Spdk/test/unit/lib/reduce/reduce.c/reduce_ut.c
Vitaliy Mysak dcf0ca15c9 ut: make use of CUnit macro to reduce duplications
CUnit provides a helper macro CU_ADD_TEST() that
simplifies usage of CU_add_test() function.
Test name no longer needs to be provided,
as it will be inherited from function name.

This is a follow up to
https://review.spdk.io/gerrit/c/spdk/spdk/+/931

Change-Id: I8078f02e08b14f12328ae022d7090ba13fbd64e4
Signed-off-by: Vitaliy Mysak <vitaliy.mysak@intel.com>
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/1239
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
2020-04-02 14:50:12 +00:00

1305 lines
37 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk_cunit.h"
#include "reduce/reduce.c"
#include "spdk_internal/mock.h"
#include "common/lib/test_env.c"
static struct spdk_reduce_vol *g_vol;
static int g_reduce_errno;
static char *g_volatile_pm_buf;
static size_t g_volatile_pm_buf_len;
static char *g_persistent_pm_buf;
static size_t g_persistent_pm_buf_len;
static char *g_backing_dev_buf;
static char g_path[REDUCE_PATH_MAX];
static char *g_decomp_buf;
#define TEST_MD_PATH "/tmp"
enum ut_reduce_bdev_io_type {
UT_REDUCE_IO_READV = 1,
UT_REDUCE_IO_WRITEV = 2,
UT_REDUCE_IO_UNMAP = 3,
};
struct ut_reduce_bdev_io {
enum ut_reduce_bdev_io_type type;
struct spdk_reduce_backing_dev *backing_dev;
struct iovec *iov;
int iovcnt;
uint64_t lba;
uint32_t lba_count;
struct spdk_reduce_vol_cb_args *args;
TAILQ_ENTRY(ut_reduce_bdev_io) link;
};
static bool g_defer_bdev_io = false;
static TAILQ_HEAD(, ut_reduce_bdev_io) g_pending_bdev_io =
TAILQ_HEAD_INITIALIZER(g_pending_bdev_io);
static uint32_t g_pending_bdev_io_count = 0;
static void
sync_pm_buf(const void *addr, size_t length)
{
uint64_t offset = (char *)addr - g_volatile_pm_buf;
memcpy(&g_persistent_pm_buf[offset], addr, length);
}
int
pmem_msync(const void *addr, size_t length)
{
sync_pm_buf(addr, length);
return 0;
}
void
pmem_persist(const void *addr, size_t len)
{
sync_pm_buf(addr, len);
}
static void
get_pm_file_size(void)
{
struct spdk_reduce_vol_params params;
uint64_t pm_size, expected_pm_size;
params.backing_io_unit_size = 4096;
params.chunk_size = 4096 * 4;
params.vol_size = 4096 * 4 * 100;
pm_size = _get_pm_file_size(&params);
expected_pm_size = sizeof(struct spdk_reduce_vol_superblock);
/* 100 chunks in logical map * 8 bytes per chunk */
expected_pm_size += 100 * sizeof(uint64_t);
/* 100 chunks * (chunk stuct size + 4 backing io units per chunk * 8 bytes per backing io unit) */
expected_pm_size += 100 * (sizeof(struct spdk_reduce_chunk_map) + 4 * sizeof(uint64_t));
/* reduce allocates some extra chunks too for in-flight writes when logical map
* is full. REDUCE_EXTRA_CHUNKS is a private #ifdef in reduce.c Here we need the num chunks
* times (chunk struct size + 4 backing io units per chunk * 8 bytes per backing io unit).
*/
expected_pm_size += REDUCE_NUM_EXTRA_CHUNKS *
(sizeof(struct spdk_reduce_chunk_map) + 4 * sizeof(uint64_t));
/* reduce will add some padding so numbers may not match exactly. Make sure
* they are close though.
