Spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c
Changpeng Liu b45556e2b2 include/bdev_module.h: add SPDK_ prefix to macros
`BDEV_IO_NUM_CHILD_IOV` and `BDEV_RESET_IO_DRAIN_RECOMMENDED_VALUE`
are public macro definitions without `SPDK_` prefix, so we add the
`SPDK_` prefix to them.

Change-Id: I4be86459f0b6ba3a4636a2c8130b2f12757ea2da
Signed-off-by: Changpeng Liu <changpeng.liu@intel.com>
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/15425
Community-CI: Mellanox Build Bot
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Paul Luse <paul.e.luse@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
2022-11-22 10:03:57 +00:00

6283 lines
200 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2017 Intel Corporation. All rights reserved.
* Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
* Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*/
#include "spdk_cunit.h"
#include "common/lib/ut_multithread.c"
#include "unit/lib/json_mock.c"
#include "spdk/config.h"
/* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
#undef SPDK_CONFIG_VTUNE
#include "bdev/bdev.c"
DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
DEFINE_STUB(spdk_memory_domain_get_dma_device_id, const char *, (struct spdk_memory_domain *domain),
"test_domain");
DEFINE_STUB(spdk_memory_domain_get_dma_device_type, enum spdk_dma_device_type,
(struct spdk_memory_domain *domain), 0);
static bool g_memory_domain_pull_data_called;
static bool g_memory_domain_push_data_called;
DEFINE_RETURN_MOCK(spdk_memory_domain_pull_data, int);
int
spdk_memory_domain_pull_data(struct spdk_memory_domain *src_domain, void *src_domain_ctx,
struct iovec *src_iov, uint32_t src_iov_cnt, struct iovec *dst_iov, uint32_t dst_iov_cnt,
spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
{
g_memory_domain_pull_data_called = true;
HANDLE_RETURN_MOCK(spdk_memory_domain_pull_data);
cpl_cb(cpl_cb_arg, 0);
return 0;
}
DEFINE_RETURN_MOCK(spdk_memory_domain_push_data, int);
int
spdk_memory_domain_push_data(struct spdk_memory_domain *dst_domain, void *dst_domain_ctx,
struct iovec *dst_iov, uint32_t dst_iovcnt, struct iovec *src_iov, uint32_t src_iovcnt,
spdk_memory_domain_data_cpl_cb cpl_cb, void *cpl_cb_arg)
{
g_memory_domain_push_data_called = true;
HANDLE_RETURN_MOCK(spdk_memory_domain_push_data);
cpl_cb(cpl_cb_arg, 0);
return 0;
}
int g_status;
int g_count;
enum spdk_bdev_event_type g_event_type1;
enum spdk_bdev_event_type g_event_type2;
enum spdk_bdev_event_type g_event_type3;
enum spdk_bdev_event_type g_event_type4;
struct spdk_histogram_data *g_histogram;
void *g_unregister_arg;
int g_unregister_rc;
void
spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
int *sc, int *sk, int *asc, int *ascq)
{
}
static int
null_init(void)
{
return 0;
}
static int
null_clean(void)
{
return 0;
}
static int
stub_destruct(void *ctx)
{
return 0;
}
struct ut_expected_io {
uint8_t type;
uint64_t offset;
uint64_t src_offset;
uint64_t length;
int iovcnt;
struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
void *md_buf;
struct spdk_bdev_ext_io_opts *ext_io_opts;
bool copy_opts;
TAILQ_ENTRY(ut_expected_io) link;
};
struct bdev_ut_channel {
TAILQ_HEAD(, spdk_bdev_io) outstanding_io;
uint32_t outstanding_io_count;
TAILQ_HEAD(, ut_expected_io) expected_io;
};
static bool g_io_done;
static struct spdk_bdev_io *g_bdev_io;
static enum spdk_bdev_io_status g_io_status;
static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
static uint32_t g_bdev_ut_io_device;
static struct bdev_ut_channel *g_bdev_ut_channel;
static void *g_compare_read_buf;
static uint32_t g_compare_read_buf_len;
static void *g_compare_write_buf;
static uint32_t g_compare_write_buf_len;
