Spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c
Maciej Szwed 79ed1ba18d bdev: Add spdk_bdev_open_ext function
This patch adds new interface for opening bdev and
implements new style remove event. With that changes
user can be notified about different types of events
that occur in regards to bdev. spdk_bdev_open_ext
function uses bdev name as an argument instead of bdev
structure to remove race condition where user gets
the bdev structure and bdev is removed after getting
that structure and before open function is called.

spdk_bdev_open is now deprecated.

Signed-off-by: Maciej Szwed <maciej.szwed@intel.com>
Change-Id: I44ebeb988bc6a2f441fc6a0c38a30668aad999ad
Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/455647
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Broadcom SPDK FC-NVMe CI <spdk-ci.pdl@broadcom.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
2019-08-26 19:07:56 +00:00

2106 lines
63 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk_cunit.h"
#include "common/lib/ut_multithread.c"
#include "unit/lib/json_mock.c"
#include "spdk/config.h"
/* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
#undef SPDK_CONFIG_VTUNE
#include "bdev/bdev.c"
DEFINE_STUB(spdk_conf_find_section, struct spdk_conf_section *, (struct spdk_conf *cp,
const char *name), NULL);
DEFINE_STUB(spdk_conf_section_get_nmval, char *,
(struct spdk_conf_section *sp, const char *key, int idx1, int idx2), NULL);
DEFINE_STUB(spdk_conf_section_get_intval, int, (struct spdk_conf_section *sp, const char *key), -1);
struct spdk_trace_histories *g_trace_histories;
DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn));
DEFINE_STUB_V(spdk_trace_register_owner, (uint8_t type, char id_prefix));
DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix));
DEFINE_STUB_V(spdk_trace_register_description, (const char *name,
uint16_t tpoint_id, uint8_t owner_type,
uint8_t object_type, uint8_t new_object,
uint8_t arg1_type, const char *arg1_name));
DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id,
uint32_t size, uint64_t object_id, uint64_t arg1));
DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
int g_status;
int g_count;
enum spdk_bdev_event_type g_event_type1;
enum spdk_bdev_event_type g_event_type2;
struct spdk_histogram_data *g_histogram;
void
spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
int *sc, int *sk, int *asc, int *ascq)
{
}
static int
null_init(void)
{
return 0;
}
static int
null_clean(void)
{
return 0;
}
static int
stub_destruct(void *ctx)
{
return 0;
}
struct ut_expected_io {
uint8_t type;
uint64_t offset;
uint64_t length;
int iovcnt;
struct iovec iov[BDEV_IO_NUM_CHILD_IOV];
void *md_buf;
TAILQ_ENTRY(ut_expected_io) link;
};
struct bdev_ut_channel {
TAILQ_HEAD(, spdk_bdev_io) outstanding_io;
uint32_t outstanding_io_count;
TAILQ_HEAD(, ut_expected_io) expected_io;
};
static bool g_io_done;
static struct spdk_bdev_io *g_bdev_io;
static enum spdk_bdev_io_status g_io_status;
static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
static uint32_t g_bdev_ut_io_device;
static struct bdev_ut_channel *g_bdev_ut_channel;
static struct ut_expected_io *
ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
{
struct ut_expected_io *expected_io;
expected_io = calloc(1, sizeof(*expected_io));
SPDK_CU_ASSERT_FATAL(expected_io != NULL);
expected_io->type = type;
expected_io->offset = offset;
expected_io->length = length;
expected_io->iovcnt = iovcnt;
return expected_io;
}
static void
ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
{
expected_io->iov[pos].iov_base = base;
expected_io->iov[pos].iov_len = len;
}
static void
stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
{
struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
struct ut_expected_io *expected_io;
struct iovec *iov, *expected_iov;
int i;
g_bdev_io = bdev_io;
TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
ch->outstanding_io_count++;
expected_io = TAILQ_FIRST(&ch->expected_io);
if (expected_io == NULL) {
return;
}
TAILQ_REMOVE(&ch->expected_io, expected_io, link);
if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
CU_ASSERT(bdev_io->type == expected_io->type);
}
if (expected_io->md_buf != NULL) {
CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
}
if (expected_io->length == 0) {
free(expected_io);
return;
}
CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
if (expected_io->iovcnt == 0) {
free(expected_io);
/* UNMAP, WRITE_ZEROES and FLUSH don't have iovs, so we can just return now. */
return;
}
CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
for (i = 0; i < expected_io->iovcnt; i++) {
iov = &bdev_io->u.bdev.iovs[i];
expected_iov = &expected_io->iov[i];
CU_ASSERT(iov->iov_len == expected_iov->iov_len);
CU_ASSERT(iov->iov_base == expected_iov->iov_base);
}
free(expected_io);
}
static void
stub_submit_request_aligned_buffer_cb(struct spdk_io_channel *_ch,
struct spdk_bdev_io *bdev_io, bool success)
{
CU_ASSERT(success == true);
