid));
memcpy(trid->subnqn, entry->subnqn, sizeof(trid->subnqn));
/* We want the traddr, trsvcid and subnqn fields to be NULL-terminated.
* But the log page entries typically pad them with spaces, not zeroes.
* So add a NULL terminator to each of these fields at the appropriate
* location.
*/
space = strchr(trid->traddr, ' ');
if (space) {
*space = 0;
}
space = strchr(trid->trsvcid, ' ');
if (space) {
*space = 0;
}
space = strchr(trid->subnqn, ' ');
if (space) {
*space = 0;
}
}
static void
stop_discovery(struct discovery_ctx *ctx, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
{
ctx->stop = true;
ctx->stop_cb_fn = cb_fn;
ctx->cb_ctx = cb_ctx;
while (!TAILQ_EMPTY(&ctx->nvm_entry_ctxs)) {
struct discovery_entry_ctx *entry_ctx;
struct nvme_path_id path = {};
entry_ctx = TAILQ_FIRST(&ctx->nvm_entry_ctxs);
path.trid = entry_ctx->trid;
bdev_nvme_delete(entry_ctx->name, &path);
TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
free(entry_ctx);
}
while (!TAILQ_EMPTY(&ctx->discovery_entry_ctxs)) {
struct discovery_entry_ctx *entry_ctx;
entry_ctx = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
free(entry_ctx);
}
free(ctx->entry_ctx_in_use);
ctx->entry_ctx_in_use = NULL;
}
static void
discovery_remove_controllers(struct discovery_ctx *ctx)
{
struct spdk_nvmf_discovery_log_page *log_page = ctx->log_page;
struct discovery_entry_ctx *entry_ctx, *tmp;
struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
struct spdk_nvme_transport_id old_trid;
uint64_t numrec, i;
bool found;
numrec = from_le64(&log_page->numrec);
TAILQ_FOREACH_SAFE(entry_ctx, &ctx->nvm_entry_ctxs, tailq, tmp) {
found = false;
old_entry = &entry_ctx->entry;
build_trid_from_log_page_entry(&old_trid, old_entry);
for (i = 0; i < numrec; i++) {
new_entry = &log_page->entries[i];
if (!memcmp(old_entry, new_entry, sizeof(*old_entry))) {
DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s found again\n",
old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
found = true;
break;
}
}
if (!found) {
struct nvme_path_id path = {};
DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s not found\n",
old_trid.subnqn, old_trid.traddr, old_trid.trsvcid);
path.trid = entry_ctx->trid;
bdev_nvme_delete(entry_ctx->name, &path);
TAILQ_REMOVE(&ctx->nvm_entry_ctxs, entry_ctx, tailq);
free(entry_ctx);
}
}
free(log_page);
ctx->log_page = NULL;
discovery_complete(ctx);
}
static void
complete_discovery_start(struct discovery_ctx *ctx, int status)
{
ctx->timeout_ticks = 0;
ctx->rc = status;
if (ctx->start_cb_fn) {
ctx->start_cb_fn(ctx->cb_ctx, status);
ctx->start_cb_fn = NULL;
ctx->cb_ctx = NULL;
}
}
static void
discovery_attach_controller_done(void *cb_ctx, size_t bdev_count, int rc)
{
struct discovery_entry_ctx *entry_ctx = cb_ctx;
struct discovery_ctx *ctx = entry_ctx->ctx;
DISCOVERY_INFOLOG(ctx, "attach %s done\n", entry_ctx->name);
ctx->attach_in_progress--;
if (ctx->attach_in_progress == 0) {
complete_discovery_start(ctx, ctx->rc);
if (ctx->initializing && ctx->rc != 0) {
DISCOVERY_ERRLOG(ctx, "stopping discovery due to errors: %d\n", ctx->rc);
stop_discovery(ctx, NULL, ctx->cb_ctx);
} else {
discovery_remove_controllers(ctx);
}
}
}
static struct discovery_entry_ctx *
create_discovery_entry_ctx(struct discovery_ctx *ctx, struct spdk_nvme_transport_id *trid)
{
struct discovery_entry_ctx *new_ctx;
new_ctx = calloc(1, sizeof(*new_ctx));
if (new_ctx == NULL) {
DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
return NULL;
}
new_ctx->ctx = ctx;
memcpy(&new_ctx->trid, trid, sizeof(*trid));
spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
return new_ctx;
}
static void
discovery_log_page_cb(void *cb_arg, int rc, const struct spdk_nvme_cpl *cpl,
struct spdk_nvmf_discovery_log_page *log_page)
{
struct discovery_ctx *ctx = cb_arg;
struct discovery_entry_ctx *entry_ctx, *tmp;
struct spdk_nvmf_discovery_log_page_entry *new_entry, *old_entry;
uint64_t numrec, i;
bool found;
if (rc || spdk_nvme_cpl_is_error(cpl)) {
DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
return;
}
ctx->log_page = log_page;
assert(ctx->attach_in_progress == 0);
numrec = from_le64(&log_page->numrec);
