Spdk/lib/nvmf/vfio_user.c
John Levon c20e41cd38 nvmf/vfio-user: move map_one()
This lets us use it more widely.

Signed-off-by: John Levon <john.levon@nutanix.com>
Change-Id: I9c67be19020677fab3eafe05c1e0f91c3d04611d
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/12307
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Community-CI: Broadcom CI <spdk-ci.pdl@broadcom.com>
Community-CI: Mellanox Build Bot
Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
Reviewed-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
2022-04-20 08:22:21 +00:00

4595 lines
121 KiB
C

/*-
* BSD LICENSE
* Copyright (c) Intel Corporation. All rights reserved.
* Copyright (c) 2019-2022, Nutanix Inc. All rights reserved.
* Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* NVMe over vfio-user transport
*/
#include <vfio-user/libvfio-user.h>
#include <vfio-user/pci_defs.h>
#include "spdk/barrier.h"
#include "spdk/stdinc.h"
#include "spdk/assert.h"
#include "spdk/thread.h"
#include "spdk/nvmf_transport.h"
#include "spdk/sock.h"
#include "spdk/string.h"
#include "spdk/util.h"
#include "spdk/log.h"
#include "transport.h"
#include "nvmf_internal.h"
#define NVMF_VFIO_USER_DEFAULT_MAX_QUEUE_DEPTH 256
#define NVMF_VFIO_USER_DEFAULT_AQ_DEPTH 32
#define NVMF_VFIO_USER_DEFAULT_MAX_IO_SIZE ((NVMF_REQ_MAX_BUFFERS - 1) << SHIFT_4KB)
#define NVMF_VFIO_USER_DEFAULT_IO_UNIT_SIZE NVMF_VFIO_USER_DEFAULT_MAX_IO_SIZE
#define NVME_DOORBELLS_OFFSET 0x1000
#define NVMF_VFIO_USER_DOORBELLS_SIZE 0x1000
/*
* NVMe driver reads 4096 bytes, which is the extended PCI configuration space
* available on PCI-X 2.0 and PCI Express buses
*/
#define NVME_REG_CFG_SIZE 0x1000
#define NVME_REG_BAR0_SIZE (NVME_DOORBELLS_OFFSET + NVMF_VFIO_USER_DOORBELLS_SIZE)
#define NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR ((NVMF_VFIO_USER_DOORBELLS_SIZE) / 8)
#define NVME_IRQ_MSIX_NUM NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR
/* MSIX Table Size */
#define NVME_BAR4_SIZE SPDK_ALIGN_CEIL((NVME_IRQ_MSIX_NUM * 16), 0x1000)
/* MSIX Pending Bit Array Size */
#define NVME_BAR5_SIZE SPDK_ALIGN_CEIL((NVME_IRQ_MSIX_NUM / 8), 0x1000)
#define NVMF_VFIO_USER_DEFAULT_MAX_QPAIRS_PER_CTRLR (NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR / 4)
struct nvmf_vfio_user_req;
typedef int (*nvmf_vfio_user_req_cb_fn)(struct nvmf_vfio_user_req *req, void *cb_arg);
/* 1 more for PRP2 list itself */
#define NVMF_VFIO_USER_MAX_IOVECS (NVMF_REQ_MAX_BUFFERS + 1)
enum nvmf_vfio_user_req_state {
VFIO_USER_REQUEST_STATE_FREE = 0,
VFIO_USER_REQUEST_STATE_EXECUTING,
};
/* NVMe device state representation */
struct nvme_migr_sq_state {
uint16_t sqid;
uint16_t cqid;
uint32_t head;
uint32_t size;
uint32_t reserved;
uint64_t dma_addr;
};
SPDK_STATIC_ASSERT(sizeof(struct nvme_migr_sq_state) == 0x18, "Incorrect size");
struct nvme_migr_cq_state {
uint16_t cqid;
uint16_t phase;
uint32_t tail;
uint32_t size;
uint32_t iv;
uint32_t ien;
uint32_t reserved;
uint64_t dma_addr;
};
SPDK_STATIC_ASSERT(sizeof(struct nvme_migr_cq_state) == 0x20, "Incorrect size");
#define VFIO_USER_NVME_MIGR_MAGIC 0xAFEDBC23
/* The device state is in VFIO MIGRATION BAR(9) region, keep the device state page aligned.
*
* NVMe device migration region is defined as below:
* -------------------------------------------------------------------------
* | vfio_user_nvme_migr_header | nvmf controller data | queue pairs | BARs |
* -------------------------------------------------------------------------
*
* Keep vfio_user_nvme_migr_header as a fixed 0x1000 length, all new added fields
* can use the reserved space at the end of the data structure.
*/
struct vfio_user_nvme_migr_header {
/* Magic value to validate migration data */
uint32_t magic;
/* Version to check the data is same from source to destination */
uint32_t version;
/* The library uses this field to know how many fields in this
* structure are valid, starting at the beginning of this data
* structure. New added fields in future use `unused` memory
* spaces.
*/
uint32_t opts_size;
uint32_t reserved0;
/* BARs information */
uint64_t bar_offset[VFU_PCI_DEV_NUM_REGIONS];
uint64_t bar_len[VFU_PCI_DEV_NUM_REGIONS];
/* Queue pair start offset, starting at the beginning of this
* data structure.
*/
uint64_t qp_offset;
uint64_t qp_len;
/* Controller data structure */
uint32_t num_io_queues;
uint32_t reserved1;
/* TODO: this part will be moved to common nvmf controller data */
uint16_t reserved2[3];
uint16_t nr_aers;
uint16_t aer_cids[NVMF_MIGR_MAX_PENDING_AERS];
/* NVMf controller data offset and length if exist, starting at
* the beginning of this data structure.
*/
uint64_t nvmf_data_offset;
uint64_t nvmf_data_len;
/* Reserved memory space for new added fields, the
* field is always at the end of this data structure.
*/
uint8_t unused[3356];
};
SPDK_STATIC_ASSERT(sizeof(struct vfio_user_nvme_migr_header) == 0x1000, "Incorrect size");
struct vfio_user_nvme_migr_qp {
struct nvme_migr_sq_state sq;
struct nvme_migr_cq_state cq;
};
/* NVMe state definition used to load/restore from/to NVMe migration BAR region */
struct vfio_user_nvme_migr_state {
struct vfio_user_nvme_migr_header ctrlr_header;
struct nvmf_ctrlr_migr_data nvmf_data;
struct vfio_user_nvme_migr_qp qps[NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR];
uint8_t bar0[NVME_REG_BAR0_SIZE];
uint8_t cfg[NVME_REG_CFG_SIZE];
};
struct nvmf_vfio_user_req {
struct spdk_nvmf_request req;
struct spdk_nvme_cpl rsp;
struct spdk_nvme_cmd cmd;
enum nvmf_vfio_user_req_state state;
nvmf_vfio_user_req_cb_fn cb_fn;
void *cb_arg;
/* old CC before prop_set_cc fabric command */
union spdk_nvme_cc_register cc;
TAILQ_ENTRY(nvmf_vfio_user_req) link;
struct iovec iov[NVMF_VFIO_USER_MAX_IOVECS];
uint8_t iovcnt;
/* NVMF_VFIO_USER_MAX_IOVECS worth of dma_sg_t. */
uint8_t sg[];
};
/*
* Mapping of an NVMe queue.
*
* This holds the information tracking a local process mapping of an NVMe queue
* shared by the client.
*/
struct nvme_q_mapping {
/* iov of local process mapping. */
struct iovec iov;
/* Stored sg, needed for unmap. */
dma_sg_t *sg;
/* Client PRP of queue. */
uint64_t prp1;
};
enum nvmf_vfio_user_sq_state {
VFIO_USER_SQ_UNUSED = 0,
VFIO_USER_SQ_CREATED,
VFIO_USER_SQ_DELETED,
VFIO_USER_SQ_ACTIVE,
VFIO_USER_SQ_INACTIVE
};
enum nvmf_vfio_user_cq_state {
VFIO_USER_CQ_UNUSED = 0,
VFIO_USER_CQ_CREATED,
VFIO_USER_CQ_DELETED,
};
enum nvmf_vfio_user_ctrlr_state {
VFIO_USER_CTRLR_CREATING = 0,
VFIO_USER_CTRLR_RUNNING,
/* Quiesce requested by libvfio-user */
VFIO_USER_CTRLR_PAUSING,
/* NVMf subsystem is paused, it's safe to do PCI reset, memory register,
* memory unergister, and vfio migration state transition in this state.
*/
VFIO_USER_CTRLR_PAUSED,
/*
* Implies that the NVMf subsystem is paused. Device will be unquiesced (PCI
* reset, memory register and unregister, controller in destination VM has
* been restored). NVMf subsystem resume has been requested.
*/
VFIO_USER_CTRLR_RESUMING,
/*
* Implies that the NVMf subsystem is paused. Both controller in source VM and
* destinatiom VM is in this state when doing live migration.
*/
VFIO_USER_CTRLR_MIGRATING
};
/* Migration region to record NVMe device state data structure */
struct vfio_user_migration_region {
uint64_t last_data_offset;
uint64_t pending_bytes;
};
struct nvmf_vfio_user_sq {
struct spdk_nvmf_qpair qpair;
struct spdk_nvmf_transport_poll_group *group;
struct nvmf_vfio_user_ctrlr *ctrlr;
uint32_t qid;
/* Number of entries in queue. */
uint32_t size;
struct nvme_q_mapping mapping;
enum nvmf_vfio_user_sq_state sq_state;
uint32_t head;
volatile uint32_t *dbl_tailp;
/* multiple SQs can be mapped to the same CQ */
uint16_t cqid;
/* handle_queue_connect_rsp() can be used both for CREATE IO SQ response
* and SQ re-connect response in the destination VM, for the prior case,
* we will post a NVMe completion to VM, we will not set this flag when
* re-connecting SQs in the destination VM.
*/
bool post_create_io_sq_completion;
/* Copy of Create IO SQ command, this field is used together with
* `post_create_io_sq_completion` flag.
*/
struct spdk_nvme_cmd create_io_sq_cmd;
/* Currently unallocated reqs. */
TAILQ_HEAD(, nvmf_vfio_user_req) free_reqs;
/* Poll group entry */
TAILQ_ENTRY(nvmf_vfio_user_sq) link;
/* Connected SQ entry */
TAILQ_ENTRY(nvmf_vfio_user_sq) tailq;
};
struct nvmf_vfio_user_cq {
struct spdk_nvmf_transport_poll_group *group;
struct spdk_thread *thread;
uint32_t cq_ref;
uint32_t qid;
/* Number of entries in queue. */
uint32_t size;
struct nvme_q_mapping mapping;
enum nvmf_vfio_user_cq_state cq_state;
uint32_t tail;
volatile uint32_t *dbl_headp;
bool phase;
uint16_t iv;
bool ien;
uint32_t last_head;
uint32_t last_trigger_irq_tail;
};
struct nvmf_vfio_user_poll_group {
struct spdk_nvmf_transport_poll_group group;
TAILQ_ENTRY(nvmf_vfio_user_poll_group) link;
TAILQ_HEAD(, nvmf_vfio_user_sq) sqs;
};
struct nvmf_vfio_user_ctrlr {
struct nvmf_vfio_user_endpoint *endpoint;
struct nvmf_vfio_user_transport *transport;
/* Connected SQs list */
TAILQ_HEAD(, nvmf_vfio_user_sq) connected_sqs;
enum nvmf_vfio_user_ctrlr_state state;
struct vfio_user_migration_region migr_reg;
/* Controller is in source VM when doing live migration */
bool in_source_vm;
struct spdk_thread *thread;
struct spdk_poller *vfu_ctx_poller;
struct spdk_interrupt *intr;
int intr_fd;
bool queued_quiesce;
bool reset_shn;
uint16_t cntlid;
struct spdk_nvmf_ctrlr *ctrlr;
struct nvmf_vfio_user_sq *sqs[NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR];
struct nvmf_vfio_user_cq *cqs[NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR];
TAILQ_ENTRY(nvmf_vfio_user_ctrlr) link;
volatile uint32_t *bar0_doorbells;
bool self_kick_requested;
};
struct nvmf_vfio_user_endpoint {
struct nvmf_vfio_user_transport *transport;
vfu_ctx_t *vfu_ctx;
struct spdk_poller *accept_poller;
struct spdk_thread *accept_thread;
struct msixcap *msix;
vfu_pci_config_space_t *pci_config_space;
int devmem_fd;
int accept_intr_fd;
struct spdk_interrupt *accept_intr;
volatile uint32_t *bar0_doorbells;
int migr_fd;
void *migr_data;
struct spdk_nvme_transport_id trid;
const struct spdk_nvmf_subsystem *subsystem;
struct nvmf_vfio_user_ctrlr *ctrlr;
pthread_mutex_t lock;
bool need_async_destroy;
TAILQ_ENTRY(nvmf_vfio_user_endpoint) link;
};
struct nvmf_vfio_user_transport_opts {
bool disable_mappable_bar0;
bool disable_adaptive_irq;
};
struct nvmf_vfio_user_transport {
struct spdk_nvmf_transport transport;
struct nvmf_vfio_user_transport_opts transport_opts;
bool intr_mode_supported;
pthread_mutex_t lock;
TAILQ_HEAD(, nvmf_vfio_user_endpoint) endpoints;
pthread_mutex_t pg_lock;
TAILQ_HEAD(, nvmf_vfio_user_poll_group) poll_groups;
struct nvmf_vfio_user_poll_group *next_pg;
};
/*
* function prototypes
*/
static int
nvmf_vfio_user_req_free(struct spdk_nvmf_request *req);
static struct nvmf_vfio_user_req *
get_nvmf_vfio_user_req(struct nvmf_vfio_user_sq *sq);
/*
* Local process virtual address of a queue.
*/
static inline void *
q_addr(struct nvme_q_mapping *mapping)
{
return mapping->iov.iov_base;
}
static inline int
queue_index(uint16_t qid, bool is_cq)
{
return (qid * 2) + is_cq;
}
static inline volatile uint32_t *
sq_headp(struct nvmf_vfio_user_sq *sq)
{
assert(sq != NULL);
return &sq->head;
}
static inline volatile uint32_t *
sq_dbl_tailp(struct nvmf_vfio_user_sq *sq)
{
assert(sq != NULL);
return sq->dbl_tailp;
}
static inline volatile uint32_t *
cq_dbl_headp(struct nvmf_vfio_user_cq *cq)
{
assert(cq != NULL);
return cq->dbl_headp;
}
static inline volatile uint32_t *
cq_tailp(struct nvmf_vfio_user_cq *cq)
{
assert(cq != NULL);
return &cq->tail;
}
static inline void
sq_head_advance(struct nvmf_vfio_user_sq *sq)
{
assert(sq != NULL);
assert(*sq_headp(sq) < sq->size);
(*sq_headp(sq))++;
if (spdk_unlikely(*sq_headp(sq) == sq->size)) {
*sq_headp(sq) = 0;
}
}
static inline void
cq_tail_advance(struct nvmf_vfio_user_cq *cq)
{
assert(cq != NULL);
assert(*cq_tailp(cq) < cq->size);
(*cq_tailp(cq))++;
if (spdk_unlikely(*cq_tailp(cq) == cq->size)) {
*cq_tailp(cq) = 0;
cq->phase = !cq->phase;
}
}
static inline bool
cq_is_full(struct nvmf_vfio_user_cq *cq)
{
uint32_t qindex;
assert(cq != NULL);
qindex = *cq_tailp(cq) + 1;
if (spdk_unlikely(qindex == cq->size)) {
qindex = 0;
}
return qindex == *cq_dbl_headp(cq);
}
static bool
io_q_exists(struct nvmf_vfio_user_ctrlr *vu_ctrlr, const uint16_t qid, const bool is_cq)
{
assert(vu_ctrlr != NULL);
if (qid == 0 || qid >= NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR) {
return false;
}
if (is_cq) {
if (vu_ctrlr->cqs[qid] == NULL) {
return false;
}
return (vu_ctrlr->cqs[qid]->cq_state != VFIO_USER_CQ_DELETED &&
vu_ctrlr->cqs[qid]->cq_state != VFIO_USER_CQ_UNUSED);
}
if (vu_ctrlr->sqs[qid] == NULL) {
return false;
}
return (vu_ctrlr->sqs[qid]->sq_state != VFIO_USER_SQ_DELETED &&
vu_ctrlr->sqs[qid]->sq_state != VFIO_USER_SQ_UNUSED);
}
static inline size_t
vfio_user_migr_data_len(void)
{
return SPDK_ALIGN_CEIL(sizeof(struct vfio_user_nvme_migr_state), PAGE_SIZE);
}
static int
vfio_user_handle_intr(void *ctx);
/*
* Wrap vfio_user_handle_intr() such that it can be used with
* spdk_thread_send_msg().
* Pollers have type int (*)(void *) while message functions should have type
* void (*)(void *), so simply discard the returned value.
*/
static void
vfio_user_handle_intr_wrapper(void *ctx)
{
vfio_user_handle_intr(ctx);
}
static inline int
self_kick(struct nvmf_vfio_user_ctrlr *ctrlr)
{
assert(ctrlr != NULL);
assert(ctrlr->thread != NULL);
if (ctrlr->self_kick_requested) {
return 0;
}
ctrlr->self_kick_requested = true;
return spdk_thread_send_msg(ctrlr->thread,
vfio_user_handle_intr_wrapper,
ctrlr);
}
/*
* Make the given DMA address and length available (locally mapped) via iov.
