Spdk/test/unit/lib/reduce/reduce.c/reduce_ut.c
paul luse cc6314a413 test/reduce: fix reduce UT pm file length calculation
First in a series to fix broken reduce unit tests, they have not
been running in CI for quite some time.  Once they are working
again, will have Jenkins udpated to make sure they are run per
patch.

Change-Id: I12767dfea61a2e9a1ced85b9b247b5aeadc1edde
Signed-off-by: paul luse <paul.e.luse@intel.com>
Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/465207
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
2019-08-20 22:39:52 +00:00

1254 lines
36 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk_cunit.h"
#include "reduce/reduce.c"
#include "spdk_internal/mock.h"
#include "common/lib/test_env.c"
static struct spdk_reduce_vol *g_vol;
static int g_reduce_errno;
static char *g_volatile_pm_buf;
static size_t g_volatile_pm_buf_len;
static char *g_persistent_pm_buf;
static size_t g_persistent_pm_buf_len;
static char *g_backing_dev_buf;
static char g_path[REDUCE_PATH_MAX];
#define TEST_MD_PATH "/tmp"
enum ut_reduce_bdev_io_type {
UT_REDUCE_IO_READV = 1,
UT_REDUCE_IO_WRITEV = 2,
UT_REDUCE_IO_UNMAP = 3,
};
struct ut_reduce_bdev_io {
enum ut_reduce_bdev_io_type type;
struct spdk_reduce_backing_dev *backing_dev;
struct iovec *iov;
int iovcnt;
uint64_t lba;
uint32_t lba_count;
struct spdk_reduce_vol_cb_args *args;
TAILQ_ENTRY(ut_reduce_bdev_io) link;
};
static bool g_defer_bdev_io = false;
static TAILQ_HEAD(, ut_reduce_bdev_io) g_pending_bdev_io =
TAILQ_HEAD_INITIALIZER(g_pending_bdev_io);
static uint32_t g_pending_bdev_io_count = 0;
static void
sync_pm_buf(const void *addr, size_t length)
{
uint64_t offset = (char *)addr - g_volatile_pm_buf;
memcpy(&g_persistent_pm_buf[offset], addr, length);
}
int
pmem_msync(const void *addr, size_t length)
{
sync_pm_buf(addr, length);
return 0;
}
void
pmem_persist(const void *addr, size_t len)
{
sync_pm_buf(addr, len);
}
static void
get_pm_file_size(void)
{
struct spdk_reduce_vol_params params;
uint64_t pm_size, expected_pm_size;
params.backing_io_unit_size = 4096;
params.chunk_size = 4096 * 4;
params.vol_size = 4096 * 4 * 100;
pm_size = _get_pm_file_size(&params);
expected_pm_size = sizeof(struct spdk_reduce_vol_superblock);
/* 100 chunks in logical map * 8 bytes per chunk */
expected_pm_size += 100 * sizeof(uint64_t);
/* 100 chunks * (chunk stuct size + 4 backing io units per chunk * 8 bytes per backing io unit) */
expected_pm_size += 100 * (sizeof(struct spdk_reduce_chunk_map) + 4 * sizeof(uint64_t));
/* reduce allocates some extra chunks too for in-flight writes when logical map
* is full. REDUCE_EXTRA_CHUNKS is a private #ifdef in reduce.c Here we need the num chunks
* times (chunk struct size + 4 backing io units per chunk * 8 bytes per backing io unit).
*/
expected_pm_size += REDUCE_NUM_EXTRA_CHUNKS *
(sizeof(struct spdk_reduce_chunk_map) + 4 * sizeof(uint64_t));
/* reduce will add some padding so numbers may not match exactly. Make sure
* they are close though.