TAILQ_FOREACH_SAFE(entry_ctx, &ctx->discovery_entry_ctxs, tailq, tmp) {
TAILQ_REMOVE(&ctx->discovery_entry_ctxs, entry_ctx, tailq);
free(entry_ctx);
}
for (i = 0; i < numrec; i++) {
found = false;
new_entry = &log_page->entries[i];
if (new_entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY) {
struct discovery_entry_ctx *new_ctx;
struct spdk_nvme_transport_id trid = {};
build_trid_from_log_page_entry(&trid, new_entry);
new_ctx = create_discovery_entry_ctx(ctx, &trid);
if (new_ctx == NULL) {
DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
break;
}
TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, new_ctx, tailq);
continue;
}
TAILQ_FOREACH(entry_ctx, &ctx->nvm_entry_ctxs, tailq) {
old_entry = &entry_ctx->entry;
if (!memcmp(new_entry, old_entry, sizeof(*new_entry))) {
found = true;
break;
}
}
if (!found) {
struct discovery_entry_ctx *subnqn_ctx, *new_ctx;
TAILQ_FOREACH(subnqn_ctx, &ctx->nvm_entry_ctxs, tailq) {
if (!memcmp(subnqn_ctx->entry.subnqn, new_entry->subnqn,
sizeof(new_entry->subnqn))) {
break;
}
}
new_ctx = calloc(1, sizeof(*new_ctx));
if (new_ctx == NULL) {
DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
break;
}
new_ctx->ctx = ctx;
memcpy(&new_ctx->entry, new_entry, sizeof(*new_entry));
build_trid_from_log_page_entry(&new_ctx->trid, new_entry);
if (subnqn_ctx) {
snprintf(new_ctx->name, sizeof(new_ctx->name), "%s", subnqn_ctx->name);
DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new path for %s\n",
new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
new_ctx->name);
} else {
snprintf(new_ctx->name, sizeof(new_ctx->name), "%s%d", ctx->name, ctx->index++);
DISCOVERY_INFOLOG(ctx, "NVM %s:%s:%s new subsystem %s\n",
new_ctx->trid.subnqn, new_ctx->trid.traddr, new_ctx->trid.trsvcid,
new_ctx->name);
}
spdk_nvme_ctrlr_get_default_ctrlr_opts(&new_ctx->drv_opts, sizeof(new_ctx->drv_opts));
snprintf(new_ctx->drv_opts.hostnqn, sizeof(new_ctx->drv_opts.hostnqn), "%s", ctx->hostnqn);
rc = bdev_nvme_create(&new_ctx->trid, new_ctx->name, NULL, 0,
discovery_attach_controller_done, new_ctx,
&new_ctx->drv_opts, &ctx->bdev_opts, true);
if (rc == 0) {
TAILQ_INSERT_TAIL(&ctx->nvm_entry_ctxs, new_ctx, tailq);
ctx->attach_in_progress++;
} else {
DISCOVERY_ERRLOG(ctx, "bdev_nvme_create failed (%s)\n", spdk_strerror(-rc));
}
}
}
if (ctx->attach_in_progress == 0) {
discovery_remove_controllers(ctx);
}
}
static void
get_discovery_log_page(struct discovery_ctx *ctx)
{
int rc;
assert(ctx->in_progress == false);
ctx->in_progress = true;
rc = spdk_nvme_ctrlr_get_discovery_log_page(ctx->ctrlr, discovery_log_page_cb, ctx);
if (rc != 0) {
DISCOVERY_ERRLOG(ctx, "could not get discovery log page\n");
}
DISCOVERY_INFOLOG(ctx, "sent discovery log page command\n");
}
static void
discovery_aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct discovery_ctx *ctx = arg;
uint32_t log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
if (spdk_nvme_cpl_is_error(cpl)) {
DISCOVERY_ERRLOG(ctx, "aer failed\n");
return;
}
if (log_page_id != SPDK_NVME_LOG_DISCOVERY) {
DISCOVERY_ERRLOG(ctx, "unexpected log page 0x%x\n", log_page_id);
return;
}
DISCOVERY_INFOLOG(ctx, "got aer\n");
if (ctx->in_progress) {
ctx->pending = true;
return;
}
get_discovery_log_page(ctx);
}
static void
discovery_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
struct discovery_ctx *ctx;
ctx = SPDK_CONTAINEROF(user_opts, struct discovery_ctx, drv_opts);
DISCOVERY_INFOLOG(ctx, "discovery ctrlr attached\n");
ctx->probe_ctx = NULL;
ctx->ctrlr = ctrlr;
if (ctx->rc != 0) {
DISCOVERY_ERRLOG(ctx, "encountered error while attaching discovery ctrlr: %d\n",
ctx->rc);
return;
}
spdk_nvme_ctrlr_register_aer_callback(ctx->ctrlr, discovery_aer_cb, ctx);
}
static int
discovery_poller(void *arg)
{
struct discovery_ctx *ctx = arg;
struct spdk_nvme_transport_id *trid;
int rc;
if (ctx->detach_ctx) {
rc = spdk_nvme_detach_poll_async(ctx->detach_ctx);
if (rc != -EAGAIN) {
ctx->detach_ctx = NULL;
ctx->ctrlr = NULL;
}
} else if (ctx->stop) {
if (ctx->ctrlr != NULL) {
rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
if (rc == 0) {
return SPDK_POLLER_BUSY;