static void *g_compare_md_buf;
static bool g_abort_done;
static enum spdk_bdev_io_status g_abort_status;
static void *g_zcopy_read_buf;
static uint32_t g_zcopy_read_buf_len;
static void *g_zcopy_write_buf;
static uint32_t g_zcopy_write_buf_len;
static struct spdk_bdev_io *g_zcopy_bdev_io;
static uint64_t g_seek_data_offset;
static uint64_t g_seek_hole_offset;
static uint64_t g_seek_offset;
static struct ut_expected_io *
ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
{
struct ut_expected_io *expected_io;
expected_io = calloc(1, sizeof(*expected_io));
SPDK_CU_ASSERT_FATAL(expected_io != NULL);
expected_io->type = type;
expected_io->offset = offset;
expected_io->length = length;
expected_io->iovcnt = iovcnt;
return expected_io;
}
static struct ut_expected_io *
ut_alloc_expected_copy_io(uint8_t type, uint64_t offset, uint64_t src_offset, uint64_t length)
{
struct ut_expected_io *expected_io;
expected_io = calloc(1, sizeof(*expected_io));
SPDK_CU_ASSERT_FATAL(expected_io != NULL);
expected_io->type = type;
expected_io->offset = offset;
expected_io->src_offset = src_offset;
expected_io->length = length;
return expected_io;
}
static void
ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
{
expected_io->iov[pos].iov_base = base;
expected_io->iov[pos].iov_len = len;
}
static void
stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
{
struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
struct ut_expected_io *expected_io;
struct iovec *iov, *expected_iov;
struct spdk_bdev_io *bio_to_abort;
int i;
g_bdev_io = bdev_io;
if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
CU_ASSERT(g_compare_read_buf_len == len);
memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
if (bdev_io->bdev->md_len && bdev_io->u.bdev.md_buf && g_compare_md_buf) {
memcpy(bdev_io->u.bdev.md_buf, g_compare_md_buf,
bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks);
}
}
if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
CU_ASSERT(g_compare_write_buf_len == len);
memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
}
if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
CU_ASSERT(g_compare_read_buf_len == len);
if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
}
if (bdev_io->u.bdev.md_buf &&
memcmp(bdev_io->u.bdev.md_buf, g_compare_md_buf,
bdev_io->bdev->md_len * bdev_io->u.bdev.num_blocks)) {
g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
}
}
if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
ch->outstanding_io_count--;
spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
break;
}
}
}
}
if (bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) {
if (bdev_io->u.bdev.zcopy.start) {
g_zcopy_bdev_io = bdev_io;
if (bdev_io->u.bdev.zcopy.populate) {
/* Start of a read */
CU_ASSERT(g_zcopy_read_buf != NULL);
CU_ASSERT(g_zcopy_read_buf_len > 0);
bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_read_buf;
bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_read_buf_len;
bdev_io->u.bdev.iovcnt = 1;
} else {
/* Start of a write */
CU_ASSERT(g_zcopy_write_buf != NULL);
CU_ASSERT(g_zcopy_write_buf_len > 0);
bdev_io->u.bdev.iovs[0].iov_base = g_zcopy_write_buf;
bdev_io->u.bdev.iovs[0].iov_len = g_zcopy_write_buf_len;
bdev_io->u.bdev.iovcnt = 1;
}
} else {
if (bdev_io->u.bdev.zcopy.commit) {
/* End of write */
CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_write_buf);
CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_write_buf_len);
CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
g_zcopy_write_buf = NULL;
g_zcopy_write_buf_len = 0;
} else {
/* End of read */
CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_base == g_zcopy_read_buf);
