Spdk/test/unit/lib/nvme/nvme_pcie.c/nvme_pcie_ut.c
Changpeng Liu 3306e49e24 nvme: introduce probe context data structure and API
Existing NVMe driver uses a global list g_nvme_init_ctrlrs
to track the controllers during initialization, and internal
function will start each controller in the list one by one
until the list is empty.  We introduce a probe context
and move the global list into the context, with the context
we can enable asynchronous probe API in the next patch, also
this can enable parallel probe feature.

Change-Id: I538537abe8c1a4a82fb168ca8055de42caa6e4f9
Signed-off-by: Changpeng Liu <changpeng.liu@intel.com>
Reviewed-on: https://review.gerrithub.io/c/426304
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
2019-02-15 03:14:20 +00:00

845 lines
22 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk_cunit.h"
#include "common/lib/test_env.c"
#include "nvme/nvme_pcie.c"
pid_t g_spdk_nvme_pid;
struct spdk_log_flag SPDK_LOG_NVME = {
.name = "nvme",
.enabled = false,
};
static struct nvme_driver _g_nvme_driver = {
.lock = PTHREAD_MUTEX_INITIALIZER,
};
struct nvme_driver *g_spdk_nvme_driver = &_g_nvme_driver;
int32_t spdk_nvme_retry_count = 1;
struct nvme_request *g_request = NULL;
extern bool ut_fail_vtophys;
bool fail_next_sge = false;
struct io_request {
uint64_t address_offset;
bool invalid_addr;
bool invalid_second_addr;
};
void
nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove)
{
abort();
}
int
spdk_uevent_connect(void)
{
abort();
}
int
spdk_get_uevent(int fd, struct spdk_uevent *uevent)
{
abort();
}
struct spdk_pci_id
spdk_pci_device_get_id(struct spdk_pci_device *dev)
{
abort();
}
int
nvme_qpair_init(struct spdk_nvme_qpair *qpair, uint16_t id,
struct spdk_nvme_ctrlr *ctrlr,
enum spdk_nvme_qprio qprio,
uint32_t num_requests)
{
abort();
}
void
nvme_qpair_deinit(struct spdk_nvme_qpair *qpair)
{
abort();
}
int
spdk_pci_enumerate(struct spdk_pci_driver *driver, spdk_pci_enum_cb enum_cb, void *enum_ctx)
{
abort();
}
int
spdk_pci_device_attach(struct spdk_pci_driver *driver, spdk_pci_enum_cb enum_cb, void *enum_ctx,
struct spdk_pci_addr *pci_address)
{
abort();
}
void
spdk_pci_device_detach(struct spdk_pci_device *device)
{
abort();
}
int
spdk_pci_device_map_bar(struct spdk_pci_device *dev, uint32_t bar,
void **mapped_addr, uint64_t *phys_addr, uint64_t *size)
{
abort();
}
int
spdk_pci_device_unmap_bar(struct spdk_pci_device *dev, uint32_t bar, void *addr)
{
abort();
}
struct spdk_pci_addr
spdk_pci_device_get_addr(struct spdk_pci_device *dev)
{
abort();
}
int
spdk_pci_device_cfg_read32(struct spdk_pci_device *dev, uint32_t *value, uint32_t offset)
{
abort();
}
int
spdk_pci_device_cfg_write32(struct spdk_pci_device *dev, uint32_t value, uint32_t offset)
{
abort();
}
int
spdk_pci_device_claim(const struct spdk_pci_addr *pci_addr)
{
abort();
}
int
nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr)
{
abort();
}
void
nvme_ctrlr_destruct_finish(struct spdk_nvme_ctrlr *ctrlr)
{
abort();
}
void
nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
{
abort();
}
int
nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle)
{
abort();
}
void
nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr)
{
abort();
}
struct spdk_pci_device *
nvme_ctrlr_proc_get_devhandle(struct spdk_nvme_ctrlr *ctrlr)
{
abort();
}
int
nvme_ctrlr_probe(const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_probe_ctx *probe_ctx, void *devhandle)
{
abort();
}
int
nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap)
{
abort();
}
int
nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs)
{
abort();
}
void
nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr, const union spdk_nvme_cap_register *cap,
const union spdk_nvme_vs_register *vs)
{
abort();
}
uint64_t
nvme_get_quirks(const struct spdk_pci_id *id)
{
abort();
}
bool