}
DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
}
spdk_poller_unregister(&ctx->poller);
TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
assert(ctx->start_cb_fn == NULL);
if (ctx->stop_cb_fn != NULL) {
ctx->stop_cb_fn(ctx->cb_ctx);
}
free_discovery_ctx(ctx);
} else if (ctx->probe_ctx == NULL && ctx->ctrlr == NULL) {
if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
assert(ctx->initializing);
spdk_poller_unregister(&ctx->poller);
TAILQ_REMOVE(&g_discovery_ctxs, ctx, tailq);
complete_discovery_start(ctx, -ETIMEDOUT);
stop_discovery(ctx, NULL, NULL);
free_discovery_ctx(ctx);
return SPDK_POLLER_BUSY;
}
assert(ctx->entry_ctx_in_use == NULL);
ctx->entry_ctx_in_use = TAILQ_FIRST(&ctx->discovery_entry_ctxs);
TAILQ_REMOVE(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
trid = &ctx->entry_ctx_in_use->trid;
ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->drv_opts, discovery_attach_cb);
if (ctx->probe_ctx) {
spdk_poller_unregister(&ctx->poller);
ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000);
} else {
DISCOVERY_ERRLOG(ctx, "could not start discovery connect\n");
TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
ctx->entry_ctx_in_use = NULL;
}
} else if (ctx->probe_ctx) {
if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
DISCOVERY_ERRLOG(ctx, "timed out while attaching discovery ctrlr\n");
complete_discovery_start(ctx, -ETIMEDOUT);
return SPDK_POLLER_BUSY;
}
rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
if (rc != -EAGAIN) {
if (ctx->rc != 0) {
assert(ctx->initializing);
stop_discovery(ctx, NULL, ctx->cb_ctx);
} else {
DISCOVERY_INFOLOG(ctx, "discovery ctrlr connected\n");
ctx->rc = rc;
if (rc == 0) {
get_discovery_log_page(ctx);
}
}
}
} else {
if (ctx->timeout_ticks != 0 && ctx->timeout_ticks < spdk_get_ticks()) {
DISCOVERY_ERRLOG(ctx, "timed out while attaching NVM ctrlrs\n");
complete_discovery_start(ctx, -ETIMEDOUT);
/* We need to wait until all NVM ctrlrs are attached before we stop the
* discovery service to make sure we don't detach a ctrlr that is still
* being attached.
*/
if (ctx->attach_in_progress == 0) {
stop_discovery(ctx, NULL, ctx->cb_ctx);
return SPDK_POLLER_BUSY;
}
}
rc = spdk_nvme_ctrlr_process_admin_completions(ctx->ctrlr);
if (rc < 0) {
spdk_poller_unregister(&ctx->poller);
ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, ctx->entry_ctx_in_use, tailq);
ctx->entry_ctx_in_use = NULL;
rc = spdk_nvme_detach_async(ctx->ctrlr, &ctx->detach_ctx);
if (rc != 0) {
DISCOVERY_ERRLOG(ctx, "could not detach discovery ctrlr\n");
ctx->ctrlr = NULL;
}
}
}
return SPDK_POLLER_BUSY;
}
static void
start_discovery_poller(void *arg)
{
struct discovery_ctx *ctx = arg;
TAILQ_INSERT_TAIL(&g_discovery_ctxs, ctx, tailq);
ctx->poller = SPDK_POLLER_REGISTER(discovery_poller, ctx, 1000 * 1000);
}
int
bdev_nvme_start_discovery(struct spdk_nvme_transport_id *trid,
const char *base_name,
struct spdk_nvme_ctrlr_opts *drv_opts,
struct nvme_ctrlr_opts *bdev_opts,
uint64_t attach_timeout,
spdk_bdev_nvme_start_discovery_fn cb_fn, void *cb_ctx)
{
struct discovery_ctx *ctx;
struct discovery_entry_ctx *discovery_entry_ctx;
snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
if (strcmp(ctx->name, base_name) == 0) {
return -EEXIST;
}
if (ctx->entry_ctx_in_use != NULL) {
if (!spdk_nvme_transport_id_compare(trid, &ctx->entry_ctx_in_use->trid)) {
return -EEXIST;
}
}
TAILQ_FOREACH(discovery_entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
if (!spdk_nvme_transport_id_compare(trid, &discovery_entry_ctx->trid)) {
return -EEXIST;
}
}
}
ctx = calloc(1, sizeof(*ctx));
if (ctx == NULL) {
return -ENOMEM;
}
ctx->name = strdup(base_name);
if (ctx->name == NULL) {
free_discovery_ctx(ctx);
return -ENOMEM;
}
memcpy(&ctx->drv_opts, drv_opts, sizeof(*drv_opts));
memcpy(&ctx->bdev_opts, bdev_opts, sizeof(*bdev_opts));
ctx->bdev_opts.from_discovery_service = true;
ctx->calling_thread = spdk_get_thread();
ctx->start_cb_fn = cb_fn;
ctx->cb_ctx = cb_ctx;
ctx->initializing = true;
if (ctx->start_cb_fn) {
/* We can use this when dumping json to denote if this RPC parameter
* was specified or not.