*/
static void *
map_one(vfu_ctx_t *ctx, uint64_t addr, uint64_t len, dma_sg_t *sg,
struct iovec *iov, int prot)
{
int ret;
assert(ctx != NULL);
assert(sg != NULL);
assert(iov != NULL);
ret = vfu_addr_to_sg(ctx, (void *)(uintptr_t)addr, len, sg, 1, prot);
if (ret < 0) {
return NULL;
}
ret = vfu_map_sg(ctx, sg, iov, 1, 0);
if (ret != 0) {
return NULL;
}
assert(iov->iov_base != NULL);
return iov->iov_base;
}
static int
nvme_cmd_map_prps(void *prv, struct spdk_nvme_cmd *cmd, struct iovec *iovs,
uint32_t max_iovcnt, uint32_t len, size_t mps,
void *(*gpa_to_vva)(void *prv, uint64_t addr, uint64_t len, int prot))
{
uint64_t prp1, prp2;
void *vva;
uint32_t i;
uint32_t residue_len, nents;
uint64_t *prp_list;
uint32_t iovcnt;
assert(max_iovcnt > 0);
prp1 = cmd->dptr.prp.prp1;
prp2 = cmd->dptr.prp.prp2;
/* PRP1 may started with unaligned page address */
residue_len = mps - (prp1 % mps);
residue_len = spdk_min(len, residue_len);
vva = gpa_to_vva(prv, prp1, residue_len, PROT_READ | PROT_WRITE);
if (spdk_unlikely(vva == NULL)) {
SPDK_ERRLOG("GPA to VVA failed\n");
return -EINVAL;
}
len -= residue_len;
if (len && max_iovcnt < 2) {
SPDK_ERRLOG("Too many page entries, at least two iovs are required\n");
return -ERANGE;
}
iovs[0].iov_base = vva;
iovs[0].iov_len = residue_len;
if (len) {
if (spdk_unlikely(prp2 == 0)) {
SPDK_ERRLOG("no PRP2, %d remaining\n", len);
return -EINVAL;
}
if (len <= mps) {
/* 2 PRP used */
iovcnt = 2;
vva = gpa_to_vva(prv, prp2, len, PROT_READ | PROT_WRITE);
if (spdk_unlikely(vva == NULL)) {
SPDK_ERRLOG("no VVA for %#" PRIx64 ", len%#x\n",
prp2, len);
return -EINVAL;
}
iovs[1].iov_base = vva;
iovs[1].iov_len = len;
} else {
/* PRP list used */
nents = (len + mps - 1) / mps;
if (spdk_unlikely(nents + 1 > max_iovcnt)) {
SPDK_ERRLOG("Too many page entries\n");
return -ERANGE;
}
vva = gpa_to_vva(prv, prp2, nents * sizeof(*prp_list), PROT_READ);
if (spdk_unlikely(vva == NULL)) {
SPDK_ERRLOG("no VVA for %#" PRIx64 ", nents=%#x\n",
prp2, nents);
return -EINVAL;
}
prp_list = vva;
i = 0;
while (len != 0) {
residue_len = spdk_min(len, mps);
vva = gpa_to_vva(prv, prp_list[i], residue_len, PROT_READ | PROT_WRITE);
if (spdk_unlikely(vva == NULL)) {
SPDK_ERRLOG("no VVA for %#" PRIx64 ", residue_len=%#x\n",
prp_list[i], residue_len);
return -EINVAL;
}
iovs[i + 1].iov_base = vva;
iovs[i + 1].iov_len = residue_len;
len -= residue_len;
i++;
}
iovcnt = i + 1;
}
} else {
/* 1 PRP used */
iovcnt = 1;
}
assert(iovcnt <= max_iovcnt);
return iovcnt;
}
static int
nvme_cmd_map_sgls_data(void *prv, struct spdk_nvme_sgl_descriptor *sgls, uint32_t num_sgls,
struct iovec *iovs, uint32_t max_iovcnt,
void *(*gpa_to_vva)(void *prv, uint64_t addr, uint64_t len, int prot))
{
uint32_t i;
void *vva;
if (spdk_unlikely(max_iovcnt < num_sgls)) {
return -ERANGE;
}
for (i = 0; i < num_sgls; i++) {
if (spdk_unlikely(sgls[i].unkeyed.type != SPDK_NVME_SGL_TYPE_DATA_BLOCK)) {
SPDK_ERRLOG("Invalid SGL type %u\n", sgls[i].unkeyed.type);
return -EINVAL;
}
vva = gpa_to_vva(prv, sgls[i].address, sgls[i].unkeyed.length, PROT_READ | PROT_WRITE);
if (spdk_unlikely(vva == NULL)) {
SPDK_ERRLOG("GPA to VVA failed\n");
return -EINVAL;
}
iovs[i].iov_base = vva;
iovs[i].iov_len = sgls[i].unkeyed.length;
}
return num_sgls;
}
static int
nvme_cmd_map_sgls(void *prv, struct spdk_nvme_cmd *cmd, struct iovec *iovs, uint32_t max_iovcnt,
uint32_t len, size_t mps,
void *(*gpa_to_vva)(void *prv, uint64_t addr, uint64_t len, int prot))
{
struct spdk_nvme_sgl_descriptor *sgl, *last_sgl;
uint32_t num_sgls, seg_len;
void *vva;
int ret;
uint32_t total_iovcnt = 0;
/* SGL cases */
sgl = &cmd->dptr.sgl1;
/* only one SGL segment */
if (sgl->unkeyed.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK) {
assert(max_iovcnt > 0);
vva = gpa_to_vva(prv, sgl->address, sgl->unkeyed.length, PROT_READ | PROT_WRITE);
if (spdk_unlikely(vva == NULL)) {
SPDK_ERRLOG("GPA to VVA failed\n");
return -EINVAL;
}
iovs[0].iov_base = vva;
iovs[0].iov_len = sgl->unkeyed.length;
assert(sgl->unkeyed.length == len);
return 1;
}
for (;;) {
if (spdk_unlikely((sgl->unkeyed.type != SPDK_NVME_SGL_TYPE_SEGMENT) &&
(sgl->unkeyed.type != SPDK_NVME_SGL_TYPE_LAST_SEGMENT))) {
SPDK_ERRLOG("Invalid SGL type %u\n", sgl->unkeyed.type);
return -EINVAL;
}
seg_len = sgl->unkeyed.length;
if (spdk_unlikely(seg_len % sizeof(struct spdk_nvme_sgl_descriptor))) {
SPDK_ERRLOG("Invalid SGL segment len %u\n", seg_len);
return -EINVAL;
}
num_sgls = seg_len / sizeof(struct spdk_nvme_sgl_descriptor);
vva = gpa_to_vva(prv, sgl->address, sgl->unkeyed.length, PROT_READ);
if (spdk_unlikely(vva == NULL)) {
SPDK_ERRLOG("GPA to VVA failed\n");
return -EINVAL;
}
/* sgl point to the first segment */
sgl = (struct spdk_nvme_sgl_descriptor *)vva;
last_sgl = &sgl[num_sgls - 1];
/* we are done */
if (last_sgl->unkeyed.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK) {
/* map whole sgl list */
ret = nvme_cmd_map_sgls_data(prv, sgl, num_sgls, &iovs[total_iovcnt],
max_iovcnt - total_iovcnt, gpa_to_vva);
if (spdk_unlikely(ret < 0)) {
return ret;
}
total_iovcnt += ret;
return total_iovcnt;
}
if (num_sgls > 1) {
/* map whole sgl exclude last_sgl */
ret = nvme_cmd_map_sgls_data(prv, sgl, num_sgls - 1, &iovs[total_iovcnt],
max_iovcnt - total_iovcnt, gpa_to_vva);
if (spdk_unlikely(ret < 0)) {
return ret;
}
total_iovcnt += ret;
}
/* move to next level's segments */
sgl = last_sgl;
}
return 0;
}
static int
nvme_map_cmd(void *prv, struct spdk_nvme_cmd *cmd, struct iovec *iovs, uint32_t max_iovcnt,
uint32_t len, size_t mps,
void *(*gpa_to_vva)(void *prv, uint64_t addr, uint64_t len, int prot))
{
if (cmd->psdt == SPDK_NVME_PSDT_PRP) {
return nvme_cmd_map_prps(prv, cmd, iovs, max_iovcnt, len, mps, gpa_to_vva);
}
return nvme_cmd_map_sgls(prv, cmd, iovs, max_iovcnt, len, mps, gpa_to_vva);
}
static char *
endpoint_id(struct nvmf_vfio_user_endpoint *endpoint)
{
return endpoint->trid.traddr;
}
static char *
ctrlr_id(struct nvmf_vfio_user_ctrlr *ctrlr)
{
if (!ctrlr || !ctrlr->endpoint) {
return "Null Ctrlr";
}
return endpoint_id(ctrlr->endpoint);
}
static void
fail_ctrlr(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
{
const struct spdk_nvmf_registers *regs;
assert(vu_ctrlr != NULL);
assert(vu_ctrlr->ctrlr != NULL);
regs = spdk_nvmf_ctrlr_get_regs(vu_ctrlr->ctrlr);
if (regs->csts.bits.cfs == 0) {
SPDK_ERRLOG(":%s failing controller\n", ctrlr_id(vu_ctrlr));
}
nvmf_ctrlr_set_fatal_status(vu_ctrlr->ctrlr);
}
static inline bool
ctrlr_interrupt_enabled(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
{
assert(vu_ctrlr != NULL);
assert(vu_ctrlr->endpoint != NULL);
vfu_pci_config_space_t *pci = vu_ctrlr->endpoint->pci_config_space;
return (!pci->hdr.cmd.id || vu_ctrlr->endpoint->msix->mxc.mxe);
}
static void
nvmf_vfio_user_destroy_endpoint(struct nvmf_vfio_user_endpoint *endpoint)
{
SPDK_DEBUGLOG(nvmf_vfio, "destroy endpoint %s\n", endpoint_id(endpoint));
spdk_interrupt_unregister(&endpoint->accept_intr);
spdk_poller_unregister(&endpoint->accept_poller);
if (endpoint->bar0_doorbells) {
munmap((void *)endpoint->bar0_doorbells, NVMF_VFIO_USER_DOORBELLS_SIZE);
}
if (endpoint->devmem_fd > 0) {
close(endpoint->devmem_fd);
}
if (endpoint->migr_data) {
munmap(endpoint->migr_data, vfio_user_migr_data_len());
}
if (endpoint->migr_fd > 0) {
close(endpoint->migr_fd);
}
if (endpoint->vfu_ctx) {
vfu_destroy_ctx(endpoint->vfu_ctx);
}
pthread_mutex_destroy(&endpoint->lock);
free(endpoint);
}
/* called when process exits */
static int
nvmf_vfio_user_destroy(struct spdk_nvmf_transport *transport,
spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
{
struct nvmf_vfio_user_transport *vu_transport;
struct nvmf_vfio_user_endpoint *endpoint, *tmp;
SPDK_DEBUGLOG(nvmf_vfio, "destroy transport\n");
vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport,
transport);
pthread_mutex_destroy(&vu_transport->lock);
pthread_mutex_destroy(&vu_transport->pg_lock);
TAILQ_FOREACH_SAFE(endpoint, &vu_transport->endpoints, link, tmp) {
TAILQ_REMOVE(&vu_transport->endpoints, endpoint, link);
nvmf_vfio_user_destroy_endpoint(endpoint);
}
free(vu_transport);
if (cb_fn) {
cb_fn(cb_arg);
}
return 0;
}
static const struct spdk_json_object_decoder vfio_user_transport_opts_decoder[] = {
{
"disable_mappable_bar0",
offsetof(struct nvmf_vfio_user_transport, transport_opts.disable_mappable_bar0),
spdk_json_decode_bool, true
},
{
"disable_adaptive_irq",
offsetof(struct nvmf_vfio_user_transport, transport_opts.disable_adaptive_irq),
spdk_json_decode_bool, true
},
};
static struct spdk_nvmf_transport *
nvmf_vfio_user_create(struct spdk_nvmf_transport_opts *opts)
{
struct nvmf_vfio_user_transport *vu_transport;
int err;
if (opts->max_qpairs_per_ctrlr > NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR) {
SPDK_ERRLOG("Invalid max_qpairs_per_ctrlr=%d, supported max_qpairs_per_ctrlr=%d\n",
opts->max_qpairs_per_ctrlr, NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR);
return NULL;
}
vu_transport = calloc(1, sizeof(*vu_transport));
if (vu_transport == NULL) {
SPDK_ERRLOG("Transport alloc fail: %m\n");
return NULL;
}
err = pthread_mutex_init(&vu_transport->lock, NULL);
if (err != 0) {
SPDK_ERRLOG("Pthread initialisation failed (%d)\n", err);
goto err;
}
TAILQ_INIT(&vu_transport->endpoints);
err = pthread_mutex_init(&vu_transport->pg_lock, NULL);
if (err != 0) {
pthread_mutex_destroy(&vu_transport->lock);
SPDK_ERRLOG("Pthread initialisation failed (%d)\n", err);
goto err;
}
TAILQ_INIT(&vu_transport->poll_groups);
if (opts->transport_specific != NULL &&
spdk_json_decode_object_relaxed(opts->transport_specific, vfio_user_transport_opts_decoder,
SPDK_COUNTOF(vfio_user_transport_opts_decoder),
vu_transport)) {
SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
goto cleanup;
}
SPDK_DEBUGLOG(nvmf_vfio, "vfio_user transport: disable_mappable_bar0=%d\n",
vu_transport->transport_opts.disable_mappable_bar0);
SPDK_DEBUGLOG(nvmf_vfio, "vfio_user transport: disable_adaptive_irq=%d\n",
vu_transport->transport_opts.disable_adaptive_irq);
/*
* To support interrupt mode, the transport must be configured with
* mappable BAR0 disabled: we need a vfio-user message to wake us up
* when a client writes new doorbell values to BAR0, via the
* libvfio-user socket fd.
*/
vu_transport->intr_mode_supported =
vu_transport->transport_opts.disable_mappable_bar0;
return &vu_transport->transport;
cleanup:
pthread_mutex_destroy(&vu_transport->lock);
pthread_mutex_destroy(&vu_transport->pg_lock);
err:
free(vu_transport);
return NULL;
}
static uint32_t
max_queue_size(struct nvmf_vfio_user_ctrlr const *vu_ctrlr)
{
assert(vu_ctrlr != NULL);
assert(vu_ctrlr->ctrlr != NULL);
return vu_ctrlr->ctrlr->vcprop.cap.bits.mqes + 1;
}
static int
map_q(struct nvmf_vfio_user_ctrlr *vu_ctrlr, struct nvme_q_mapping *mapping,
uint32_t q_size, bool is_cq, bool unmap)
{
uint64_t len;
void *ret;
assert(q_size);
assert(q_addr(mapping) == NULL);
if (is_cq) {
len = q_size * sizeof(struct spdk_nvme_cpl);
} else {
len = q_size * sizeof(struct spdk_nvme_cmd);
}
ret = map_one(vu_ctrlr->endpoint->vfu_ctx, mapping->prp1, len,
mapping->sg, &mapping->iov,
is_cq ? PROT_READ | PROT_WRITE : PROT_READ);
if (ret == NULL) {
return -EFAULT;
}
if (unmap) {
memset(q_addr(mapping), 0, len);
}
return 0;
}
static inline void
unmap_q(struct nvmf_vfio_user_ctrlr *vu_ctrlr, struct nvme_q_mapping *mapping)
{
if (q_addr(mapping) != NULL) {
vfu_unmap_sg(vu_ctrlr->endpoint->vfu_ctx, mapping->sg,
&mapping->iov, 1);
mapping->iov.iov_base = NULL;
}
}
static int
asq_setup(struct nvmf_vfio_user_ctrlr *ctrlr)
{
struct nvmf_vfio_user_sq *sq;
const struct spdk_nvmf_registers *regs;
int ret;
assert(ctrlr != NULL);
sq = ctrlr->sqs[0];
assert(sq != NULL);
assert(q_addr(&sq->mapping) == NULL);
/* XXX ctrlr->asq == 0 is a valid memory address */
regs = spdk_nvmf_ctrlr_get_regs(ctrlr->ctrlr);
sq->qid = 0;
sq->size = regs->aqa.bits.asqs + 1;
sq->mapping.prp1 = regs->asq;
*sq_headp(sq) = 0;
sq->cqid = 0;
ret = map_q(ctrlr, &sq->mapping, sq->size, false, true);
if (ret) {
return ret;
}
sq->dbl_tailp = ctrlr->bar0_doorbells + queue_index(0, false);
*sq_dbl_tailp(sq) = 0;
return 0;
}
static int
acq_setup(struct nvmf_vfio_user_ctrlr *ctrlr)
{
struct nvmf_vfio_user_cq *cq;
const struct spdk_nvmf_registers *regs;
int ret;
assert(ctrlr != NULL);
cq = ctrlr->cqs[0];
assert(cq != NULL);
assert(q_addr(&cq->mapping) == NULL);
regs = spdk_nvmf_ctrlr_get_regs(ctrlr->ctrlr);
assert(regs != NULL);
cq->qid = 0;
cq->size = regs->aqa.bits.acqs + 1;
cq->mapping.prp1 = regs->acq;
*cq_tailp(cq) = 0;
cq->ien = true;
cq->phase = true;
ret = map_q(ctrlr, &cq->mapping, cq->size, true, true);
if (ret) {
return ret;
}
cq->dbl_headp = ctrlr->bar0_doorbells + queue_index(0, true);
*cq_dbl_headp(cq) = 0;
return 0;
}
static inline dma_sg_t *
vu_req_to_sg_t(struct nvmf_vfio_user_req *vu_req, uint32_t iovcnt)
{
return (dma_sg_t *)(vu_req->sg + iovcnt * dma_sg_size());
}
static void *
_map_one(void *prv, uint64_t addr, uint64_t len, int prot)
{
struct spdk_nvmf_request *req = (struct spdk_nvmf_request *)prv;
struct spdk_nvmf_qpair *qpair;
struct nvmf_vfio_user_req *vu_req;
struct nvmf_vfio_user_sq *sq;
void *ret;
assert(req != NULL);
qpair = req->qpair;
vu_req = SPDK_CONTAINEROF(req, struct nvmf_vfio_user_req, req);
sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
assert(vu_req->iovcnt < NVMF_VFIO_USER_MAX_IOVECS);
ret = map_one(sq->ctrlr->endpoint->vfu_ctx, addr, len,
vu_req_to_sg_t(vu_req, vu_req->iovcnt),
&vu_req->iov[vu_req->iovcnt], prot);
if (spdk_likely(ret != NULL)) {
vu_req->iovcnt++;
}
return ret;
}
static int
vfio_user_map_cmd(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvmf_request *req,
struct iovec *iov, uint32_t length)
{
/* Map PRP list to from Guest physical memory to
* virtual memory address.
*/
return nvme_map_cmd(req, &req->cmd->nvme_cmd, iov, NVMF_REQ_MAX_BUFFERS,
length, 4096, _map_one);
}
static int
handle_cmd_req(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvme_cmd *cmd,
struct nvmf_vfio_user_sq *sq);
static inline int
adaptive_irq_enabled(struct nvmf_vfio_user_ctrlr *ctrlr, struct nvmf_vfio_user_cq *cq)
{
return (!spdk_interrupt_mode_is_enabled() && cq->qid != 0 &&
!ctrlr->transport->transport_opts.disable_adaptive_irq);
}
/*
* Posts a CQE in the completion queue.
*
* @ctrlr: the vfio-user controller
* @cq: the completion queue
* @cdw0: cdw0 as reported by NVMf
* @sqid: submission queue ID
* @cid: command identifier in NVMe command
* @sc: the NVMe CQE status code
* @sct: the NVMe CQE status code type
*/
static int
post_completion(struct nvmf_vfio_user_ctrlr *ctrlr, struct nvmf_vfio_user_cq *cq,
uint32_t cdw0, uint16_t sqid, uint16_t cid, uint16_t sc, uint16_t sct)
{
struct spdk_nvme_status cpl_status = { 0 };
const struct spdk_nvmf_registers *regs;
struct spdk_nvme_cpl *cpl;
int err;
assert(ctrlr != NULL);
if (spdk_unlikely(cq == NULL || q_addr(&cq->mapping) == NULL)) {
return 0;
}
regs = spdk_nvmf_ctrlr_get_regs(ctrlr->ctrlr);
if (regs->csts.bits.shst != SPDK_NVME_SHST_NORMAL) {
SPDK_DEBUGLOG(nvmf_vfio,
"%s: ignore completion sqid:%d cid=%d status=%#x\n",
ctrlr_id(ctrlr), sqid, cid, sc);
return 0;
}
if (cq_is_full(cq)) {
SPDK_ERRLOG("%s: cqid:%d full (tail=%d, head=%d)\n",
ctrlr_id(ctrlr), cq->qid, *cq_tailp(cq),
*cq_dbl_headp(cq));
return -1;
}
cpl = ((struct spdk_nvme_cpl *)q_addr(&cq->mapping)) + *cq_tailp(cq);
assert(ctrlr->sqs[sqid] != NULL);
SPDK_DEBUGLOG(nvmf_vfio,
"%s: request complete sqid:%d cid=%d status=%#x "
"sqhead=%d cq tail=%d\n", ctrlr_id(ctrlr), sqid, cid, sc,
*sq_headp(ctrlr->sqs[sqid]), *cq_tailp(cq));
cpl->sqhd = *sq_headp(ctrlr->sqs[sqid]);
cpl->sqid = sqid;
cpl->cid = cid;
cpl->cdw0 = cdw0;
/*
* This is a bitfield: instead of setting the individual bits we need
* directly in cpl->status, which would cause a read-modify-write cycle,
* we'll avoid reading from the CPL altogether by filling in a local
* cpl_status variable, then writing the whole thing.