*/
CU_ASSERT((pm_size - expected_pm_size) <= REDUCE_PM_SIZE_ALIGNMENT);
}
static void
get_vol_size(void)
{
uint64_t chunk_size, backing_dev_size;
chunk_size = 16 * 1024;
backing_dev_size = 16 * 1024 * 1000;
CU_ASSERT(_get_vol_size(chunk_size, backing_dev_size) < backing_dev_size);
}
void *
pmem_map_file(const char *path, size_t len, int flags, mode_t mode,
size_t *mapped_lenp, int *is_pmemp)
{
CU_ASSERT(g_volatile_pm_buf == NULL);
snprintf(g_path, sizeof(g_path), "%s", path);
*is_pmemp = 1;
if (g_persistent_pm_buf == NULL) {
g_persistent_pm_buf = calloc(1, len);
g_persistent_pm_buf_len = len;
SPDK_CU_ASSERT_FATAL(g_persistent_pm_buf != NULL);
}
*mapped_lenp = g_persistent_pm_buf_len;
g_volatile_pm_buf = calloc(1, g_persistent_pm_buf_len);
SPDK_CU_ASSERT_FATAL(g_volatile_pm_buf != NULL);
memcpy(g_volatile_pm_buf, g_persistent_pm_buf, g_persistent_pm_buf_len);
g_volatile_pm_buf_len = g_persistent_pm_buf_len;
return g_volatile_pm_buf;
}
int
pmem_unmap(void *addr, size_t len)
{
CU_ASSERT(addr == g_volatile_pm_buf);
CU_ASSERT(len == g_volatile_pm_buf_len);
free(g_volatile_pm_buf);
g_volatile_pm_buf = NULL;
g_volatile_pm_buf_len = 0;
return 0;
}
static void
persistent_pm_buf_destroy(void)
{
CU_ASSERT(g_persistent_pm_buf != NULL);
free(g_persistent_pm_buf);
g_persistent_pm_buf = NULL;
g_persistent_pm_buf_len = 0;
}
int __wrap_unlink(const char *path);
int
__wrap_unlink(const char *path)
{
if (strcmp(g_path, path) != 0) {
return ENOENT;
}
persistent_pm_buf_destroy();
return 0;
}
static void
init_cb(void *cb_arg, struct spdk_reduce_vol *vol, int reduce_errno)
{
g_vol = vol;
g_reduce_errno = reduce_errno;
}
static void
load_cb(void *cb_arg, struct spdk_reduce_vol *vol, int reduce_errno)
{
g_vol = vol;
g_reduce_errno = reduce_errno;
}
static void
unload_cb(void *cb_arg, int reduce_errno)
{
g_reduce_errno = reduce_errno;
}
static void
init_failure(void)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
backing_dev.blocklen = 512;
/* This blockcnt is too small for a reduce vol - there needs to be
* enough space for at least REDUCE_NUM_EXTRA_CHUNKS + 1 chunks.
*/
backing_dev.blockcnt = 20;
params.vol_size = 0;
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = backing_dev.blocklen;
params.logical_block_size = 512;
/* backing_dev has an invalid size. This should fail. */
g_vol = NULL;
g_reduce_errno = 0;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == -EINVAL);
SPDK_CU_ASSERT_FATAL(g_vol == NULL);
/* backing_dev now has valid size, but backing_dev still has null
* function pointers. This should fail.
*/
backing_dev.blockcnt = 20000;
g_vol = NULL;
g_reduce_errno = 0;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == -EINVAL);
SPDK_CU_ASSERT_FATAL(g_vol == NULL);
}
static void
backing_dev_readv_execute(struct spdk_reduce_backing_dev *backing_dev,
struct iovec *iov, int iovcnt,
uint64_t lba, uint32_t lba_count,
struct spdk_reduce_vol_cb_args *args)
{
char *offset;
int i;
offset = g_backing_dev_buf + lba * backing_dev->blocklen;
for (i = 0; i < iovcnt; i++) {
memcpy(iov[i].iov_base, offset, iov[i].iov_len);
offset += iov[i].iov_len;
}
args->cb_fn(args->cb_arg, 0);
}
static void
backing_dev_insert_io(enum ut_reduce_bdev_io_type type, struct spdk_reduce_backing_dev *backing_dev,
struct iovec *iov, int iovcnt, uint64_t lba, uint32_t lba_count,
struct spdk_reduce_vol_cb_args *args)
{
struct ut_reduce_bdev_io *ut_bdev_io;
ut_bdev_io = calloc(1, sizeof(*ut_bdev_io));
SPDK_CU_ASSERT_FATAL(ut_bdev_io != NULL);
ut_bdev_io->type = type;
ut_bdev_io->backing_dev = backing_dev;
ut_bdev_io->iov = iov;
ut_bdev_io->iovcnt = iovcnt;
ut_bdev_io->lba = lba;
ut_bdev_io->lba_count = lba_count;
ut_bdev_io->args = args;
TAILQ_INSERT_TAIL(&g_pending_bdev_io, ut_bdev_io, link);
g_pending_bdev_io_count++;
}
static void
backing_dev_readv(struct spdk_reduce_backing_dev *backing_dev, struct iovec *iov, int iovcnt,
uint64_t lba, uint32_t lba_count, struct spdk_reduce_vol_cb_args *args)
{
if (g_defer_bdev_io == false) {
CU_ASSERT(g_pending_bdev_io_count == 0);
CU_ASSERT(TAILQ_EMPTY(&g_pending_bdev_io));
backing_dev_readv_execute(backing_dev, iov, iovcnt, lba, lba_count, args);
return;
}
backing_dev_insert_io(UT_REDUCE_IO_READV, backing_dev, iov, iovcnt, lba, lba_count, args);