stub_submit_request(_ch, bdev_io);
}
static void
stub_submit_request_aligned_buffer(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
{
spdk_bdev_io_get_buf(bdev_io, stub_submit_request_aligned_buffer_cb,
bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
}
static uint32_t
stub_complete_io(uint32_t num_to_complete)
{
struct bdev_ut_channel *ch = g_bdev_ut_channel;
struct spdk_bdev_io *bdev_io;
static enum spdk_bdev_io_status io_status;
uint32_t num_completed = 0;
while (num_completed < num_to_complete) {
if (TAILQ_EMPTY(&ch->outstanding_io)) {
break;
}
bdev_io = TAILQ_FIRST(&ch->outstanding_io);
TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
ch->outstanding_io_count--;
io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
g_io_exp_status;
spdk_bdev_io_complete(bdev_io, io_status);
num_completed++;
}
return num_completed;
}
static struct spdk_io_channel *
bdev_ut_get_io_channel(void *ctx)
{
return spdk_get_io_channel(&g_bdev_ut_io_device);
}
static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
[SPDK_BDEV_IO_TYPE_READ] = true,
[SPDK_BDEV_IO_TYPE_WRITE] = true,
[SPDK_BDEV_IO_TYPE_UNMAP] = true,
[SPDK_BDEV_IO_TYPE_FLUSH] = true,
[SPDK_BDEV_IO_TYPE_RESET] = true,
[SPDK_BDEV_IO_TYPE_NVME_ADMIN] = true,
[SPDK_BDEV_IO_TYPE_NVME_IO] = true,
[SPDK_BDEV_IO_TYPE_NVME_IO_MD] = true,
[SPDK_BDEV_IO_TYPE_WRITE_ZEROES] = true,
[SPDK_BDEV_IO_TYPE_ZCOPY] = true,
};
static void
ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
{
g_io_types_supported[io_type] = enable;
}
static bool
stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
{
return g_io_types_supported[io_type];
}
static struct spdk_bdev_fn_table fn_table = {
.destruct = stub_destruct,
.submit_request = stub_submit_request,
.get_io_channel = bdev_ut_get_io_channel,
.io_type_supported = stub_io_type_supported,
};
static int
bdev_ut_create_ch(void *io_device, void *ctx_buf)
{
struct bdev_ut_channel *ch = ctx_buf;
CU_ASSERT(g_bdev_ut_channel == NULL);
g_bdev_ut_channel = ch;
TAILQ_INIT(&ch->outstanding_io);
ch->outstanding_io_count = 0;
TAILQ_INIT(&ch->expected_io);
return 0;
}
static void
bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
{
CU_ASSERT(g_bdev_ut_channel != NULL);
g_bdev_ut_channel = NULL;
}
struct spdk_bdev_module bdev_ut_if;
static int
bdev_ut_module_init(void)
{
spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
sizeof(struct bdev_ut_channel), NULL);
spdk_bdev_module_init_done(&bdev_ut_if);
return 0;
}
static void
bdev_ut_module_fini(void)
{
spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
}
struct spdk_bdev_module bdev_ut_if = {
.name = "bdev_ut",
.module_init = bdev_ut_module_init,
.module_fini = bdev_ut_module_fini,
.async_init = true,
};
static void vbdev_ut_examine(struct spdk_bdev *bdev);
static int
vbdev_ut_module_init(void)
{
return 0;
}
static void
vbdev_ut_module_fini(void)
{
}
struct spdk_bdev_module vbdev_ut_if = {
.name = "vbdev_ut",
.module_init = vbdev_ut_module_init,
.module_fini = vbdev_ut_module_fini,
.examine_config = vbdev_ut_examine,
};
SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
static void
vbdev_ut_examine(struct spdk_bdev *bdev)
{
spdk_bdev_module_examine_done(&vbdev_ut_if);
}
static struct spdk_bdev *
allocate_bdev(char *name)
{
struct spdk_bdev *bdev;
int rc;
bdev = calloc(1, sizeof(*bdev));
SPDK_CU_ASSERT_FATAL(bdev != NULL);
bdev->name = name;
bdev->fn_table = &fn_table;
bdev->module = &bdev_ut_if;
bdev->blockcnt = 1024;
bdev->blocklen = 512;
rc = spdk_bdev_register(bdev);
CU_ASSERT(rc == 0);
return bdev;
}
static struct spdk_bdev *
allocate_vbdev(char *name)
{
struct spdk_bdev *bdev;
int rc;
bdev = calloc(1, sizeof(*bdev));
SPDK_CU_ASSERT_FATAL(bdev != NULL);
bdev->name = name;
bdev->fn_table = &fn_table;
bdev->module = &vbdev_ut_if;
rc = spdk_bdev_register(bdev);
CU_ASSERT(rc == 0);
return bdev;
}
static void
free_bdev(struct spdk_bdev *bdev)
{
spdk_bdev_unregister(bdev, NULL, NULL);
poll_threads();
memset(bdev, 0xFF, sizeof(*bdev));
free(bdev);
}
static void
free_vbdev(struct spdk_bdev *bdev)
{
spdk_bdev_unregister(bdev, NULL, NULL);
poll_threads();
memset(bdev, 0xFF, sizeof(*bdev));
free(bdev);
}
static void
get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
{
const char *bdev_name;
CU_ASSERT(bdev != NULL);
CU_ASSERT(rc == 0);
bdev_name = spdk_bdev_get_name(bdev);
CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
free(stat);
free_bdev(bdev);
*(bool *)cb_arg = true;
}
static void
get_device_stat_test(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_io_stat *stat;
bool done;
bdev = allocate_bdev("bdev0");
stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
if (stat == NULL) {
free_bdev(bdev);
return;
}
done = false;
spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
while (!done) { poll_threads(); }
}
static void
open_write_test(void)
{
struct spdk_bdev *bdev[9];
struct spdk_bdev_desc *desc[9] = {};
int rc;
/*
* Create a tree of bdevs to test various open w/ write cases.