*/
cpl_status.sct = sct;
cpl_status.sc = sc;
cpl_status.p = cq->phase;
cpl->status = cpl_status;
/* Ensure the Completion Queue Entry is visible. */
spdk_wmb();
cq_tail_advance(cq);
/*
* this function now executes at SPDK thread context, we
* might be triggering interrupts from vfio-user thread context so
* check for race conditions.
*/
if (!adaptive_irq_enabled(ctrlr, cq) &&
cq->ien && ctrlr_interrupt_enabled(ctrlr)) {
err = vfu_irq_trigger(ctrlr->endpoint->vfu_ctx, cq->iv);
if (err != 0) {
SPDK_ERRLOG("%s: failed to trigger interrupt: %m\n",
ctrlr_id(ctrlr));
return err;
}
}
return 0;
}
static void
free_sq_reqs(struct nvmf_vfio_user_sq *sq)
{
while (!TAILQ_EMPTY(&sq->free_reqs)) {
struct nvmf_vfio_user_req *vu_req = TAILQ_FIRST(&sq->free_reqs);
TAILQ_REMOVE(&sq->free_reqs, vu_req, link);
free(vu_req);
}
}
/* Deletes a SQ, if this SQ is the last user of the associated CQ
* and the controller is being shut down or reset, then the CQ is
* also deleted.
*/
static void
delete_sq_done(struct nvmf_vfio_user_ctrlr *vu_ctrlr, struct nvmf_vfio_user_sq *sq)
{
struct nvmf_vfio_user_cq *cq;
uint16_t cqid;
SPDK_DEBUGLOG(nvmf_vfio, "%s: delete sqid:%d=%p done\n", ctrlr_id(vu_ctrlr),
sq->qid, sq);
/* Free SQ resources */
unmap_q(vu_ctrlr, &sq->mapping);
free_sq_reqs(sq);
sq->size = 0;
sq->sq_state = VFIO_USER_SQ_DELETED;
/* Controller RESET and SHUTDOWN are special cases,
* VM may not send DELETE IO SQ/CQ commands, NVMf library
* will disconnect IO queue pairs.
*/
if (vu_ctrlr->reset_shn) {
cqid = sq->cqid;
cq = vu_ctrlr->cqs[cqid];
SPDK_DEBUGLOG(nvmf_vfio, "%s: try to delete CQ%d=%p\n", ctrlr_id(vu_ctrlr),
cq->qid, cq);
if (cq->cq_ref) {
cq->cq_ref--;
}
if (cq->cq_ref == 0) {
unmap_q(vu_ctrlr, &cq->mapping);
cq->size = 0;
cq->cq_state = VFIO_USER_CQ_DELETED;
cq->group = NULL;
}
}
}
static void
free_qp(struct nvmf_vfio_user_ctrlr *ctrlr, uint16_t qid)
{
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_cq *cq;
if (ctrlr == NULL) {
return;
}
sq = ctrlr->sqs[qid];
if (sq) {
SPDK_DEBUGLOG(nvmf_vfio, "%s: Free SQ %u\n", ctrlr_id(ctrlr), qid);
unmap_q(ctrlr, &sq->mapping);
free_sq_reqs(sq);
free(sq->mapping.sg);
free(sq);
ctrlr->sqs[qid] = NULL;
}
cq = ctrlr->cqs[qid];
if (cq) {
SPDK_DEBUGLOG(nvmf_vfio, "%s: Free CQ %u\n", ctrlr_id(ctrlr), qid);
unmap_q(ctrlr, &cq->mapping);
free(cq->mapping.sg);
free(cq);
ctrlr->cqs[qid] = NULL;
}
}
static int
init_sq(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvmf_transport *transport,
const uint16_t id)
{
struct nvmf_vfio_user_sq *sq;
assert(ctrlr != NULL);
assert(transport != NULL);
assert(ctrlr->sqs[id] == NULL);
sq = calloc(1, sizeof(*sq));
if (sq == NULL) {
return -ENOMEM;
}
sq->mapping.sg = calloc(1, dma_sg_size());
if (sq->mapping.sg == NULL) {
free(sq);
return -ENOMEM;
}
sq->qid = id;
sq->qpair.qid = id;
sq->qpair.transport = transport;
sq->ctrlr = ctrlr;
ctrlr->sqs[id] = sq;
TAILQ_INIT(&sq->free_reqs);
return 0;
}
static int
init_cq(struct nvmf_vfio_user_ctrlr *vu_ctrlr, const uint16_t id)
{
struct nvmf_vfio_user_cq *cq;
assert(vu_ctrlr != NULL);
assert(vu_ctrlr->cqs[id] == NULL);
cq = calloc(1, sizeof(*cq));
if (cq == NULL) {
return -ENOMEM;
}
cq->mapping.sg = calloc(1, dma_sg_size());
if (cq->mapping.sg == NULL) {
free(cq);
return -ENOMEM;
}
cq->qid = id;
vu_ctrlr->cqs[id] = cq;
return 0;
}
static int
alloc_sq_reqs(struct nvmf_vfio_user_ctrlr *vu_ctrlr, struct nvmf_vfio_user_sq *sq)
{
struct nvmf_vfio_user_req *vu_req, *tmp;
size_t req_size;
uint32_t i;
req_size = sizeof(struct nvmf_vfio_user_req) +
(dma_sg_size() * NVMF_VFIO_USER_MAX_IOVECS);
for (i = 0; i < sq->size; i++) {
struct spdk_nvmf_request *req;
vu_req = calloc(1, req_size);
if (vu_req == NULL) {
goto err;
}
req = &vu_req->req;
req->qpair = &sq->qpair;
req->rsp = (union nvmf_c2h_msg *)&vu_req->rsp;
req->cmd = (union nvmf_h2c_msg *)&vu_req->cmd;
req->stripped_data = NULL;
TAILQ_INSERT_TAIL(&sq->free_reqs, vu_req, link);
}
return 0;
err:
TAILQ_FOREACH_SAFE(vu_req, &sq->free_reqs, link, tmp) {
free(vu_req);
}
return -ENOMEM;
}
static volatile uint32_t *
ctrlr_doorbell_ptr(struct nvmf_vfio_user_ctrlr *ctrlr)
{
return ctrlr->bar0_doorbells;
}
static uint16_t
handle_create_io_sq(struct nvmf_vfio_user_ctrlr *ctrlr,
struct spdk_nvme_cmd *cmd, uint16_t *sct)
{
struct nvmf_vfio_user_transport *vu_transport = ctrlr->transport;
struct nvmf_vfio_user_sq *sq;
uint32_t qsize;
uint16_t cqid;
uint16_t qid;
int err;
qid = cmd->cdw10_bits.create_io_q.qid;
cqid = cmd->cdw11_bits.create_io_sq.cqid;
qsize = cmd->cdw10_bits.create_io_q.qsize + 1;
if (ctrlr->sqs[qid] == NULL) {
err = init_sq(ctrlr, ctrlr->sqs[0]->qpair.transport, qid);
if (err != 0) {
*sct = SPDK_NVME_SCT_GENERIC;
return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
}
}
if (cqid == 0 || cqid >= vu_transport->transport.opts.max_qpairs_per_ctrlr) {
SPDK_ERRLOG("%s: invalid cqid:%u\n", ctrlr_id(ctrlr), cqid);
*sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
return SPDK_NVME_SC_INVALID_QUEUE_IDENTIFIER;
}
/* CQ must be created before SQ. */
if (!io_q_exists(ctrlr, cqid, true)) {
SPDK_ERRLOG("%s: CQ%u does not exist\n", ctrlr_id(ctrlr), cqid);
*sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
return SPDK_NVME_SC_COMPLETION_QUEUE_INVALID;
}
if (cmd->cdw11_bits.create_io_sq.pc != 0x1) {
SPDK_ERRLOG("%s: non-PC SQ not supported\n", ctrlr_id(ctrlr));
*sct = SPDK_NVME_SCT_GENERIC;
return SPDK_NVME_SC_INVALID_FIELD;
}
sq = ctrlr->sqs[qid];
sq->size = qsize;
SPDK_DEBUGLOG(nvmf_vfio, "%s: sqid:%d cqid:%d\n", ctrlr_id(ctrlr),
qid, cqid);
sq->mapping.prp1 = cmd->dptr.prp.prp1;
err = map_q(ctrlr, &sq->mapping, sq->size, false, true);
if (err) {
SPDK_ERRLOG("%s: failed to map I/O queue: %m\n", ctrlr_id(ctrlr));
*sct = SPDK_NVME_SCT_GENERIC;
return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
}
SPDK_DEBUGLOG(nvmf_vfio, "%s: mapped sqid:%d IOVA=%#lx vaddr=%p\n",
ctrlr_id(ctrlr), qid, cmd->dptr.prp.prp1,
q_addr(&sq->mapping));
err = alloc_sq_reqs(ctrlr, sq);
if (err < 0) {
SPDK_ERRLOG("%s: failed to allocate SQ requests: %m\n", ctrlr_id(ctrlr));
*sct = SPDK_NVME_SCT_GENERIC;
return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
}
sq->cqid = cqid;
ctrlr->cqs[sq->cqid]->cq_ref++;
sq->sq_state = VFIO_USER_SQ_CREATED;
*sq_headp(sq) = 0;
sq->dbl_tailp = ctrlr_doorbell_ptr(ctrlr) + queue_index(qid, false);
*sq_dbl_tailp(sq) = 0;
/*
* Create our new I/O qpair. This asynchronously invokes, on a suitable
* poll group, the nvmf_vfio_user_poll_group_add() callback, which will
* call spdk_nvmf_request_exec_fabrics() with a generated fabrics
* connect command. This command is then eventually completed via
* handle_queue_connect_rsp().
*/
sq->create_io_sq_cmd = *cmd;
sq->post_create_io_sq_completion = true;
spdk_nvmf_tgt_new_qpair(ctrlr->transport->transport.tgt,
&sq->qpair);
*sct = SPDK_NVME_SCT_GENERIC;
return SPDK_NVME_SC_SUCCESS;
}
static uint16_t
handle_create_io_cq(struct nvmf_vfio_user_ctrlr *ctrlr,
struct spdk_nvme_cmd *cmd, uint16_t *sct)
{
struct nvmf_vfio_user_cq *cq;
uint32_t qsize;
uint16_t qid;
int err;
qid = cmd->cdw10_bits.create_io_q.qid;
qsize = cmd->cdw10_bits.create_io_q.qsize + 1;
if (ctrlr->cqs[qid] == NULL) {
err = init_cq(ctrlr, qid);
if (err != 0) {
*sct = SPDK_NVME_SCT_GENERIC;
return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
}
}
if (cmd->cdw11_bits.create_io_cq.pc != 0x1) {
SPDK_ERRLOG("%s: non-PC CQ not supported\n", ctrlr_id(ctrlr));
*sct = SPDK_NVME_SCT_GENERIC;
return SPDK_NVME_SC_INVALID_FIELD;
}
if (cmd->cdw11_bits.create_io_cq.iv > NVME_IRQ_MSIX_NUM - 1) {
SPDK_ERRLOG("%s: IV is too big\n", ctrlr_id(ctrlr));
*sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
return SPDK_NVME_SC_INVALID_INTERRUPT_VECTOR;
}
cq = ctrlr->cqs[qid];
cq->size = qsize;
cq->mapping.prp1 = cmd->dptr.prp.prp1;
cq->dbl_headp = ctrlr_doorbell_ptr(ctrlr) + queue_index(qid, true);
err = map_q(ctrlr, &cq->mapping, cq->size, true, true);
if (err) {
SPDK_ERRLOG("%s: failed to map I/O queue: %m\n", ctrlr_id(ctrlr));
*sct = SPDK_NVME_SCT_GENERIC;
return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
}
SPDK_DEBUGLOG(nvmf_vfio, "%s: mapped CQ%d IOVA=%#lx vaddr=%p\n",
ctrlr_id(ctrlr), qid, cmd->dptr.prp.prp1,
q_addr(&cq->mapping));
cq->ien = cmd->cdw11_bits.create_io_cq.ien;
cq->iv = cmd->cdw11_bits.create_io_cq.iv;
cq->phase = true;
cq->cq_state = VFIO_USER_CQ_CREATED;
*cq_tailp(cq) = 0;
*cq_dbl_headp(cq) = 0;
*sct = SPDK_NVME_SCT_GENERIC;
return SPDK_NVME_SC_SUCCESS;
}
/*
* Creates a completion or submission I/O queue. Returns 0 on success, -errno
* on error.
*/
static int
handle_create_io_q(struct nvmf_vfio_user_ctrlr *ctrlr,
struct spdk_nvme_cmd *cmd, const bool is_cq)
{
struct nvmf_vfio_user_transport *vu_transport = ctrlr->transport;
uint16_t sct = SPDK_NVME_SCT_GENERIC;
uint16_t sc = SPDK_NVME_SC_SUCCESS;
uint32_t qsize;
uint16_t qid;
assert(ctrlr != NULL);
assert(cmd != NULL);
qid = cmd->cdw10_bits.create_io_q.qid;
if (qid == 0 || qid >= vu_transport->transport.opts.max_qpairs_per_ctrlr) {
SPDK_ERRLOG("%s: invalid qid=%d, max=%d\n", ctrlr_id(ctrlr),
qid, vu_transport->transport.opts.max_qpairs_per_ctrlr);
sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
sc = SPDK_NVME_SC_INVALID_QUEUE_IDENTIFIER;
goto out;
}
if (io_q_exists(ctrlr, qid, is_cq)) {
SPDK_ERRLOG("%s: %cqid:%d already exists\n", ctrlr_id(ctrlr),
is_cq ? 'C' : 'S', qid);
sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
sc = SPDK_NVME_SC_INVALID_QUEUE_IDENTIFIER;
goto out;
}
qsize = cmd->cdw10_bits.create_io_q.qsize + 1;
if (qsize == 1 || qsize > max_queue_size(ctrlr)) {
SPDK_ERRLOG("%s: invalid I/O queue size %u\n", ctrlr_id(ctrlr), qsize);
sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
sc = SPDK_NVME_SC_INVALID_QUEUE_SIZE;
goto out;
}
if (is_cq) {
sc = handle_create_io_cq(ctrlr, cmd, &sct);
} else {
sc = handle_create_io_sq(ctrlr, cmd, &sct);
if (sct == SPDK_NVME_SCT_GENERIC &&
sc == SPDK_NVME_SC_SUCCESS) {
/* Completion posted asynchronously. */
return 0;
}
}
out:
return post_completion(ctrlr, ctrlr->cqs[0], 0, 0, cmd->cid, sc, sct);
}
/* For ADMIN I/O DELETE SUBMISSION QUEUE the NVMf library will disconnect and free
* queue pair, so save the command in a context.
*/
struct vfio_user_delete_sq_ctx {
struct nvmf_vfio_user_ctrlr *vu_ctrlr;
struct spdk_nvme_cmd delete_io_sq_cmd;
};
static void
vfio_user_qpair_delete_cb(void *cb_arg)
{
struct vfio_user_delete_sq_ctx *ctx = cb_arg;
struct nvmf_vfio_user_ctrlr *vu_ctrlr = ctx->vu_ctrlr;
post_completion(vu_ctrlr, vu_ctrlr->cqs[0], 0, 0, ctx->delete_io_sq_cmd.cid,
SPDK_NVME_SC_SUCCESS, SPDK_NVME_SCT_GENERIC);
free(ctx);
}
/*
* Deletes a completion or submission I/O queue.
*/
static int
handle_del_io_q(struct nvmf_vfio_user_ctrlr *ctrlr,
struct spdk_nvme_cmd *cmd, const bool is_cq)
{
uint16_t sct = SPDK_NVME_SCT_GENERIC;
uint16_t sc = SPDK_NVME_SC_SUCCESS;
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_cq *cq;
struct vfio_user_delete_sq_ctx *ctx;
SPDK_DEBUGLOG(nvmf_vfio, "%s: delete I/O %cqid:%d\n",
ctrlr_id(ctrlr), is_cq ? 'C' : 'S',
cmd->cdw10_bits.delete_io_q.qid);
if (!io_q_exists(ctrlr, cmd->cdw10_bits.delete_io_q.qid, is_cq)) {
SPDK_ERRLOG("%s: I/O %cQ%d does not exist\n", ctrlr_id(ctrlr),
is_cq ? 'C' : 'S', cmd->cdw10_bits.delete_io_q.qid);
sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
sc = SPDK_NVME_SC_INVALID_QUEUE_IDENTIFIER;
goto out;
}
if (is_cq) {
cq = ctrlr->cqs[cmd->cdw10_bits.delete_io_q.qid];
if (cq->cq_ref) {
SPDK_ERRLOG("%s: the associated SQ must be deleted first\n", ctrlr_id(ctrlr));
sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
sc = SPDK_NVME_SC_INVALID_QUEUE_DELETION;
goto out;
}
unmap_q(ctrlr, &cq->mapping);
cq->size = 0;
cq->cq_state = VFIO_USER_CQ_DELETED;
cq->group = NULL;
} else {
ctx = calloc(1, sizeof(*ctx));
if (!ctx) {
sct = SPDK_NVME_SCT_GENERIC;
sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
goto out;
}
ctx->vu_ctrlr = ctrlr;
ctx->delete_io_sq_cmd = *cmd;
sq = ctrlr->sqs[cmd->cdw10_bits.delete_io_q.qid];
sq->sq_state = VFIO_USER_SQ_DELETED;
assert(ctrlr->cqs[sq->cqid]->cq_ref);
ctrlr->cqs[sq->cqid]->cq_ref--;
spdk_nvmf_qpair_disconnect(&sq->qpair, vfio_user_qpair_delete_cb, ctx);
return 0;
}
out:
return post_completion(ctrlr, ctrlr->cqs[0], 0, 0, cmd->cid, sc, sct);
}
/*
* Returns 0 on success and -errno on error.
*/
static int
consume_admin_cmd(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvme_cmd *cmd)
{
assert(ctrlr != NULL);
assert(cmd != NULL);
if (cmd->fuse != 0) {
/* Fused admin commands are not supported. */
return post_completion(ctrlr, ctrlr->cqs[0], 0, 0, cmd->cid,
SPDK_NVME_SC_INVALID_FIELD,
SPDK_NVME_SCT_GENERIC);
}
switch (cmd->opc) {
case SPDK_NVME_OPC_CREATE_IO_CQ:
case SPDK_NVME_OPC_CREATE_IO_SQ:
return handle_create_io_q(ctrlr, cmd,
cmd->opc == SPDK_NVME_OPC_CREATE_IO_CQ);
case SPDK_NVME_OPC_DELETE_IO_SQ:
case SPDK_NVME_OPC_DELETE_IO_CQ:
return handle_del_io_q(ctrlr, cmd,
cmd->opc == SPDK_NVME_OPC_DELETE_IO_CQ);
default:
return handle_cmd_req(ctrlr, cmd, ctrlr->sqs[0]);
}
}
static int
handle_cmd_rsp(struct nvmf_vfio_user_req *vu_req, void *cb_arg)
{
struct nvmf_vfio_user_sq *sq = cb_arg;
struct nvmf_vfio_user_ctrlr *vu_ctrlr = sq->ctrlr;
uint16_t sqid, cqid;
assert(sq != NULL);
assert(vu_req != NULL);
assert(vu_ctrlr != NULL);
if (spdk_likely(vu_req->iovcnt)) {
vfu_unmap_sg(vu_ctrlr->endpoint->vfu_ctx,
vu_req_to_sg_t(vu_req, 0),
vu_req->iov, vu_req->iovcnt);
}
sqid = sq->qid;
cqid = sq->cqid;
return post_completion(vu_ctrlr, vu_ctrlr->cqs[cqid],
vu_req->req.rsp->nvme_cpl.cdw0,
sqid,
vu_req->req.cmd->nvme_cmd.cid,
vu_req->req.rsp->nvme_cpl.status.sc,
vu_req->req.rsp->nvme_cpl.status.sct);
}
static int
consume_cmd(struct nvmf_vfio_user_ctrlr *ctrlr, struct nvmf_vfio_user_sq *sq,
struct spdk_nvme_cmd *cmd)
{
assert(sq != NULL);
if (nvmf_qpair_is_admin_queue(&sq->qpair)) {
return consume_admin_cmd(ctrlr, cmd);
}
return handle_cmd_req(ctrlr, cmd, sq);
}
/* Returns the number of commands processed, or a negative value on error. */
static int
handle_sq_tdbl_write(struct nvmf_vfio_user_ctrlr *ctrlr, const uint32_t new_tail,
struct nvmf_vfio_user_sq *sq)
{
struct spdk_nvme_cmd *queue;
int count = 0;
assert(ctrlr != NULL);
assert(sq != NULL);
queue = q_addr(&sq->mapping);
while (*sq_headp(sq) != new_tail) {
int err;
struct spdk_nvme_cmd *cmd = &queue[*sq_headp(sq)];
count++;
/*
* SQHD must contain the new head pointer, so we must increase
* it before we generate a completion.