nvme_completion_is_retry(const struct spdk_nvme_cpl *cpl)
{
abort();
}
void
nvme_qpair_print_command(struct spdk_nvme_qpair *qpair, struct spdk_nvme_cmd *cmd)
{
abort();
}
void
nvme_qpair_print_completion(struct spdk_nvme_qpair *qpair, struct spdk_nvme_cpl *cpl)
{
abort();
}
int
nvme_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
{
abort();
}
int
nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr,
struct nvme_request *req)
{
abort();
}
void
nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl)
{
abort();
}
int32_t
spdk_nvme_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
{
abort();
}
void
nvme_qpair_enable(struct spdk_nvme_qpair *qpair)
{
abort();
}
int
nvme_request_check_timeout(struct nvme_request *req, uint16_t cid,
struct spdk_nvme_ctrlr_process *active_proc,
uint64_t now_tick)
{
abort();
}
struct spdk_nvme_ctrlr *
spdk_nvme_get_ctrlr_by_trid_unsafe(const struct spdk_nvme_transport_id *trid)
{
return NULL;
}
union spdk_nvme_csts_register spdk_nvme_ctrlr_get_regs_csts(struct spdk_nvme_ctrlr *ctrlr)
{
union spdk_nvme_csts_register csts = {};
return csts;
}
#if 0 /* TODO: update PCIe-specific unit test */
static void
nvme_request_reset_sgl(void *cb_arg, uint32_t sgl_offset)
{
struct io_request *req = (struct io_request *)cb_arg;
req->address_offset = 0;
req->invalid_addr = false;
req->invalid_second_addr = false;
switch (sgl_offset) {
case 0:
req->invalid_addr = false;
break;
case 1:
req->invalid_addr = true;
break;
case 2:
req->invalid_addr = false;
req->invalid_second_addr = true;
break;
default:
break;
}
return;
}
static int
nvme_request_next_sge(void *cb_arg, void **address, uint32_t *length)
{
struct io_request *req = (struct io_request *)cb_arg;
if (req->address_offset == 0) {
if (req->invalid_addr) {
*address = (void *)7;
} else {
*address = (void *)(4096 * req->address_offset);
}
} else if (req->address_offset == 1) {
if (req->invalid_second_addr) {
*address = (void *)7;
} else {
*address = (void *)(4096 * req->address_offset);
}
} else {
*address = (void *)(4096 * req->address_offset);
}
req->address_offset += 1;
*length = 4096;
if (fail_next_sge) {
return - 1;
} else {
return 0;
}
}
static void
prepare_submit_request_test(struct spdk_nvme_qpair *qpair,
struct spdk_nvme_ctrlr *ctrlr)
{
memset(ctrlr, 0, sizeof(*ctrlr));
ctrlr->free_io_qids = NULL;
TAILQ_INIT(&ctrlr->active_io_qpairs);
TAILQ_INIT(&ctrlr->active_procs);
nvme_qpair_init(qpair, 1, ctrlr, 0);
ut_fail_vtophys = false;
}
static void
cleanup_submit_request_test(struct spdk_nvme_qpair *qpair)
{
}
static void
ut_insert_cq_entry(struct spdk_nvme_qpair *qpair, uint32_t slot)
{
struct nvme_request *req;
struct nvme_tracker *tr;
struct spdk_nvme_cpl *cpl;
req = calloc(1, sizeof(*req));
SPDK_CU_ASSERT_FATAL(req != NULL);
memset(req, 0, sizeof(*req));
tr = TAILQ_FIRST(&qpair->free_tr);
TAILQ_REMOVE(&qpair->free_tr, tr, tq_list); /* remove tr from free_tr */
TAILQ_INSERT_HEAD(&qpair->outstanding_tr, tr, tq_list);
req->cmd.cid = tr->cid;
tr->req = req;
qpair->tr[tr->cid].active = true;
cpl = &qpair->cpl[slot];
cpl->status.p = qpair->phase;
cpl->cid = tr->cid;
}
static void
expected_success_callback(void *arg, const struct spdk_nvme_cpl *cpl)
{
CU_ASSERT(!spdk_nvme_cpl_is_error(cpl));
}
static void
expected_failure_callback(void *arg, const struct spdk_nvme_cpl *cpl)
{
CU_ASSERT(spdk_nvme_cpl_is_error(cpl));
}
static void
test4(void)
{
struct spdk_nvme_qpair qpair = {};
struct nvme_request *req;
struct spdk_nvme_ctrlr ctrlr = {};
char payload[4096];
prepare_submit_request_test(&qpair, &ctrlr);
req = nvme_allocate_request_contig(payload, sizeof(payload), expected_failure_callback, NULL);
SPDK_CU_ASSERT_FATAL(req != NULL);
/* Force vtophys to return a failure. This should
* result in the nvme_qpair manually failing
* the request with error status to signify
* a bad payload buffer.