}
static void
backing_dev_writev_execute(struct spdk_reduce_backing_dev *backing_dev,
struct iovec *iov, int iovcnt,
uint64_t lba, uint32_t lba_count,
struct spdk_reduce_vol_cb_args *args)
{
char *offset;
int i;
offset = g_backing_dev_buf + lba * backing_dev->blocklen;
for (i = 0; i < iovcnt; i++) {
memcpy(offset, iov[i].iov_base, iov[i].iov_len);
offset += iov[i].iov_len;
}
args->cb_fn(args->cb_arg, 0);
}
static void
backing_dev_writev(struct spdk_reduce_backing_dev *backing_dev, struct iovec *iov, int iovcnt,
uint64_t lba, uint32_t lba_count, struct spdk_reduce_vol_cb_args *args)
{
if (g_defer_bdev_io == false) {
CU_ASSERT(g_pending_bdev_io_count == 0);
CU_ASSERT(TAILQ_EMPTY(&g_pending_bdev_io));
backing_dev_writev_execute(backing_dev, iov, iovcnt, lba, lba_count, args);
return;
}
backing_dev_insert_io(UT_REDUCE_IO_WRITEV, backing_dev, iov, iovcnt, lba, lba_count, args);
}
static void
backing_dev_unmap_execute(struct spdk_reduce_backing_dev *backing_dev,
uint64_t lba, uint32_t lba_count,
struct spdk_reduce_vol_cb_args *args)
{
char *offset;
offset = g_backing_dev_buf + lba * backing_dev->blocklen;
memset(offset, 0, lba_count * backing_dev->blocklen);
args->cb_fn(args->cb_arg, 0);
}
static void
backing_dev_unmap(struct spdk_reduce_backing_dev *backing_dev,
uint64_t lba, uint32_t lba_count, struct spdk_reduce_vol_cb_args *args)
{
if (g_defer_bdev_io == false) {
CU_ASSERT(g_pending_bdev_io_count == 0);
CU_ASSERT(TAILQ_EMPTY(&g_pending_bdev_io));
backing_dev_unmap_execute(backing_dev, lba, lba_count, args);
return;
}
backing_dev_insert_io(UT_REDUCE_IO_UNMAP, backing_dev, NULL, 0, lba, lba_count, args);
}
static void
backing_dev_io_execute(uint32_t count)
{
struct ut_reduce_bdev_io *ut_bdev_io;
uint32_t done = 0;
CU_ASSERT(g_defer_bdev_io == true);
while (!TAILQ_EMPTY(&g_pending_bdev_io) && (count == 0 || done < count)) {
ut_bdev_io = TAILQ_FIRST(&g_pending_bdev_io);
TAILQ_REMOVE(&g_pending_bdev_io, ut_bdev_io, link);
g_pending_bdev_io_count--;
switch (ut_bdev_io->type) {
case UT_REDUCE_IO_READV:
backing_dev_readv_execute(ut_bdev_io->backing_dev,
ut_bdev_io->iov, ut_bdev_io->iovcnt,
ut_bdev_io->lba, ut_bdev_io->lba_count,
ut_bdev_io->args);
break;
case UT_REDUCE_IO_WRITEV:
backing_dev_writev_execute(ut_bdev_io->backing_dev,
ut_bdev_io->iov, ut_bdev_io->iovcnt,
ut_bdev_io->lba, ut_bdev_io->lba_count,
ut_bdev_io->args);
break;
case UT_REDUCE_IO_UNMAP:
backing_dev_unmap_execute(ut_bdev_io->backing_dev,
ut_bdev_io->lba, ut_bdev_io->lba_count,
ut_bdev_io->args);
break;
default:
CU_ASSERT(false);
break;
}
free(ut_bdev_io);
done++;
}
}
static int
ut_compress(char *outbuf, uint32_t *compressed_len, char *inbuf, uint32_t inbuflen)
{
uint32_t len = 0;
uint8_t count;
char last;
while (true) {
if (inbuflen == 0) {
*compressed_len = len;
return 0;
}
if (*compressed_len < (len + 2)) {
return -ENOSPC;
}
last = *inbuf;
count = 1;
inbuflen--;
inbuf++;
while (inbuflen > 0 && *inbuf == last && count < UINT8_MAX) {
count++;
inbuflen--;
inbuf++;
}
outbuf[len] = count;
outbuf[len + 1] = last;
len += 2;
}
}
static int
ut_decompress(uint8_t *outbuf, uint32_t *compressed_len, uint8_t *inbuf, uint32_t inbuflen)
{
uint32_t len = 0;
SPDK_CU_ASSERT_FATAL(inbuflen % 2 == 0);
while (true) {
if (inbuflen == 0) {
*compressed_len = len;
return 0;
}
if ((len + inbuf[0]) > *compressed_len) {
return -ENOSPC;
}
memset(outbuf, inbuf[1], inbuf[0]);
outbuf += inbuf[0];
len += inbuf[0];
inbuflen -= 2;
inbuf += 2;
}
}
static void
ut_build_data_buffer(uint8_t *data, uint32_t data_len, uint8_t init_val, uint32_t repeat)
{
uint32_t _repeat = repeat;
SPDK_CU_ASSERT_FATAL(repeat > 0);
while (data_len > 0) {
*data = init_val;
data++;
data_len--;
_repeat--;
if (_repeat == 0) {
init_val++;
_repeat = repeat;
}
}
}
static void
backing_dev_compress(struct spdk_reduce_backing_dev *backing_dev,
struct iovec *src_iov, int src_iovcnt,
struct iovec *dst_iov, int dst_iovcnt,
struct spdk_reduce_vol_cb_args *args)
{
uint32_t compressed_len;
uint64_t total_length = 0;
char *buf = g_decomp_buf;
int rc, i;
CU_ASSERT(dst_iovcnt == 1);
for (i = 0; i < src_iovcnt; i++) {
memcpy(buf, src_iov[i].iov_base, src_iov[i].iov_len);
buf += src_iov[i].iov_len;
total_length += src_iov[i].iov_len;
}