*/
CU_ASSERT((pm_size - expected_pm_size) <= REDUCE_PM_SIZE_ALIGNMENT);
}
static void
get_vol_size(void)
{
uint64_t chunk_size, backing_dev_size;
chunk_size = 16 * 1024;
backing_dev_size = 16 * 1024 * 1000;
CU_ASSERT(_get_vol_size(chunk_size, backing_dev_size) < backing_dev_size);
}
void *
pmem_map_file(const char *path, size_t len, int flags, mode_t mode,
size_t *mapped_lenp, int *is_pmemp)
{
CU_ASSERT(g_volatile_pm_buf == NULL);
snprintf(g_path, sizeof(g_path), "%s", path);
*is_pmemp = 1;
if (g_persistent_pm_buf == NULL) {
g_persistent_pm_buf = calloc(1, len);
g_persistent_pm_buf_len = len;
SPDK_CU_ASSERT_FATAL(g_persistent_pm_buf != NULL);
}
*mapped_lenp = g_persistent_pm_buf_len;
g_volatile_pm_buf = calloc(1, g_persistent_pm_buf_len);
SPDK_CU_ASSERT_FATAL(g_volatile_pm_buf != NULL);
memcpy(g_volatile_pm_buf, g_persistent_pm_buf, g_persistent_pm_buf_len);
g_volatile_pm_buf_len = g_persistent_pm_buf_len;
return g_volatile_pm_buf;
}
int
pmem_unmap(void *addr, size_t len)
{
CU_ASSERT(addr == g_volatile_pm_buf);
CU_ASSERT(len == g_volatile_pm_buf_len);
free(g_volatile_pm_buf);
g_volatile_pm_buf = NULL;
g_volatile_pm_buf_len = 0;
return 0;
}
static void
persistent_pm_buf_destroy(void)
{
CU_ASSERT(g_persistent_pm_buf != NULL);
free(g_persistent_pm_buf);
g_persistent_pm_buf = NULL;
g_persistent_pm_buf_len = 0;
}
int __wrap_unlink(const char *path);
int
__wrap_unlink(const char *path)
{
if (strcmp(g_path, path) != 0) {
return ENOENT;
}
persistent_pm_buf_destroy();
return 0;
}
static void
init_cb(void *cb_arg, struct spdk_reduce_vol *vol, int reduce_errno)
{
g_vol = vol;
g_reduce_errno = reduce_errno;
}
static void
load_cb(void *cb_arg, struct spdk_reduce_vol *vol, int reduce_errno)
{
g_vol = vol;
g_reduce_errno = reduce_errno;
}
static void
unload_cb(void *cb_arg, int reduce_errno)
{
g_reduce_errno = reduce_errno;
}
static void
init_failure(void)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
backing_dev.blocklen = 512;
/* This blockcnt is too small for a reduce vol - there needs to be
* enough space for at least REDUCE_NUM_EXTRA_CHUNKS + 1 chunks.
*/
backing_dev.blockcnt = 20;
params.vol_size = 0;
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = backing_dev.blocklen;
params.logical_block_size = 512;
/* backing_dev has an invalid size. This should fail. */
g_vol = NULL;
g_reduce_errno = 0;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == -EINVAL);
SPDK_CU_ASSERT_FATAL(g_vol == NULL);
/* backing_dev now has valid size, but backing_dev still has null
* function pointers. This should fail.
*/
backing_dev.blockcnt = 20000;
g_vol = NULL;
g_reduce_errno = 0;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == -EINVAL);
SPDK_CU_ASSERT_FATAL(g_vol == NULL);
}
static void
backing_dev_readv_execute(struct spdk_reduce_backing_dev *backing_dev,
struct iovec *iov, int iovcnt,
uint64_t lba, uint32_t lba_count,
struct spdk_reduce_vol_cb_args *args)
{
char *offset;
int i;
offset = g_backing_dev_buf + lba * backing_dev->blocklen;
for (i = 0; i < iovcnt; i++) {
memcpy(iov[i].iov_base, offset, iov[i].iov_len);
offset += iov[i].iov_len;
}
args->cb_fn(args->cb_arg, 0);
}
static void
backing_dev_insert_io(enum ut_reduce_bdev_io_type type, struct spdk_reduce_backing_dev *backing_dev,
struct iovec *iov, int iovcnt, uint64_t lba, uint32_t lba_count,
struct spdk_reduce_vol_cb_args *args)
{
struct ut_reduce_bdev_io *ut_bdev_io;
ut_bdev_io = calloc(1, sizeof(*ut_bdev_io));
SPDK_CU_ASSERT_FATAL(ut_bdev_io != NULL);
ut_bdev_io->type = type;
ut_bdev_io->backing_dev = backing_dev;
ut_bdev_io->iov = iov;
ut_bdev_io->iovcnt = iovcnt;
ut_bdev_io->lba = lba;
ut_bdev_io->lba_count = lba_count;
ut_bdev_io->args = args;
TAILQ_INSERT_TAIL(&g_pending_bdev_io, ut_bdev_io, link);
g_pending_bdev_io_count++;
}
static void
backing_dev_readv(struct spdk_reduce_backing_dev *backing_dev, struct iovec *iov, int iovcnt,
uint64_t lba, uint32_t lba_count, struct spdk_reduce_vol_cb_args *args)
{
if (g_defer_bdev_io == false) {
CU_ASSERT(g_pending_bdev_io_count == 0);
CU_ASSERT(TAILQ_EMPTY(&g_pending_bdev_io));