*/
ut_fail_vtophys = true;
CU_ASSERT(qpair.sq_tail == 0);
CU_ASSERT(nvme_qpair_submit_request(&qpair, req) != 0);
CU_ASSERT(qpair.sq_tail == 0);
cleanup_submit_request_test(&qpair);
}
static void
test_sgl_req(void)
{
struct spdk_nvme_qpair qpair = {};
struct nvme_request *req;
struct spdk_nvme_ctrlr ctrlr = {};
struct nvme_payload payload = {};
struct nvme_tracker *sgl_tr = NULL;
uint64_t i;
struct io_request io_req = {};
payload = NVME_PAYLOAD_SGL(nvme_request_reset_sgl, nvme_request_next_sge, &io_req, NULL);
prepare_submit_request_test(&qpair, &ctrlr);
req = nvme_allocate_request(&payload, 0x1000, NULL, &io_req);
SPDK_CU_ASSERT_FATAL(req != NULL);
req->cmd.opc = SPDK_NVME_OPC_WRITE;
req->cmd.cdw10 = 10000;
req->cmd.cdw12 = 7 | 0;
req->payload_offset = 1;
CU_ASSERT(nvme_qpair_submit_request(&qpair, req) != 0);
CU_ASSERT(qpair.sq_tail == 0);
cleanup_submit_request_test(&qpair);
prepare_submit_request_test(&qpair, &ctrlr);
req = nvme_allocate_request(&payload, 0x1000, NULL, &io_req);
SPDK_CU_ASSERT_FATAL(req != NULL);
req->cmd.opc = SPDK_NVME_OPC_WRITE;
req->cmd.cdw10 = 10000;
req->cmd.cdw12 = 7 | 0;
spdk_nvme_retry_count = 1;
fail_next_sge = true;
CU_ASSERT(nvme_qpair_submit_request(&qpair, req) != 0);
CU_ASSERT(qpair.sq_tail == 0);
cleanup_submit_request_test(&qpair);
fail_next_sge = false;
prepare_submit_request_test(&qpair, &ctrlr);
req = nvme_allocate_request(&payload, 2 * 0x1000, NULL, &io_req);
SPDK_CU_ASSERT_FATAL(req != NULL);
req->cmd.opc = SPDK_NVME_OPC_WRITE;
req->cmd.cdw10 = 10000;
req->cmd.cdw12 = 15 | 0;
req->payload_offset = 2;
CU_ASSERT(nvme_qpair_submit_request(&qpair, req) != 0);
CU_ASSERT(qpair.sq_tail == 0);
cleanup_submit_request_test(&qpair);
prepare_submit_request_test(&qpair, &ctrlr);
req = nvme_allocate_request(&payload, (NVME_MAX_PRP_LIST_ENTRIES + 1) * 0x1000, NULL, &io_req);
SPDK_CU_ASSERT_FATAL(req != NULL);
req->cmd.opc = SPDK_NVME_OPC_WRITE;
req->cmd.cdw10 = 10000;
req->cmd.cdw12 = 4095 | 0;
CU_ASSERT(nvme_qpair_submit_request(&qpair, req) == 0);
CU_ASSERT(req->cmd.dptr.prp.prp1 == 0);
CU_ASSERT(qpair.sq_tail == 1);
sgl_tr = TAILQ_FIRST(&qpair.outstanding_tr);
if (sgl_tr != NULL) {
for (i = 0; i < NVME_MAX_PRP_LIST_ENTRIES; i++) {
CU_ASSERT(sgl_tr->u.prp[i] == (0x1000 * (i + 1)));
}
TAILQ_REMOVE(&qpair.outstanding_tr, sgl_tr, tq_list);
}
cleanup_submit_request_test(&qpair);
nvme_free_request(req);
}
static void
test_hw_sgl_req(void)
{
struct spdk_nvme_qpair qpair = {};
struct nvme_request *req;
struct spdk_nvme_ctrlr ctrlr = {};
struct nvme_payload payload = {};
struct nvme_tracker *sgl_tr = NULL;
uint64_t i;
struct io_request io_req = {};
payload = NVME_PAYLOAD_SGL(nvme_request_reset_sgl, nvme_request_next_sge, &io_req, NULL);