compressed_len = dst_iov[0].iov_len;
rc = ut_compress(dst_iov[0].iov_base, &compressed_len,
g_decomp_buf, total_length);
args->cb_fn(args->cb_arg, rc ? rc : (int)compressed_len);
}
static void
backing_dev_decompress(struct spdk_reduce_backing_dev *backing_dev,
struct iovec *src_iov, int src_iovcnt,
struct iovec *dst_iov, int dst_iovcnt,
struct spdk_reduce_vol_cb_args *args)
{
uint32_t decompressed_len = 0;
char *buf = g_decomp_buf;
int rc, i;
CU_ASSERT(src_iovcnt == 1);
for (i = 0; i < dst_iovcnt; i++) {
decompressed_len += dst_iov[i].iov_len;
}
rc = ut_decompress(g_decomp_buf, &decompressed_len,
src_iov[0].iov_base, src_iov[0].iov_len);
for (i = 0; i < dst_iovcnt; i++) {
memcpy(dst_iov[i].iov_base, buf, dst_iov[i].iov_len);
buf += dst_iov[i].iov_len;
}
args->cb_fn(args->cb_arg, rc ? rc : (int)decompressed_len);
}
static void
backing_dev_destroy(struct spdk_reduce_backing_dev *backing_dev)
{
/* We don't free this during backing_dev_close so that we can test init/unload/load
* scenarios.
*/
free(g_backing_dev_buf);
free(g_decomp_buf);
g_backing_dev_buf = NULL;
}
static void
backing_dev_init(struct spdk_reduce_backing_dev *backing_dev, struct spdk_reduce_vol_params *params,
uint32_t backing_blocklen)
{
int64_t size;
size = 4 * 1024 * 1024;
backing_dev->blocklen = backing_blocklen;
backing_dev->blockcnt = size / backing_dev->blocklen;
backing_dev->readv = backing_dev_readv;
backing_dev->writev = backing_dev_writev;
backing_dev->unmap = backing_dev_unmap;
backing_dev->compress = backing_dev_compress;
backing_dev->decompress = backing_dev_decompress;
g_decomp_buf = calloc(1, params->chunk_size);
SPDK_CU_ASSERT_FATAL(g_decomp_buf != NULL);
g_backing_dev_buf = calloc(1, size);
SPDK_CU_ASSERT_FATAL(g_backing_dev_buf != NULL);
}
static void
init_md(void)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_vol_params *persistent_params;
struct spdk_reduce_backing_dev backing_dev = {};
struct spdk_uuid uuid;
uint64_t *entry;
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 512;
params.logical_block_size = 512;
backing_dev_init(&backing_dev, &params, 512);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
/* Confirm that reduce persisted the params to metadata. */
CU_ASSERT(memcmp(g_persistent_pm_buf, SPDK_REDUCE_SIGNATURE, 8) == 0);
persistent_params = (struct spdk_reduce_vol_params *)(g_persistent_pm_buf + 8);
CU_ASSERT(memcmp(persistent_params, &params, sizeof(params)) == 0);
/* Now confirm that contents of pm_file after the superblock have been initialized
* to REDUCE_EMPTY_MAP_ENTRY.
*/
entry = (uint64_t *)(g_persistent_pm_buf + sizeof(struct spdk_reduce_vol_superblock));
while (entry != (uint64_t *)(g_persistent_pm_buf + g_vol->pm_file.size)) {
CU_ASSERT(*entry == REDUCE_EMPTY_MAP_ENTRY);
entry++;
}
/* Check that the pm file path was constructed correctly. It should be in
* the form:
* TEST_MD_PATH + "/" + <uuid string>
*/
CU_ASSERT(strncmp(&g_path[0], TEST_MD_PATH, strlen(TEST_MD_PATH)) == 0);
CU_ASSERT(g_path[strlen(TEST_MD_PATH)] == '/');
CU_ASSERT(spdk_uuid_parse(&uuid, &g_path[strlen(TEST_MD_PATH) + 1]) == 0);
CU_ASSERT(spdk_uuid_compare(&uuid, spdk_reduce_vol_get_uuid(g_vol)) == 0);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
CU_ASSERT(g_volatile_pm_buf == NULL);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
static void
_init_backing_dev(uint32_t backing_blocklen)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_vol_params *persistent_params;
struct spdk_reduce_backing_dev backing_dev = {};
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 512;
params.logical_block_size = 512;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, backing_blocklen);
g_vol = NULL;
memset(g_path, 0, sizeof(g_path));
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
CU_ASSERT(strncmp(TEST_MD_PATH, g_path, strlen(TEST_MD_PATH)) == 0);
/* Confirm that libreduce persisted the params to the backing device. */
CU_ASSERT(memcmp(g_backing_dev_buf, SPDK_REDUCE_SIGNATURE, 8) == 0);
persistent_params = (struct spdk_reduce_vol_params *)(g_backing_dev_buf + 8);
CU_ASSERT(memcmp(persistent_params, &params, sizeof(params)) == 0);
/* Confirm that the path to the persistent memory metadata file was persisted to
* the backing device.