*
* bdev0 through bdev3 are physical block devices, such as NVMe
* namespaces or Ceph block devices.
*
* bdev4 is a virtual bdev with multiple base bdevs. This models
* caching or RAID use cases.
*
* bdev5 through bdev7 are all virtual bdevs with the same base
* bdev (except bdev7). This models partitioning or logical volume
* use cases.
*
* bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
* (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
* models caching, RAID, partitioning or logical volumes use cases.
*
* bdev8 is a virtual bdev with multiple base bdevs, but these
* base bdevs are themselves virtual bdevs.
*
* bdev8
* |
* +----------+
* | |
* bdev4 bdev5 bdev6 bdev7
* | | | |
* +---+---+ +---+ + +---+---+
* | | \ | / \
* bdev0 bdev1 bdev2 bdev3
*/
bdev[0] = allocate_bdev("bdev0");
rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
bdev[1] = allocate_bdev("bdev1");
rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
bdev[2] = allocate_bdev("bdev2");
rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
bdev[3] = allocate_bdev("bdev3");
rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
bdev[4] = allocate_vbdev("bdev4");
rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
bdev[5] = allocate_vbdev("bdev5");
rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
bdev[6] = allocate_vbdev("bdev6");
bdev[7] = allocate_vbdev("bdev7");
bdev[8] = allocate_vbdev("bdev8");
/* Open bdev0 read-only. This should succeed. */
rc = spdk_bdev_open(bdev[0], false, NULL, NULL, &desc[0]);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
spdk_bdev_close(desc[0]);
/*
* Open bdev1 read/write. This should fail since bdev1 has been claimed
* by a vbdev module.
*/
rc = spdk_bdev_open(bdev[1], true, NULL, NULL, &desc[1]);
CU_ASSERT(rc == -EPERM);
/*
* Open bdev4 read/write. This should fail since bdev3 has been claimed
* by a vbdev module.
*/
rc = spdk_bdev_open(bdev[4], true, NULL, NULL, &desc[4]);
CU_ASSERT(rc == -EPERM);
/* Open bdev4 read-only. This should succeed. */
rc = spdk_bdev_open(bdev[4], false, NULL, NULL, &desc[4]);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
spdk_bdev_close(desc[4]);
/*
* Open bdev8 read/write. This should succeed since it is a leaf
* bdev.
*/
rc = spdk_bdev_open(bdev[8], true, NULL, NULL, &desc[8]);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
spdk_bdev_close(desc[8]);
/*
* Open bdev5 read/write. This should fail since bdev4 has been claimed
* by a vbdev module.
*/
rc = spdk_bdev_open(bdev[5], true, NULL, NULL, &desc[5]);
CU_ASSERT(rc == -EPERM);
/* Open bdev4 read-only. This should succeed. */
rc = spdk_bdev_open(bdev[5], false, NULL, NULL, &desc[5]);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
spdk_bdev_close(desc[5]);
free_vbdev(bdev[8]);
free_vbdev(bdev[5]);
free_vbdev(bdev[6]);
free_vbdev(bdev[7]);
free_vbdev(bdev[4]);
free_bdev(bdev[0]);
free_bdev(bdev[1]);
free_bdev(bdev[2]);
free_bdev(bdev[3]);
}
static void
bytes_to_blocks_test(void)
{
struct spdk_bdev bdev;
uint64_t offset_blocks, num_blocks;
memset(&bdev, 0, sizeof(bdev));
bdev.blocklen = 512;
/* All parameters valid */
offset_blocks = 0;
num_blocks = 0;
CU_ASSERT(spdk_bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
CU_ASSERT(offset_blocks == 1);
CU_ASSERT(num_blocks == 2);
/* Offset not a block multiple */
CU_ASSERT(spdk_bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
/* Length not a block multiple */
CU_ASSERT(spdk_bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
/* In case blocklen not the power of two */
bdev.blocklen = 100;
CU_ASSERT(spdk_bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
CU_ASSERT(offset_blocks == 1);
CU_ASSERT(num_blocks == 2);
/* Offset not a block multiple */
CU_ASSERT(spdk_bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
/* Length not a block multiple */
CU_ASSERT(spdk_bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
}
static void
num_blocks_test(void)
{
struct spdk_bdev bdev;
struct spdk_bdev_desc *desc = NULL;
int rc;
memset(&bdev, 0, sizeof(bdev));
bdev.name = "num_blocks";
bdev.fn_table = &fn_table;
bdev.module = &bdev_ut_if;
spdk_bdev_register(&bdev);
spdk_bdev_notify_blockcnt_change(&bdev, 50);
/* Growing block number */
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
/* Shrinking block number */
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
/* In case bdev opened */
rc = spdk_bdev_open(&bdev, false, NULL, NULL, &desc);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
/* Growing block number */
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
/* Shrinking block number */
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
spdk_bdev_close(desc);
spdk_bdev_unregister(&bdev, NULL, NULL);
poll_threads();
}
static void
io_valid_test(void)
{
struct spdk_bdev bdev;
memset(&bdev, 0, sizeof(bdev));
bdev.blocklen = 512;
spdk_bdev_notify_blockcnt_change(&bdev, 100);
/* All parameters valid */
CU_ASSERT(spdk_bdev_io_valid_blocks(&bdev, 1, 2) == true);
/* Last valid block */
CU_ASSERT(spdk_bdev_io_valid_blocks(&bdev, 99, 1) == true);
/* Offset past end of bdev */
CU_ASSERT(spdk_bdev_io_valid_blocks(&bdev, 100, 1) == false);
/* Offset + length past end of bdev */
CU_ASSERT(spdk_bdev_io_valid_blocks(&bdev, 99, 2) == false);
/* Offset near end of uint64_t range (2^64 - 1) */