prepare_submit_request_test(&qpair, &ctrlr);
req = nvme_allocate_request(&payload, 0x1000, NULL, &io_req);
SPDK_CU_ASSERT_FATAL(req != NULL);
req->cmd.opc = SPDK_NVME_OPC_WRITE;
req->cmd.cdw10 = 10000;
req->cmd.cdw12 = 7 | 0;
req->payload_offset = 0;
ctrlr.flags |= SPDK_NVME_CTRLR_SGL_SUPPORTED;
nvme_qpair_submit_request(&qpair, req);
sgl_tr = TAILQ_FIRST(&qpair.outstanding_tr);
CU_ASSERT(sgl_tr != NULL);
CU_ASSERT(sgl_tr->u.sgl[0].generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK);
CU_ASSERT(sgl_tr->u.sgl[0].generic.subtype == 0);
CU_ASSERT(sgl_tr->u.sgl[0].unkeyed.length == 4096);
CU_ASSERT(sgl_tr->u.sgl[0].address == 0);
CU_ASSERT(req->cmd.dptr.sgl1.generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK);
TAILQ_REMOVE(&qpair.outstanding_tr, sgl_tr, tq_list);
cleanup_submit_request_test(&qpair);
nvme_free_request(req);
prepare_submit_request_test(&qpair, &ctrlr);
req = nvme_allocate_request(&payload, NVME_MAX_SGL_DESCRIPTORS * 0x1000, NULL, &io_req);
SPDK_CU_ASSERT_FATAL(req != NULL);
req->cmd.opc = SPDK_NVME_OPC_WRITE;
req->cmd.cdw10 = 10000;
req->cmd.cdw12 = 2023 | 0;
req->payload_offset = 0;
ctrlr.flags |= SPDK_NVME_CTRLR_SGL_SUPPORTED;
nvme_qpair_submit_request(&qpair, req);
sgl_tr = TAILQ_FIRST(&qpair.outstanding_tr);
CU_ASSERT(sgl_tr != NULL);
for (i = 0; i < NVME_MAX_SGL_DESCRIPTORS; i++) {
CU_ASSERT(sgl_tr->u.sgl[i].generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK);
CU_ASSERT(sgl_tr->u.sgl[i].generic.subtype == 0);
CU_ASSERT(sgl_tr->u.sgl[i].unkeyed.length == 4096);
CU_ASSERT(sgl_tr->u.sgl[i].address == i * 4096);
}
CU_ASSERT(req->cmd.dptr.sgl1.generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT);
TAILQ_REMOVE(&qpair.outstanding_tr, sgl_tr, tq_list);
cleanup_submit_request_test(&qpair);
nvme_free_request(req);
}
static void test_nvme_qpair_fail(void)
{
struct spdk_nvme_qpair qpair = {};
struct nvme_request *req = NULL;
struct spdk_nvme_ctrlr ctrlr = {};
struct nvme_tracker *tr_temp;
prepare_submit_request_test(&qpair, &ctrlr);
tr_temp = TAILQ_FIRST(&qpair.free_tr);
SPDK_CU_ASSERT_FATAL(tr_temp != NULL);
TAILQ_REMOVE(&qpair.free_tr, tr_temp, tq_list);
tr_temp->req = nvme_allocate_request_null(expected_failure_callback, NULL);
SPDK_CU_ASSERT_FATAL(tr_temp->req != NULL);
tr_temp->req->cmd.cid = tr_temp->cid;
TAILQ_INSERT_HEAD(&qpair.outstanding_tr, tr_temp, tq_list);
nvme_qpair_fail(&qpair);
CU_ASSERT_TRUE(TAILQ_EMPTY(&qpair.outstanding_tr));
req = nvme_allocate_request_null(expected_failure_callback, NULL);
SPDK_CU_ASSERT_FATAL(req != NULL);
STAILQ_INSERT_HEAD(&qpair.queued_req, req, stailq);
nvme_qpair_fail(&qpair);
CU_ASSERT_TRUE(STAILQ_EMPTY(&qpair.queued_req));
cleanup_submit_request_test(&qpair);
}
static void
test_nvme_qpair_process_completions_limit(void)