*/
CU_ASSERT(strncmp(g_path,
g_backing_dev_buf + REDUCE_BACKING_DEV_PATH_OFFSET,
REDUCE_PATH_MAX) == 0);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
static void
init_backing_dev(void)
{
_init_backing_dev(512);
_init_backing_dev(4096);
}
static void
_load(uint32_t backing_blocklen)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
char pmem_file_path[REDUCE_PATH_MAX];
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 512;
params.logical_block_size = 512;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, backing_blocklen);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
CU_ASSERT(strncmp(TEST_MD_PATH, g_path, strlen(TEST_MD_PATH)) == 0);
memcpy(pmem_file_path, g_path, sizeof(pmem_file_path));
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
g_vol = NULL;
memset(g_path, 0, sizeof(g_path));
g_reduce_errno = -1;
spdk_reduce_vol_load(&backing_dev, load_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
CU_ASSERT(strncmp(g_path, pmem_file_path, sizeof(pmem_file_path)) == 0);
CU_ASSERT(g_vol->params.vol_size == params.vol_size);
CU_ASSERT(g_vol->params.chunk_size == params.chunk_size);
CU_ASSERT(g_vol->params.backing_io_unit_size == params.backing_io_unit_size);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
static void
load(void)
{
_load(512);
_load(4096);
}
static uint64_t
_vol_get_chunk_map_index(struct spdk_reduce_vol *vol, uint64_t offset)
{
uint64_t logical_map_index = offset / vol->logical_blocks_per_chunk;
return vol->pm_logical_map[logical_map_index];
}
static void
write_cb(void *arg, int reduce_errno)
{
g_reduce_errno = reduce_errno;
}
static void
read_cb(void *arg, int reduce_errno)
{
g_reduce_errno = reduce_errno;
}
static void
_write_maps(uint32_t backing_blocklen)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
struct iovec iov;
const int bufsize = 16 * 1024; /* chunk size */
char buf[bufsize];
uint32_t num_lbas, i;
uint64_t old_chunk0_map_index, new_chunk0_map_index;
struct spdk_reduce_chunk_map *old_chunk0_map, *new_chunk0_map;
params.chunk_size = bufsize;
params.backing_io_unit_size = 4096;
params.logical_block_size = 512;
num_lbas = bufsize / params.logical_block_size;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, backing_blocklen);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
for (i = 0; i < g_vol->params.vol_size / g_vol->params.chunk_size; i++) {
CU_ASSERT(_vol_get_chunk_map_index(g_vol, i) == REDUCE_EMPTY_MAP_ENTRY);
}
ut_build_data_buffer(buf, bufsize, 0x00, 1);
iov.iov_base = buf;
iov.iov_len = bufsize;
g_reduce_errno = -1;
spdk_reduce_vol_writev(g_vol, &iov, 1, 0, num_lbas, write_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
old_chunk0_map_index = _vol_get_chunk_map_index(g_vol, 0);
CU_ASSERT(old_chunk0_map_index != REDUCE_EMPTY_MAP_ENTRY);
CU_ASSERT(spdk_bit_array_get(g_vol->allocated_chunk_maps, old_chunk0_map_index) == true);
old_chunk0_map = _reduce_vol_get_chunk_map(g_vol, old_chunk0_map_index);
for (i = 0; i < g_vol->backing_io_units_per_chunk; i++) {
CU_ASSERT(old_chunk0_map->io_unit_index[i] != REDUCE_EMPTY_MAP_ENTRY);
CU_ASSERT(spdk_bit_array_get(g_vol->allocated_backing_io_units,
old_chunk0_map->io_unit_index[i]) == true);
}
g_reduce_errno = -1;
spdk_reduce_vol_writev(g_vol, &iov, 1, 0, num_lbas, write_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
new_chunk0_map_index = _vol_get_chunk_map_index(g_vol, 0);
CU_ASSERT(new_chunk0_map_index != REDUCE_EMPTY_MAP_ENTRY);
CU_ASSERT(new_chunk0_map_index != old_chunk0_map_index);
CU_ASSERT(spdk_bit_array_get(g_vol->allocated_chunk_maps, new_chunk0_map_index) == true);
CU_ASSERT(spdk_bit_array_get(g_vol->allocated_chunk_maps, old_chunk0_map_index) == false);
for (i = 0; i < g_vol->backing_io_units_per_chunk; i++) {
CU_ASSERT(spdk_bit_array_get(g_vol->allocated_backing_io_units,
old_chunk0_map->io_unit_index[i]) == false);
}
new_chunk0_map = _reduce_vol_get_chunk_map(g_vol, new_chunk0_map_index);