backing_dev_readv_execute(backing_dev, iov, iovcnt, lba, lba_count, args);
return;
}
backing_dev_insert_io(UT_REDUCE_IO_READV, backing_dev, iov, iovcnt, lba, lba_count, args);
}
static void
backing_dev_writev_execute(struct spdk_reduce_backing_dev *backing_dev,
struct iovec *iov, int iovcnt,
uint64_t lba, uint32_t lba_count,
struct spdk_reduce_vol_cb_args *args)
{
char *offset;
int i;
offset = g_backing_dev_buf + lba * backing_dev->blocklen;
for (i = 0; i < iovcnt; i++) {
memcpy(offset, iov[i].iov_base, iov[i].iov_len);
offset += iov[i].iov_len;
}
args->cb_fn(args->cb_arg, 0);
}
static void
backing_dev_writev(struct spdk_reduce_backing_dev *backing_dev, struct iovec *iov, int iovcnt,
uint64_t lba, uint32_t lba_count, struct spdk_reduce_vol_cb_args *args)
{
if (g_defer_bdev_io == false) {
CU_ASSERT(g_pending_bdev_io_count == 0);
CU_ASSERT(TAILQ_EMPTY(&g_pending_bdev_io));
backing_dev_writev_execute(backing_dev, iov, iovcnt, lba, lba_count, args);
return;
}
backing_dev_insert_io(UT_REDUCE_IO_WRITEV, backing_dev, iov, iovcnt, lba, lba_count, args);
}
static void
backing_dev_unmap_execute(struct spdk_reduce_backing_dev *backing_dev,
uint64_t lba, uint32_t lba_count,
struct spdk_reduce_vol_cb_args *args)
{
char *offset;
offset = g_backing_dev_buf + lba * backing_dev->blocklen;
memset(offset, 0, lba_count * backing_dev->blocklen);
args->cb_fn(args->cb_arg, 0);
}
static void
backing_dev_unmap(struct spdk_reduce_backing_dev *backing_dev,
uint64_t lba, uint32_t lba_count, struct spdk_reduce_vol_cb_args *args)
{
if (g_defer_bdev_io == false) {
CU_ASSERT(g_pending_bdev_io_count == 0);
CU_ASSERT(TAILQ_EMPTY(&g_pending_bdev_io));
backing_dev_unmap_execute(backing_dev, lba, lba_count, args);
return;
}
backing_dev_insert_io(UT_REDUCE_IO_UNMAP, backing_dev, NULL, 0, lba, lba_count, args);
}
static void
backing_dev_io_execute(uint32_t count)
{
struct ut_reduce_bdev_io *ut_bdev_io;
uint32_t done = 0;
CU_ASSERT(g_defer_bdev_io == true);
while (!TAILQ_EMPTY(&g_pending_bdev_io) && (count == 0 || done < count)) {
ut_bdev_io = TAILQ_FIRST(&g_pending_bdev_io);
TAILQ_REMOVE(&g_pending_bdev_io, ut_bdev_io, link);
g_pending_bdev_io_count--;
switch (ut_bdev_io->type) {
case UT_REDUCE_IO_READV:
backing_dev_readv_execute(ut_bdev_io->backing_dev,
ut_bdev_io->iov, ut_bdev_io->iovcnt,
ut_bdev_io->lba, ut_bdev_io->lba_count,
ut_bdev_io->args);
break;
case UT_REDUCE_IO_WRITEV:
backing_dev_writev_execute(ut_bdev_io->backing_dev,
ut_bdev_io->iov, ut_bdev_io->iovcnt,
ut_bdev_io->lba, ut_bdev_io->lba_count,
ut_bdev_io->args);
break;
case UT_REDUCE_IO_UNMAP:
backing_dev_unmap_execute(ut_bdev_io->backing_dev,
ut_bdev_io->lba, ut_bdev_io->lba_count,
ut_bdev_io->args);
break;
default:
CU_ASSERT(false);
break;
}
free(ut_bdev_io);
done++;
}
}
static int
ut_compress(char *outbuf, uint32_t *compressed_len, char *inbuf, uint32_t inbuflen)
{
uint32_t len = 0;
uint8_t count;
char last;
while (true) {
if (inbuflen == 0) {
*compressed_len = len;
return 0;
}
if (*compressed_len < (len + 2)) {
return -ENOSPC;
}
last = *inbuf;
count = 1;
inbuflen--;
inbuf++;
while (inbuflen > 0 && *inbuf == last && count < UINT8_MAX) {
count++;
inbuflen--;
inbuf++;
}
outbuf[len] = count;
outbuf[len + 1] = last;
len += 2;
}
}
static int
ut_decompress(uint8_t *outbuf, uint32_t *compressed_len, uint8_t *inbuf, uint32_t inbuflen)
{
uint32_t len = 0;
SPDK_CU_ASSERT_FATAL(inbuflen % 2 == 0);
while (true) {
if (inbuflen == 0) {
*compressed_len = len;
return 0;
}
if ((len + inbuf[0]) > *compressed_len) {
return -ENOSPC;
}
memset(outbuf, inbuf[1], inbuf[0]);
outbuf += inbuf[0];
len += inbuf[0];
inbuflen -= 2;
inbuf += 2;
}
}
static void
ut_build_data_buffer(uint8_t *data, uint32_t data_len, uint8_t init_val, uint32_t repeat)
{
uint32_t _repeat = repeat;
SPDK_CU_ASSERT_FATAL(repeat > 0);
while (data_len > 0) {
*data = init_val;
data++;
data_len--;
_repeat--;
if (_repeat == 0) {
init_val++;
_repeat = repeat;
}
}
}
static void
backing_dev_compress(struct spdk_reduce_backing_dev *backing_dev,
struct iovec *src_iov, int src_iovcnt,
struct iovec *dst_iov, int dst_iovcnt,
struct spdk_reduce_vol_cb_args *args)
{
uint32_t compressed_len;