*/
ctx->wait_for_attach = true;
}
if (attach_timeout != 0) {
ctx->timeout_ticks = spdk_get_ticks() + attach_timeout *
spdk_get_ticks_hz() / 1000ull;
}
TAILQ_INIT(&ctx->nvm_entry_ctxs);
TAILQ_INIT(&ctx->discovery_entry_ctxs);
memcpy(&ctx->trid, trid, sizeof(*trid));
/* Even if user did not specify hostnqn, we can still strdup("\0"); */
ctx->hostnqn = strdup(ctx->drv_opts.hostnqn);
if (ctx->hostnqn == NULL) {
free_discovery_ctx(ctx);
return -ENOMEM;
}
discovery_entry_ctx = create_discovery_entry_ctx(ctx, trid);
if (discovery_entry_ctx == NULL) {
DISCOVERY_ERRLOG(ctx, "could not allocate new entry_ctx\n");
free_discovery_ctx(ctx);
return -ENOMEM;
}
TAILQ_INSERT_TAIL(&ctx->discovery_entry_ctxs, discovery_entry_ctx, tailq);
spdk_thread_send_msg(g_bdev_nvme_init_thread, start_discovery_poller, ctx);
return 0;
}
int
bdev_nvme_stop_discovery(const char *name, spdk_bdev_nvme_stop_discovery_fn cb_fn, void *cb_ctx)
{
struct discovery_ctx *ctx;
TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
if (strcmp(name, ctx->name) == 0) {
if (ctx->stop) {
return -EALREADY;
}
/* If we're still starting the discovery service and ->rc is non-zero, we're
* going to stop it as soon as we can
*/
if (ctx->initializing && ctx->rc != 0) {
return -EALREADY;
}
stop_discovery(ctx, cb_fn, cb_ctx);
return 0;
}
}
return -ENOENT;
}
static int
bdev_nvme_library_init(void)
{
g_bdev_nvme_init_thread = spdk_get_thread();
spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
bdev_nvme_destroy_poll_group_cb,
sizeof(struct nvme_poll_group), "nvme_poll_groups");
return 0;
}
static void
bdev_nvme_fini_destruct_ctrlrs(void)
{
struct nvme_bdev_ctrlr *nbdev_ctrlr;
struct nvme_ctrlr *nvme_ctrlr;
pthread_mutex_lock(&g_bdev_nvme_mutex);
TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
pthread_mutex_lock(&nvme_ctrlr->mutex);
if (nvme_ctrlr->destruct) {
/* This controller's destruction was already started
* before the application started shutting down
*/
pthread_mutex_unlock(&nvme_ctrlr->mutex);
continue;
}
nvme_ctrlr->destruct = true;
pthread_mutex_unlock(&nvme_ctrlr->mutex);
spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
nvme_ctrlr);
}
}
g_bdev_nvme_module_finish = true;
if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
pthread_mutex_unlock(&g_bdev_nvme_mutex);
spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
spdk_bdev_module_fini_done();
return;
}
pthread_mutex_unlock(&g_bdev_nvme_mutex);
}
static void
check_discovery_fini(void *arg)
{
if (TAILQ_EMPTY(&g_discovery_ctxs)) {
bdev_nvme_fini_destruct_ctrlrs();
}
}
static void
bdev_nvme_library_fini(void)
{
struct nvme_probe_skip_entry *entry, *entry_tmp;
struct discovery_ctx *ctx;
spdk_poller_unregister(&g_hotplug_poller);
free(g_hotplug_probe_ctx);
g_hotplug_probe_ctx = NULL;
TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
free(entry);
}
assert(spdk_get_thread() == g_bdev_nvme_init_thread);
if (TAILQ_EMPTY(&g_discovery_ctxs)) {
bdev_nvme_fini_destruct_ctrlrs();
} else {
TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
stop_discovery(ctx, check_discovery_fini, NULL);
}
}
}
static void
bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
struct spdk_bdev *bdev = bdev_io->bdev;
struct spdk_dif_ctx dif_ctx;
struct spdk_dif_error err_blk = {};
int rc;
rc = spdk_dif_ctx_init(&dif_ctx,
bdev->blocklen, bdev->md_len, bdev->md_interleave,
bdev->dif_is_head_of_md, bdev->dif_type, bdev->dif_check_flags,
bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0);
if (rc != 0) {
SPDK_ERRLOG("Initialization of DIF context failed\n");
return;
}
if (bdev->md_interleave) {
rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
} else {
struct iovec md_iov = {
.iov_base = bdev_io->u.bdev.md_buf,
.iov_len = bdev_io->u.bdev.num_blocks * bdev->md_len,
};
rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
&md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
}
if (rc != 0) {
SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
err_blk.err_type, err_blk.err_offset);
} else {
SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
}
}
static void
bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
if (spdk_nvme_cpl_is_success(cpl)) {
/* Run PI verification for read data buffer. */
bdev_nvme_verify_pi_error(bio);
}
/* Return original completion status */
bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
}
static void
bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
int ret;
if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
cpl->status.sct, cpl->status.sc);
/* Save completion status to use after verifying PI error. */
bio->cpl = *cpl;
if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
/* Read without PI checking to verify PI error. */
ret = bdev_nvme_no_pi_readv(bio,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks);
if (ret == 0) {
return;
}
}
}
bdev_nvme_io_complete_nvme_status(bio, cpl);
}
static void
bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
if (spdk_nvme_cpl_is_pi_error(cpl)) {
SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
cpl->status.sct, cpl->status.sc);
/* Run PI verification for write data buffer if PI error is detected. */
bdev_nvme_verify_pi_error(bio);
}
bdev_nvme_io_complete_nvme_status(bio, cpl);
}
static void
bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
* Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
*/
bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
if (spdk_nvme_cpl_is_pi_error(cpl)) {
SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
cpl->status.sct, cpl->status.sc);
/* Run PI verification for zone append data buffer if PI error is detected. */
bdev_nvme_verify_pi_error(bio);
}
bdev_nvme_io_complete_nvme_status(bio, cpl);
}
static void
bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
if (spdk_nvme_cpl_is_pi_error(cpl)) {
SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
cpl->status.sct, cpl->status.sc);
/* Run PI verification for compare data buffer if PI error is detected. */
bdev_nvme_verify_pi_error(bio);
}
bdev_nvme_io_complete_nvme_status(bio, cpl);
}
static void
bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
/* Compare operation completion */
if (!bio->first_fused_completed) {
/* Save compare result for write callback */
bio->cpl = *cpl;
bio->first_fused_completed = true;
return;
}
/* Write operation completion */
if (spdk_nvme_cpl_is_error(&bio->cpl)) {
/* If bio->cpl is already an error, it means the compare operation failed. In that case,
* complete the IO with the compare operation's status.