CU_ASSERT(spdk_bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
}
static void
alias_add_del_test(void)
{
struct spdk_bdev *bdev[3];
int rc;
/* Creating and registering bdevs */
bdev[0] = allocate_bdev("bdev0");
SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
bdev[1] = allocate_bdev("bdev1");
SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
bdev[2] = allocate_bdev("bdev2");
SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
poll_threads();
/*
* Trying adding an alias identical to name.
* Alias is identical to name, so it can not be added to aliases list
*/
rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
CU_ASSERT(rc == -EEXIST);
/*
* Trying to add empty alias,
* this one should fail
*/
rc = spdk_bdev_alias_add(bdev[0], NULL);
CU_ASSERT(rc == -EINVAL);
/* Trying adding same alias to two different registered bdevs */
/* Alias is used first time, so this one should pass */
rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
CU_ASSERT(rc == 0);
/* Alias was added to another bdev, so this one should fail */
rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
CU_ASSERT(rc == -EEXIST);
/* Alias is used first time, so this one should pass */
rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
CU_ASSERT(rc == 0);
/* Trying removing an alias from registered bdevs */
/* Alias is not on a bdev aliases list, so this one should fail */
rc = spdk_bdev_alias_del(bdev[0], "not existing");
CU_ASSERT(rc == -ENOENT);
/* Alias is present on a bdev aliases list, so this one should pass */
rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
CU_ASSERT(rc == 0);
/* Alias is present on a bdev aliases list, so this one should pass */
rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
CU_ASSERT(rc == 0);
/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
CU_ASSERT(rc != 0);
/* Trying to del all alias from empty alias list */
spdk_bdev_alias_del_all(bdev[2]);
SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
/* Trying to del all alias from non-empty alias list */
rc = spdk_bdev_alias_add(bdev[2], "alias0");
CU_ASSERT(rc == 0);
rc = spdk_bdev_alias_add(bdev[2], "alias1");
CU_ASSERT(rc == 0);
spdk_bdev_alias_del_all(bdev[2]);
CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
/* Unregister and free bdevs */
spdk_bdev_unregister(bdev[0], NULL, NULL);
spdk_bdev_unregister(bdev[1], NULL, NULL);
spdk_bdev_unregister(bdev[2], NULL, NULL);
poll_threads();
free(bdev[0]);
free(bdev[1]);
free(bdev[2]);
}
static void
io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
g_io_done = true;
g_io_status = bdev_io->internal.status;
spdk_bdev_free_io(bdev_io);
}
static void
bdev_init_cb(void *arg, int rc)
{
CU_ASSERT(rc == 0);
}
static void
bdev_fini_cb(void *arg)
{
}
struct bdev_ut_io_wait_entry {
struct spdk_bdev_io_wait_entry entry;
struct spdk_io_channel *io_ch;
struct spdk_bdev_desc *desc;
bool submitted;
};
static void
io_wait_cb(void *arg)
{
struct bdev_ut_io_wait_entry *entry = arg;
int rc;
rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
entry->submitted = true;
}
static void
bdev_io_types_test(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_opts bdev_opts = {
.bdev_io_pool_size = 4,
.bdev_io_cache_size = 2,
};
int rc;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
poll_threads();
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT(rc == 0);
poll_threads();
SPDK_CU_ASSERT_FATAL(desc != NULL);
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
/* WRITE and WRITE ZEROES are not supported */
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
CU_ASSERT(rc == -ENOTSUP);
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_io_wait_test(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_opts bdev_opts = {
.bdev_io_pool_size = 4,
.bdev_io_cache_size = 2,
};
struct bdev_ut_io_wait_entry io_wait_entry;
struct bdev_ut_io_wait_entry io_wait_entry2;
int rc;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
poll_threads();
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT(rc == 0);
poll_threads();
SPDK_CU_ASSERT_FATAL(desc != NULL);
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
CU_ASSERT(rc == -ENOMEM);
io_wait_entry.entry.bdev = bdev;
io_wait_entry.entry.cb_fn = io_wait_cb;
io_wait_entry.entry.cb_arg = &io_wait_entry;
io_wait_entry.io_ch = io_ch;
io_wait_entry.desc = desc;
io_wait_entry.submitted = false;
/* Cannot use the same io_wait_entry for two different calls. */
memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
io_wait_entry2.entry.cb_arg = &io_wait_entry2;
/* Queue two I/O waits. */
rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
CU_ASSERT(rc == 0);
CU_ASSERT(io_wait_entry.submitted == false);
rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
CU_ASSERT(rc == 0);
CU_ASSERT(io_wait_entry2.submitted == false);
stub_complete_io(1);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
CU_ASSERT(io_wait_entry.submitted == true);
CU_ASSERT(io_wait_entry2.submitted == false);
stub_complete_io(1);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
CU_ASSERT(io_wait_entry2.submitted == true);
stub_complete_io(4);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_io_spans_boundary_test(void)
{
struct spdk_bdev bdev;
struct spdk_bdev_io bdev_io;
memset(&bdev, 0, sizeof(bdev));