int rc;
CU_ASSERT(src_iovcnt == 1);
CU_ASSERT(dst_iovcnt == 1);
CU_ASSERT(src_iov[0].iov_len == dst_iov[0].iov_len);
compressed_len = dst_iov[0].iov_len;
rc = ut_compress(dst_iov[0].iov_base, &compressed_len,
src_iov[0].iov_base, src_iov[0].iov_len);
args->cb_fn(args->cb_arg, rc ? rc : (int)compressed_len);
}
static void
backing_dev_decompress(struct spdk_reduce_backing_dev *backing_dev,
struct iovec *src_iov, int src_iovcnt,
struct iovec *dst_iov, int dst_iovcnt,
struct spdk_reduce_vol_cb_args *args)
{
uint32_t decompressed_len;
int rc;
CU_ASSERT(src_iovcnt == 1);
CU_ASSERT(dst_iovcnt == 1);
decompressed_len = dst_iov[0].iov_len;
rc = ut_decompress(dst_iov[0].iov_base, &decompressed_len,
src_iov[0].iov_base, src_iov[0].iov_len);
args->cb_fn(args->cb_arg, rc ? rc : (int)decompressed_len);
}
static void
backing_dev_destroy(struct spdk_reduce_backing_dev *backing_dev)
{
/* We don't free this during backing_dev_close so that we can test init/unload/load
* scenarios.
*/
free(g_backing_dev_buf);
g_backing_dev_buf = NULL;
}
static void
backing_dev_init(struct spdk_reduce_backing_dev *backing_dev, struct spdk_reduce_vol_params *params,
uint32_t backing_blocklen)
{
int64_t size;
size = 4 * 1024 * 1024;
backing_dev->blocklen = backing_blocklen;
backing_dev->blockcnt = size / backing_dev->blocklen;
backing_dev->readv = backing_dev_readv;
backing_dev->writev = backing_dev_writev;
backing_dev->unmap = backing_dev_unmap;
backing_dev->compress = backing_dev_compress;
backing_dev->decompress = backing_dev_decompress;
g_backing_dev_buf = calloc(1, size);
SPDK_CU_ASSERT_FATAL(g_backing_dev_buf != NULL);
}
static void
init_md(void)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_vol_params *persistent_params;
struct spdk_reduce_backing_dev backing_dev = {};
struct spdk_uuid uuid;
uint64_t *entry;
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 512;
params.logical_block_size = 512;
backing_dev_init(&backing_dev, &params, 512);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
/* Confirm that reduce persisted the params to metadata. */
CU_ASSERT(memcmp(g_persistent_pm_buf, SPDK_REDUCE_SIGNATURE, 8) == 0);
persistent_params = (struct spdk_reduce_vol_params *)(g_persistent_pm_buf + 8);
CU_ASSERT(memcmp(persistent_params, &params, sizeof(params)) == 0);
/* Now confirm that contents of pm_file after the superblock have been initialized
* to REDUCE_EMPTY_MAP_ENTRY.
*/
entry = (uint64_t *)(g_persistent_pm_buf + sizeof(struct spdk_reduce_vol_superblock));
while (entry != (uint64_t *)(g_persistent_pm_buf + g_vol->pm_file.size)) {
CU_ASSERT(*entry == REDUCE_EMPTY_MAP_ENTRY);
entry++;
}
/* Check that the pm file path was constructed correctly. It should be in
* the form:
* TEST_MD_PATH + "/" + <uuid string>
*/
CU_ASSERT(strncmp(&g_path[0], TEST_MD_PATH, strlen(TEST_MD_PATH)) == 0);
CU_ASSERT(g_path[strlen(TEST_MD_PATH)] == '/');
CU_ASSERT(spdk_uuid_parse(&uuid, &g_path[strlen(TEST_MD_PATH) + 1]) == 0);
CU_ASSERT(spdk_uuid_compare(&uuid, spdk_reduce_vol_get_uuid(g_vol)) == 0);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
CU_ASSERT(g_volatile_pm_buf == NULL);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
static void
_init_backing_dev(uint32_t backing_blocklen)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_vol_params *persistent_params;
struct spdk_reduce_backing_dev backing_dev = {};
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 512;
params.logical_block_size = 512;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, backing_blocklen);
g_vol = NULL;
memset(g_path, 0, sizeof(g_path));
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
CU_ASSERT(strncmp(TEST_MD_PATH, g_path, strlen(TEST_MD_PATH)) == 0);
/* Confirm that libreduce persisted the params to the backing device. */
CU_ASSERT(memcmp(g_backing_dev_buf, SPDK_REDUCE_SIGNATURE, 8) == 0);
persistent_params = (struct spdk_reduce_vol_params *)(g_backing_dev_buf + 8);
CU_ASSERT(memcmp(persistent_params, &params, sizeof(params)) == 0);
/* Confirm that the path to the persistent memory metadata file was persisted to
* the backing device.