*/
sq_head_advance(sq);
err = consume_cmd(ctrlr, sq, cmd);
if (err != 0) {
return err;
}
}
return count;
}
static void
memory_region_add_cb(vfu_ctx_t *vfu_ctx, vfu_dma_info_t *info)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
struct nvmf_vfio_user_ctrlr *ctrlr;
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_cq *cq;
void *map_start, *map_end;
int ret;
/*
* We're not interested in any DMA regions that aren't mappable (we don't
* support clients that don't share their memory).
*/
if (!info->vaddr) {
return;
}
map_start = info->mapping.iov_base;
map_end = info->mapping.iov_base + info->mapping.iov_len;
if (((uintptr_t)info->mapping.iov_base & MASK_2MB) ||
(info->mapping.iov_len & MASK_2MB)) {
SPDK_DEBUGLOG(nvmf_vfio, "Invalid memory region vaddr %p, IOVA %p-%p\n",
info->vaddr, map_start, map_end);
return;
}
assert(endpoint != NULL);
if (endpoint->ctrlr == NULL) {
return;
}
ctrlr = endpoint->ctrlr;
SPDK_DEBUGLOG(nvmf_vfio, "%s: map IOVA %p-%p\n", endpoint_id(endpoint),
map_start, map_end);
/* VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE are enabled when registering to VFIO, here we also
* check the protection bits before registering.
*/
if (info->prot == (PROT_WRITE | PROT_READ)) {
ret = spdk_mem_register(info->mapping.iov_base, info->mapping.iov_len);
if (ret) {
SPDK_ERRLOG("Memory region register %p-%p failed, ret=%d\n",
map_start, map_end, ret);
}
}
pthread_mutex_lock(&endpoint->lock);
TAILQ_FOREACH(sq, &ctrlr->connected_sqs, tailq) {
if (sq->sq_state != VFIO_USER_SQ_INACTIVE) {
continue;
}
cq = ctrlr->cqs[sq->cqid];
/* For shared CQ case, we will use q_addr() to avoid mapping CQ multiple times */
if (cq->size && q_addr(&cq->mapping) == NULL) {
ret = map_q(ctrlr, &cq->mapping, cq->size, true, false);
if (ret) {
SPDK_DEBUGLOG(nvmf_vfio, "Memory isn't ready to remap cqid:%d %#lx-%#lx\n",
cq->qid, cq->mapping.prp1,
cq->mapping.prp1 + cq->size * sizeof(struct spdk_nvme_cpl));
continue;
}
}
if (sq->size) {
ret = map_q(ctrlr, &sq->mapping, sq->size, false, false);
if (ret) {
SPDK_DEBUGLOG(nvmf_vfio, "Memory isn't ready to remap sqid:%d %#lx-%#lx\n",
sq->qid, sq->mapping.prp1,
sq->mapping.prp1 + sq->size * sizeof(struct spdk_nvme_cmd));
continue;
}
}
sq->sq_state = VFIO_USER_SQ_ACTIVE;
SPDK_DEBUGLOG(nvmf_vfio, "Remap SQ %u successfully\n", sq->qid);
}
pthread_mutex_unlock(&endpoint->lock);
}
static void
memory_region_remove_cb(vfu_ctx_t *vfu_ctx, vfu_dma_info_t *info)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_cq *cq;
void *map_start, *map_end;
int ret = 0;
if (!info->vaddr) {
return;
}
map_start = info->mapping.iov_base;
map_end = info->mapping.iov_base + info->mapping.iov_len;
if (((uintptr_t)info->mapping.iov_base & MASK_2MB) ||
(info->mapping.iov_len & MASK_2MB)) {
SPDK_DEBUGLOG(nvmf_vfio, "Invalid memory region vaddr %p, IOVA %p-%p\n",
info->vaddr, map_start, map_end);
return;
}
assert(endpoint != NULL);
SPDK_DEBUGLOG(nvmf_vfio, "%s: unmap IOVA %p-%p\n", endpoint_id(endpoint),
map_start, map_end);
if (endpoint->ctrlr != NULL) {
struct nvmf_vfio_user_ctrlr *ctrlr;
ctrlr = endpoint->ctrlr;
pthread_mutex_lock(&endpoint->lock);
TAILQ_FOREACH(sq, &ctrlr->connected_sqs, tailq) {
if (q_addr(&sq->mapping) >= map_start && q_addr(&sq->mapping) <= map_end) {
unmap_q(ctrlr, &sq->mapping);
sq->sq_state = VFIO_USER_SQ_INACTIVE;
}
cq = ctrlr->cqs[sq->cqid];
if (q_addr(&cq->mapping) >= map_start && q_addr(&cq->mapping) <= map_end) {
unmap_q(ctrlr, &cq->mapping);
}
}
pthread_mutex_unlock(&endpoint->lock);
}
if (info->prot == (PROT_WRITE | PROT_READ)) {
ret = spdk_mem_unregister(info->mapping.iov_base, info->mapping.iov_len);
if (ret) {
SPDK_ERRLOG("Memory region unregister %p-%p failed, ret=%d\n",
map_start, map_end, ret);
}
}
}
/* Used to initiate a controller-level reset or a controller shutdown. */
static void
disable_ctrlr(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
{
SPDK_DEBUGLOG(nvmf_vfio, "%s: disabling controller\n",
ctrlr_id(vu_ctrlr));
/* Unmap Admin queue. */
assert(vu_ctrlr->sqs[0] != NULL);
assert(vu_ctrlr->cqs[0] != NULL);
unmap_q(vu_ctrlr, &vu_ctrlr->sqs[0]->mapping);
unmap_q(vu_ctrlr, &vu_ctrlr->cqs[0]->mapping);
vu_ctrlr->sqs[0]->size = 0;
*sq_headp(vu_ctrlr->sqs[0]) = 0;
vu_ctrlr->sqs[0]->sq_state = VFIO_USER_SQ_INACTIVE;
vu_ctrlr->cqs[0]->size = 0;
*cq_tailp(vu_ctrlr->cqs[0]) = 0;
/*
* For PCIe controller reset or shutdown, we will drop all AER
* responses.
*/
nvmf_ctrlr_abort_aer(vu_ctrlr->ctrlr);
}
/* Used to re-enable the controller after a controller-level reset. */
static int
enable_ctrlr(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
{
int err;
assert(vu_ctrlr != NULL);
SPDK_DEBUGLOG(nvmf_vfio, "%s: enabling controller\n",
ctrlr_id(vu_ctrlr));
err = acq_setup(vu_ctrlr);
if (err != 0) {
return err;
}
err = asq_setup(vu_ctrlr);
if (err != 0) {
return err;
}
vu_ctrlr->sqs[0]->sq_state = VFIO_USER_SQ_ACTIVE;
return 0;
}
static int
nvmf_vfio_user_prop_req_rsp(struct nvmf_vfio_user_req *req, void *cb_arg)
{
struct nvmf_vfio_user_sq *sq = cb_arg;
struct nvmf_vfio_user_ctrlr *vu_ctrlr;
int ret;
assert(sq != NULL);
assert(req != NULL);
if (req->req.cmd->prop_get_cmd.fctype == SPDK_NVMF_FABRIC_COMMAND_PROPERTY_GET) {
assert(sq->ctrlr != NULL);
assert(req != NULL);
memcpy(req->req.data,
&req->req.rsp->prop_get_rsp.value.u64,
req->req.length);
} else {
assert(req->req.cmd->prop_set_cmd.fctype == SPDK_NVMF_FABRIC_COMMAND_PROPERTY_SET);
assert(sq->ctrlr != NULL);
vu_ctrlr = sq->ctrlr;
if (req->req.cmd->prop_set_cmd.ofst == offsetof(struct spdk_nvme_registers, cc)) {
union spdk_nvme_cc_register cc, diff;
cc.raw = req->req.cmd->prop_set_cmd.value.u64;
diff.raw = cc.raw ^ req->cc.raw;
if (diff.bits.en) {
if (cc.bits.en) {
ret = enable_ctrlr(vu_ctrlr);
if (ret) {
SPDK_ERRLOG("%s: failed to enable ctrlr\n", ctrlr_id(vu_ctrlr));
return ret;
}
vu_ctrlr->reset_shn = false;
} else {
vu_ctrlr->reset_shn = true;
}
}
if (diff.bits.shn) {
if (cc.bits.shn == SPDK_NVME_SHN_NORMAL || cc.bits.shn == SPDK_NVME_SHN_ABRUPT) {
vu_ctrlr->reset_shn = true;
}
}
if (vu_ctrlr->reset_shn) {
disable_ctrlr(vu_ctrlr);
}
}
}
return 0;
}
/*
* Handles a write at offset 0x1000 or more; this is the non-mapped path when a
* doorbell is written via access_bar0_fn().
*
* DSTRD is set to fixed value 0 for NVMf.
*
*/
static int
handle_dbl_access(struct nvmf_vfio_user_ctrlr *ctrlr, uint32_t *buf,
const size_t count, loff_t pos, const bool is_write)
{
assert(ctrlr != NULL);
assert(buf != NULL);
if (!is_write) {
SPDK_WARNLOG("%s: host tried to read BAR0 doorbell %#lx\n",
ctrlr_id(ctrlr), pos);
errno = EPERM;
return -1;
}
if (count != sizeof(uint32_t)) {
SPDK_ERRLOG("%s: bad doorbell buffer size %ld\n",
ctrlr_id(ctrlr), count);
errno = EINVAL;
return -1;
}
pos -= NVME_DOORBELLS_OFFSET;
/* pos must be dword aligned */
if ((pos & 0x3) != 0) {
SPDK_ERRLOG("%s: bad doorbell offset %#lx\n", ctrlr_id(ctrlr), pos);
errno = EINVAL;
return -1;
}
/* convert byte offset to array index */
pos >>= 2;
if (pos >= NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR * 2) {
SPDK_ERRLOG("%s: bad doorbell index %#lx\n", ctrlr_id(ctrlr), pos);
errno = EINVAL;
return -1;
}
ctrlr->bar0_doorbells[pos] = *buf;
spdk_wmb();
return 0;
}
static size_t
vfio_user_property_access(struct nvmf_vfio_user_ctrlr *vu_ctrlr,
char *buf, size_t count, loff_t pos,
bool is_write)
{
struct nvmf_vfio_user_req *req;
const struct spdk_nvmf_registers *regs;
/* Construct a Fabric Property Get/Set command and send it */
req = get_nvmf_vfio_user_req(vu_ctrlr->sqs[0]);
if (req == NULL) {
errno = ENOBUFS;
return -1;
}
regs = spdk_nvmf_ctrlr_get_regs(vu_ctrlr->ctrlr);
req->cc.raw = regs->cc.raw;
req->cb_fn = nvmf_vfio_user_prop_req_rsp;
req->cb_arg = vu_ctrlr->sqs[0];
req->req.cmd->prop_set_cmd.opcode = SPDK_NVME_OPC_FABRIC;
req->req.cmd->prop_set_cmd.cid = 0;
req->req.cmd->prop_set_cmd.attrib.size = (count / 4) - 1;
req->req.cmd->prop_set_cmd.ofst = pos;
if (is_write) {
req->req.cmd->prop_set_cmd.fctype = SPDK_NVMF_FABRIC_COMMAND_PROPERTY_SET;
if (req->req.cmd->prop_set_cmd.attrib.size) {
req->req.cmd->prop_set_cmd.value.u64 = *(uint64_t *)buf;
} else {
req->req.cmd->prop_set_cmd.value.u32.high = 0;
req->req.cmd->prop_set_cmd.value.u32.low = *(uint32_t *)buf;
}
} else {
req->req.cmd->prop_get_cmd.fctype = SPDK_NVMF_FABRIC_COMMAND_PROPERTY_GET;
}
req->req.length = count;
req->req.data = buf;
spdk_nvmf_request_exec_fabrics(&req->req);
return count;
}
static ssize_t
access_bar0_fn(vfu_ctx_t *vfu_ctx, char *buf, size_t count, loff_t pos,
bool is_write)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
struct nvmf_vfio_user_ctrlr *ctrlr;
int ret;
ctrlr = endpoint->ctrlr;
if (endpoint->need_async_destroy || !ctrlr) {
errno = EIO;
return -1;
}
SPDK_DEBUGLOG(nvmf_vfio,
"%s: bar0 %s ctrlr: %p, count=%zu, pos=%"PRIX64"\n",
endpoint_id(endpoint), is_write ? "write" : "read",
ctrlr, count, pos);
if (pos >= NVME_DOORBELLS_OFFSET) {
/*
* The fact that the doorbells can be memory mapped doesn't mean
* that the client (VFIO in QEMU) is obliged to memory map them,
* it might still elect to access them via regular read/write;
* we might also have had disable_mappable_bar0 set.
*/
ret = handle_dbl_access(ctrlr, (uint32_t *)buf, count,
pos, is_write);
if (ret == 0) {
return count;
}
return ret;
}
return vfio_user_property_access(ctrlr, buf, count, pos, is_write);
}
static ssize_t
access_pci_config(vfu_ctx_t *vfu_ctx, char *buf, size_t count, loff_t offset,
bool is_write)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
if (is_write) {
SPDK_ERRLOG("%s: write %#lx-%#lx not supported\n",
endpoint_id(endpoint), offset, offset + count);
errno = EINVAL;
return -1;
}
if (offset + count > NVME_REG_CFG_SIZE) {
SPDK_ERRLOG("%s: access past end of extended PCI configuration space, want=%ld+%ld, max=%d\n",
endpoint_id(endpoint), offset, count,
NVME_REG_CFG_SIZE);
errno = ERANGE;
return -1;
}
memcpy(buf, ((unsigned char *)endpoint->pci_config_space) + offset, count);
return count;
}
static void
vfio_user_log(vfu_ctx_t *vfu_ctx, int level, char const *msg)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
if (level >= LOG_DEBUG) {
SPDK_DEBUGLOG(nvmf_vfio, "%s: %s\n", endpoint_id(endpoint), msg);
} else if (level >= LOG_INFO) {
SPDK_INFOLOG(nvmf_vfio, "%s: %s\n", endpoint_id(endpoint), msg);
} else if (level >= LOG_NOTICE) {
SPDK_NOTICELOG("%s: %s\n", endpoint_id(endpoint), msg);
} else if (level >= LOG_WARNING) {
SPDK_WARNLOG("%s: %s\n", endpoint_id(endpoint), msg);
} else {
SPDK_ERRLOG("%s: %s\n", endpoint_id(endpoint), msg);
}
}
static int
vfio_user_get_log_level(void)
{
int level;
if (SPDK_DEBUGLOG_FLAG_ENABLED("nvmf_vfio")) {
return LOG_DEBUG;
}
level = spdk_log_to_syslog_level(spdk_log_get_level());
if (level < 0) {
return LOG_ERR;
}
return level;
}
static void
init_pci_config_space(vfu_pci_config_space_t *p)
{
/* MLBAR */
p->hdr.bars[0].raw = 0x0;
/* MUBAR */
p->hdr.bars[1].raw = 0x0;
/* vendor specific, let's set them to zero for now */
p->hdr.bars[3].raw = 0x0;
p->hdr.bars[4].raw = 0x0;
p->hdr.bars[5].raw = 0x0;
/* enable INTx */
p->hdr.intr.ipin = 0x1;
}
static void
vfio_user_dev_quiesce_done(struct spdk_nvmf_subsystem *subsystem,
void *cb_arg, int status);
static void
vfio_user_endpoint_resume_done(struct spdk_nvmf_subsystem *subsystem,
void *cb_arg, int status)
{
struct nvmf_vfio_user_endpoint *endpoint = cb_arg;
struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
int ret;
SPDK_DEBUGLOG(nvmf_vfio, "%s resumed done with status %d\n", endpoint_id(endpoint), status);
if (!vu_ctrlr) {
return;
}
vu_ctrlr->state = VFIO_USER_CTRLR_RUNNING;
/* Basically, once we call `vfu_device_quiesced` the device is unquiesced from
* libvfio-user's perspective so from the moment `vfio_user_dev_quiesce_done` returns
* libvfio-user might quiesce the device again. However, because the NVMf subsytem is
* an asynchronous operation, this quiesce might come _before_ the NVMf subsystem has
* been resumed, so in the callback of `spdk_nvmf_subsystem_resume` we need to check
* whether a quiesce was requested.
*/
if (vu_ctrlr->queued_quiesce) {
SPDK_DEBUGLOG(nvmf_vfio, "%s has queued quiesce event, pause again\n", ctrlr_id(vu_ctrlr));
vu_ctrlr->state = VFIO_USER_CTRLR_PAUSING;
ret = spdk_nvmf_subsystem_pause((struct spdk_nvmf_subsystem *)endpoint->subsystem, 0,
vfio_user_dev_quiesce_done, vu_ctrlr);
if (ret < 0) {
vu_ctrlr->state = VFIO_USER_CTRLR_RUNNING;
SPDK_ERRLOG("%s: failed to pause, ret=%d\n", endpoint_id(endpoint), ret);
}
}
}
static void
vfio_user_dev_quiesce_done(struct spdk_nvmf_subsystem *subsystem,
void *cb_arg, int status)
{
struct nvmf_vfio_user_ctrlr *vu_ctrlr = cb_arg;
struct nvmf_vfio_user_endpoint *endpoint = vu_ctrlr->endpoint;
int ret;
SPDK_DEBUGLOG(nvmf_vfio, "%s paused done with status %d\n", ctrlr_id(vu_ctrlr), status);
assert(vu_ctrlr->state == VFIO_USER_CTRLR_PAUSING);
vu_ctrlr->state = VFIO_USER_CTRLR_PAUSED;
vfu_device_quiesced(endpoint->vfu_ctx, status);
vu_ctrlr->queued_quiesce = false;
/* `vfu_device_quiesced` can change the migration state,
* so we need to re-check `vu_ctrlr->state`.
*/
if (vu_ctrlr->state == VFIO_USER_CTRLR_MIGRATING) {
SPDK_DEBUGLOG(nvmf_vfio, "%s is in MIGRATION state\n", ctrlr_id(vu_ctrlr));
return;
}
SPDK_DEBUGLOG(nvmf_vfio, "%s start to resume\n", ctrlr_id(vu_ctrlr));
vu_ctrlr->state = VFIO_USER_CTRLR_RESUMING;
ret = spdk_nvmf_subsystem_resume((struct spdk_nvmf_subsystem *)endpoint->subsystem,
vfio_user_endpoint_resume_done, endpoint);
if (ret < 0) {
vu_ctrlr->state = VFIO_USER_CTRLR_PAUSED;
SPDK_ERRLOG("%s: failed to resume, ret=%d\n", endpoint_id(endpoint), ret);
}
}
static int
vfio_user_dev_quiesce_cb(vfu_ctx_t *vfu_ctx)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
int ret;
if (!vu_ctrlr) {
return 0;
}
/* NVMf library will destruct controller when no
* connected queue pairs.