bdev.optimal_io_boundary = 0;
bdev_io.bdev = &bdev;
/* bdev has no optimal_io_boundary set - so this should return false. */
CU_ASSERT(_spdk_bdev_io_should_split(&bdev_io) == false);
bdev.optimal_io_boundary = 32;
bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
/* RESETs are not based on LBAs - so this should return false. */
CU_ASSERT(_spdk_bdev_io_should_split(&bdev_io) == false);
bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
bdev_io.u.bdev.offset_blocks = 0;
bdev_io.u.bdev.num_blocks = 32;
/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
CU_ASSERT(_spdk_bdev_io_should_split(&bdev_io) == false);
bdev_io.u.bdev.num_blocks = 33;
/* This I/O spans a boundary. */
CU_ASSERT(_spdk_bdev_io_should_split(&bdev_io) == true);
}
static void
bdev_io_split(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_opts bdev_opts = {
.bdev_io_pool_size = 512,
.bdev_io_cache_size = 64,
};
struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
struct ut_expected_io *expected_io;
uint64_t i;
int rc;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
bdev->optimal_io_boundary = 16;
bdev->split_on_optimal_io_boundary = false;
g_io_done = false;
/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
bdev->split_on_optimal_io_boundary = true;
/* Now test that a single-vector command is split correctly.
* Offset 14, length 8, payload 0xF000
* Child - Offset 14, length 2, payload 0xF000
* Child - Offset 16, length 6, payload 0xF000 + 2 * 512
*
* Set up the expected values before calling spdk_bdev_read_blocks
*/
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* spdk_bdev_read_blocks will submit the first child immediately. */
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Now set up a more complex, multi-vector command that needs to be split,
* including splitting iovecs.
*/
iov[0].iov_base = (void *)0x10000;
iov[0].iov_len = 512;
iov[1].iov_base = (void *)0x20000;
iov[1].iov_len = 20 * 512;
iov[2].iov_base = (void *)0x30000;
iov[2].iov_len = 11 * 512;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
stub_complete_io(3);
CU_ASSERT(g_io_done == true);
/* Test multi vector command that needs to be split by strip and then needs to be
* split further due to the capacity of child iovs.
*/
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 512;
}
bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
BDEV_IO_NUM_CHILD_IOV);
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
}
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
ut_expected_io_set_iov(expected_io, i,
(void *)((i + 1 + BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
}
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Test multi vector command that needs to be split by strip and then needs to be
* split further due to the capacity of child iovs. In this case, the length of
* the rest of iovec array with an I/O boundary is the multiple of block size.
*/
/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
* is BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
*/
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 512;
}
for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 256;
}
iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
/* Add an extra iovec to trigger split */
iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV);
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
ut_expected_io_set_iov(expected_io, i,
(void *)((i + 1) * 0x10000), 512);
}
for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
ut_expected_io_set_iov(expected_io, i,
(void *)((i + 1) * 0x10000), 256);
}
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1, 1);
ut_expected_io_set_iov(expected_io, 0,
(void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1, 1);
ut_expected_io_set_iov(expected_io, 0,
(void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Test multi vector command that needs to be split by strip and then needs to be
* split further due to the capacity of child iovs, the child request offset should
* be rewind to last aligned offset and go success without error.
*/
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 512;
}
iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
g_io_done = false;
g_io_status = 0;
/* The first expected io should be start from offset 0 to BDEV_IO_NUM_CHILD_IOV - 1 */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV - 1);
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
ut_expected_io_set_iov(expected_io, i,
(void *)((i + 1) * 0x10000), 512);
}
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The second expected io should be start from offset BDEV_IO_NUM_CHILD_IOV - 1 to BDEV_IO_NUM_CHILD_IOV */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1, 2);
ut_expected_io_set_iov(expected_io, 0,
(void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
ut_expected_io_set_iov(expected_io, 1,
(void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The third expected io should be start from offset BDEV_IO_NUM_CHILD_IOV to BDEV_IO_NUM_CHILD_IOV + 1 */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1, 1);
ut_expected_io_set_iov(expected_io, 0,
(void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Test a WRITE_ZEROES that would span an I/O boundary. WRITE_ZEROES should not be
* split, so test that.