*/
CU_ASSERT(strncmp(g_path,
g_backing_dev_buf + REDUCE_BACKING_DEV_PATH_OFFSET,
REDUCE_PATH_MAX) == 0);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
static void
init_backing_dev(void)
{
_init_backing_dev(512);
_init_backing_dev(4096);
}
static void
_load(uint32_t backing_blocklen)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
char pmem_file_path[REDUCE_PATH_MAX];
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 512;
params.logical_block_size = 512;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, backing_blocklen);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
CU_ASSERT(strncmp(TEST_MD_PATH, g_path, strlen(TEST_MD_PATH)) == 0);
memcpy(pmem_file_path, g_path, sizeof(pmem_file_path));
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
g_vol = NULL;
memset(g_path, 0, sizeof(g_path));
g_reduce_errno = -1;
spdk_reduce_vol_load(&backing_dev, load_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
CU_ASSERT(strncmp(g_path, pmem_file_path, sizeof(pmem_file_path)) == 0);
CU_ASSERT(g_vol->params.vol_size == params.vol_size);
CU_ASSERT(g_vol->params.chunk_size == params.chunk_size);
CU_ASSERT(g_vol->params.backing_io_unit_size == params.backing_io_unit_size);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
static void
load(void)
{
_load(512);
_load(4096);
}
static uint64_t
_vol_get_chunk_map_index(struct spdk_reduce_vol *vol, uint64_t offset)
{
uint64_t logical_map_index = offset / vol->logical_blocks_per_chunk;
return vol->pm_logical_map[logical_map_index];
}
static void
write_cb(void *arg, int reduce_errno)
{
g_reduce_errno = reduce_errno;
}
static void
read_cb(void *arg, int reduce_errno)
{
g_reduce_errno = reduce_errno;
}
static void
_write_maps(uint32_t backing_blocklen)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
struct iovec iov;
const int bufsize = 16 * 1024; /* chunk size */
char buf[bufsize];
uint32_t num_lbas, i;
uint64_t old_chunk0_map_index, new_chunk0_map_index;
struct spdk_reduce_chunk_map *old_chunk0_map, *new_chunk0_map;
params.chunk_size = bufsize;
params.backing_io_unit_size = 4096;
params.logical_block_size = 512;
num_lbas = bufsize / params.logical_block_size;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, backing_blocklen);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
for (i = 0; i < g_vol->params.vol_size / g_vol->params.chunk_size; i++) {
CU_ASSERT(_vol_get_chunk_map_index(g_vol, i) == REDUCE_EMPTY_MAP_ENTRY);
}
ut_build_data_buffer(buf, bufsize, 0x00, 1);
iov.iov_base = buf;
iov.iov_len = bufsize;
g_reduce_errno = -1;
spdk_reduce_vol_writev(g_vol, &iov, 1, 0, num_lbas, write_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
old_chunk0_map_index = _vol_get_chunk_map_index(g_vol, 0);
CU_ASSERT(old_chunk0_map_index != REDUCE_EMPTY_MAP_ENTRY);
CU_ASSERT(spdk_bit_array_get(g_vol->allocated_chunk_maps, old_chunk0_map_index) == true);
old_chunk0_map = _reduce_vol_get_chunk_map(g_vol, old_chunk0_map_index);
for (i = 0; i < g_vol->backing_io_units_per_chunk; i++) {
CU_ASSERT(old_chunk0_map->io_unit_index[i] != REDUCE_EMPTY_MAP_ENTRY);
CU_ASSERT(spdk_bit_array_get(g_vol->allocated_backing_io_units,
old_chunk0_map->io_unit_index[i]) == true);
}
g_reduce_errno = -1;
spdk_reduce_vol_writev(g_vol, &iov, 1, 0, num_lbas, write_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
new_chunk0_map_index = _vol_get_chunk_map_index(g_vol, 0);
CU_ASSERT(new_chunk0_map_index != REDUCE_EMPTY_MAP_ENTRY);
CU_ASSERT(new_chunk0_map_index != old_chunk0_map_index);
CU_ASSERT(spdk_bit_array_get(g_vol->allocated_chunk_maps, new_chunk0_map_index) == true);
CU_ASSERT(spdk_bit_array_get(g_vol->allocated_chunk_maps, old_chunk0_map_index) == false);
for (i = 0; i < g_vol->backing_io_units_per_chunk; i++) {
CU_ASSERT(spdk_bit_array_get(g_vol->allocated_backing_io_units,
old_chunk0_map->io_unit_index[i]) == false);
}
new_chunk0_map = _reduce_vol_get_chunk_map(g_vol, new_chunk0_map_index);