*/
if (!nvmf_subsystem_get_ctrlr((struct spdk_nvmf_subsystem *)endpoint->subsystem,
vu_ctrlr->cntlid)) {
return 0;
}
SPDK_DEBUGLOG(nvmf_vfio, "%s starts to quiesce\n", ctrlr_id(vu_ctrlr));
/* There is no race condition here as device quiesce callback
* and nvmf_prop_set_cc() are running in the same thread context.
*/
if (!vu_ctrlr->ctrlr->vcprop.cc.bits.en) {
return 0;
} else if (!vu_ctrlr->ctrlr->vcprop.csts.bits.rdy) {
return 0;
} else if (vu_ctrlr->ctrlr->vcprop.csts.bits.shst == SPDK_NVME_SHST_COMPLETE) {
return 0;
}
switch (vu_ctrlr->state) {
case VFIO_USER_CTRLR_PAUSED:
case VFIO_USER_CTRLR_MIGRATING:
return 0;
case VFIO_USER_CTRLR_RUNNING:
vu_ctrlr->state = VFIO_USER_CTRLR_PAUSING;
ret = spdk_nvmf_subsystem_pause((struct spdk_nvmf_subsystem *)endpoint->subsystem, 0,
vfio_user_dev_quiesce_done, vu_ctrlr);
if (ret < 0) {
vu_ctrlr->state = VFIO_USER_CTRLR_RUNNING;
SPDK_ERRLOG("%s: failed to pause, ret=%d\n", endpoint_id(endpoint), ret);
return 0;
}
break;
case VFIO_USER_CTRLR_RESUMING:
vu_ctrlr->queued_quiesce = true;
SPDK_DEBUGLOG(nvmf_vfio, "%s is busy to quiesce, current state %u\n", ctrlr_id(vu_ctrlr),
vu_ctrlr->state);
break;
default:
assert(vu_ctrlr->state != VFIO_USER_CTRLR_PAUSING);
break;
}
errno = EBUSY;
return -1;
}
static void
vfio_user_ctrlr_dump_migr_data(const char *name, struct vfio_user_nvme_migr_state *migr_data)
{
struct spdk_nvme_registers *regs;
struct nvme_migr_sq_state *sq;
struct nvme_migr_cq_state *cq;
uint32_t *doorbell_base;
uint32_t i;
SPDK_NOTICELOG("Dump %s\n", name);
regs = (struct spdk_nvme_registers *)migr_data->bar0;
doorbell_base = (uint32_t *)&regs->doorbell[0].sq_tdbl;
SPDK_NOTICELOG("Registers\n");
SPDK_NOTICELOG("CSTS 0x%x\n", regs->csts.raw);
SPDK_NOTICELOG("CAP 0x%"PRIx64"\n", regs->cap.raw);
SPDK_NOTICELOG("VS 0x%x\n", regs->vs.raw);
SPDK_NOTICELOG("CC 0x%x\n", regs->cc.raw);
SPDK_NOTICELOG("AQA 0x%x\n", regs->aqa.raw);
SPDK_NOTICELOG("ASQ 0x%"PRIx64"\n", regs->asq);
SPDK_NOTICELOG("ACQ 0x%"PRIx64"\n", regs->acq);
SPDK_NOTICELOG("Number of IO Queues %u\n", migr_data->ctrlr_header.num_io_queues);
for (i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
sq = &migr_data->qps[i].sq;
cq = &migr_data->qps[i].cq;
if (sq->size) {
SPDK_NOTICELOG("SQID %u, SQ DOORBELL %u\n", sq->sqid, doorbell_base[i * 2]);
SPDK_NOTICELOG("SQ SQID %u, CQID %u, HEAD %u, SIZE %u, DMA ADDR 0x%"PRIx64"\n",
sq->sqid, sq->cqid, sq->head, sq->size, sq->dma_addr);
}
if (cq->size) {
SPDK_NOTICELOG("CQID %u, CQ DOORBELL %u\n", cq->cqid, doorbell_base[i * 2 + 1]);
SPDK_NOTICELOG("CQ CQID %u, PHASE %u, TAIL %u, SIZE %u, IV %u, IEN %u, DMA ADDR 0x%"PRIx64"\n",
cq->cqid, cq->phase, cq->tail, cq->size, cq->iv, cq->ien, cq->dma_addr);
}
}
SPDK_NOTICELOG("%s Dump Done\n", name);
}
/* Read region 9 content and restore it to migration data structures */
static int
vfio_user_migr_stream_to_data(struct nvmf_vfio_user_endpoint *endpoint,
struct vfio_user_nvme_migr_state *migr_state)
{
void *data_ptr = endpoint->migr_data;
/* Load vfio_user_nvme_migr_header first */
memcpy(&migr_state->ctrlr_header, data_ptr, sizeof(struct vfio_user_nvme_migr_header));
/* TODO: version check */
if (migr_state->ctrlr_header.magic != VFIO_USER_NVME_MIGR_MAGIC) {
SPDK_ERRLOG("%s: bad magic number %x\n", endpoint_id(endpoint), migr_state->ctrlr_header.magic);
return -EINVAL;
}
/* Load nvmf controller data */
data_ptr = endpoint->migr_data + migr_state->ctrlr_header.nvmf_data_offset;
memcpy(&migr_state->nvmf_data, data_ptr, migr_state->ctrlr_header.nvmf_data_len);
/* Load queue pairs */
data_ptr = endpoint->migr_data + migr_state->ctrlr_header.qp_offset;
memcpy(&migr_state->qps, data_ptr, migr_state->ctrlr_header.qp_len);
/* Load BAR0 */
data_ptr = endpoint->migr_data + migr_state->ctrlr_header.bar_offset[VFU_PCI_DEV_BAR0_REGION_IDX];
memcpy(&migr_state->bar0, data_ptr, migr_state->ctrlr_header.bar_len[VFU_PCI_DEV_BAR0_REGION_IDX]);
/* Load CFG */
data_ptr = endpoint->migr_data + migr_state->ctrlr_header.bar_offset[VFU_PCI_DEV_CFG_REGION_IDX];
memcpy(&migr_state->cfg, data_ptr, migr_state->ctrlr_header.bar_len[VFU_PCI_DEV_CFG_REGION_IDX]);
return 0;
}
static void
vfio_user_migr_ctrlr_save_data(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
{
struct spdk_nvmf_ctrlr *ctrlr = vu_ctrlr->ctrlr;
struct nvmf_vfio_user_endpoint *endpoint = vu_ctrlr->endpoint;
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_cq *cq;
struct vfio_user_nvme_migr_state migr_state = {};
uint64_t data_offset;
void *data_ptr;
int num_aers;
struct spdk_nvme_registers *regs;
uint32_t *doorbell_base;
uint32_t i = 0;
uint16_t sqid, cqid;
/* Save all data to vfio_user_nvme_migr_state first, then we will
* copy it to device migration region at last.
*/
/* save magic number */
migr_state.ctrlr_header.magic = VFIO_USER_NVME_MIGR_MAGIC;
/* save controller data */
num_aers = nvmf_ctrlr_save_aers(ctrlr, migr_state.ctrlr_header.aer_cids,
256);
assert(num_aers >= 0);
migr_state.ctrlr_header.nr_aers = num_aers;
/* save nvmf controller data */
nvmf_ctrlr_save_migr_data(ctrlr, (struct nvmf_ctrlr_migr_data *)&migr_state.nvmf_data);
/* save connected queue pairs */
TAILQ_FOREACH(sq, &vu_ctrlr->connected_sqs, tailq) {
/* save sq */
sqid = sq->qid;
migr_state.qps[sqid].sq.sqid = sq->qid;
migr_state.qps[sqid].sq.cqid = sq->cqid;
migr_state.qps[sqid].sq.head = *sq_headp(sq);
migr_state.qps[sqid].sq.size = sq->size;
migr_state.qps[sqid].sq.dma_addr = sq->mapping.prp1;
/* save cq, for shared cq case, cq may be saved multiple times */
cqid = sq->cqid;
cq = vu_ctrlr->cqs[cqid];
migr_state.qps[cqid].cq.cqid = cqid;
migr_state.qps[cqid].cq.tail = *cq_tailp(cq);
migr_state.qps[cqid].cq.ien = cq->ien;
migr_state.qps[cqid].cq.iv = cq->iv;
migr_state.qps[cqid].cq.size = cq->size;
migr_state.qps[cqid].cq.phase = cq->phase;
migr_state.qps[cqid].cq.dma_addr = cq->mapping.prp1;
i++;
}
assert(i > 0);
migr_state.ctrlr_header.num_io_queues = i - 1;
regs = (struct spdk_nvme_registers *)&migr_state.bar0;
/* Save mandarory registers to bar0 */
regs->csts.raw = ctrlr->vcprop.csts.raw;
regs->cap.raw = ctrlr->vcprop.cap.raw;
regs->vs.raw = ctrlr->vcprop.vs.raw;
regs->cc.raw = ctrlr->vcprop.cc.raw;
regs->aqa.raw = ctrlr->vcprop.aqa.raw;
regs->asq = ctrlr->vcprop.asq;
regs->acq = ctrlr->vcprop.acq;
/* Save doorbells */
doorbell_base = (uint32_t *)&regs->doorbell[0].sq_tdbl;
memcpy(doorbell_base, (void *)vu_ctrlr->bar0_doorbells, NVMF_VFIO_USER_DOORBELLS_SIZE);
/* Save PCI configuration space */
memcpy(&migr_state.cfg, (void *)endpoint->pci_config_space, NVME_REG_CFG_SIZE);
/* Save all data to device migration region */
data_ptr = endpoint->migr_data;
/* Copy nvmf controller data */
data_offset = sizeof(struct vfio_user_nvme_migr_header);
data_ptr += data_offset;
migr_state.ctrlr_header.nvmf_data_offset = data_offset;
migr_state.ctrlr_header.nvmf_data_len = sizeof(struct nvmf_ctrlr_migr_data);
memcpy(data_ptr, &migr_state.nvmf_data, sizeof(struct nvmf_ctrlr_migr_data));
/* Copy queue pairs */
data_offset += sizeof(struct nvmf_ctrlr_migr_data);
data_ptr += sizeof(struct nvmf_ctrlr_migr_data);
migr_state.ctrlr_header.qp_offset = data_offset;
migr_state.ctrlr_header.qp_len = i * (sizeof(struct nvme_migr_sq_state) + sizeof(
struct nvme_migr_cq_state));
memcpy(data_ptr, &migr_state.qps, migr_state.ctrlr_header.qp_len);
/* Copy BAR0 */
data_offset += migr_state.ctrlr_header.qp_len;
data_ptr += migr_state.ctrlr_header.qp_len;
migr_state.ctrlr_header.bar_offset[VFU_PCI_DEV_BAR0_REGION_IDX] = data_offset;
migr_state.ctrlr_header.bar_len[VFU_PCI_DEV_BAR0_REGION_IDX] = NVME_REG_BAR0_SIZE;
memcpy(data_ptr, &migr_state.bar0, NVME_REG_BAR0_SIZE);
/* Copy CFG */
data_offset += NVME_REG_BAR0_SIZE;
data_ptr += NVME_REG_BAR0_SIZE;
migr_state.ctrlr_header.bar_offset[VFU_PCI_DEV_CFG_REGION_IDX] = data_offset;
migr_state.ctrlr_header.bar_len[VFU_PCI_DEV_CFG_REGION_IDX] = NVME_REG_CFG_SIZE;
memcpy(data_ptr, &migr_state.cfg, NVME_REG_CFG_SIZE);
/* Copy nvme migration header finally */
memcpy(endpoint->migr_data, &migr_state.ctrlr_header, sizeof(struct vfio_user_nvme_migr_header));
if (SPDK_DEBUGLOG_FLAG_ENABLED("nvmf_vfio")) {
vfio_user_ctrlr_dump_migr_data("SAVE", &migr_state);
}
}
/*
* If we are about to close the connection, we need to unregister the interrupt,
* as the library will subsequently close the file descriptor we registered.
*/
static int
vfio_user_device_reset(vfu_ctx_t *vfu_ctx, vfu_reset_type_t type)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
struct nvmf_vfio_user_ctrlr *ctrlr = endpoint->ctrlr;
SPDK_DEBUGLOG(nvmf_vfio, "Device reset type %u\n", type);
if (type == VFU_RESET_LOST_CONN) {
if (ctrlr != NULL) {
spdk_interrupt_unregister(&ctrlr->intr);
ctrlr->intr_fd = -1;
}
return 0;
}
/* FIXME: much more needed here. */
return 0;
}
static int
vfio_user_migr_ctrlr_construct_qps(struct nvmf_vfio_user_ctrlr *vu_ctrlr,
struct vfio_user_nvme_migr_state *migr_state)
{
uint32_t i, qsize = 0;
uint16_t sqid, cqid;
struct vfio_user_nvme_migr_qp migr_qp;
void *addr;
uint32_t cqs_ref[NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR] = {};
int ret;
if (SPDK_DEBUGLOG_FLAG_ENABLED("nvmf_vfio")) {
vfio_user_ctrlr_dump_migr_data("RESUME", migr_state);
}
/* restore submission queues */
for (i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
migr_qp = migr_state->qps[i];
qsize = migr_qp.sq.size;
if (qsize) {
struct nvmf_vfio_user_sq *sq;
sqid = migr_qp.sq.sqid;
if (sqid != i) {
SPDK_ERRLOG("Expected sqid %u while got %u", i, sqid);
return -EINVAL;
}
/* allocate sq if necessary */
if (vu_ctrlr->sqs[sqid] == NULL) {
ret = init_sq(vu_ctrlr, &vu_ctrlr->transport->transport, sqid);
if (ret) {
SPDK_ERRLOG("Construct qpair with qid %u failed\n", sqid);
return -EFAULT;
}
}
sq = vu_ctrlr->sqs[sqid];
sq->size = qsize;
ret = alloc_sq_reqs(vu_ctrlr, sq);
if (ret) {
SPDK_ERRLOG("Construct sq with qid %u failed\n", sqid);
return -EFAULT;
}
/* restore sq */
sq->sq_state = VFIO_USER_SQ_CREATED;
sq->cqid = migr_qp.sq.cqid;
*sq_headp(sq) = migr_qp.sq.head;
sq->mapping.prp1 = migr_qp.sq.dma_addr;
addr = map_one(vu_ctrlr->endpoint->vfu_ctx,
sq->mapping.prp1, sq->size * 64,
sq->mapping.sg, &sq->mapping.iov,
PROT_READ);
if (addr == NULL) {
SPDK_ERRLOG("Restore sq with qid %u PRP1 0x%"PRIx64" with size %u failed\n",
sqid, sq->mapping.prp1, sq->size);
return -EFAULT;
}
cqs_ref[sq->cqid]++;
}
}
/* restore completion queues */
for (i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
migr_qp = migr_state->qps[i];
qsize = migr_qp.cq.size;
if (qsize) {
struct nvmf_vfio_user_cq *cq;
/* restore cq */
cqid = migr_qp.sq.cqid;
assert(cqid == i);
/* allocate cq if necessary */
if (vu_ctrlr->cqs[cqid] == NULL) {
ret = init_cq(vu_ctrlr, cqid);
if (ret) {
SPDK_ERRLOG("Construct qpair with qid %u failed\n", cqid);
return -EFAULT;
}
}
cq = vu_ctrlr->cqs[cqid];
cq->size = qsize;
cq->cq_state = VFIO_USER_CQ_CREATED;
cq->cq_ref = cqs_ref[cqid];
*cq_tailp(cq) = migr_qp.cq.tail;
cq->mapping.prp1 = migr_qp.cq.dma_addr;
cq->ien = migr_qp.cq.ien;
cq->iv = migr_qp.cq.iv;
cq->phase = migr_qp.cq.phase;
addr = map_one(vu_ctrlr->endpoint->vfu_ctx,
cq->mapping.prp1, cq->size * 16,
cq->mapping.sg, &cq->mapping.iov,
PROT_READ | PROT_WRITE);
if (addr == NULL) {
SPDK_ERRLOG("Restore cq with qid %u PRP1 0x%"PRIx64" with size %u failed\n",
cqid, cq->mapping.prp1, cq->size);
return -EFAULT;
}
}
}
return 0;
}
static int
vfio_user_migr_ctrlr_restore(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
{
struct nvmf_vfio_user_endpoint *endpoint = vu_ctrlr->endpoint;
struct spdk_nvmf_ctrlr *ctrlr = vu_ctrlr->ctrlr;
uint32_t *doorbell_base;
struct vfio_user_nvme_migr_state migr_state = {};
struct spdk_nvme_registers *regs;
struct spdk_nvme_cmd cmd;
uint16_t i;
int rc = 0;
assert(endpoint->migr_data != NULL);
assert(ctrlr != NULL);
rc = vfio_user_migr_stream_to_data(endpoint, &migr_state);
if (rc) {
return rc;
}
rc = vfio_user_migr_ctrlr_construct_qps(vu_ctrlr, &migr_state);
if (rc) {
return rc;
}
/* restore PCI configuration space */
memcpy((void *)endpoint->pci_config_space, &migr_state.cfg, NVME_REG_CFG_SIZE);
regs = (struct spdk_nvme_registers *)&migr_state.bar0;
doorbell_base = (uint32_t *)&regs->doorbell[0].sq_tdbl;
/* restore doorbells from saved registers */
memcpy((void *)vu_ctrlr->bar0_doorbells, doorbell_base, NVMF_VFIO_USER_DOORBELLS_SIZE);
/* restore controller registers after ADMIN queue connection */
ctrlr->vcprop.csts.raw = regs->csts.raw;
ctrlr->vcprop.cap.raw = regs->cap.raw;
ctrlr->vcprop.vs.raw = regs->vs.raw;
ctrlr->vcprop.cc.raw = regs->cc.raw;
ctrlr->vcprop.aqa.raw = regs->aqa.raw;
ctrlr->vcprop.asq = regs->asq;
ctrlr->vcprop.acq = regs->acq;
/* restore nvmf controller data */
rc = nvmf_ctrlr_restore_migr_data(ctrlr, &migr_state.nvmf_data);
if (rc) {
return rc;
}
/* resubmit pending AERs */
for (i = 0; i < migr_state.ctrlr_header.nr_aers; i++) {
SPDK_DEBUGLOG(nvmf_vfio, "%s AER resubmit, CID %u\n", ctrlr_id(vu_ctrlr),
migr_state.ctrlr_header.aer_cids[i]);
memset(&cmd, 0, sizeof(cmd));
cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
cmd.cid = migr_state.ctrlr_header.aer_cids[i];
rc = handle_cmd_req(vu_ctrlr, &cmd, vu_ctrlr->sqs[0]);
if (rc) {
break;
}
}
return rc;
}
static void
vfio_user_migr_ctrlr_enable_sqs(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
{
uint32_t i;
struct nvmf_vfio_user_sq *sq;
for (i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
sq = vu_ctrlr->sqs[i];
if (!sq || !sq->size) {
continue;
}
if (nvmf_qpair_is_admin_queue(&sq->qpair)) {
/* ADMIN queue pair is always in the poll group, just enable it */
sq->sq_state = VFIO_USER_SQ_ACTIVE;
} else {
spdk_nvmf_tgt_new_qpair(vu_ctrlr->transport->transport.tgt, &sq->qpair);
}
}
}
static int
vfio_user_migration_device_state_transition(vfu_ctx_t *vfu_ctx, vfu_migr_state_t state)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
struct nvmf_vfio_user_sq *sq;
int ret = 0;
SPDK_DEBUGLOG(nvmf_vfio, "%s controller state %u, migration state %u\n", endpoint_id(endpoint),
vu_ctrlr->state, state);
switch (state) {
case VFU_MIGR_STATE_STOP_AND_COPY:
vu_ctrlr->state = VFIO_USER_CTRLR_MIGRATING;
vfio_user_migr_ctrlr_save_data(vu_ctrlr);
break;
case VFU_MIGR_STATE_STOP:
vu_ctrlr->state = VFIO_USER_CTRLR_MIGRATING;
break;
case VFU_MIGR_STATE_PRE_COPY:
assert(vu_ctrlr->state == VFIO_USER_CTRLR_PAUSED);
vu_ctrlr->migr_reg.pending_bytes = vfio_user_migr_data_len();
vu_ctrlr->migr_reg.last_data_offset = 0;
vu_ctrlr->in_source_vm = true;
break;
case VFU_MIGR_STATE_RESUME:
/*
* Destination ADMIN queue pair is connected when starting the VM,
* but the ADMIN queue pair isn't enabled in destination VM, the poll
* group will do nothing to ADMIN queue pair for now.