*/
bdev->optimal_io_boundary = 15;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
/* Test an UNMAP. This should also not be split. */
bdev->optimal_io_boundary = 16;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
/* Test a FLUSH. This should also not be split. */
bdev->optimal_io_boundary = 16;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
/* Children requests return an error status */
bdev->optimal_io_boundary = 16;
iov[0].iov_base = (void *)0x10000;
iov[0].iov_len = 512 * 64;
g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
g_io_done = false;
g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
stub_complete_io(4);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_io_split_with_io_wait(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_channel *channel;
struct spdk_bdev_mgmt_channel *mgmt_ch;
struct spdk_bdev_opts bdev_opts = {
.bdev_io_pool_size = 2,
.bdev_io_cache_size = 1,
};
struct iovec iov[3];
struct ut_expected_io *expected_io;
int rc;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT(rc == 0);
CU_ASSERT(desc != NULL);
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
channel = spdk_io_channel_get_ctx(io_ch);
mgmt_ch = channel->shared_resource->mgmt_ch;
bdev->optimal_io_boundary = 16;
bdev->split_on_optimal_io_boundary = true;
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
/* Now test that a single-vector command is split correctly.
* Offset 14, length 8, payload 0xF000
* Child - Offset 14, length 2, payload 0xF000
* Child - Offset 16, length 6, payload 0xF000 + 2 * 512
*
* Set up the expected values before calling spdk_bdev_read_blocks
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The following children will be submitted sequentially due to the capacity of
* spdk_bdev_io.
*/
/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
/* Completing the first read I/O will submit the first child */
stub_complete_io(1);
CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
/* Completing the first child will submit the second child */
stub_complete_io(1);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
/* Complete the second child I/O. This should result in our callback getting
* invoked since the parent I/O is now complete.
*/
stub_complete_io(1);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Now set up a more complex, multi-vector command that needs to be split,
* including splitting iovecs.
*/
iov[0].iov_base = (void *)0x10000;
iov[0].iov_len = 512;
iov[1].iov_base = (void *)0x20000;
iov[1].iov_len = 20 * 512;
iov[2].iov_base = (void *)0x30000;
iov[2].iov_len = 11 * 512;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
/* The following children will be submitted sequentially due to the capacity of
* spdk_bdev_io.
*/
/* Completing the first child will submit the second child */
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == false);
/* Completing the second child will submit the third child */
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == false);
/* Completing the third child will result in our callback getting invoked
* since the parent I/O is now complete.
*/
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_io_alignment(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_opts bdev_opts = {
.bdev_io_pool_size = 20,
.bdev_io_cache_size = 2,
};
int rc;
void *buf;
struct iovec iovs[2];
int iovcnt;
uint64_t alignment;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
fn_table.submit_request = stub_submit_request_aligned_buffer;
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT(rc == 0);
CU_ASSERT(desc != NULL);
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
/* Create aligned buffer */
rc = posix_memalign(&buf, 4096, 8192);
SPDK_CU_ASSERT_FATAL(rc == 0);
/* Pass aligned single buffer with no alignment required */
alignment = 1;
bdev->required_alignment = spdk_u32log2(alignment);
rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
stub_complete_io(1);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
stub_complete_io(1);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
/* Pass unaligned single buffer with no alignment required */
alignment = 1;
bdev->required_alignment = spdk_u32log2(alignment);
rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
stub_complete_io(1);
rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
stub_complete_io(1);
/* Pass unaligned single buffer with 512 alignment required */
alignment = 512;
bdev->required_alignment = spdk_u32log2(alignment);
rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
/* Pass unaligned single buffer with 4096 alignment required */
alignment = 4096;
bdev->required_alignment = spdk_u32log2(alignment);
rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
/* Pass aligned iovs with no alignment required */
alignment = 1;
bdev->required_alignment = spdk_u32log2(alignment);
iovcnt = 1;
iovs[0].iov_base = buf;
iovs[0].iov_len = 512;
rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
stub_complete_io(1);
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
stub_complete_io(1);
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
/* Pass unaligned iovs with no alignment required */
alignment = 1;
bdev->required_alignment = spdk_u32log2(alignment);
iovcnt = 2;
iovs[0].iov_base = buf + 16;
iovs[0].iov_len = 256;
iovs[1].iov_base = buf + 16 + 256 + 32;
iovs[1].iov_len = 256;
rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
stub_complete_io(1);
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
stub_complete_io(1);
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
/* Pass unaligned iov with 2048 alignment required */