*/
if (!spdk_nvme_cpl_is_error(cpl)) {
SPDK_ERRLOG("Unexpected write success after compare failure.\n");
}
bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
} else {
bdev_nvme_io_complete_nvme_status(bio, cpl);
}
}
static void
bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
bdev_nvme_io_complete_nvme_status(bio, cpl);
}
static int
fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
{
switch (desc->zs) {
case SPDK_NVME_ZONE_STATE_EMPTY:
info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
break;
case SPDK_NVME_ZONE_STATE_IOPEN:
info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
break;
case SPDK_NVME_ZONE_STATE_EOPEN:
info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
break;
case SPDK_NVME_ZONE_STATE_CLOSED:
info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
break;
case SPDK_NVME_ZONE_STATE_RONLY:
info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
break;
case SPDK_NVME_ZONE_STATE_FULL:
info->state = SPDK_BDEV_ZONE_STATE_FULL;
break;
case SPDK_NVME_ZONE_STATE_OFFLINE:
info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
break;
default:
SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
return -EIO;
}
info->zone_id = desc->zslba;
info->write_pointer = desc->wp;
info->capacity = desc->zcap;
return 0;
}
static void
bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
uint64_t max_zones_per_buf, i;
uint32_t zone_report_bufsize;
struct spdk_nvme_ns *ns;
struct spdk_nvme_qpair *qpair;
int ret;
if (spdk_nvme_cpl_is_error(cpl)) {
goto out_complete_io_nvme_cpl;
}
if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
ret = -ENXIO;
goto out_complete_io_ret;
}
ns = bio->io_path->nvme_ns->ns;
qpair = bio->io_path->qpair->qpair;
zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
sizeof(bio->zone_report_buf->descs[0]);
if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
ret = -EINVAL;
goto out_complete_io_ret;
}
if (!bio->zone_report_buf->nr_zones) {
ret = -EINVAL;
goto out_complete_io_ret;
}
for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
ret = fill_zone_from_report(&info[bio->handled_zones],
&bio->zone_report_buf->descs[i]);
if (ret) {
goto out_complete_io_ret;
}
bio->handled_zones++;
}
if (bio->handled_zones < zones_to_copy) {
uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
memset(bio->zone_report_buf, 0, zone_report_bufsize);
ret = spdk_nvme_zns_report_zones(ns, qpair,
bio->zone_report_buf, zone_report_bufsize,
slba, SPDK_NVME_ZRA_LIST_ALL, true,
bdev_nvme_get_zone_info_done, bio);
if (!ret) {
return;
} else {
goto out_complete_io_ret;
}
}
out_complete_io_nvme_cpl:
free(bio->zone_report_buf);
bio->zone_report_buf = NULL;
bdev_nvme_io_complete_nvme_status(bio, cpl);
return;
out_complete_io_ret:
free(bio->zone_report_buf);
bio->zone_report_buf = NULL;
bdev_nvme_io_complete(bio, ret);
}
static void
bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
bdev_nvme_io_complete_nvme_status(bio, cpl);
}
static void
bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
{
struct nvme_bdev_io *bio = ctx;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
const struct spdk_nvme_cpl *cpl = &bio->cpl;
assert(bdev_nvme_io_type_is_admin(bdev_io->type));
__bdev_nvme_io_complete(bdev_io, 0, cpl);
}
static void
bdev_nvme_abort_complete(void *ctx)
{
struct nvme_bdev_io *bio = ctx;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
} else {
__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
}
}
static void
bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
bio->cpl = *cpl;
spdk_thread_send_msg(bio->orig_thread, bdev_nvme_abort_complete, bio);
}
static void
bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
bio->cpl = *cpl;
spdk_thread_send_msg(bio->orig_thread,
bdev_nvme_admin_passthru_complete_nvme_status, bio);
}
static void
bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
{
struct nvme_bdev_io *bio = ref;
struct iovec *iov;
bio->iov_offset = sgl_offset;
for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
iov = &bio->iovs[bio->iovpos];
if (bio->iov_offset < iov->iov_len) {
break;
}
bio->iov_offset -= iov->iov_len;
}
}
static int
bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
{
struct nvme_bdev_io *bio = ref;
struct iovec *iov;
assert(bio->iovpos < bio->iovcnt);
iov = &bio->iovs[bio->iovpos];
*address = iov->iov_base;
*length = iov->iov_len;
if (bio->iov_offset) {
assert(bio->iov_offset <= iov->iov_len);
*address += bio->iov_offset;
*length -= bio->iov_offset;
}
bio->iov_offset += *length;
if (bio->iov_offset == iov->iov_len) {
bio->iovpos++;
bio->iov_offset = 0;
}
return 0;
}
static void
bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
{
struct nvme_bdev_io *bio = ref;
struct iovec *iov;
bio->fused_iov_offset = sgl_offset;
for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
iov = &bio->fused_iovs[bio->fused_iovpos];
if (bio->fused_iov_offset < iov->iov_len) {
break;
}
bio->fused_iov_offset -= iov->iov_len;
}
}
static int
bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
{
struct nvme_bdev_io *bio = ref;
struct iovec *iov;
assert(bio->fused_iovpos < bio->fused_iovcnt);
iov = &bio->fused_iovs[bio->fused_iovpos];
*address = iov->iov_base;
*length = iov->iov_len;
if (bio->fused_iov_offset) {
assert(bio->fused_iov_offset <= iov->iov_len);
*address += bio->fused_iov_offset;
*length -= bio->fused_iov_offset;
}
bio->fused_iov_offset += *length;
if (bio->fused_iov_offset == iov->iov_len) {
bio->fused_iovpos++;
bio->fused_iov_offset = 0;
}
return 0;
}
static int
bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
void *md, uint64_t lba_count, uint64_t lba)
{
int rc;
SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
lba_count, lba);
bio->iovs = iov;
bio->iovcnt = iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
bio->io_path->qpair->qpair,
lba, lba_count,
bdev_nvme_no_pi_readv_done, bio, 0,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
md, 0, 0);
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
}
return rc;
}
static int
bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
struct spdk_bdev_ext_io_opts *ext_opts)
{
struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
int rc;
SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
lba_count, lba);
bio->iovs = iov;
bio->iovcnt = iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
if (ext_opts) {
bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts);