*/
if (vu_ctrlr->state != VFIO_USER_CTRLR_RUNNING) {
break;
}
assert(!vu_ctrlr->in_source_vm);
vu_ctrlr->state = VFIO_USER_CTRLR_MIGRATING;
sq = TAILQ_FIRST(&vu_ctrlr->connected_sqs);
assert(sq != NULL);
assert(sq->qpair.qid == 0);
sq->sq_state = VFIO_USER_SQ_INACTIVE;
/* Free ADMIN SQ resources first, SQ resources will be
* allocated based on queue size from source VM.
*/
free_sq_reqs(sq);
sq->size = 0;
break;
case VFU_MIGR_STATE_RUNNING:
if (vu_ctrlr->state != VFIO_USER_CTRLR_MIGRATING) {
break;
}
if (!vu_ctrlr->in_source_vm) {
/* Restore destination VM from BAR9 */
ret = vfio_user_migr_ctrlr_restore(vu_ctrlr);
if (ret) {
break;
}
vfio_user_migr_ctrlr_enable_sqs(vu_ctrlr);
vu_ctrlr->state = VFIO_USER_CTRLR_RUNNING;
} else {
/* Rollback source VM */
vu_ctrlr->state = VFIO_USER_CTRLR_RESUMING;
ret = spdk_nvmf_subsystem_resume((struct spdk_nvmf_subsystem *)endpoint->subsystem,
vfio_user_endpoint_resume_done, endpoint);
if (ret < 0) {
/* TODO: fail controller with CFS bit set */
vu_ctrlr->state = VFIO_USER_CTRLR_PAUSED;
SPDK_ERRLOG("%s: failed to resume, ret=%d\n", endpoint_id(endpoint), ret);
break;
}
}
break;
default:
return -EINVAL;
}
return ret;
}
static uint64_t
vfio_user_migration_get_pending_bytes(vfu_ctx_t *vfu_ctx)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
struct nvmf_vfio_user_ctrlr *ctrlr = endpoint->ctrlr;
struct vfio_user_migration_region *migr_reg = &ctrlr->migr_reg;
SPDK_DEBUGLOG(nvmf_vfio, "%s current state %u, pending bytes 0x%"PRIx64"\n", endpoint_id(endpoint),
ctrlr->state, migr_reg->pending_bytes);
return migr_reg->pending_bytes;
}
static int
vfio_user_migration_prepare_data(vfu_ctx_t *vfu_ctx, uint64_t *offset, uint64_t *size)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
struct nvmf_vfio_user_ctrlr *ctrlr = endpoint->ctrlr;
struct vfio_user_migration_region *migr_reg = &ctrlr->migr_reg;
if (migr_reg->last_data_offset == vfio_user_migr_data_len()) {
*offset = vfio_user_migr_data_len();
if (size) {
*size = 0;
}
migr_reg->pending_bytes = 0;
} else {
*offset = 0;
if (size) {
*size = vfio_user_migr_data_len();
if (ctrlr->state == VFIO_USER_CTRLR_MIGRATING) {
vfio_user_migr_ctrlr_save_data(ctrlr);
migr_reg->last_data_offset = vfio_user_migr_data_len();
}
}
}
SPDK_DEBUGLOG(nvmf_vfio, "%s current state %u\n", endpoint_id(endpoint), ctrlr->state);
return 0;
}
static ssize_t
vfio_user_migration_read_data(vfu_ctx_t *vfu_ctx, void *buf, uint64_t count, uint64_t offset)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
struct nvmf_vfio_user_ctrlr *ctrlr = endpoint->ctrlr;
struct vfio_user_migration_region *migr_reg = &ctrlr->migr_reg;
memcpy(buf, endpoint->migr_data, count);
migr_reg->pending_bytes = 0;
return 0;
}
static ssize_t
vfio_user_migration_write_data(vfu_ctx_t *vfu_ctx, void *buf, uint64_t count, uint64_t offset)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
memcpy(endpoint->migr_data, buf, count);
return 0;
}
static int
vfio_user_migration_data_written(vfu_ctx_t *vfu_ctx, uint64_t count)
{
SPDK_DEBUGLOG(nvmf_vfio, "write 0x%"PRIx64"\n", (uint64_t)count);
return 0;
}
static int
vfio_user_dev_info_fill(struct nvmf_vfio_user_transport *vu_transport,
struct nvmf_vfio_user_endpoint *endpoint)
{
int ret;
ssize_t cap_offset;
vfu_ctx_t *vfu_ctx = endpoint->vfu_ctx;
struct iovec migr_sparse_mmap = {};
struct pmcap pmcap = { .hdr.id = PCI_CAP_ID_PM, .pmcs.nsfrst = 0x1 };
struct pxcap pxcap = {
.hdr.id = PCI_CAP_ID_EXP,
.pxcaps.ver = 0x2,
.pxdcap = {.rer = 0x1, .flrc = 0x1},
.pxdcap2.ctds = 0x1
};
struct msixcap msixcap = {
.hdr.id = PCI_CAP_ID_MSIX,
.mxc.ts = NVME_IRQ_MSIX_NUM - 1,
.mtab = {.tbir = 0x4, .to = 0x0},
.mpba = {.pbir = 0x5, .pbao = 0x0}
};
struct iovec sparse_mmap[] = {
{
.iov_base = (void *)NVME_DOORBELLS_OFFSET,
.iov_len = NVMF_VFIO_USER_DOORBELLS_SIZE,
},
};
const vfu_migration_callbacks_t migr_callbacks = {
.version = VFU_MIGR_CALLBACKS_VERS,
.transition = &vfio_user_migration_device_state_transition,
.get_pending_bytes = &vfio_user_migration_get_pending_bytes,
.prepare_data = &vfio_user_migration_prepare_data,
.read_data = &vfio_user_migration_read_data,
.data_written = &vfio_user_migration_data_written,
.write_data = &vfio_user_migration_write_data
};
ret = vfu_pci_init(vfu_ctx, VFU_PCI_TYPE_EXPRESS, PCI_HEADER_TYPE_NORMAL, 0);
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to initialize PCI\n", vfu_ctx);
return ret;
}
vfu_pci_set_id(vfu_ctx, SPDK_PCI_VID_NUTANIX, 0x0001, SPDK_PCI_VID_NUTANIX, 0);
/*
* 0x02, controller uses the NVM Express programming interface
* 0x08, non-volatile memory controller
* 0x01, mass storage controller
*/
vfu_pci_set_class(vfu_ctx, 0x01, 0x08, 0x02);
cap_offset = vfu_pci_add_capability(vfu_ctx, 0, 0, &pmcap);
if (cap_offset < 0) {
SPDK_ERRLOG("vfu_ctx %p failed add pmcap\n", vfu_ctx);
return ret;
}
cap_offset = vfu_pci_add_capability(vfu_ctx, 0, 0, &pxcap);
if (cap_offset < 0) {
SPDK_ERRLOG("vfu_ctx %p failed add pxcap\n", vfu_ctx);
return ret;
}
cap_offset = vfu_pci_add_capability(vfu_ctx, 0, 0, &msixcap);
if (cap_offset < 0) {
SPDK_ERRLOG("vfu_ctx %p failed add msixcap\n", vfu_ctx);
return ret;
}
ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_CFG_REGION_IDX, NVME_REG_CFG_SIZE,
access_pci_config, VFU_REGION_FLAG_RW, NULL, 0, -1, 0);
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to setup cfg\n", vfu_ctx);
return ret;
}
if (vu_transport->transport_opts.disable_mappable_bar0) {
ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_BAR0_REGION_IDX, NVME_REG_BAR0_SIZE,
access_bar0_fn, VFU_REGION_FLAG_RW | VFU_REGION_FLAG_MEM,
NULL, 0, -1, 0);
} else {
ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_BAR0_REGION_IDX, NVME_REG_BAR0_SIZE,
access_bar0_fn, VFU_REGION_FLAG_RW | VFU_REGION_FLAG_MEM,
sparse_mmap, 1, endpoint->devmem_fd, 0);
}
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to setup bar 0\n", vfu_ctx);
return ret;
}
ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_BAR4_REGION_IDX, NVME_BAR4_SIZE,
NULL, VFU_REGION_FLAG_RW, NULL, 0, -1, 0);
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to setup bar 4\n", vfu_ctx);
return ret;
}
ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_BAR5_REGION_IDX, NVME_BAR5_SIZE,
NULL, VFU_REGION_FLAG_RW, NULL, 0, -1, 0);
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to setup bar 5\n", vfu_ctx);
return ret;
}
ret = vfu_setup_device_dma(vfu_ctx, memory_region_add_cb, memory_region_remove_cb);
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to setup dma callback\n", vfu_ctx);
return ret;
}
ret = vfu_setup_device_reset_cb(vfu_ctx, vfio_user_device_reset);
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to setup reset callback\n", vfu_ctx);
return ret;
}
ret = vfu_setup_device_nr_irqs(vfu_ctx, VFU_DEV_INTX_IRQ, 1);
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to setup INTX\n", vfu_ctx);
return ret;
}
ret = vfu_setup_device_nr_irqs(vfu_ctx, VFU_DEV_MSIX_IRQ, NVME_IRQ_MSIX_NUM);
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to setup MSIX\n", vfu_ctx);
return ret;
}
vfu_setup_device_quiesce_cb(vfu_ctx, vfio_user_dev_quiesce_cb);
migr_sparse_mmap.iov_base = (void *)4096;
migr_sparse_mmap.iov_len = vfio_user_migr_data_len();
ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_MIGR_REGION_IDX,
vfu_get_migr_register_area_size() + vfio_user_migr_data_len(),
NULL, VFU_REGION_FLAG_RW | VFU_REGION_FLAG_MEM, &migr_sparse_mmap,
1, endpoint->migr_fd, 0);
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to setup migration region\n", vfu_ctx);
return ret;
}
ret = vfu_setup_device_migration_callbacks(vfu_ctx, &migr_callbacks,
vfu_get_migr_register_area_size());
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to setup migration callbacks\n", vfu_ctx);
return ret;
}
ret = vfu_realize_ctx(vfu_ctx);
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to realize\n", vfu_ctx);
return ret;
}
endpoint->pci_config_space = vfu_pci_get_config_space(endpoint->vfu_ctx);
assert(endpoint->pci_config_space != NULL);
init_pci_config_space(endpoint->pci_config_space);
assert(cap_offset != 0);
endpoint->msix = (struct msixcap *)((uint8_t *)endpoint->pci_config_space + cap_offset);
return 0;
}
static int nvmf_vfio_user_accept(void *ctx);
static void
set_intr_mode_noop(struct spdk_poller *poller, void *arg, bool interrupt_mode)
{
/* Nothing for us to do here. */
}
/*
* Register an "accept" poller: this is polling for incoming vfio-user socket
* connections (on the listening socket).
*
* We need to do this on first listening, and also after destroying a
* controller, so we can accept another connection.
*/
static int
vfio_user_register_accept_poller(struct nvmf_vfio_user_endpoint *endpoint)
{
uint64_t poll_rate_us = endpoint->transport->transport.opts.acceptor_poll_rate;
SPDK_DEBUGLOG(nvmf_vfio, "registering accept poller\n");
endpoint->accept_poller = SPDK_POLLER_REGISTER(nvmf_vfio_user_accept,
endpoint, poll_rate_us);
if (!endpoint->accept_poller) {
return -1;
}
endpoint->accept_thread = spdk_get_thread();
if (!spdk_interrupt_mode_is_enabled()) {
return 0;
}
endpoint->accept_intr_fd = vfu_get_poll_fd(endpoint->vfu_ctx);
assert(endpoint->accept_intr_fd != -1);
endpoint->accept_intr = SPDK_INTERRUPT_REGISTER(endpoint->accept_intr_fd,
nvmf_vfio_user_accept, endpoint);
assert(endpoint->accept_intr != NULL);
spdk_poller_register_interrupt(endpoint->accept_poller,
set_intr_mode_noop, NULL);
return 0;
}
static void
_vfio_user_relisten(void *ctx)
{
struct nvmf_vfio_user_endpoint *endpoint = ctx;
vfio_user_register_accept_poller(endpoint);
}
static void
_free_ctrlr(void *ctx)
{
struct nvmf_vfio_user_ctrlr *ctrlr = ctx;
struct nvmf_vfio_user_endpoint *endpoint = ctrlr->endpoint;
spdk_interrupt_unregister(&ctrlr->intr);
ctrlr->intr_fd = -1;
spdk_poller_unregister(&ctrlr->vfu_ctx_poller);
free(ctrlr);
if (endpoint == NULL) {
return;
}
if (endpoint->need_async_destroy) {
nvmf_vfio_user_destroy_endpoint(endpoint);
} else {
spdk_thread_send_msg(endpoint->accept_thread,
_vfio_user_relisten, endpoint);
}
}
static void
free_ctrlr(struct nvmf_vfio_user_ctrlr *ctrlr)
{
int i;
assert(ctrlr != NULL);
SPDK_DEBUGLOG(nvmf_vfio, "free %s\n", ctrlr_id(ctrlr));
for (i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
free_qp(ctrlr, i);
}
spdk_thread_exec_msg(ctrlr->thread, _free_ctrlr, ctrlr);
}
static int
nvmf_vfio_user_create_ctrlr(struct nvmf_vfio_user_transport *transport,
struct nvmf_vfio_user_endpoint *endpoint)
{
struct nvmf_vfio_user_ctrlr *ctrlr;
int err = 0;
SPDK_DEBUGLOG(nvmf_vfio, "%s\n", endpoint_id(endpoint));
/* First, construct a vfio-user CUSTOM transport controller */
ctrlr = calloc(1, sizeof(*ctrlr));
if (ctrlr == NULL) {
err = -ENOMEM;
goto out;
}
/* We can only support one connection for now */
ctrlr->cntlid = 0x1;
ctrlr->intr_fd = -1;
ctrlr->transport = transport;
ctrlr->endpoint = endpoint;
ctrlr->bar0_doorbells = endpoint->bar0_doorbells;
TAILQ_INIT(&ctrlr->connected_sqs);
/* Then, construct an admin queue pair */
err = init_sq(ctrlr, &transport->transport, 0);
if (err != 0) {
free(ctrlr);
goto out;
}
err = init_cq(ctrlr, 0);
if (err != 0) {
free(ctrlr);
goto out;
}
ctrlr->sqs[0]->size = NVMF_VFIO_USER_DEFAULT_AQ_DEPTH;
err = alloc_sq_reqs(ctrlr, ctrlr->sqs[0]);
if (err != 0) {
free(ctrlr);
goto out;
}
endpoint->ctrlr = ctrlr;
/* Notify the generic layer about the new admin queue pair */
spdk_nvmf_tgt_new_qpair(transport->transport.tgt, &ctrlr->sqs[0]->qpair);
out:
if (err != 0) {
SPDK_ERRLOG("%s: failed to create vfio-user controller: %s\n",
endpoint_id(endpoint), strerror(-err));
}
return err;
}
static int
nvmf_vfio_user_listen(struct spdk_nvmf_transport *transport,
const struct spdk_nvme_transport_id *trid,
struct spdk_nvmf_listen_opts *listen_opts)
{
struct nvmf_vfio_user_transport *vu_transport;
struct nvmf_vfio_user_endpoint *endpoint, *tmp;
char path[PATH_MAX] = {};
char uuid[PATH_MAX] = {};
int ret;
vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport,
transport);
pthread_mutex_lock(&vu_transport->lock);
TAILQ_FOREACH_SAFE(endpoint, &vu_transport->endpoints, link, tmp) {
/* Only compare traddr */
if (strncmp(endpoint->trid.traddr, trid->traddr, sizeof(endpoint->trid.traddr)) == 0) {
pthread_mutex_unlock(&vu_transport->lock);
return -EEXIST;
}
}
pthread_mutex_unlock(&vu_transport->lock);
endpoint = calloc(1, sizeof(*endpoint));
if (!endpoint) {
return -ENOMEM;
}
pthread_mutex_init(&endpoint->lock, NULL);
endpoint->devmem_fd = -1;
memcpy(&endpoint->trid, trid, sizeof(endpoint->trid));
endpoint->transport = vu_transport;
ret = snprintf(path, PATH_MAX, "%s/bar0", endpoint_id(endpoint));
if (ret < 0 || ret >= PATH_MAX) {
SPDK_ERRLOG("%s: error to get socket path: %s.\n", endpoint_id(endpoint), spdk_strerror(errno));
ret = -1;
goto out;
}
ret = open(path, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
if (ret == -1) {
SPDK_ERRLOG("%s: failed to open device memory at %s: %s.\n",
endpoint_id(endpoint), path, spdk_strerror(errno));
goto out;
}
unlink(path);
endpoint->devmem_fd = ret;
ret = ftruncate(endpoint->devmem_fd,
NVME_DOORBELLS_OFFSET + NVMF_VFIO_USER_DOORBELLS_SIZE);
if (ret != 0) {
SPDK_ERRLOG("%s: error to ftruncate file %s: %s.\n", endpoint_id(endpoint), path,
spdk_strerror(errno));
goto out;
}
endpoint->bar0_doorbells = mmap(NULL, NVMF_VFIO_USER_DOORBELLS_SIZE,
PROT_READ | PROT_WRITE, MAP_SHARED, endpoint->devmem_fd, NVME_DOORBELLS_OFFSET);
if (endpoint->bar0_doorbells == MAP_FAILED) {
SPDK_ERRLOG("%s: error to mmap file %s: %s.\n", endpoint_id(endpoint), path, spdk_strerror(errno));
endpoint->bar0_doorbells = NULL;
ret = -1;
goto out;
}
ret = snprintf(path, PATH_MAX, "%s/migr", endpoint_id(endpoint));
if (ret < 0 || ret >= PATH_MAX) {
SPDK_ERRLOG("%s: error to get migration file path: %s.\n", endpoint_id(endpoint),
spdk_strerror(errno));
ret = -1;
goto out;
}
ret = open(path, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
if (ret == -1) {
SPDK_ERRLOG("%s: failed to open device memory at %s: %s.\n",
endpoint_id(endpoint), path, spdk_strerror(errno));
goto out;
}
unlink(path);
endpoint->migr_fd = ret;
ret = ftruncate(endpoint->migr_fd,
vfu_get_migr_register_area_size() + vfio_user_migr_data_len());
if (ret != 0) {
SPDK_ERRLOG("%s: error to ftruncate migration file %s: %s.\n", endpoint_id(endpoint), path,
spdk_strerror(errno));
goto out;
}
endpoint->migr_data = mmap(NULL, vfio_user_migr_data_len(),
PROT_READ | PROT_WRITE, MAP_SHARED, endpoint->migr_fd, vfu_get_migr_register_area_size());
if (endpoint->migr_data == MAP_FAILED) {
SPDK_ERRLOG("%s: error to mmap file %s: %s.\n", endpoint_id(endpoint), path, spdk_strerror(errno));
endpoint->migr_data = NULL;
ret = -1;
goto out;
}
ret = snprintf(uuid, PATH_MAX, "%s/cntrl", endpoint_id(endpoint));
if (ret < 0 || ret >= PATH_MAX) {
SPDK_ERRLOG("%s: error to get ctrlr file path: %s\n", endpoint_id(endpoint), spdk_strerror(errno));
ret = -1;
goto out;
}
endpoint->vfu_ctx = vfu_create_ctx(VFU_TRANS_SOCK, uuid, LIBVFIO_USER_FLAG_ATTACH_NB,
endpoint, VFU_DEV_TYPE_PCI);
if (endpoint->vfu_ctx == NULL) {
SPDK_ERRLOG("%s: error creating libmuser context: %m\n",
endpoint_id(endpoint));
ret = -1;
goto out;
}
vfu_setup_log(endpoint->vfu_ctx, vfio_user_log, vfio_user_get_log_level());
ret = vfio_user_dev_info_fill(vu_transport, endpoint);
if (ret < 0) {
goto out;
}
ret = vfio_user_register_accept_poller(endpoint);
if (ret != 0) {
goto out;
}
pthread_mutex_lock(&vu_transport->lock);
TAILQ_INSERT_TAIL(&vu_transport->endpoints, endpoint, link);
pthread_mutex_unlock(&vu_transport->lock);
out:
if (ret != 0) {
nvmf_vfio_user_destroy_endpoint(endpoint);
}
return ret;
}
static void
nvmf_vfio_user_stop_listen(struct spdk_nvmf_transport *transport,
const struct spdk_nvme_transport_id *trid)
{
struct nvmf_vfio_user_transport *vu_transport;
struct nvmf_vfio_user_endpoint *endpoint, *tmp;
assert(trid != NULL);
assert(trid->traddr != NULL);
SPDK_DEBUGLOG(nvmf_vfio, "%s: stop listen\n", trid->traddr);
vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport,
transport);
pthread_mutex_lock(&vu_transport->lock);
TAILQ_FOREACH_SAFE(endpoint, &vu_transport->endpoints, link, tmp) {
if (strcmp(trid->traddr, endpoint->trid.traddr) == 0) {
TAILQ_REMOVE(&vu_transport->endpoints, endpoint, link);
/* Defer to free endpoint resources until the controller
* is freed. There are two cases when running here:
* 1. kill nvmf target while VM is connected
* 2. remove listener via RPC call
* nvmf library will disconnect all queue paris.