alignment = 2048;
bdev->required_alignment = spdk_u32log2(alignment);
iovcnt = 2;
iovs[0].iov_base = buf + 16;
iovs[0].iov_len = 256;
iovs[1].iov_base = buf + 16 + 256 + 32;
iovs[1].iov_len = 256;
rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
/* Pass iov without allocated buffer without alignment required */
alignment = 1;
bdev->required_alignment = spdk_u32log2(alignment);
iovcnt = 1;
iovs[0].iov_base = NULL;
iovs[0].iov_len = 0;
rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
/* Pass iov without allocated buffer with 1024 alignment required */
alignment = 1024;
bdev->required_alignment = spdk_u32log2(alignment);
iovcnt = 1;
iovs[0].iov_base = NULL;
iovs[0].iov_len = 0;
rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
free(buf);
}
static void
bdev_io_alignment_with_boundary(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_opts bdev_opts = {
.bdev_io_pool_size = 20,
.bdev_io_cache_size = 2,
};
int rc;
void *buf;
struct iovec iovs[2];
int iovcnt;
uint64_t alignment;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
fn_table.submit_request = stub_submit_request_aligned_buffer;
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT(rc == 0);
CU_ASSERT(desc != NULL);
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
/* Create aligned buffer */
rc = posix_memalign(&buf, 4096, 131072);
SPDK_CU_ASSERT_FATAL(rc == 0);
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
alignment = 512;
bdev->required_alignment = spdk_u32log2(alignment);
bdev->optimal_io_boundary = 2;
bdev->split_on_optimal_io_boundary = true;
iovcnt = 1;
iovs[0].iov_base = NULL;
iovs[0].iov_len = 512 * 3;
rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
alignment = 512;
bdev->required_alignment = spdk_u32log2(alignment);
bdev->optimal_io_boundary = 16;
bdev->split_on_optimal_io_boundary = true;
iovcnt = 1;
iovs[0].iov_base = NULL;
iovs[0].iov_len = 512 * 16;
rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
alignment = 512;
bdev->required_alignment = spdk_u32log2(alignment);
bdev->optimal_io_boundary = 128;
bdev->split_on_optimal_io_boundary = true;
iovcnt = 1;
iovs[0].iov_base = buf + 16;
iovs[0].iov_len = 512 * 160;
rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
/* 512 * 3 with 2 IO boundary */
alignment = 512;
bdev->required_alignment = spdk_u32log2(alignment);
bdev->optimal_io_boundary = 2;
bdev->split_on_optimal_io_boundary = true;
iovcnt = 2;
iovs[0].iov_base = buf + 16;
iovs[0].iov_len = 512;
iovs[1].iov_base = buf + 16 + 512 + 32;
iovs[1].iov_len = 1024;
rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
/* 512 * 64 with 32 IO boundary */
bdev->optimal_io_boundary = 32;
iovcnt = 2;
iovs[0].iov_base = buf + 16;
iovs[0].iov_len = 16384;
iovs[1].iov_base = buf + 16 + 16384 + 32;
iovs[1].iov_len = 16384;
rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
stub_complete_io(3);
rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
stub_complete_io(3);
/* 512 * 160 with 32 IO boundary */
iovcnt = 1;
iovs[0].iov_base = buf + 16;
iovs[0].iov_len = 16384 + 65536;
rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
stub_complete_io(6);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
free(buf);
}
static void
histogram_status_cb(void *cb_arg, int status)
{
g_status = status;
}
static void
histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
{
g_status = status;
g_histogram = histogram;
}
static void
histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
uint64_t total, uint64_t so_far)
{
g_count += count;
}
static void
bdev_histograms(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *ch;
struct spdk_histogram_data *histogram;
uint8_t buf[4096];
int rc;
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT(rc == 0);
CU_ASSERT(desc != NULL);
ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(ch != NULL);
/* Enable histogram */
g_status = -1;
spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
poll_threads();
CU_ASSERT(g_status == 0);
CU_ASSERT(bdev->internal.histogram_enabled == true);
/* Allocate histogram */
histogram = spdk_histogram_data_alloc();
SPDK_CU_ASSERT_FATAL(histogram != NULL);
/* Check if histogram is zeroed */
spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
poll_threads();
CU_ASSERT(g_status == 0);
SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
g_count = 0;
spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
CU_ASSERT(g_count == 0);
rc = spdk_bdev_write_blocks(desc, ch, &buf, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
spdk_delay_us(10);
stub_complete_io(1);
poll_threads();
rc = spdk_bdev_read_blocks(desc, ch, &buf, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
spdk_delay_us(10);
stub_complete_io(1);
poll_threads();
/* Check if histogram gathered data from all I/O channels */
g_histogram = NULL;
spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
poll_threads();
CU_ASSERT(g_status == 0);
CU_ASSERT(bdev->internal.histogram_enabled == true);
SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
g_count = 0;
spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
CU_ASSERT(g_count == 2);
/* Disable histogram */
spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
poll_threads();
CU_ASSERT(g_status == 0);
CU_ASSERT(bdev->internal.histogram_enabled == false);
/* Try to run histogram commands on disabled bdev */
spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
poll_threads();
CU_ASSERT(g_status == -EFAULT);
spdk_histogram_data_free(histogram);
spdk_put_io_channel(ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_write_zeroes(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *ioch;