{
struct spdk_nvme_qpair qpair = {};
struct spdk_nvme_ctrlr ctrlr = {};
prepare_submit_request_test(&qpair, &ctrlr);
qpair.is_enabled = true;
/* Insert 4 entries into the completion queue */
CU_ASSERT(qpair.cq_head == 0);
ut_insert_cq_entry(&qpair, 0);
ut_insert_cq_entry(&qpair, 1);
ut_insert_cq_entry(&qpair, 2);
ut_insert_cq_entry(&qpair, 3);
/* This should only process 2 completions, and 2 should be left in the queue */
spdk_nvme_qpair_process_completions(&qpair, 2);
CU_ASSERT(qpair.cq_head == 2);
/* This should only process 1 completion, and 1 should be left in the queue */
spdk_nvme_qpair_process_completions(&qpair, 1);
CU_ASSERT(qpair.cq_head == 3);
/* This should process the remaining completion */
spdk_nvme_qpair_process_completions(&qpair, 5);
CU_ASSERT(qpair.cq_head == 4);
cleanup_submit_request_test(&qpair);
}
static void test_nvme_qpair_destroy(void)
{
struct spdk_nvme_qpair qpair = {};
struct spdk_nvme_ctrlr ctrlr = {};
struct nvme_tracker *tr_temp;
memset(&ctrlr, 0, sizeof(ctrlr));
TAILQ_INIT(&ctrlr.free_io_qpairs);
TAILQ_INIT(&ctrlr.active_io_qpairs);
TAILQ_INIT(&ctrlr.active_procs);
nvme_qpair_init(&qpair, 1, 128, &ctrlr);
nvme_qpair_destroy(&qpair);
nvme_qpair_init(&qpair, 0, 128, &ctrlr);
tr_temp = TAILQ_FIRST(&qpair.free_tr);
SPDK_CU_ASSERT_FATAL(tr_temp != NULL);
TAILQ_REMOVE(&qpair.free_tr, tr_temp, tq_list);
tr_temp->req = nvme_allocate_request_null(expected_failure_callback, NULL);
SPDK_CU_ASSERT_FATAL(tr_temp->req != NULL);
tr_temp->req->cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
tr_temp->req->cmd.cid = tr_temp->cid;
TAILQ_INSERT_HEAD(&qpair.outstanding_tr, tr_temp, tq_list);
nvme_qpair_destroy(&qpair);
CU_ASSERT(TAILQ_EMPTY(&qpair.outstanding_tr));
}
#endif
static void
prp_list_prep(struct nvme_tracker *tr, struct nvme_request *req, uint32_t *prp_index)
{
memset(req, 0, sizeof(*req));
memset(tr, 0, sizeof(*tr));
tr->req = req;
tr->prp_sgl_bus_addr = 0xDEADBEEF;
*prp_index = 0;
}
static void
test_prp_list_append(void)
{
struct nvme_request req;
struct nvme_tracker tr;
uint32_t prp_index;
/* Non-DWORD-aligned buffer (invalid) */
prp_list_prep(&tr, &req, &prp_index);
CU_ASSERT(nvme_pcie_prp_list_append(&tr, &prp_index, (void *)0x100001, 0x1000, 0x1000) == -EINVAL);
/* 512-byte buffer, 4K aligned */
prp_list_prep(&tr, &req, &prp_index);
CU_ASSERT(nvme_pcie_prp_list_append(&tr, &prp_index, (void *)0x100000, 0x200, 0x1000) == 0);
CU_ASSERT(prp_index == 1);
CU_ASSERT(req.cmd.dptr.prp.prp1 == 0x100000);
/* 512-byte buffer, non-4K-aligned */
prp_list_prep(&tr, &req, &prp_index);
CU_ASSERT(nvme_pcie_prp_list_append(&tr, &prp_index, (void *)0x108000, 0x200, 0x1000) == 0);
CU_ASSERT(prp_index == 1);
CU_ASSERT(req.cmd.dptr.prp.prp1 == 0x108000);