CU_ASSERT(bdev_io->u.bdev.iovs[0].iov_len == g_zcopy_read_buf_len);
CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
g_zcopy_read_buf = NULL;
g_zcopy_read_buf_len = 0;
}
}
}
if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_DATA) {
bdev_io->u.bdev.seek.offset = g_seek_data_offset;
}
if (bdev_io->type == SPDK_BDEV_IO_TYPE_SEEK_HOLE) {
bdev_io->u.bdev.seek.offset = g_seek_hole_offset;
}
TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
ch->outstanding_io_count++;
expected_io = TAILQ_FIRST(&ch->expected_io);
if (expected_io == NULL) {
return;
}
TAILQ_REMOVE(&ch->expected_io, expected_io, link);
if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
CU_ASSERT(bdev_io->type == expected_io->type);
}
if (expected_io->md_buf != NULL) {
CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
if (bdev_io->u.bdev.ext_opts) {
CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.ext_opts->metadata);
}
}
if (expected_io->copy_opts) {
if (expected_io->ext_io_opts) {
/* opts are not NULL so it should have been copied */
CU_ASSERT(expected_io->ext_io_opts != bdev_io->u.bdev.ext_opts);
CU_ASSERT(bdev_io->u.bdev.ext_opts == &bdev_io->internal.ext_opts_copy);
/* internal opts always points to opts passed */
CU_ASSERT(expected_io->ext_io_opts == bdev_io->internal.ext_opts);
} else {
/* passed opts was NULL so we expect bdev_io opts to be NULL */
CU_ASSERT(bdev_io->u.bdev.ext_opts == NULL);
}
} else {
/* opts were not copied so they should be equal */
CU_ASSERT(expected_io->ext_io_opts == bdev_io->u.bdev.ext_opts);
}
if (expected_io->length == 0) {
free(expected_io);
return;
}
CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
if (expected_io->type == SPDK_BDEV_IO_TYPE_COPY) {
CU_ASSERT(expected_io->src_offset == bdev_io->u.bdev.copy.src_offset_blocks);
}
if (expected_io->iovcnt == 0) {
free(expected_io);
/* UNMAP, WRITE_ZEROES, FLUSH and COPY don't have iovs, so we can just return now. */
return;
}
CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
for (i = 0; i < expected_io->iovcnt; i++) {
expected_iov = &expected_io->iov[i];
if (bdev_io->internal.orig_iovcnt == 0) {
iov = &bdev_io->u.bdev.iovs[i];
} else {
iov = bdev_io->internal.orig_iovs;
}
CU_ASSERT(iov->iov_len == expected_iov->iov_len);
CU_ASSERT(iov->iov_base == expected_iov->iov_base);
}
free(expected_io);
}
static void
stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
struct spdk_bdev_io *bdev_io, bool success)
{
CU_ASSERT(success == true);
stub_submit_request(_ch, bdev_io);
}
static void
stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
{
spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
}
static uint32_t
stub_complete_io(uint32_t num_to_complete)
{
struct bdev_ut_channel *ch = g_bdev_ut_channel;
struct spdk_bdev_io *bdev_io;
static enum spdk_bdev_io_status io_status;
uint32_t num_completed = 0;
while (num_completed < num_to_complete) {
if (TAILQ_EMPTY(&ch->outstanding_io)) {
break;
}
bdev_io = TAILQ_FIRST(&ch->outstanding_io);
TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
ch->outstanding_io_count--;
io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
g_io_exp_status;
spdk_bdev_io_complete(bdev_io, io_status);
num_completed++;
}
return num_completed;
}
static struct spdk_io_channel *
bdev_ut_get_io_channel(void *ctx)
{
return spdk_get_io_channel(&g_bdev_ut_io_device);
}
static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
[SPDK_BDEV_IO_TYPE_READ] = true,
[SPDK_BDEV_IO_TYPE_WRITE] = true,
[SPDK_BDEV_IO_TYPE_COMPARE] = true,
[SPDK_BDEV_IO_TYPE_UNMAP] = true,
[SPDK_BDEV_IO_TYPE_FLUSH] = true,
[SPDK_BDEV_IO_TYPE_RESET] = true,
[SPDK_BDEV_IO_TYPE_NVME_ADMIN] = true,