for (i = 0; i < g_vol->backing_io_units_per_chunk; i++) {
CU_ASSERT(new_chunk0_map->io_unit_index[i] != REDUCE_EMPTY_MAP_ENTRY);
CU_ASSERT(spdk_bit_array_get(g_vol->allocated_backing_io_units,
new_chunk0_map->io_unit_index[i]) == true);
}
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_load(&backing_dev, load_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
CU_ASSERT(g_vol->params.vol_size == params.vol_size);
CU_ASSERT(g_vol->params.chunk_size == params.chunk_size);
CU_ASSERT(g_vol->params.backing_io_unit_size == params.backing_io_unit_size);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
static void
write_maps(void)
{
_write_maps(512);
_write_maps(4096);
}
static void
_read_write(uint32_t backing_blocklen)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
struct iovec iov;
char buf[16 * 1024]; /* chunk size */
char compare_buf[16 * 1024];
uint32_t i;
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 4096;
params.logical_block_size = 512;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, backing_blocklen);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
/* Write 0xAA to 2 512-byte logical blocks, starting at LBA 2. */
memset(buf, 0xAA, 2 * params.logical_block_size);
iov.iov_base = buf;
iov.iov_len = 2 * params.logical_block_size;
g_reduce_errno = -1;
spdk_reduce_vol_writev(g_vol, &iov, 1, 2, 2, write_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
memset(compare_buf, 0xAA, sizeof(compare_buf));
for (i = 0; i < params.chunk_size / params.logical_block_size; i++) {
memset(buf, 0xFF, params.logical_block_size);
iov.iov_base = buf;
iov.iov_len = params.logical_block_size;
g_reduce_errno = -1;
spdk_reduce_vol_readv(g_vol, &iov, 1, i, 1, read_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
switch (i) {
case 2:
case 3:
CU_ASSERT(memcmp(buf, compare_buf, params.logical_block_size) == 0);
break;
default:
CU_ASSERT(spdk_mem_all_zero(buf, params.logical_block_size));
break;
}
}
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
/* Overwrite what we just wrote with 0xCC */
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_load(&backing_dev, load_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
CU_ASSERT(g_vol->params.vol_size == params.vol_size);
CU_ASSERT(g_vol->params.chunk_size == params.chunk_size);
CU_ASSERT(g_vol->params.backing_io_unit_size == params.backing_io_unit_size);
memset(buf, 0xCC, 2 * params.logical_block_size);
iov.iov_base = buf;
iov.iov_len = 2 * params.logical_block_size;
g_reduce_errno = -1;
spdk_reduce_vol_writev(g_vol, &iov, 1, 2, 2, write_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
memset(compare_buf, 0xCC, sizeof(compare_buf));
for (i = 0; i < params.chunk_size / params.logical_block_size; i++) {
memset(buf, 0xFF, params.logical_block_size);
iov.iov_base = buf;
iov.iov_len = params.logical_block_size;
g_reduce_errno = -1;
spdk_reduce_vol_readv(g_vol, &iov, 1, i, 1, read_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
switch (i) {
case 2:
case 3:
CU_ASSERT(memcmp(buf, compare_buf, params.logical_block_size) == 0);
break;
default:
CU_ASSERT(spdk_mem_all_zero(buf, params.logical_block_size));
break;
}
}
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_load(&backing_dev, load_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
CU_ASSERT(g_vol->params.vol_size == params.vol_size);
CU_ASSERT(g_vol->params.chunk_size == params.chunk_size);
CU_ASSERT(g_vol->params.backing_io_unit_size == params.backing_io_unit_size);
g_reduce_errno = -1;
/* Write 0xBB to 2 512-byte logical blocks, starting at LBA 37.
* This is writing into the second chunk of the volume. This also
* enables implicitly checking that we reloaded the bit arrays
* correctly - making sure we don't use the first chunk map again
* for this new write - the first chunk map was already used by the
* write from before we unloaded and reloaded.