/* 4K buffer, 4K aligned */
prp_list_prep(&tr, &req, &prp_index);
CU_ASSERT(nvme_pcie_prp_list_append(&tr, &prp_index, (void *)0x100000, 0x1000, 0x1000) == 0);
CU_ASSERT(prp_index == 1);
CU_ASSERT(req.cmd.dptr.prp.prp1 == 0x100000);
/* 4K buffer, non-4K aligned */
prp_list_prep(&tr, &req, &prp_index);
CU_ASSERT(nvme_pcie_prp_list_append(&tr, &prp_index, (void *)0x100800, 0x1000, 0x1000) == 0);
CU_ASSERT(prp_index == 2);
CU_ASSERT(req.cmd.dptr.prp.prp1 == 0x100800);
CU_ASSERT(req.cmd.dptr.prp.prp2 == 0x101000);
/* 8K buffer, 4K aligned */
prp_list_prep(&tr, &req, &prp_index);
CU_ASSERT(nvme_pcie_prp_list_append(&tr, &prp_index, (void *)0x100000, 0x2000, 0x1000) == 0);
CU_ASSERT(prp_index == 2);
CU_ASSERT(req.cmd.dptr.prp.prp1 == 0x100000);
CU_ASSERT(req.cmd.dptr.prp.prp2 == 0x101000);
/* 8K buffer, non-4K aligned */
prp_list_prep(&tr, &req, &prp_index);
CU_ASSERT(nvme_pcie_prp_list_append(&tr, &prp_index, (void *)0x100800, 0x2000, 0x1000) == 0);
CU_ASSERT(prp_index == 3);
CU_ASSERT(req.cmd.dptr.prp.prp1 == 0x100800);
CU_ASSERT(req.cmd.dptr.prp.prp2 == tr.prp_sgl_bus_addr);
CU_ASSERT(tr.u.prp[0] == 0x101000);
CU_ASSERT(tr.u.prp[1] == 0x102000);
/* 12K buffer, 4K aligned */
prp_list_prep(&tr, &req, &prp_index);
CU_ASSERT(nvme_pcie_prp_list_append(&tr, &prp_index, (void *)0x100000, 0x3000, 0x1000) == 0);
CU_ASSERT(prp_index == 3);
CU_ASSERT(req.cmd.dptr.prp.prp1 == 0x100000);
CU_ASSERT(req.cmd.dptr.prp.prp2 == tr.prp_sgl_bus_addr);
CU_ASSERT(tr.u.prp[0] == 0x101000);
CU_ASSERT(tr.u.prp[1] == 0x102000);
/* 12K buffer, non-4K aligned */
prp_list_prep(&tr, &req, &prp_index);
CU_ASSERT(nvme_pcie_prp_list_append(&tr, &prp_index, (void *)0x100800, 0x3000, 0x1000) == 0);
CU_ASSERT(prp_index == 4);
CU_ASSERT(req.cmd.dptr.prp.prp1 == 0x100800);
CU_ASSERT(req.cmd.dptr.prp.prp2 == tr.prp_sgl_bus_addr);
CU_ASSERT(tr.u.prp[0] == 0x101000);
CU_ASSERT(tr.u.prp[1] == 0x102000);
CU_ASSERT(tr.u.prp[2] == 0x103000);
/* Two 4K buffers, both 4K aligned */
prp_list_prep(&tr, &req, &prp_index);
CU_ASSERT(nvme_pcie_prp_list_append(&tr, &prp_index, (void *)0x100000, 0x1000, 0x1000) == 0);
CU_ASSERT(prp_index == 1);
CU_ASSERT(nvme_pcie_prp_list_append(&tr, &prp_index, (void *)0x900000, 0x1000, 0x1000) == 0);
CU_ASSERT(prp_index == 2);
CU_ASSERT(req.cmd.dptr.prp.prp1 == 0x100000);
CU_ASSERT(req.cmd.dptr.prp.prp2 == 0x900000);
/* Two 4K buffers, first non-4K aligned, second 4K aligned */
prp_list_prep(&tr, &req, &prp_index);
CU_ASSERT(nvme_pcie_prp_list_append(&tr, &prp_index, (void *)0x100800, 0x1000, 0x1000) == 0);
CU_ASSERT(prp_index == 2);
CU_ASSERT(nvme_pcie_prp_list_append(&tr, &prp_index, (void *)0x900000, 0x1000, 0x1000) == 0);
CU_ASSERT(prp_index == 3);