*/
if (endpoint->ctrlr) {
assert(!endpoint->need_async_destroy);
endpoint->need_async_destroy = true;
pthread_mutex_unlock(&vu_transport->lock);
return;
}
nvmf_vfio_user_destroy_endpoint(endpoint);
pthread_mutex_unlock(&vu_transport->lock);
return;
}
}
pthread_mutex_unlock(&vu_transport->lock);
SPDK_DEBUGLOG(nvmf_vfio, "%s: not found\n", trid->traddr);
}
static void
nvmf_vfio_user_cdata_init(struct spdk_nvmf_transport *transport,
struct spdk_nvmf_subsystem *subsystem,
struct spdk_nvmf_ctrlr_data *cdata)
{
cdata->vid = SPDK_PCI_VID_NUTANIX;
cdata->ssvid = SPDK_PCI_VID_NUTANIX;
cdata->ieee[0] = 0x8d;
cdata->ieee[1] = 0x6b;
cdata->ieee[2] = 0x50;
memset(&cdata->sgls, 0, sizeof(struct spdk_nvme_cdata_sgls));
cdata->sgls.supported = SPDK_NVME_SGLS_SUPPORTED_DWORD_ALIGNED;
/* libvfio-user can only support 1 connection for now */
cdata->oncs.reservations = 0;
}
static int
nvmf_vfio_user_listen_associate(struct spdk_nvmf_transport *transport,
const struct spdk_nvmf_subsystem *subsystem,
const struct spdk_nvme_transport_id *trid)
{
struct nvmf_vfio_user_transport *vu_transport;
struct nvmf_vfio_user_endpoint *endpoint;
vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport, transport);
pthread_mutex_lock(&vu_transport->lock);
TAILQ_FOREACH(endpoint, &vu_transport->endpoints, link) {
if (strncmp(endpoint->trid.traddr, trid->traddr, sizeof(endpoint->trid.traddr)) == 0) {
break;
}
}
pthread_mutex_unlock(&vu_transport->lock);
if (endpoint == NULL) {
return -ENOENT;
}
endpoint->subsystem = subsystem;
return 0;
}
/*
* Executed periodically at a default SPDK_NVMF_DEFAULT_ACCEPT_POLL_RATE_US
* frequency.
*
* For this endpoint (which at the libvfio-user level corresponds to a socket),
* if we don't currently have a controller set up, peek to see if the socket is
* able to accept a new connection.
*/
static int
nvmf_vfio_user_accept(void *ctx)
{
struct nvmf_vfio_user_endpoint *endpoint = ctx;
struct nvmf_vfio_user_transport *vu_transport;
int err;
vu_transport = endpoint->transport;
if (endpoint->ctrlr != NULL) {
return SPDK_POLLER_IDLE;
}
err = vfu_attach_ctx(endpoint->vfu_ctx);
if (err == 0) {
SPDK_DEBUGLOG(nvmf_vfio, "attach succeeded\n");
err = nvmf_vfio_user_create_ctrlr(vu_transport, endpoint);
if (err == 0) {
/*
* Unregister ourselves: now we've accepted a
* connection, there is nothing for us to poll for, and
* we will poll the connection via vfu_run_ctx()
* instead.
*/
spdk_interrupt_unregister(&endpoint->accept_intr);
spdk_poller_unregister(&endpoint->accept_poller);
}
return SPDK_POLLER_BUSY;
}
if (errno == EAGAIN || errno == EWOULDBLOCK) {
return SPDK_POLLER_IDLE;
}
return SPDK_POLLER_BUSY;
}
static void
nvmf_vfio_user_discover(struct spdk_nvmf_transport *transport,
struct spdk_nvme_transport_id *trid,
struct spdk_nvmf_discovery_log_page_entry *entry)
{ }
static struct spdk_nvmf_transport_poll_group *
nvmf_vfio_user_poll_group_create(struct spdk_nvmf_transport *transport,
struct spdk_nvmf_poll_group *group)
{
struct nvmf_vfio_user_transport *vu_transport;
struct nvmf_vfio_user_poll_group *vu_group;
SPDK_DEBUGLOG(nvmf_vfio, "create poll group\n");
vu_group = calloc(1, sizeof(*vu_group));
if (vu_group == NULL) {
SPDK_ERRLOG("Error allocating poll group: %m");
return NULL;
}
TAILQ_INIT(&vu_group->sqs);
vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport,
transport);
pthread_mutex_lock(&vu_transport->pg_lock);
TAILQ_INSERT_TAIL(&vu_transport->poll_groups, vu_group, link);
if (vu_transport->next_pg == NULL) {
vu_transport->next_pg = vu_group;
}
pthread_mutex_unlock(&vu_transport->pg_lock);
if (!spdk_interrupt_mode_is_enabled()) {
return &vu_group->group;
}
/*
* Only allow the poll group to work in interrupt mode if the transport
* supports it. It's our responsibility to register the actual interrupt
* later (in handle_queue_connect_rsp()) that processes everything in
* the poll group: for us, that's the libvfio-user context, and the
* actual qpairs.
*
* Note that this only works in the case that nothing else shares the
* spdk_nvmf_poll_group.
*
* If not supported, this will effectively always wake up to poll the
* poll group.
*/
vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport,
transport);
if (!vu_transport->intr_mode_supported) {
SPDK_WARNLOG("vfio-user interrupt mode not supported\n");
return &vu_group->group;
}
spdk_poller_register_interrupt(group->poller, set_intr_mode_noop,
NULL);
return &vu_group->group;
}
static bool
in_interrupt_mode(struct nvmf_vfio_user_transport *vu_transport)
{
return spdk_interrupt_mode_is_enabled() &&
vu_transport->intr_mode_supported;
}
static struct spdk_nvmf_transport_poll_group *
nvmf_vfio_user_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
{
struct nvmf_vfio_user_transport *vu_transport;
struct nvmf_vfio_user_poll_group **vu_group;
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_cq *cq;
struct spdk_nvmf_transport_poll_group *result = NULL;
sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
cq = sq->ctrlr->cqs[sq->cqid];
assert(cq != NULL);
vu_transport = SPDK_CONTAINEROF(qpair->transport, struct nvmf_vfio_user_transport, transport);
pthread_mutex_lock(&vu_transport->pg_lock);
if (TAILQ_EMPTY(&vu_transport->poll_groups)) {
goto out;
}
if (!nvmf_qpair_is_admin_queue(qpair)) {
/*
* If this is shared IO CQ case, just return the used CQ's poll
* group, so I/O completions don't have to use
* spdk_thread_send_msg().
*/
if (cq->group != NULL) {
result = cq->group;
goto out;
}
/*
* If we're in interrupt mode, align all qpairs for a controller
* on the same poll group, to avoid complications in
* vfio_user_handle_intr().
*/
if (in_interrupt_mode(vu_transport)) {
result = sq->ctrlr->sqs[0]->group;
goto out;
}
}
vu_group = &vu_transport->next_pg;
assert(*vu_group != NULL);
result = &(*vu_group)->group;
*vu_group = TAILQ_NEXT(*vu_group, link);
if (*vu_group == NULL) {
*vu_group = TAILQ_FIRST(&vu_transport->poll_groups);
}
out:
if (cq->group == NULL) {
cq->group = result;
}
pthread_mutex_unlock(&vu_transport->pg_lock);
return result;
}
/* called when process exits */
static void
nvmf_vfio_user_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
{
struct nvmf_vfio_user_poll_group *vu_group, *next_tgroup;;
struct nvmf_vfio_user_transport *vu_transport;
SPDK_DEBUGLOG(nvmf_vfio, "destroy poll group\n");
vu_group = SPDK_CONTAINEROF(group, struct nvmf_vfio_user_poll_group, group);
vu_transport = SPDK_CONTAINEROF(vu_group->group.transport, struct nvmf_vfio_user_transport,
transport);
pthread_mutex_lock(&vu_transport->pg_lock);
next_tgroup = TAILQ_NEXT(vu_group, link);
TAILQ_REMOVE(&vu_transport->poll_groups, vu_group, link);
if (next_tgroup == NULL) {
next_tgroup = TAILQ_FIRST(&vu_transport->poll_groups);
}
if (vu_transport->next_pg == vu_group) {
vu_transport->next_pg = next_tgroup;
}
pthread_mutex_unlock(&vu_transport->pg_lock);
free(vu_group);
}
static void
_vfio_user_qpair_disconnect(void *ctx)
{
struct nvmf_vfio_user_sq *sq = ctx;
spdk_nvmf_qpair_disconnect(&sq->qpair, NULL, NULL);
}
/* The function is used when socket connection is destroyed */
static int
vfio_user_destroy_ctrlr(struct nvmf_vfio_user_ctrlr *ctrlr)
{
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_endpoint *endpoint;
SPDK_DEBUGLOG(nvmf_vfio, "%s stop processing\n", ctrlr_id(ctrlr));
endpoint = ctrlr->endpoint;
assert(endpoint != NULL);
pthread_mutex_lock(&endpoint->lock);
if (TAILQ_EMPTY(&ctrlr->connected_sqs)) {
endpoint->ctrlr = NULL;
free_ctrlr(ctrlr);
pthread_mutex_unlock(&endpoint->lock);
return 0;
}
TAILQ_FOREACH(sq, &ctrlr->connected_sqs, tailq) {
/* add another round thread poll to avoid recursive endpoint lock */
spdk_thread_send_msg(ctrlr->thread, _vfio_user_qpair_disconnect, sq);
}
pthread_mutex_unlock(&endpoint->lock);
return 0;
}
/*
* Poll for and process any incoming vfio-user messages.
*/
static int
vfio_user_poll_vfu_ctx(void *ctx)
{
struct nvmf_vfio_user_ctrlr *ctrlr = ctx;
int ret;
assert(ctrlr != NULL);
/* This will call access_bar0_fn() if there are any writes
* to the portion of the BAR that is not mmap'd */
ret = vfu_run_ctx(ctrlr->endpoint->vfu_ctx);
if (spdk_unlikely(ret == -1)) {
if (errno == EBUSY) {
return SPDK_POLLER_IDLE;
}
spdk_poller_unregister(&ctrlr->vfu_ctx_poller);
/*
* We lost the client; the reset callback will already have
* unregistered the interrupt.
*/
if (errno == ENOTCONN) {
vfio_user_destroy_ctrlr(ctrlr);
return SPDK_POLLER_BUSY;
}
/*
* We might not have got a reset callback in this case, so
* explicitly unregister the interrupt here.
*/
spdk_interrupt_unregister(&ctrlr->intr);
ctrlr->intr_fd = -1;
fail_ctrlr(ctrlr);
}
return ret != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
}
struct vfio_user_post_cpl_ctx {
struct nvmf_vfio_user_ctrlr *ctrlr;
struct nvmf_vfio_user_cq *cq;
struct spdk_nvme_cpl cpl;
};
static void
_post_completion_msg(void *ctx)
{
struct vfio_user_post_cpl_ctx *cpl_ctx = ctx;
post_completion(cpl_ctx->ctrlr, cpl_ctx->cq, cpl_ctx->cpl.cdw0, cpl_ctx->cpl.sqid,
cpl_ctx->cpl.cid, cpl_ctx->cpl.status.sc, cpl_ctx->cpl.status.sct);
free(cpl_ctx);
}
static int nvmf_vfio_user_poll_group_poll(struct spdk_nvmf_transport_poll_group *group);
static int
vfio_user_handle_intr(void *ctx)
{
struct nvmf_vfio_user_ctrlr *ctrlr = ctx;
int ret;
assert(ctrlr != NULL);
assert(ctrlr->sqs[0] != NULL);
assert(ctrlr->sqs[0]->group != NULL);
ctrlr->self_kick_requested = false;
vfio_user_poll_vfu_ctx(ctrlr);
/*
* See nvmf_vfio_user_get_optimal_poll_group() fo why it's OK to only
* poll this poll group.
*/
ret = nvmf_vfio_user_poll_group_poll(ctrlr->sqs[0]->group);
return ret != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
}
static int
handle_queue_connect_rsp(struct nvmf_vfio_user_req *req, void *cb_arg)
{
struct nvmf_vfio_user_poll_group *vu_group;
struct nvmf_vfio_user_sq *sq = cb_arg;
struct nvmf_vfio_user_cq *cq;
struct nvmf_vfio_user_ctrlr *vu_ctrlr;
struct nvmf_vfio_user_endpoint *endpoint;
assert(sq != NULL);
assert(req != NULL);
vu_ctrlr = sq->ctrlr;
assert(vu_ctrlr != NULL);
endpoint = vu_ctrlr->endpoint;
assert(endpoint != NULL);
if (spdk_nvme_cpl_is_error(&req->req.rsp->nvme_cpl)) {
SPDK_ERRLOG("SC %u, SCT %u\n", req->req.rsp->nvme_cpl.status.sc, req->req.rsp->nvme_cpl.status.sct);
endpoint->ctrlr = NULL;
free_ctrlr(vu_ctrlr);
return -1;
}
vu_group = SPDK_CONTAINEROF(sq->group, struct nvmf_vfio_user_poll_group, group);
TAILQ_INSERT_TAIL(&vu_group->sqs, sq, link);
cq = vu_ctrlr->cqs[0];
assert(cq != NULL);
pthread_mutex_lock(&endpoint->lock);
if (nvmf_qpair_is_admin_queue(&sq->qpair)) {
vu_ctrlr->cntlid = sq->qpair.ctrlr->cntlid;
vu_ctrlr->thread = spdk_get_thread();
vu_ctrlr->ctrlr = sq->qpair.ctrlr;
vu_ctrlr->state = VFIO_USER_CTRLR_RUNNING;
vu_ctrlr->vfu_ctx_poller = SPDK_POLLER_REGISTER(vfio_user_poll_vfu_ctx, vu_ctrlr, 0);
cq->thread = spdk_get_thread();
if (in_interrupt_mode(endpoint->transport)) {
vu_ctrlr->intr_fd = vfu_get_poll_fd(vu_ctrlr->endpoint->vfu_ctx);
assert(vu_ctrlr->intr_fd != -1);
vu_ctrlr->intr = SPDK_INTERRUPT_REGISTER(vu_ctrlr->intr_fd,
vfio_user_handle_intr,
vu_ctrlr);
assert(vu_ctrlr->intr != NULL);
spdk_poller_register_interrupt(vu_ctrlr->vfu_ctx_poller,
set_intr_mode_noop,
vu_ctrlr);
}
} else {
/* For I/O queues this command was generated in response to an
* ADMIN I/O CREATE SUBMISSION QUEUE command which has not yet
* been completed. Complete it now.
*/
if (sq->post_create_io_sq_completion) {
assert(cq->thread != NULL);
if (cq->thread != spdk_get_thread()) {
struct vfio_user_post_cpl_ctx *cpl_ctx;
cpl_ctx = calloc(1, sizeof(*cpl_ctx));
if (!cpl_ctx) {
return -ENOMEM;
}
cpl_ctx->ctrlr = vu_ctrlr;
cpl_ctx->cq = cq;
cpl_ctx->cpl.sqid = 0;
cpl_ctx->cpl.cdw0 = 0;
cpl_ctx->cpl.cid = sq->create_io_sq_cmd.cid;
cpl_ctx->cpl.status.sc = SPDK_NVME_SC_SUCCESS;
cpl_ctx->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
spdk_thread_send_msg(cq->thread, _post_completion_msg, cpl_ctx);
} else {
post_completion(vu_ctrlr, cq, 0, 0,
sq->create_io_sq_cmd.cid, SPDK_NVME_SC_SUCCESS, SPDK_NVME_SCT_GENERIC);
}
sq->post_create_io_sq_completion = false;
} else if (in_interrupt_mode(endpoint->transport)) {
/*
* FIXME self_kick() ends up polling all queues on the
* controller thread, and this will be wrong if we ever
* support interrupt mode with I/O queues in a
* different poll group than the controller's.
*/
self_kick(vu_ctrlr);
}
sq->sq_state = VFIO_USER_SQ_ACTIVE;
}
TAILQ_INSERT_TAIL(&vu_ctrlr->connected_sqs, sq, tailq);
pthread_mutex_unlock(&endpoint->lock);
free(req->req.data);
req->req.data = NULL;
return 0;
}
/*
* Add the given qpair to the given poll group. New qpairs are added via
* spdk_nvmf_tgt_new_qpair(), which picks a poll group via
* nvmf_vfio_user_get_optimal_poll_group(), then calls back here via
* nvmf_transport_poll_group_add().