[SPDK_BDEV_IO_TYPE_NVME_IO] = true,
[SPDK_BDEV_IO_TYPE_NVME_IO_MD] = true,
[SPDK_BDEV_IO_TYPE_WRITE_ZEROES] = true,
[SPDK_BDEV_IO_TYPE_ZCOPY] = true,
[SPDK_BDEV_IO_TYPE_ABORT] = true,
[SPDK_BDEV_IO_TYPE_SEEK_HOLE] = true,
[SPDK_BDEV_IO_TYPE_SEEK_DATA] = true,
[SPDK_BDEV_IO_TYPE_COPY] = true,
};
static void
ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
{
g_io_types_supported[io_type] = enable;
}
static bool
stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
{
return g_io_types_supported[io_type];
}
static struct spdk_bdev_fn_table fn_table = {
.destruct = stub_destruct,
.submit_request = stub_submit_request,
.get_io_channel = bdev_ut_get_io_channel,
.io_type_supported = stub_io_type_supported,
};
static int
bdev_ut_create_ch(void *io_device, void *ctx_buf)
{
struct bdev_ut_channel *ch = ctx_buf;
CU_ASSERT(g_bdev_ut_channel == NULL);
g_bdev_ut_channel = ch;
TAILQ_INIT(&ch->outstanding_io);
ch->outstanding_io_count = 0;
TAILQ_INIT(&ch->expected_io);
return 0;
}
static void
bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
{
CU_ASSERT(g_bdev_ut_channel != NULL);
g_bdev_ut_channel = NULL;
}
struct spdk_bdev_module bdev_ut_if;
static int
bdev_ut_module_init(void)
{
spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
sizeof(struct bdev_ut_channel), NULL);
spdk_bdev_module_init_done(&bdev_ut_if);
return 0;
}
static void
bdev_ut_module_fini(void)
{
spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
}
struct spdk_bdev_module bdev_ut_if = {
.name = "bdev_ut",
.module_init = bdev_ut_module_init,
.module_fini = bdev_ut_module_fini,
.async_init = true,
};
static void vbdev_ut_examine(struct spdk_bdev *bdev);
static int
vbdev_ut_module_init(void)
{
return 0;
}
static void
vbdev_ut_module_fini(void)
{
}
struct spdk_bdev_module vbdev_ut_if = {
.name = "vbdev_ut",
.module_init = vbdev_ut_module_init,
.module_fini = vbdev_ut_module_fini,
.examine_config = vbdev_ut_examine,
};
SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
static void
vbdev_ut_examine(struct spdk_bdev *bdev)
{
spdk_bdev_module_examine_done(&vbdev_ut_if);
}
static struct spdk_bdev *
allocate_bdev(char *name)
{
struct spdk_bdev *bdev;
int rc;
bdev = calloc(1, sizeof(*bdev));
SPDK_CU_ASSERT_FATAL(bdev != NULL);
bdev->name = name;
bdev->fn_table = &fn_table;
bdev->module = &bdev_ut_if;
bdev->blockcnt = 1024;
bdev->blocklen = 512;
spdk_uuid_generate(&bdev->uuid);
rc = spdk_bdev_register(bdev);
poll_threads();
CU_ASSERT(rc == 0);
return bdev;
}
static struct spdk_bdev *
allocate_vbdev(char *name)
{
struct spdk_bdev *bdev;
int rc;
bdev = calloc(1, sizeof(*bdev));
SPDK_CU_ASSERT_FATAL(bdev != NULL);
bdev->name = name;
bdev->fn_table = &fn_table;
bdev->module = &vbdev_ut_if;
rc = spdk_bdev_register(bdev);
poll_threads();
CU_ASSERT(rc == 0);
return bdev;
}
static void
free_bdev(struct spdk_bdev *bdev)
{
spdk_bdev_unregister(bdev, NULL, NULL);
poll_threads();
memset(bdev, 0xFF, sizeof(*bdev));
free(bdev);
}
static void
free_vbdev(struct spdk_bdev *bdev)
{
spdk_bdev_unregister(bdev, NULL, NULL);
poll_threads();
memset(bdev, 0xFF, sizeof(*bdev));
free(bdev);
}
static void
get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
{
const char *bdev_name;
CU_ASSERT(bdev != NULL);
CU_ASSERT(rc == 0);
bdev_name = spdk_bdev_get_name(bdev);
CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
free(stat);
*(bool *)cb_arg = true;
}
static void
bdev_unregister_cb(void *cb_arg, int rc)
{
g_unregister_arg = cb_arg;
g_unregister_rc = rc;
}
static void
bdev_ut_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
{
}
static void
bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
{
struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
g_event_type1 = type;
if (SPDK_BDEV_EVENT_REMOVE == type) {
spdk_bdev_close(desc);
}
}
static void
bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
{
struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
g_event_type2 = type;
if (SPDK_BDEV_EVENT_REMOVE == type) {
spdk_bdev_close(desc);
}
}
static void
bdev_open_cb3(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
{
g_event_type3 = type;
}
static void
bdev_open_cb4(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
{
g_event_type4 = type;
}
static void
bdev_seek_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
g_seek_offset = spdk_bdev_io_get_seek_offset(bdev_io);
spdk_bdev_free_io(bdev_io);
}
static void
get_device_stat_test(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_io_stat *stat;
bool done;
bdev = allocate_bdev("bdev0");
stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
if (stat == NULL) {
free_bdev(bdev);
return;
}
done = false;
spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
while (!done) { poll_threads(); }
free_bdev(bdev);
}
static void
open_write_test(void)
{
struct spdk_bdev *bdev[9];
struct spdk_bdev_desc *desc[9] = {};
int rc;
/*
* Create a tree of bdevs to test various open w/ write cases.
*
* bdev0 through bdev3 are physical block devices, such as NVMe
* namespaces or Ceph block devices.
*
* bdev4 is a virtual bdev with multiple base bdevs. This models
* caching or RAID use cases.
*
* bdev5 through bdev7 are all virtual bdevs with the same base
* bdev (except bdev7). This models partitioning or logical volume
* use cases.
*
* bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
* (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
* models caching, RAID, partitioning or logical volumes use cases.
*
* bdev8 is a virtual bdev with multiple base bdevs, but these
* base bdevs are themselves virtual bdevs.
*
* bdev8
* |
* +----------+
* | |
* bdev4 bdev5 bdev6 bdev7
* | | | |
* +---+---+ +---+ + +---+---+
* | | \ | / \
* bdev0 bdev1 bdev2 bdev3
*/
bdev[0] = allocate_bdev("bdev0");
rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
bdev[1] = allocate_bdev("bdev1");
rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
bdev[2] = allocate_bdev("bdev2");
rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
bdev[3] = allocate_bdev("bdev3");
rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
bdev[4] = allocate_vbdev("bdev4");
rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
bdev[5] = allocate_vbdev("bdev5");
rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
bdev[6] = allocate_vbdev("bdev6");
bdev[7] = allocate_vbdev("bdev7");
bdev[8] = allocate_vbdev("bdev8");
/* Open bdev0 read-only. This should succeed. */
rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc[0]);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
CU_ASSERT(bdev[0] == spdk_bdev_desc_get_bdev(desc[0]));
spdk_bdev_close(desc[0]);
/*
* Open bdev1 read/write. This should fail since bdev1 has been claimed
* by a vbdev module.
*/
rc = spdk_bdev_open_ext("bdev1", true, bdev_ut_event_cb, NULL, &desc[1]);
CU_ASSERT(rc == -EPERM);
/*
* Open bdev4 read/write. This should fail since bdev3 has been claimed
* by a vbdev module.
*/
rc = spdk_bdev_open_ext("bdev4", true, bdev_ut_event_cb, NULL, &desc[4]);
CU_ASSERT(rc == -EPERM);
/* Open bdev4 read-only. This should succeed. */
rc = spdk_bdev_open_ext("bdev4", false, bdev_ut_event_cb, NULL, &desc[4]);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
CU_ASSERT(bdev[4] == spdk_bdev_desc_get_bdev(desc[4]));
spdk_bdev_close(desc[4]);
/*
* Open bdev8 read/write. This should succeed since it is a leaf
* bdev.