*/
memset(buf, 0xBB, 2 * params.logical_block_size);
iov.iov_base = buf;
iov.iov_len = 2 * params.logical_block_size;
g_reduce_errno = -1;
spdk_reduce_vol_writev(g_vol, &iov, 1, 37, 2, write_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
for (i = 0; i < 2 * params.chunk_size / params.logical_block_size; i++) {
memset(buf, 0xFF, params.logical_block_size);
iov.iov_base = buf;
iov.iov_len = params.logical_block_size;
g_reduce_errno = -1;
spdk_reduce_vol_readv(g_vol, &iov, 1, i, 1, read_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
switch (i) {
case 2:
case 3:
memset(compare_buf, 0xCC, sizeof(compare_buf));
CU_ASSERT(memcmp(buf, compare_buf, params.logical_block_size) == 0);
break;
case 37:
case 38:
memset(compare_buf, 0xBB, sizeof(compare_buf));
CU_ASSERT(memcmp(buf, compare_buf, params.logical_block_size) == 0);
break;
default:
CU_ASSERT(spdk_mem_all_zero(buf, params.logical_block_size));
break;
}
}
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
static void
read_write(void)
{
_read_write(512);
_read_write(4096);
}
static void
_readv_writev(uint32_t backing_blocklen)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
struct iovec iov[REDUCE_MAX_IOVECS + 1];
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 4096;
params.logical_block_size = 512;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, backing_blocklen);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
g_reduce_errno = -1;
spdk_reduce_vol_writev(g_vol, iov, REDUCE_MAX_IOVECS + 1, 2, REDUCE_MAX_IOVECS + 1, write_cb, NULL);
CU_ASSERT(g_reduce_errno == -EINVAL);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
static void
readv_writev(void)
{
_readv_writev(512);
_readv_writev(4096);
}
static void
destroy_cb(void *ctx, int reduce_errno)
{
g_reduce_errno = reduce_errno;
}
static void
destroy(void)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 512;
params.logical_block_size = 512;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, 512);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_load(&backing_dev, load_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
g_reduce_errno = -1;
MOCK_CLEAR(spdk_malloc);
MOCK_CLEAR(spdk_zmalloc);
spdk_reduce_vol_destroy(&backing_dev, destroy_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
g_reduce_errno = 0;
spdk_reduce_vol_load(&backing_dev, load_cb, NULL);
CU_ASSERT(g_reduce_errno == -EILSEQ);
backing_dev_destroy(&backing_dev);
}
/* This test primarily checks that the reduce unit test infrastructure for asynchronous
* backing device I/O operations is working correctly.
*/
static void
defer_bdev_io(void)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
const uint32_t logical_block_size = 512;
struct iovec iov;
char buf[logical_block_size];
char compare_buf[logical_block_size];
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 4096;
params.logical_block_size = logical_block_size;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, 512);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
/* Write 0xAA to 1 512-byte logical block. */
memset(buf, 0xAA, params.logical_block_size);
iov.iov_base = buf;
iov.iov_len = params.logical_block_size;
g_reduce_errno = -100;
g_defer_bdev_io = true;
spdk_reduce_vol_writev(g_vol, &iov, 1, 0, 1, write_cb, NULL);
/* Callback should not have executed, so this should still equal -100. */
CU_ASSERT(g_reduce_errno == -100);
CU_ASSERT(!TAILQ_EMPTY(&g_pending_bdev_io));
/* We wrote to just 512 bytes of one chunk which was previously unallocated. This
* should result in 1 pending I/O since the rest of this chunk will be zeroes and
* very compressible.
*/
CU_ASSERT(g_pending_bdev_io_count == 1);
backing_dev_io_execute(0);
CU_ASSERT(TAILQ_EMPTY(&g_pending_bdev_io));
CU_ASSERT(g_reduce_errno == 0);
g_defer_bdev_io = false;
memset(compare_buf, 0xAA, sizeof(compare_buf));
memset(buf, 0xFF, sizeof(buf));
iov.iov_base = buf;
iov.iov_len = params.logical_block_size;
g_reduce_errno = -100;
spdk_reduce_vol_readv(g_vol, &iov, 1, 0, 1, read_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
CU_ASSERT(memcmp(buf, compare_buf, sizeof(buf)) == 0);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
static void
overlapped(void)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
const uint32_t logical_block_size = 512;
struct iovec iov;
char buf[2 * logical_block_size];
char compare_buf[2 * logical_block_size];
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 4096;
params.logical_block_size = logical_block_size;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, 512);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
/* Write 0xAA to 1 512-byte logical block. */
memset(buf, 0xAA, logical_block_size);
iov.iov_base = buf;
iov.iov_len = logical_block_size;
g_reduce_errno = -100;
g_defer_bdev_io = true;
spdk_reduce_vol_writev(g_vol, &iov, 1, 0, 1, write_cb, NULL);
/* Callback should not have executed, so this should still equal -100. */
CU_ASSERT(g_reduce_errno == -100);
CU_ASSERT(!TAILQ_EMPTY(&g_pending_bdev_io));
/* We wrote to just 512 bytes of one chunk which was previously unallocated. This
* should result in 1 pending I/O since the rest of this chunk will be zeroes and
* very compressible.