for (i = 0; i < g_vol->backing_io_units_per_chunk; i++) {
CU_ASSERT(new_chunk0_map->io_unit_index[i] != REDUCE_EMPTY_MAP_ENTRY);
CU_ASSERT(spdk_bit_array_get(g_vol->allocated_backing_io_units,
new_chunk0_map->io_unit_index[i]) == true);
}
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_load(&backing_dev, load_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
CU_ASSERT(g_vol->params.vol_size == params.vol_size);
CU_ASSERT(g_vol->params.chunk_size == params.chunk_size);
CU_ASSERT(g_vol->params.backing_io_unit_size == params.backing_io_unit_size);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
static void
write_maps(void)
{
_write_maps(512);
_write_maps(4096);
}
static void
_read_write(uint32_t backing_blocklen)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
struct iovec iov;
char buf[16 * 1024]; /* chunk size */
char compare_buf[16 * 1024];
uint32_t i;
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 4096;
params.logical_block_size = 512;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, backing_blocklen);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
/* Write 0xAA to 2 512-byte logical blocks, starting at LBA 2. */
memset(buf, 0xAA, 2 * params.logical_block_size);
iov.iov_base = buf;
iov.iov_len = 2 * params.logical_block_size;
g_reduce_errno = -1;
spdk_reduce_vol_writev(g_vol, &iov, 1, 2, 2, write_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
memset(compare_buf, 0xAA, sizeof(compare_buf));
for (i = 0; i < params.chunk_size / params.logical_block_size; i++) {
memset(buf, 0xFF, params.logical_block_size);
iov.iov_base = buf;
iov.iov_len = params.logical_block_size;
g_reduce_errno = -1;
spdk_reduce_vol_readv(g_vol, &iov, 1, i, 1, read_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
switch (i) {
case 2:
case 3:
CU_ASSERT(memcmp(buf, compare_buf, params.logical_block_size) == 0);
break;
default:
CU_ASSERT(spdk_mem_all_zero(buf, params.logical_block_size));
break;
}
}
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
/* Overwrite what we just wrote with 0xCC */
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_load(&backing_dev, load_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
CU_ASSERT(g_vol->params.vol_size == params.vol_size);
CU_ASSERT(g_vol->params.chunk_size == params.chunk_size);
CU_ASSERT(g_vol->params.backing_io_unit_size == params.backing_io_unit_size);
memset(buf, 0xCC, 2 * params.logical_block_size);
iov.iov_base = buf;
iov.iov_len = 2 * params.logical_block_size;
g_reduce_errno = -1;
spdk_reduce_vol_writev(g_vol, &iov, 1, 2, 2, write_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
memset(compare_buf, 0xCC, sizeof(compare_buf));
for (i = 0; i < params.chunk_size / params.logical_block_size; i++) {
memset(buf, 0xFF, params.logical_block_size);
iov.iov_base = buf;
iov.iov_len = params.logical_block_size;
g_reduce_errno = -1;
spdk_reduce_vol_readv(g_vol, &iov, 1, i, 1, read_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
switch (i) {
case 2:
case 3:
CU_ASSERT(memcmp(buf, compare_buf, params.logical_block_size) == 0);
break;
default:
CU_ASSERT(spdk_mem_all_zero(buf, params.logical_block_size));
break;
}
}
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_load(&backing_dev, load_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
CU_ASSERT(g_vol->params.vol_size == params.vol_size);
CU_ASSERT(g_vol->params.chunk_size == params.chunk_size);
CU_ASSERT(g_vol->params.backing_io_unit_size == params.backing_io_unit_size);
g_reduce_errno = -1;
/* Write 0xBB to 2 512-byte logical blocks, starting at LBA 37.
* This is writing into the second chunk of the volume. This also
* enables implicitly checking that we reloaded the bit arrays
* correctly - making sure we don't use the first chunk map again
* for this new write - the first chunk map was already used by the
* write from before we unloaded and reloaded.