*/
rc = spdk_bdev_open_ext("bdev8", true, bdev_ut_event_cb, NULL, &desc[8]);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
CU_ASSERT(bdev[8] == spdk_bdev_desc_get_bdev(desc[8]));
spdk_bdev_close(desc[8]);
/*
* Open bdev5 read/write. This should fail since bdev4 has been claimed
* by a vbdev module.
*/
rc = spdk_bdev_open_ext("bdev5", true, bdev_ut_event_cb, NULL, &desc[5]);
CU_ASSERT(rc == -EPERM);
/* Open bdev4 read-only. This should succeed. */
rc = spdk_bdev_open_ext("bdev5", false, bdev_ut_event_cb, NULL, &desc[5]);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
CU_ASSERT(bdev[5] == spdk_bdev_desc_get_bdev(desc[5]));
spdk_bdev_close(desc[5]);
free_vbdev(bdev[8]);
free_vbdev(bdev[5]);
free_vbdev(bdev[6]);
free_vbdev(bdev[7]);
free_vbdev(bdev[4]);
free_bdev(bdev[0]);
free_bdev(bdev[1]);
free_bdev(bdev[2]);
free_bdev(bdev[3]);
}
static void
claim_test(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc, *open_desc;
int rc;
uint32_t count;
/*
* A vbdev that uses a read-only bdev may need it to remain read-only.
* To do so, it opens the bdev read-only, then claims it without
* passing a spdk_bdev_desc.
*/
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open_ext("bdev0", false, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT(rc == 0);
CU_ASSERT(desc->write == false);
rc = spdk_bdev_module_claim_bdev(bdev, NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
/* There should be only one open descriptor and it should still be ro */
count = 0;
TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
CU_ASSERT(open_desc == desc);
CU_ASSERT(!open_desc->write);
count++;
}
CU_ASSERT(count == 1);
/* A read-only bdev is upgraded to read-write if desc is passed. */
spdk_bdev_module_release_bdev(bdev);
rc = spdk_bdev_module_claim_bdev(bdev, desc, &bdev_ut_if);
CU_ASSERT(rc == 0);
CU_ASSERT(bdev->internal.claim_module == &bdev_ut_if);
/* There should be only one open descriptor and it should be rw */
count = 0;
TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
CU_ASSERT(open_desc == desc);
CU_ASSERT(open_desc->write);
count++;
}
CU_ASSERT(count == 1);
spdk_bdev_close(desc);
free_bdev(bdev);
}
static void
bytes_to_blocks_test(void)
{
struct spdk_bdev bdev;
uint64_t offset_blocks, num_blocks;
memset(&bdev, 0, sizeof(bdev));
bdev.blocklen = 512;
/* All parameters valid */
offset_blocks = 0;
num_blocks = 0;
CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
CU_ASSERT(offset_blocks == 1);
CU_ASSERT(num_blocks == 2);
/* Offset not a block multiple */
CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
/* Length not a block multiple */
CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
/* In case blocklen not the power of two */
bdev.blocklen = 100;
CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
CU_ASSERT(offset_blocks == 1);
CU_ASSERT(num_blocks == 2);
/* Offset not a block multiple */
CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
/* Length not a block multiple */
CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
}
static void
num_blocks_test(void)
{
struct spdk_bdev bdev;
struct spdk_bdev_desc *desc = NULL;
int rc;
memset(&bdev, 0, sizeof(bdev));
bdev.name = "num_blocks";
bdev.fn_table = &fn_table;
bdev.module = &bdev_ut_if;
spdk_bdev_register(&bdev);
poll_threads();
spdk_bdev_notify_blockcnt_change(&bdev, 50);
/* Growing block number */
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
/* Shrinking block number */
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc, &desc);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(&bdev == spdk_bdev_desc_get_bdev(desc));
/* Growing block number */
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
/* Shrinking block number */
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
g_event_type1 = 0xFF;
/* Growing block number */
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
poll_threads();
CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
g_event_type1 = 0xFF;