*/
CU_ASSERT(g_pending_bdev_io_count == 1);
/* Now do an overlapped I/O to the same chunk. */
spdk_reduce_vol_writev(g_vol, &iov, 1, 1, 1, write_cb, NULL);
/* Callback should not have executed, so this should still equal -100. */
CU_ASSERT(g_reduce_errno == -100);
CU_ASSERT(!TAILQ_EMPTY(&g_pending_bdev_io));
/* The second I/O overlaps with the first one. So we should only see pending bdev_io
* related to the first I/O here - the second one won't start until the first one is completed.
*/
CU_ASSERT(g_pending_bdev_io_count == 1);
backing_dev_io_execute(0);
CU_ASSERT(g_reduce_errno == 0);
g_defer_bdev_io = false;
memset(compare_buf, 0xAA, sizeof(compare_buf));
memset(buf, 0xFF, sizeof(buf));
iov.iov_base = buf;
iov.iov_len = 2 * logical_block_size;
g_reduce_errno = -100;
spdk_reduce_vol_readv(g_vol, &iov, 1, 0, 2, read_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
CU_ASSERT(memcmp(buf, compare_buf, 2 * logical_block_size) == 0);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
#define BUFSIZE 4096
static void
compress_algorithm(void)
{
uint8_t original_data[BUFSIZE];
uint8_t compressed_data[BUFSIZE];
uint8_t decompressed_data[BUFSIZE];
uint32_t compressed_len, decompressed_len;
int rc;
ut_build_data_buffer(original_data, BUFSIZE, 0xAA, BUFSIZE);
compressed_len = sizeof(compressed_data);
rc = ut_compress(compressed_data, &compressed_len, original_data, UINT8_MAX);
CU_ASSERT(rc == 0);
CU_ASSERT(compressed_len == 2);
CU_ASSERT(compressed_data[0] == UINT8_MAX);
CU_ASSERT(compressed_data[1] == 0xAA);
decompressed_len = sizeof(decompressed_data);
rc = ut_decompress(decompressed_data, &decompressed_len, compressed_data, compressed_len);
CU_ASSERT(rc == 0);
CU_ASSERT(decompressed_len == UINT8_MAX);
CU_ASSERT(memcmp(original_data, decompressed_data, decompressed_len) == 0);
compressed_len = sizeof(compressed_data);
rc = ut_compress(compressed_data, &compressed_len, original_data, UINT8_MAX + 1);
CU_ASSERT(rc == 0);
CU_ASSERT(compressed_len == 4);
CU_ASSERT(compressed_data[0] == UINT8_MAX);
CU_ASSERT(compressed_data[1] == 0xAA);
CU_ASSERT(compressed_data[2] == 1);
CU_ASSERT(compressed_data[3] == 0xAA);
decompressed_len = sizeof(decompressed_data);
rc = ut_decompress(decompressed_data, &decompressed_len, compressed_data, compressed_len);
CU_ASSERT(rc == 0);
CU_ASSERT(decompressed_len == UINT8_MAX + 1);
CU_ASSERT(memcmp(original_data, decompressed_data, decompressed_len) == 0);
ut_build_data_buffer(original_data, BUFSIZE, 0x00, 1);
compressed_len = sizeof(compressed_data);
rc = ut_compress(compressed_data, &compressed_len, original_data, 2048);
CU_ASSERT(rc == 0);
CU_ASSERT(compressed_len == 4096);
CU_ASSERT(compressed_data[0] == 1);
CU_ASSERT(compressed_data[1] == 0);
CU_ASSERT(compressed_data[4094] == 1);
CU_ASSERT(compressed_data[4095] == 0xFF);
decompressed_len = sizeof(decompressed_data);
rc = ut_decompress(decompressed_data, &decompressed_len, compressed_data, compressed_len);
CU_ASSERT(rc == 0);
CU_ASSERT(decompressed_len == 2048);
CU_ASSERT(memcmp(original_data, decompressed_data, decompressed_len) == 0);
compressed_len = sizeof(compressed_data);
rc = ut_compress(compressed_data, &compressed_len, original_data, 2049);
CU_ASSERT(rc == -ENOSPC);
}
int
main(int argc, char **argv)
{
CU_pSuite suite = NULL;
unsigned int num_failures;
CU_set_error_action(CUEA_ABORT);
CU_initialize_registry();
suite = CU_add_suite("reduce", NULL, NULL);
CU_ADD_TEST(suite, get_pm_file_size);
CU_ADD_TEST(suite, get_vol_size);
CU_ADD_TEST(suite, init_failure);
CU_ADD_TEST(suite, init_md);
CU_ADD_TEST(suite, init_backing_dev);
CU_ADD_TEST(suite, load);
CU_ADD_TEST(suite, write_maps);
CU_ADD_TEST(suite, read_write);
CU_ADD_TEST(suite, readv_writev);
CU_ADD_TEST(suite, destroy);
CU_ADD_TEST(suite, defer_bdev_io);
CU_ADD_TEST(suite, overlapped);
CU_ADD_TEST(suite, compress_algorithm);
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
return num_failures;
}