bio->ext_opts.memory_domain = ext_opts->memory_domain;
bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx;
bio->ext_opts.io_flags = flags;
bio->ext_opts.metadata = md;
rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
bdev_nvme_readv_done, bio,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
&bio->ext_opts);
} else if (iovcnt == 1) {
rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base, md, lba,
lba_count,
bdev_nvme_readv_done, bio,
flags,
0, 0);
} else {
rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
bdev_nvme_readv_done, bio, flags,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
md, 0, 0);
}
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("readv failed: rc = %d\n", rc);
}
return rc;
}
static int
bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts)
{
struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
int rc;
SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
lba_count, lba);
bio->iovs = iov;
bio->iovcnt = iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
if (ext_opts) {
bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts);
bio->ext_opts.memory_domain = ext_opts->memory_domain;
bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx;
bio->ext_opts.io_flags = flags;
bio->ext_opts.metadata = md;
rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
bdev_nvme_writev_done, bio,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
&bio->ext_opts);
} else if (iovcnt == 1) {
rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base, md, lba,
lba_count,
bdev_nvme_writev_done, bio,
flags,
0, 0);
} else {
rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
bdev_nvme_writev_done, bio, flags,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
md, 0, 0);
}
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("writev failed: rc = %d\n", rc);
}
return rc;
}
static int
bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
void *md, uint64_t lba_count, uint64_t zslba,
uint32_t flags)
{
struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
int rc;
SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
lba_count, zslba);
bio->iovs = iov;
bio->iovcnt = iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
if (iovcnt == 1) {
rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
lba_count,
bdev_nvme_zone_appendv_done, bio,
flags,
0, 0);
} else {
rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
bdev_nvme_zone_appendv_done, bio, flags,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
md, 0, 0);
}
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
}
return rc;
}
static int
bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags)
{
int rc;
SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
lba_count, lba);
bio->iovs = iov;
bio->iovcnt = iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
bio->io_path->qpair->qpair,
lba, lba_count,
bdev_nvme_comparev_done, bio, flags,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
md, 0, 0);
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
}
return rc;
}
static int
bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
struct iovec *write_iov, int write_iovcnt,
void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
{
struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
int rc;
SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
lba_count, lba);
bio->iovs = cmp_iov;
bio->iovcnt = cmp_iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
bio->fused_iovs = write_iov;
bio->fused_iovcnt = write_iovcnt;
bio->fused_iovpos = 0;
bio->fused_iov_offset = 0;
if (bdev_io->num_retries == 0) {
bio->first_fused_submitted = false;
bio->first_fused_completed = false;
}
if (!bio->first_fused_submitted) {
flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
memset(&bio->cpl, 0, sizeof(bio->cpl));
rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
bdev_nvme_comparev_and_writev_done, bio, flags,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
if (rc == 0) {
bio->first_fused_submitted = true;
flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
} else {
if (rc != -ENOMEM) {
SPDK_ERRLOG("compare failed: rc = %d\n", rc);
}
return rc;
}
}
flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
bdev_nvme_comparev_and_writev_done, bio, flags,
bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("write failed: rc = %d\n", rc);
rc = 0;
}
return rc;
}
static int
bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
{
struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
struct spdk_nvme_dsm_range *range;
uint64_t offset, remaining;
uint64_t num_ranges_u64;
uint16_t num_ranges;
int rc;
num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
return -EINVAL;
}
num_ranges = (uint16_t)num_ranges_u64;
offset = offset_blocks;
remaining = num_blocks;
range = &dsm_ranges[0];
/* Fill max-size ranges until the remaining blocks fit into one range */
while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
range->attributes.raw = 0;
range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
range->starting_lba = offset;
offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
range++;
}
/* Final range describes the remaining blocks */
range->attributes.raw = 0;
range->length = remaining;
range->starting_lba = offset;
rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
bio->io_path->qpair->qpair,
SPDK_NVME_DSM_ATTR_DEALLOCATE,
dsm_ranges, num_ranges,
bdev_nvme_queued_done, bio);
return rc;
}
static int
bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
{
if (num_blocks > UINT16_MAX + 1) {
SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
return -EINVAL;
}
return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
bio->io_path->qpair->qpair,
offset_blocks, num_blocks,
bdev_nvme_queued_done, bio,
0);
}
static int
bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
struct spdk_bdev_zone_info *info)
{
struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
if (zone_id % zone_size != 0) {
return -EINVAL;
}
if (num_zones > total_zones || !num_zones) {
return -EINVAL;
}
assert(!bio->zone_report_buf);
bio->zone_report_buf = calloc(1, zone_report_bufsize);
if (!bio->zone_report_buf) {
return -ENOMEM;
}
bio->handled_zones = 0;
return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
bdev_nvme_get_zone_info_done, bio);
}
static int
bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
enum spdk_bdev_zone_action action)
{
struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