*/
memset(buf, 0xBB, 2 * params.logical_block_size);
iov.iov_base = buf;
iov.iov_len = 2 * params.logical_block_size;
g_reduce_errno = -1;
spdk_reduce_vol_writev(g_vol, &iov, 1, 37, 2, write_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
for (i = 0; i < 2 * params.chunk_size / params.logical_block_size; i++) {
memset(buf, 0xFF, params.logical_block_size);
iov.iov_base = buf;
iov.iov_len = params.logical_block_size;
g_reduce_errno = -1;
spdk_reduce_vol_readv(g_vol, &iov, 1, i, 1, read_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
switch (i) {
case 2:
case 3:
memset(compare_buf, 0xCC, sizeof(compare_buf));
CU_ASSERT(memcmp(buf, compare_buf, params.logical_block_size) == 0);
break;
case 37:
case 38:
memset(compare_buf, 0xBB, sizeof(compare_buf));
CU_ASSERT(memcmp(buf, compare_buf, params.logical_block_size) == 0);
break;
default:
CU_ASSERT(spdk_mem_all_zero(buf, params.logical_block_size));
break;
}
}
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
static void
read_write(void)
{
_read_write(512);
_read_write(4096);
}
static void
destroy_cb(void *ctx, int reduce_errno)
{
g_reduce_errno = reduce_errno;
}
static void
destroy(void)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 512;
params.logical_block_size = 512;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, 512);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_load(&backing_dev, load_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
g_reduce_errno = -1;
MOCK_CLEAR(spdk_malloc);
MOCK_CLEAR(spdk_zmalloc);
spdk_reduce_vol_destroy(&backing_dev, destroy_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
g_reduce_errno = 0;
spdk_reduce_vol_load(&backing_dev, load_cb, NULL);
CU_ASSERT(g_reduce_errno == -EILSEQ);
backing_dev_destroy(&backing_dev);
}
/* This test primarily checks that the reduce unit test infrastructure for asynchronous
* backing device I/O operations is working correctly.
*/
static void
defer_bdev_io(void)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
const uint32_t logical_block_size = 512;
struct iovec iov;
char buf[logical_block_size];
char compare_buf[logical_block_size];
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 4096;
params.logical_block_size = logical_block_size;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, 512);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
/* Write 0xAA to 1 512-byte logical block. */
memset(buf, 0xAA, params.logical_block_size);
iov.iov_base = buf;
iov.iov_len = params.logical_block_size;
g_reduce_errno = -100;
g_defer_bdev_io = true;
spdk_reduce_vol_writev(g_vol, &iov, 1, 0, 1, write_cb, NULL);
/* Callback should not have executed, so this should still equal -100. */
CU_ASSERT(g_reduce_errno == -100);
CU_ASSERT(!TAILQ_EMPTY(&g_pending_bdev_io));
/* We wrote to just 512 bytes of one chunk which was previously unallocated. This
* should result in 1 pending I/O since the rest of this chunk will be zeroes and
* very compressible.
*/
CU_ASSERT(g_pending_bdev_io_count == 1);
backing_dev_io_execute(0);
CU_ASSERT(TAILQ_EMPTY(&g_pending_bdev_io));
CU_ASSERT(g_reduce_errno == 0);
g_defer_bdev_io = false;
memset(compare_buf, 0xAA, sizeof(compare_buf));
memset(buf, 0xFF, sizeof(buf));
iov.iov_base = buf;
iov.iov_len = params.logical_block_size;
g_reduce_errno = -100;
spdk_reduce_vol_readv(g_vol, &iov, 1, 0, 1, read_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
CU_ASSERT(memcmp(buf, compare_buf, sizeof(buf)) == 0);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
static void
overlapped(void)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
const uint32_t logical_block_size = 512;
struct iovec iov;
char buf[2 * logical_block_size];
char compare_buf[2 * logical_block_size];
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 4096;
params.logical_block_size = logical_block_size;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, 512);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
/* Write 0xAA to 1 512-byte logical block. */
memset(buf, 0xAA, logical_block_size);
iov.iov_base = buf;
iov.iov_len = logical_block_size;
g_reduce_errno = -100;
g_defer_bdev_io = true;
spdk_reduce_vol_writev(g_vol, &iov, 1, 0, 1, write_cb, NULL);
/* Callback should not have executed, so this should still equal -100. */
CU_ASSERT(g_reduce_errno == -100);
CU_ASSERT(!TAILQ_EMPTY(&g_pending_bdev_io));
/* We wrote to just 512 bytes of one chunk which was previously unallocated. This
* should result in 1 pending I/O since the rest of this chunk will be zeroes and
* very compressible.
*/
CU_ASSERT(g_pending_bdev_io_count == 1);
/* Now do an overlapped I/O to the same chunk. */
spdk_reduce_vol_writev(g_vol, &iov, 1, 1, 1, write_cb, NULL);
/* Callback should not have executed, so this should still equal -100. */
CU_ASSERT(g_reduce_errno == -100);
CU_ASSERT(!TAILQ_EMPTY(&g_pending_bdev_io));
/* The second I/O overlaps with the first one. So we should only see pending bdev_io
* related to the first I/O here - the second one won't start until the first one is completed.