*/
static int
nvmf_vfio_user_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
struct spdk_nvmf_qpair *qpair)
{
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_req *vu_req;
struct nvmf_vfio_user_ctrlr *ctrlr;
struct spdk_nvmf_request *req;
struct spdk_nvmf_fabric_connect_data *data;
bool admin;
sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
sq->group = group;
ctrlr = sq->ctrlr;
SPDK_DEBUGLOG(nvmf_vfio, "%s: add QP%d=%p(%p) to poll_group=%p\n",
ctrlr_id(ctrlr), sq->qpair.qid,
sq, qpair, group);
admin = nvmf_qpair_is_admin_queue(&sq->qpair);
vu_req = get_nvmf_vfio_user_req(sq);
if (vu_req == NULL) {
return -1;
}
req = &vu_req->req;
req->cmd->connect_cmd.opcode = SPDK_NVME_OPC_FABRIC;
req->cmd->connect_cmd.cid = 0;
req->cmd->connect_cmd.fctype = SPDK_NVMF_FABRIC_COMMAND_CONNECT;
req->cmd->connect_cmd.recfmt = 0;
req->cmd->connect_cmd.sqsize = sq->size - 1;
req->cmd->connect_cmd.qid = admin ? 0 : qpair->qid;
req->length = sizeof(struct spdk_nvmf_fabric_connect_data);
req->data = calloc(1, req->length);
if (req->data == NULL) {
nvmf_vfio_user_req_free(req);
return -ENOMEM;
}
data = (struct spdk_nvmf_fabric_connect_data *)req->data;
data->cntlid = ctrlr->cntlid;
snprintf(data->subnqn, sizeof(data->subnqn), "%s",
spdk_nvmf_subsystem_get_nqn(ctrlr->endpoint->subsystem));
vu_req->cb_fn = handle_queue_connect_rsp;
vu_req->cb_arg = sq;
SPDK_DEBUGLOG(nvmf_vfio,
"%s: sending connect fabrics command for qid:%#x cntlid=%#x\n",
ctrlr_id(ctrlr), qpair->qid, data->cntlid);
spdk_nvmf_request_exec_fabrics(req);
return 0;
}
static int
nvmf_vfio_user_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
struct spdk_nvmf_qpair *qpair)
{
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_poll_group *vu_group;
sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
SPDK_DEBUGLOG(nvmf_vfio,
"%s: remove NVMf QP%d=%p from NVMf poll_group=%p\n",
ctrlr_id(sq->ctrlr), qpair->qid, qpair, group);
vu_group = SPDK_CONTAINEROF(group, struct nvmf_vfio_user_poll_group, group);
TAILQ_REMOVE(&vu_group->sqs, sq, link);
return 0;
}
static void
_nvmf_vfio_user_req_free(struct nvmf_vfio_user_sq *sq, struct nvmf_vfio_user_req *vu_req)
{
memset(&vu_req->cmd, 0, sizeof(vu_req->cmd));
memset(&vu_req->rsp, 0, sizeof(vu_req->rsp));
vu_req->iovcnt = 0;
vu_req->state = VFIO_USER_REQUEST_STATE_FREE;
TAILQ_INSERT_TAIL(&sq->free_reqs, vu_req, link);
}
static int
nvmf_vfio_user_req_free(struct spdk_nvmf_request *req)
{
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_req *vu_req;
assert(req != NULL);
vu_req = SPDK_CONTAINEROF(req, struct nvmf_vfio_user_req, req);
sq = SPDK_CONTAINEROF(req->qpair, struct nvmf_vfio_user_sq, qpair);
_nvmf_vfio_user_req_free(sq, vu_req);
return 0;
}
static int
nvmf_vfio_user_req_complete(struct spdk_nvmf_request *req)
{
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_req *vu_req;
assert(req != NULL);
vu_req = SPDK_CONTAINEROF(req, struct nvmf_vfio_user_req, req);
sq = SPDK_CONTAINEROF(req->qpair, struct nvmf_vfio_user_sq, qpair);
if (vu_req->cb_fn != NULL) {
if (vu_req->cb_fn(vu_req, vu_req->cb_arg) != 0) {
fail_ctrlr(sq->ctrlr);
}
}
_nvmf_vfio_user_req_free(sq, vu_req);
return 0;
}
static void
nvmf_vfio_user_close_qpair(struct spdk_nvmf_qpair *qpair,
spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
{
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_ctrlr *vu_ctrlr;
struct nvmf_vfio_user_endpoint *endpoint;
assert(qpair != NULL);
sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
vu_ctrlr = sq->ctrlr;
endpoint = vu_ctrlr->endpoint;
pthread_mutex_lock(&endpoint->lock);
TAILQ_REMOVE(&vu_ctrlr->connected_sqs, sq, tailq);
delete_sq_done(vu_ctrlr, sq);
if (TAILQ_EMPTY(&vu_ctrlr->connected_sqs)) {
endpoint->ctrlr = NULL;
free_ctrlr(vu_ctrlr);
}
pthread_mutex_unlock(&endpoint->lock);
if (cb_fn) {
cb_fn(cb_arg);
}
}
/**
* Returns a preallocated request, or NULL if there isn't one available.
*/
static struct nvmf_vfio_user_req *
get_nvmf_vfio_user_req(struct nvmf_vfio_user_sq *sq)
{
struct nvmf_vfio_user_req *req;
if (sq == NULL) {
return NULL;
}
req = TAILQ_FIRST(&sq->free_reqs);
if (req == NULL) {
return NULL;
}
TAILQ_REMOVE(&sq->free_reqs, req, link);
return req;
}
static int
get_nvmf_io_req_length(struct spdk_nvmf_request *req)
{
uint16_t nr;
uint32_t nlb, nsid;
struct spdk_nvme_cmd *cmd = &req->cmd->nvme_cmd;
struct spdk_nvmf_ctrlr *ctrlr = req->qpair->ctrlr;
struct spdk_nvmf_ns *ns;
nsid = cmd->nsid;
ns = _nvmf_subsystem_get_ns(ctrlr->subsys, nsid);
if (ns == NULL || ns->bdev == NULL) {
SPDK_ERRLOG("unsuccessful query for nsid %u\n", cmd->nsid);
return -EINVAL;
}
if (cmd->opc == SPDK_NVME_OPC_DATASET_MANAGEMENT) {
nr = cmd->cdw10_bits.dsm.nr + 1;
return nr * sizeof(struct spdk_nvme_dsm_range);
}
nlb = (cmd->cdw12 & 0x0000ffffu) + 1;
return nlb * spdk_bdev_get_block_size(ns->bdev);
}
static int
map_admin_cmd_req(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvmf_request *req)
{
struct spdk_nvme_cmd *cmd = &req->cmd->nvme_cmd;
uint32_t len = 0;
uint8_t fid;
int iovcnt;
req->xfer = spdk_nvme_opc_get_data_transfer(cmd->opc);
req->length = 0;
req->data = NULL;
if (req->xfer == SPDK_NVME_DATA_NONE) {
return 0;
}
switch (cmd->opc) {
case SPDK_NVME_OPC_IDENTIFY:
len = 4096;
break;
case SPDK_NVME_OPC_GET_LOG_PAGE:
len = (((cmd->cdw11_bits.get_log_page.numdu << 16) | cmd->cdw10_bits.get_log_page.numdl) + 1) * 4;
break;
case SPDK_NVME_OPC_GET_FEATURES:
case SPDK_NVME_OPC_SET_FEATURES:
fid = cmd->cdw10_bits.set_features.fid;
switch (fid) {
case SPDK_NVME_FEAT_LBA_RANGE_TYPE:
len = 4096;
break;
case SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION:
len = 256;
break;
case SPDK_NVME_FEAT_TIMESTAMP:
len = 8;
break;
case SPDK_NVME_FEAT_HOST_BEHAVIOR_SUPPORT:
len = 512;
break;
case SPDK_NVME_FEAT_HOST_IDENTIFIER:
if (cmd->cdw11_bits.feat_host_identifier.bits.exhid) {
len = 16;
} else {
len = 8;
}
break;
default:
return 0;
}
break;
default:
return 0;
}
/* ADMIN command will not use SGL */
if (cmd->psdt != 0) {
return -EINVAL;
}
iovcnt = vfio_user_map_cmd(ctrlr, req, req->iov, len);
if (iovcnt < 0) {
SPDK_ERRLOG("%s: map Admin Opc %x failed\n",
ctrlr_id(ctrlr), cmd->opc);
return -1;
}
req->length = len;
req->data = req->iov[0].iov_base;
req->iovcnt = iovcnt;
return 0;
}
/*
* Map an I/O command's buffers.
*
* Returns 0 on success and -errno on failure.
*/
static int
map_io_cmd_req(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvmf_request *req)
{
int len, iovcnt;
struct spdk_nvme_cmd *cmd;
assert(ctrlr != NULL);
assert(req != NULL);
cmd = &req->cmd->nvme_cmd;
req->xfer = spdk_nvme_opc_get_data_transfer(cmd->opc);
req->length = 0;
req->data = NULL;
if (spdk_unlikely(req->xfer == SPDK_NVME_DATA_NONE)) {
return 0;
}
len = get_nvmf_io_req_length(req);
if (len < 0) {
return -EINVAL;
}
req->length = len;
iovcnt = vfio_user_map_cmd(ctrlr, req, req->iov, req->length);
if (iovcnt < 0) {
SPDK_ERRLOG("%s: failed to map IO OPC %u\n", ctrlr_id(ctrlr), cmd->opc);
return -EFAULT;
}
req->data = req->iov[0].iov_base;
req->iovcnt = iovcnt;
return 0;
}
static int
handle_cmd_req(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvme_cmd *cmd,
struct nvmf_vfio_user_sq *sq)
{
int err;
struct nvmf_vfio_user_req *vu_req;
struct spdk_nvmf_request *req;
assert(ctrlr != NULL);
assert(cmd != NULL);
vu_req = get_nvmf_vfio_user_req(sq);
if (spdk_unlikely(vu_req == NULL)) {
SPDK_ERRLOG("%s: no request for NVMe command opc 0x%x\n", ctrlr_id(ctrlr), cmd->opc);
return post_completion(ctrlr, ctrlr->cqs[sq->cqid], 0, 0, cmd->cid,
SPDK_NVME_SC_INTERNAL_DEVICE_ERROR, SPDK_NVME_SCT_GENERIC);
}
req = &vu_req->req;
assert(req->qpair != NULL);
SPDK_DEBUGLOG(nvmf_vfio, "%s: handle sqid:%u, req opc=%#x cid=%d\n",
ctrlr_id(ctrlr), req->qpair->qid, cmd->opc, cmd->cid);
vu_req->cb_fn = handle_cmd_rsp;
vu_req->cb_arg = SPDK_CONTAINEROF(req->qpair, struct nvmf_vfio_user_sq, qpair);
req->cmd->nvme_cmd = *cmd;
if (nvmf_qpair_is_admin_queue(req->qpair)) {
err = map_admin_cmd_req(ctrlr, req);
} else {
switch (cmd->opc) {
case SPDK_NVME_OPC_RESERVATION_REGISTER:
case SPDK_NVME_OPC_RESERVATION_REPORT:
case SPDK_NVME_OPC_RESERVATION_ACQUIRE:
case SPDK_NVME_OPC_RESERVATION_RELEASE:
err = -ENOTSUP;
break;
default:
err = map_io_cmd_req(ctrlr, req);
break;
}
}
if (spdk_unlikely(err < 0)) {
SPDK_ERRLOG("%s: process NVMe command opc 0x%x failed\n",
ctrlr_id(ctrlr), cmd->opc);
req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
req->rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
err = handle_cmd_rsp(vu_req, vu_req->cb_arg);
_nvmf_vfio_user_req_free(sq, vu_req);
return err;
}
vu_req->state = VFIO_USER_REQUEST_STATE_EXECUTING;
spdk_nvmf_request_exec(req);
return 0;
}
/*
* If we suppressed an IRQ in post_completion(), check if it needs to be fired
* here: if the host isn't up to date, and is apparently not actively processing
* the queue (i.e. ->last_head isn't changing), we need an IRQ.
*/
static void
handle_suppressed_irq(struct nvmf_vfio_user_ctrlr *ctrlr,
struct nvmf_vfio_user_sq *sq)
{
struct nvmf_vfio_user_cq *cq = ctrlr->cqs[sq->cqid];
uint32_t cq_head;
uint32_t cq_tail;
if (!cq->ien || !ctrlr_interrupt_enabled(ctrlr) ||
!adaptive_irq_enabled(ctrlr, cq)) {
return;
}
cq_tail = *cq_tailp(cq);
/* Already sent? */
if (cq_tail == cq->last_trigger_irq_tail) {
return;
}
spdk_ivdt_dcache(cq_dbl_headp(cq));
cq_head = *cq_dbl_headp(cq);
if (cq_head != cq_tail && cq_head == cq->last_head) {
int err = vfu_irq_trigger(ctrlr->endpoint->vfu_ctx, cq->iv);
if (err != 0) {
SPDK_ERRLOG("%s: failed to trigger interrupt: %m\n",
ctrlr_id(ctrlr));
} else {
cq->last_trigger_irq_tail = cq_tail;
}
}
cq->last_head = cq_head;
}
/* Returns the number of commands processed, or a negative value on error. */
static int
nvmf_vfio_user_sq_poll(struct nvmf_vfio_user_sq *sq)
{
struct nvmf_vfio_user_ctrlr *ctrlr;
uint32_t new_tail;
int count = 0;
assert(sq != NULL);
ctrlr = sq->ctrlr;
handle_suppressed_irq(ctrlr, sq);
/* On aarch64 platforms, doorbells update from guest VM may not be seen
* on SPDK target side. This is because there is memory type mismatch
* situation here. That is on guest VM side, the doorbells are treated as
* device memory while on SPDK target side, it is treated as normal
* memory. And this situation cause problem on ARM platform.
* Refer to "https://developer.arm.com/documentation/102376/0100/
* Memory-aliasing-and-mismatched-memory-types". Only using spdk_mb()
* cannot fix this. Use "dc civac" to invalidate cache may solve
* this.
*/
spdk_ivdt_dcache(sq_dbl_tailp(sq));
/* Load-Acquire. */
new_tail = *sq_dbl_tailp(sq);
/*
* Ensure that changes to the queue are visible to us.
* The host driver should write the queue first, do a wmb(), and then
* update the SQ tail doorbell (their Store-Release).
*/
spdk_rmb();
new_tail = new_tail & 0xffffu;
if (spdk_unlikely(new_tail >= sq->size)) {
union spdk_nvme_async_event_completion event = {};
SPDK_DEBUGLOG(nvmf_vfio, "%s: invalid sqid:%u doorbell value %u\n", ctrlr_id(ctrlr), sq->qid,
new_tail);
event.bits.async_event_type = SPDK_NVME_ASYNC_EVENT_TYPE_ERROR;
event.bits.async_event_info = SPDK_NVME_ASYNC_EVENT_INVALID_DB_WRITE;
nvmf_ctrlr_async_event_error_event(ctrlr->ctrlr, event);
return 0;
}
if (*sq_headp(sq) == new_tail) {
return 0;
}
count = handle_sq_tdbl_write(ctrlr, new_tail, sq);
if (count < 0) {
fail_ctrlr(ctrlr);
}
return count;
}
/*
* vfio-user transport poll handler. Note that the library context is polled in
* a separate poller (->vfu_ctx_poller), so this poller only needs to poll the
* active qpairs.
*
* Returns the number of commands processed, or a negative value on error.
*/
static int
nvmf_vfio_user_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
{
struct nvmf_vfio_user_poll_group *vu_group;
struct nvmf_vfio_user_sq *sq, *tmp;
int count = 0;
assert(group != NULL);
spdk_rmb();
vu_group = SPDK_CONTAINEROF(group, struct nvmf_vfio_user_poll_group, group);
TAILQ_FOREACH_SAFE(sq, &vu_group->sqs, link, tmp) {
int ret;
if (spdk_unlikely(sq->sq_state != VFIO_USER_SQ_ACTIVE || !sq->size)) {
continue;
}
ret = nvmf_vfio_user_sq_poll(sq);
if (ret < 0) {
return ret;
}
count += ret;
}
return count;
}
static int
nvmf_vfio_user_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
struct spdk_nvme_transport_id *trid)
{
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_ctrlr *ctrlr;
sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
ctrlr = sq->ctrlr;
memcpy(trid, &ctrlr->endpoint->trid, sizeof(*trid));
return 0;
}
static int
nvmf_vfio_user_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
struct spdk_nvme_transport_id *trid)
{
return 0;
}
static int
nvmf_vfio_user_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
struct spdk_nvme_transport_id *trid)
{
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_ctrlr *ctrlr;
sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
ctrlr = sq->ctrlr;
memcpy(trid, &ctrlr->endpoint->trid, sizeof(*trid));
return 0;
}
static void
nvmf_vfio_user_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
struct spdk_nvmf_request *req)
{
struct spdk_nvmf_request *req_to_abort = NULL;
struct spdk_nvmf_request *temp_req = NULL;
uint16_t cid;
cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
TAILQ_FOREACH(temp_req, &qpair->outstanding, link) {
struct nvmf_vfio_user_req *vu_req;
vu_req = SPDK_CONTAINEROF(temp_req, struct nvmf_vfio_user_req, req);
if (vu_req->state == VFIO_USER_REQUEST_STATE_EXECUTING && vu_req->cmd.cid == cid) {
req_to_abort = temp_req;
break;
}
}
if (req_to_abort == NULL) {
spdk_nvmf_request_complete(req);
return;
}
req->req_to_abort = req_to_abort;
nvmf_ctrlr_abort_request(req);
}
static void
nvmf_vfio_user_opts_init(struct spdk_nvmf_transport_opts *opts)
{
opts->max_queue_depth = NVMF_VFIO_USER_DEFAULT_MAX_QUEUE_DEPTH;
opts->max_qpairs_per_ctrlr = NVMF_VFIO_USER_DEFAULT_MAX_QPAIRS_PER_CTRLR;
opts->in_capsule_data_size = 0;
opts->max_io_size = NVMF_VFIO_USER_DEFAULT_MAX_IO_SIZE;
opts->io_unit_size = NVMF_VFIO_USER_DEFAULT_IO_UNIT_SIZE;
opts->max_aq_depth = NVMF_VFIO_USER_DEFAULT_AQ_DEPTH;
opts->num_shared_buffers = 0;
opts->buf_cache_size = 0;
opts->association_timeout = 0;
opts->transport_specific = NULL;
}
const struct spdk_nvmf_transport_ops spdk_nvmf_transport_vfio_user = {
.name = "VFIOUSER",
.type = SPDK_NVME_TRANSPORT_VFIOUSER,
.opts_init = nvmf_vfio_user_opts_init,
.create = nvmf_vfio_user_create,
.destroy = nvmf_vfio_user_destroy,
.listen = nvmf_vfio_user_listen,
.stop_listen = nvmf_vfio_user_stop_listen,
.cdata_init = nvmf_vfio_user_cdata_init,
.listen_associate = nvmf_vfio_user_listen_associate,
.listener_discover = nvmf_vfio_user_discover,
.poll_group_create = nvmf_vfio_user_poll_group_create,
.get_optimal_poll_group = nvmf_vfio_user_get_optimal_poll_group,
.poll_group_destroy = nvmf_vfio_user_poll_group_destroy,
.poll_group_add = nvmf_vfio_user_poll_group_add,
.poll_group_remove = nvmf_vfio_user_poll_group_remove,
.poll_group_poll = nvmf_vfio_user_poll_group_poll,
.req_free = nvmf_vfio_user_req_free,
.req_complete = nvmf_vfio_user_req_complete,
.qpair_fini = nvmf_vfio_user_close_qpair,
.qpair_get_local_trid = nvmf_vfio_user_qpair_get_local_trid,
.qpair_get_peer_trid = nvmf_vfio_user_qpair_get_peer_trid,
.qpair_get_listen_trid = nvmf_vfio_user_qpair_get_listen_trid,
.qpair_abort_request = nvmf_vfio_user_qpair_abort_request,
};
SPDK_NVMF_TRANSPORT_REGISTER(muser, &spdk_nvmf_transport_vfio_user);
SPDK_LOG_REGISTER_COMPONENT(nvmf_vfio)