switch (action) {
case SPDK_BDEV_ZONE_CLOSE:
return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
bdev_nvme_zone_management_done, bio);
case SPDK_BDEV_ZONE_FINISH:
return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
bdev_nvme_zone_management_done, bio);
case SPDK_BDEV_ZONE_OPEN:
return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
bdev_nvme_zone_management_done, bio);
case SPDK_BDEV_ZONE_RESET:
return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
bdev_nvme_zone_management_done, bio);
case SPDK_BDEV_ZONE_OFFLINE:
return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
bdev_nvme_zone_management_done, bio);
default:
return -EINVAL;
}
}
static void
bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
{
struct nvme_io_path *io_path;
struct nvme_ctrlr *nvme_ctrlr;
uint32_t max_xfer_size;
int rc = -ENXIO;
/* Choose the first ctrlr which is not failed. */
STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
nvme_ctrlr = io_path->qpair->ctrlr;
/* We should skip any unavailable nvme_ctrlr rather than checking
* if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
*/
if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
continue;
}
max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
if (nbytes > max_xfer_size) {
SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
rc = -EINVAL;
goto err;
}
bio->io_path = io_path;
bio->orig_thread = spdk_get_thread();
rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
bdev_nvme_admin_passthru_done, bio);
if (rc == 0) {
return;
}
}
err:
bdev_nvme_admin_passthru_complete(bio, rc);
}
static int
bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
void *buf, size_t nbytes)
{
struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
if (nbytes > max_xfer_size) {
SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
return -EINVAL;
}
/*
* Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
* so fill it out automatically.
*/
cmd->nsid = spdk_nvme_ns_get_id(ns);
return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
(uint32_t)nbytes, bdev_nvme_queued_done, bio);
}
static int
bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
void *buf, size_t nbytes, void *md_buf, size_t md_len)
{
struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
struct spdk_nvme_qpair *qpair = bio->io_path->qpair->qpair;
size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
if (nbytes > max_xfer_size) {
SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
return -EINVAL;
}
if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
SPDK_ERRLOG("invalid meta data buffer size\n");
return -EINVAL;
}
/*
* Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
* so fill it out automatically.
*/
cmd->nsid = spdk_nvme_ns_get_id(ns);
return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
}
static void
bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
struct nvme_bdev_io *bio_to_abort)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
struct spdk_bdev_io *bdev_io_to_abort;
struct nvme_io_path *io_path;
struct nvme_ctrlr *nvme_ctrlr;
int rc = 0;
bio->orig_thread = spdk_get_thread();
/* Traverse the retry_io_list first. */
TAILQ_FOREACH(bdev_io_to_abort, &nbdev_ch->retry_io_list, module_link) {
if ((struct nvme_bdev_io *)bdev_io_to_abort->driver_ctx == bio_to_abort) {
TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io_to_abort, module_link);
__bdev_nvme_io_complete(bdev_io_to_abort, SPDK_BDEV_IO_STATUS_ABORTED, NULL);
__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS, NULL);
return;
}
}
/* Even admin commands, they were submitted to only nvme_ctrlrs which were
* on any io_path. So traverse the io_path list for not only I/O commands
* but also admin commands.
*/
STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
nvme_ctrlr = io_path->qpair->ctrlr;
rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr,
io_path->qpair->qpair,
bio_to_abort,
bdev_nvme_abort_done, bio);
if (rc == -ENOENT) {
/* If no command was found in I/O qpair, the target command may be
* admin command.
*/
rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr,
NULL,
bio_to_abort,
bdev_nvme_abort_done, bio);
}
if (rc != -ENOENT) {
break;
}
}
if (rc != 0) {
/* If no command was found or there was any error, complete the abort
* request with failure.
*/
__bdev_nvme_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED, NULL);
}
}
static void
bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
{
const char *action;
if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
action = "reset";
} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
action = "abort";
} else {
action = "none";
}
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_string(w, "action_on_timeout", action);
spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
spdk_json_write_named_uint8(w, "transport_ack_timeout", g_opts.transport_ack_timeout);
spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", g_opts.ctrlr_loss_timeout_sec);
spdk_json_write_named_uint32(w, "reconnect_delay_sec", g_opts.reconnect_delay_sec);
spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec", g_opts.fast_io_fail_timeout_sec);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
}
static void
bdev_nvme_discovery_config_json(struct spdk_json_write_ctx *w, struct discovery_ctx *ctx)
{
struct spdk_nvme_transport_id trid;
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "bdev_nvme_start_discovery");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_string(w, "name", ctx->name);
spdk_json_write_named_string(w, "hostnqn", ctx->hostnqn);
trid = ctx->trid;
memset(trid.subnqn, 0, sizeof(trid.subnqn));
nvme_bdev_dump_trid_json(&trid, w);
spdk_json_write_named_bool(w, "wait_for_attach", ctx->wait_for_attach);
spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", ctx->bdev_opts.ctrlr_loss_timeout_sec);
spdk_json_write_named_uint32(w, "reconnect_delay_sec", ctx->bdev_opts.reconnect_delay_sec);
spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
ctx->bdev_opts.fast_io_fail_timeout_sec);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
}
static void
nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
struct nvme_ctrlr *nvme_ctrlr)
{
struct spdk_nvme_transport_id *trid;
if (nvme_ctrlr->opts.from_discovery_service) {
/* Do not emit an RPC for this - it will be implicitly
* covered by a separate bdev_nvme_start_discovery RPC.