*/
CU_ASSERT(g_pending_bdev_io_count == 1);
backing_dev_io_execute(0);
CU_ASSERT(g_reduce_errno == 0);
g_defer_bdev_io = false;
memset(compare_buf, 0xAA, sizeof(compare_buf));
memset(buf, 0xFF, sizeof(buf));
iov.iov_base = buf;
iov.iov_len = 2 * logical_block_size;
g_reduce_errno = -100;
spdk_reduce_vol_readv(g_vol, &iov, 1, 0, 2, read_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
CU_ASSERT(memcmp(buf, compare_buf, 2 * logical_block_size) == 0);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
#define BUFSIZE 4096
static void
compress_algorithm(void)
{
uint8_t original_data[BUFSIZE];
uint8_t compressed_data[BUFSIZE];
uint8_t decompressed_data[BUFSIZE];
uint32_t compressed_len, decompressed_len;
int rc;
ut_build_data_buffer(original_data, BUFSIZE, 0xAA, BUFSIZE);
compressed_len = sizeof(compressed_data);
rc = ut_compress(compressed_data, &compressed_len, original_data, UINT8_MAX);
CU_ASSERT(rc == 0);
CU_ASSERT(compressed_len == 2);
CU_ASSERT(compressed_data[0] == UINT8_MAX);
CU_ASSERT(compressed_data[1] == 0xAA);
decompressed_len = sizeof(decompressed_data);
rc = ut_decompress(decompressed_data, &decompressed_len, compressed_data, compressed_len);
CU_ASSERT(rc == 0);
CU_ASSERT(decompressed_len == UINT8_MAX);
CU_ASSERT(memcmp(original_data, decompressed_data, decompressed_len) == 0);
compressed_len = sizeof(compressed_data);
rc = ut_compress(compressed_data, &compressed_len, original_data, UINT8_MAX + 1);
CU_ASSERT(rc == 0);
CU_ASSERT(compressed_len == 4);
CU_ASSERT(compressed_data[0] == UINT8_MAX);
CU_ASSERT(compressed_data[1] == 0xAA);
CU_ASSERT(compressed_data[2] == 1);
CU_ASSERT(compressed_data[3] == 0xAA);
decompressed_len = sizeof(decompressed_data);
rc = ut_decompress(decompressed_data, &decompressed_len, compressed_data, compressed_len);
CU_ASSERT(rc == 0);
CU_ASSERT(decompressed_len == UINT8_MAX + 1);
CU_ASSERT(memcmp(original_data, decompressed_data, decompressed_len) == 0);
ut_build_data_buffer(original_data, BUFSIZE, 0x00, 1);
compressed_len = sizeof(compressed_data);
rc = ut_compress(compressed_data, &compressed_len, original_data, 2048);
CU_ASSERT(rc == 0);
CU_ASSERT(compressed_len == 4096);
CU_ASSERT(compressed_data[0] == 1);
CU_ASSERT(compressed_data[1] == 0);
CU_ASSERT(compressed_data[4094] == 1);
CU_ASSERT(compressed_data[4095] == 0xFF);
decompressed_len = sizeof(decompressed_data);
rc = ut_decompress(decompressed_data, &decompressed_len, compressed_data, compressed_len);
CU_ASSERT(rc == 0);
CU_ASSERT(decompressed_len == 2048);
CU_ASSERT(memcmp(original_data, decompressed_data, decompressed_len) == 0);
compressed_len = sizeof(compressed_data);
rc = ut_compress(compressed_data, &compressed_len, original_data, 2049);
CU_ASSERT(rc == -ENOSPC);
}
int
main(int argc, char **argv)
{
CU_pSuite suite = NULL;
unsigned int num_failures;
if (CU_initialize_registry() != CUE_SUCCESS) {
return CU_get_error();
}
suite = CU_add_suite("reduce", NULL, NULL);
if (suite == NULL) {
CU_cleanup_registry();
return CU_get_error();
}
if (
CU_add_test(suite, "get_pm_file_size", get_pm_file_size) == NULL ||
CU_add_test(suite, "get_vol_size", get_vol_size) == NULL ||
CU_add_test(suite, "init_failure", init_failure) == NULL ||
CU_add_test(suite, "init_md", init_md) == NULL ||
CU_add_test(suite, "init_backing_dev", init_backing_dev) == NULL ||
CU_add_test(suite, "load", load) == NULL ||
CU_add_test(suite, "write_maps", write_maps) == NULL ||
CU_add_test(suite, "read_write", read_write) == NULL ||
CU_add_test(suite, "destroy", destroy) == NULL ||
CU_add_test(suite, "defer_bdev_io", defer_bdev_io) == NULL ||
CU_add_test(suite, "overlapped", overlapped) == NULL ||
CU_add_test(suite, "compress_algorithm", compress_algorithm) == NULL
) {
CU_cleanup_registry();
return CU_get_error();
}
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
return num_failures;
}