struct ut_expected_io *expected_io;
uint64_t offset, num_io_blocks, num_blocks;
uint32_t num_completed, num_requests;
int rc;
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT_EQUAL(rc, 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
ioch = spdk_bdev_get_io_channel(desc);
SPDK_CU_ASSERT_FATAL(ioch != NULL);
fn_table.submit_request = stub_submit_request;
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
/* First test that if the bdev supports write_zeroes, the request won't be split */
bdev->md_len = 0;
bdev->blocklen = 4096;
num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(1);
CU_ASSERT_EQUAL(num_completed, 1);
/* Check that if write zeroes is not supported it'll be replaced by regular writes */
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
num_requests = 2;
num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
for (offset = 0; offset < num_requests; ++offset) {
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
offset * num_io_blocks, num_io_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
}
rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(num_requests);
CU_ASSERT_EQUAL(num_completed, num_requests);
/* Check that the splitting is correct if bdev has interleaved metadata */
bdev->md_interleave = true;
bdev->md_len = 64;
bdev->blocklen = 4096 + 64;
num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
num_requests = offset = 0;
while (offset < num_blocks) {
num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
offset, num_io_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
offset += num_io_blocks;
num_requests++;
}
rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(num_requests);
CU_ASSERT_EQUAL(num_completed, num_requests);
num_completed = stub_complete_io(num_requests);
assert(num_completed == 0);
/* Check the the same for separate metadata buffer */
bdev->md_interleave = false;
bdev->md_len = 64;
bdev->blocklen = 4096;
num_requests = offset = 0;
while (offset < num_blocks) {
num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
offset, num_io_blocks, 0);
expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
offset += num_io_blocks;
num_requests++;
}
rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(num_requests);
CU_ASSERT_EQUAL(num_completed, num_requests);
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
spdk_put_io_channel(ioch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_open_while_hotremove(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc[2] = {};
int rc;
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open(bdev, false, NULL, NULL, &desc[0]);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
spdk_bdev_unregister(bdev, NULL, NULL);
rc = spdk_bdev_open(bdev, false, NULL, NULL, &desc[1]);
CU_ASSERT(rc == -ENODEV);
SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
spdk_bdev_close(desc[0]);
free_bdev(bdev);
}
static void
bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
{
struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
g_event_type1 = type;
spdk_bdev_close(desc);
}
static void
bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
{
struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
g_event_type2 = type;
spdk_bdev_close(desc);
}
static void
bdev_open_ext(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc1 = NULL;
struct spdk_bdev_desc *desc2 = NULL;
int rc = 0;
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
CU_ASSERT_EQUAL(rc, -EINVAL);
rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
CU_ASSERT_EQUAL(rc, 0);
rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
CU_ASSERT_EQUAL(rc, 0);
g_event_type1 = 0xFF;
g_event_type2 = 0xFF;
/* Simulate hot-unplug by unregistering bdev */
spdk_bdev_unregister(bdev, NULL, NULL);
poll_threads();
/* Check if correct events have been triggered in event callback fn */
CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
free_bdev(bdev);
poll_threads();
}
int
main(int argc, char **argv)
{
CU_pSuite suite = NULL;
unsigned int num_failures;
if (CU_initialize_registry() != CUE_SUCCESS) {
return CU_get_error();
}
suite = CU_add_suite("bdev", null_init, null_clean);
if (suite == NULL) {
CU_cleanup_registry();
return CU_get_error();
}
if (
CU_add_test(suite, "bytes_to_blocks_test", bytes_to_blocks_test) == NULL ||
CU_add_test(suite, "num_blocks_test", num_blocks_test) == NULL ||
CU_add_test(suite, "io_valid", io_valid_test) == NULL ||
CU_add_test(suite, "open_write", open_write_test) == NULL ||
CU_add_test(suite, "alias_add_del", alias_add_del_test) == NULL ||
CU_add_test(suite, "get_device_stat", get_device_stat_test) == NULL ||
CU_add_test(suite, "bdev_io_types", bdev_io_types_test) == NULL ||
CU_add_test(suite, "bdev_io_wait", bdev_io_wait_test) == NULL ||
CU_add_test(suite, "bdev_io_spans_boundary", bdev_io_spans_boundary_test) == NULL ||
CU_add_test(suite, "bdev_io_split", bdev_io_split) == NULL ||
CU_add_test(suite, "bdev_io_split_with_io_wait", bdev_io_split_with_io_wait) == NULL ||
CU_add_test(suite, "bdev_io_alignment_with_boundary", bdev_io_alignment_with_boundary) == NULL ||
CU_add_test(suite, "bdev_io_alignment", bdev_io_alignment) == NULL ||
CU_add_test(suite, "bdev_histograms", bdev_histograms) == NULL ||
CU_add_test(suite, "bdev_write_zeroes", bdev_write_zeroes) == NULL ||
CU_add_test(suite, "bdev_open_while_hotremove", bdev_open_while_hotremove) == NULL ||
CU_add_test(suite, "bdev_open_ext", bdev_open_ext) == NULL
) {
CU_cleanup_registry();
return CU_get_error();
}
allocate_threads(1);
set_thread(0);
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
free_threads();
return num_failures;
}