CU_ASSERT(req.cmd.dptr.prp.prp1 == 0x100800);
CU_ASSERT(req.cmd.dptr.prp.prp2 == tr.prp_sgl_bus_addr);
CU_ASSERT(tr.u.prp[0] == 0x101000);
CU_ASSERT(tr.u.prp[1] == 0x900000);
/* Two 4K buffers, both non-4K aligned (invalid) */
prp_list_prep(&tr, &req, &prp_index);
CU_ASSERT(nvme_pcie_prp_list_append(&tr, &prp_index, (void *)0x100800, 0x1000, 0x1000) == 0);
CU_ASSERT(prp_index == 2);
CU_ASSERT(nvme_pcie_prp_list_append(&tr, &prp_index, (void *)0x900800, 0x1000, 0x1000) == -EINVAL);
CU_ASSERT(prp_index == 2);
/* 4K buffer, 4K aligned, but vtophys fails */
MOCK_SET(spdk_vtophys, SPDK_VTOPHYS_ERROR);
prp_list_prep(&tr, &req, &prp_index);
CU_ASSERT(nvme_pcie_prp_list_append(&tr, &prp_index, (void *)0x100000, 0x1000, 0x1000) == -EINVAL);
MOCK_CLEAR(spdk_vtophys);
/* Largest aligned buffer that can be described in NVME_MAX_PRP_LIST_ENTRIES (plus PRP1) */
prp_list_prep(&tr, &req, &prp_index);
CU_ASSERT(nvme_pcie_prp_list_append(&tr, &prp_index, (void *)0x100000,
(NVME_MAX_PRP_LIST_ENTRIES + 1) * 0x1000, 0x1000) == 0);
CU_ASSERT(prp_index == NVME_MAX_PRP_LIST_ENTRIES + 1);
/* Largest non-4K-aligned buffer that can be described in NVME_MAX_PRP_LIST_ENTRIES (plus PRP1) */
prp_list_prep(&tr, &req, &prp_index);
CU_ASSERT(nvme_pcie_prp_list_append(&tr, &prp_index, (void *)0x100800,
NVME_MAX_PRP_LIST_ENTRIES * 0x1000, 0x1000) == 0);
CU_ASSERT(prp_index == NVME_MAX_PRP_LIST_ENTRIES + 1);
/* Buffer too large to be described in NVME_MAX_PRP_LIST_ENTRIES */
prp_list_prep(&tr, &req, &prp_index);
CU_ASSERT(nvme_pcie_prp_list_append(&tr, &prp_index, (void *)0x100000,
(NVME_MAX_PRP_LIST_ENTRIES + 2) * 0x1000, 0x1000) == -EINVAL);
/* Non-4K-aligned buffer too large to be described in NVME_MAX_PRP_LIST_ENTRIES */
prp_list_prep(&tr, &req, &prp_index);
CU_ASSERT(nvme_pcie_prp_list_append(&tr, &prp_index, (void *)0x100800,
(NVME_MAX_PRP_LIST_ENTRIES + 1) * 0x1000, 0x1000) == -EINVAL);
}
static void test_shadow_doorbell_update(void)
{
bool ret;
/* nvme_pcie_qpair_need_event(uint16_t event_idx, uint16_t new_idx, uint16_t old) */
ret = nvme_pcie_qpair_need_event(10, 15, 14);
CU_ASSERT(ret == false);
ret = nvme_pcie_qpair_need_event(14, 15, 14);
CU_ASSERT(ret == true);
}
int main(int argc, char **argv)
{
CU_pSuite suite = NULL;
unsigned int num_failures;
if (CU_initialize_registry() != CUE_SUCCESS) {
return CU_get_error();
}
suite = CU_add_suite("nvme_pcie", NULL, NULL);
if (suite == NULL) {
CU_cleanup_registry();
return CU_get_error();
}
if (CU_add_test(suite, "prp_list_append", test_prp_list_append) == NULL
|| CU_add_test(suite, "shadow_doorbell_update",
test_shadow_doorbell_update) == NULL) {
CU_cleanup_registry();
return CU_get_error();
}
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
return num_failures;
}