*/
return;
}
trid = &nvme_ctrlr->active_path_id->trid;
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
nvme_bdev_dump_trid_json(trid, w);
spdk_json_write_named_bool(w, "prchk_reftag",
(nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
spdk_json_write_named_bool(w, "prchk_guard",
(nvme_ctrlr->opts.prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
spdk_json_write_named_int32(w, "ctrlr_loss_timeout_sec", nvme_ctrlr->opts.ctrlr_loss_timeout_sec);
spdk_json_write_named_uint32(w, "reconnect_delay_sec", nvme_ctrlr->opts.reconnect_delay_sec);
spdk_json_write_named_uint32(w, "fast_io_fail_timeout_sec",
nvme_ctrlr->opts.fast_io_fail_timeout_sec);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
}
static void
bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
{
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
}
static int
bdev_nvme_config_json(struct spdk_json_write_ctx *w)
{
struct nvme_bdev_ctrlr *nbdev_ctrlr;
struct nvme_ctrlr *nvme_ctrlr;
struct discovery_ctx *ctx;
bdev_nvme_opts_config_json(w);
pthread_mutex_lock(&g_bdev_nvme_mutex);
TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
nvme_ctrlr_config_json(w, nvme_ctrlr);
}
}
TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
bdev_nvme_discovery_config_json(w, ctx);
}
/* Dump as last parameter to give all NVMe bdevs chance to be constructed
* before enabling hotplug poller.
*/
bdev_nvme_hotplug_config_json(w);
pthread_mutex_unlock(&g_bdev_nvme_mutex);
return 0;
}
struct spdk_nvme_ctrlr *
bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
{
struct nvme_bdev *nbdev;
struct nvme_ns *nvme_ns;
if (!bdev || bdev->module != &nvme_if) {
return NULL;
}
nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
assert(nvme_ns != NULL);
return nvme_ns->ctrlr->ctrlr;
}
void
nvme_io_path_info_json(struct spdk_json_write_ctx *w, struct nvme_io_path *io_path)
{
struct nvme_ns *nvme_ns = io_path->nvme_ns;
struct nvme_ctrlr *nvme_ctrlr = io_path->qpair->ctrlr;
const struct spdk_nvme_ctrlr_data *cdata;
const struct spdk_nvme_transport_id *trid;
const char *adrfam_str;
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "bdev_name", nvme_ns->bdev->disk.name);
cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
trid = spdk_nvme_ctrlr_get_transport_id(nvme_ctrlr->ctrlr);
spdk_json_write_named_uint32(w, "cntlid", cdata->cntlid);
spdk_json_write_named_bool(w, "current", io_path == io_path->nbdev_ch->current_io_path);
spdk_json_write_named_bool(w, "connected", nvme_io_path_is_connected(io_path));
spdk_json_write_named_bool(w, "accessible", nvme_ns_is_accessible(nvme_ns));
spdk_json_write_named_object_begin(w, "transport");
spdk_json_write_named_string(w, "trtype", trid->trstring);
spdk_json_write_named_string(w, "traddr", trid->traddr);
if (trid->trsvcid[0] != '\0') {
spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
}
adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
if (adrfam_str) {
spdk_json_write_named_string(w, "adrfam", adrfam_str);
}
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
}
void
bdev_nvme_get_discovery_info(struct spdk_json_write_ctx *w)
{
struct discovery_ctx *ctx;
struct discovery_entry_ctx *entry_ctx;
spdk_json_write_array_begin(w);
TAILQ_FOREACH(ctx, &g_discovery_ctxs, tailq) {
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "name", ctx->name);
spdk_json_write_named_object_begin(w, "trid");
nvme_bdev_dump_trid_json(&ctx->trid, w);
spdk_json_write_object_end(w);
spdk_json_write_named_array_begin(w, "referrals");
TAILQ_FOREACH(entry_ctx, &ctx->discovery_entry_ctxs, tailq) {
spdk_json_write_object_begin(w);
spdk_json_write_named_object_begin(w, "trid");
nvme_bdev_dump_trid_json(&entry_ctx->trid, w);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
}
spdk_json_write_array_end(w);
spdk_json_write_object_end(w);
}
spdk_json_write_array_end(w);
}
SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
SPDK_TRACE_REGISTER_FN(bdev_nvme_trace, "bdev_nvme", TRACE_GROUP_BDEV_NVME)
{
struct spdk_trace_tpoint_opts opts[] = {
{
"BDEV_NVME_IO_START", TRACE_BDEV_NVME_IO_START,
OWNER_NONE, OBJECT_BDEV_NVME_IO, 1,
{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
},
{
"BDEV_NVME_IO_DONE", TRACE_BDEV_NVME_IO_DONE,
OWNER_NONE, OBJECT_BDEV_NVME_IO, 0,
{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
}
};
spdk_trace_register_object(OBJECT_BDEV_NVME_IO, 'N');
spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_SUBMIT, OBJECT_BDEV_NVME_IO, 0);
spdk_trace_tpoint_register_relation(TRACE_NVME_PCIE_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
spdk_trace_tpoint_register_relation(TRACE_NVME_TCP_COMPLETE, OBJECT_BDEV_NVME_IO, 0);
}