/* Growing block number and closing */
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
spdk_bdev_close(desc);
spdk_bdev_unregister(&bdev, NULL, NULL);
poll_threads();
/* Callback is not called for closed device */
CU_ASSERT_EQUAL(g_event_type1, 0xFF);
}
static void
io_valid_test(void)
{
struct spdk_bdev bdev;
memset(&bdev, 0, sizeof(bdev));
bdev.blocklen = 512;
CU_ASSERT(pthread_mutex_init(&bdev.internal.mutex, NULL) == 0);
spdk_bdev_notify_blockcnt_change(&bdev, 100);
/* All parameters valid */
CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
/* Last valid block */
CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
/* Offset past end of bdev */
CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
/* Offset + length past end of bdev */
CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
/* Offset near end of uint64_t range (2^64 - 1) */
CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
CU_ASSERT(pthread_mutex_destroy(&bdev.internal.mutex) == 0);
}
static void
alias_add_del_test(void)
{
struct spdk_bdev *bdev[3];
int rc;
/* Creating and registering bdevs */
bdev[0] = allocate_bdev("bdev0");
SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
bdev[1] = allocate_bdev("bdev1");
SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
bdev[2] = allocate_bdev("bdev2");
SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
poll_threads();
/*
* Trying adding an alias identical to name.
* Alias is identical to name, so it can not be added to aliases list
*/
rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
CU_ASSERT(rc == -EEXIST);
/*
* Trying to add empty alias,
* this one should fail
*/
rc = spdk_bdev_alias_add(bdev[0], NULL);
CU_ASSERT(rc == -EINVAL);
/* Trying adding same alias to two different registered bdevs */
/* Alias is used first time, so this one should pass */
rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
CU_ASSERT(rc == 0);
/* Alias was added to another bdev, so this one should fail */
rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
CU_ASSERT(rc == -EEXIST);
/* Alias is used first time, so this one should pass */
rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
CU_ASSERT(rc == 0);
/* Trying removing an alias from registered bdevs */
/* Alias is not on a bdev aliases list, so this one should fail */
rc = spdk_bdev_alias_del(bdev[0], "not existing");
CU_ASSERT(rc == -ENOENT);
/* Alias is present on a bdev aliases list, so this one should pass */
rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
CU_ASSERT(rc == 0);
/* Alias is present on a bdev aliases list, so this one should pass */
rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
CU_ASSERT(rc == 0);
/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
CU_ASSERT(rc != 0);
/* Trying to del all alias from empty alias list */
spdk_bdev_alias_del_all(bdev[2]);
SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
/* Trying to del all alias from non-empty alias list */
rc = spdk_bdev_alias_add(bdev[2], "alias0");
CU_ASSERT(rc == 0);
rc = spdk_bdev_alias_add(bdev[2], "alias1");
CU_ASSERT(rc == 0);
spdk_bdev_alias_del_all(bdev[2]);
CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
/* Unregister and free bdevs */
spdk_bdev_unregister(bdev[0], NULL, NULL);
spdk_bdev_unregister(bdev[1], NULL, NULL);
spdk_bdev_unregister(bdev[2], NULL, NULL);
poll_threads();
free(bdev[0]);
free(bdev[1]);
free(bdev[2]);
}
static void
io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
g_io_done = true;
g_io_status = bdev_io->internal.status;
if ((bdev_io->type == SPDK_BDEV_IO_TYPE_ZCOPY) &&
(bdev_io->u.bdev.zcopy.start)) {
g_zcopy_bdev_io = bdev_io;
} else {
spdk_bdev_free_io(bdev_io);
g_zcopy_bdev_io = NULL;
}
}
static void
bdev_init_cb(void *arg, int rc)
{
CU_ASSERT(rc == 0);
}
static void
bdev_fini_cb(void *arg)
{
}
struct bdev_ut_io_wait_entry {
struct spdk_bdev_io_wait_entry entry;
struct spdk_io_channel *io_ch;
struct spdk_bdev_desc *desc;
bool submitted;
};
static void
io_wait_cb(void *arg)
{
struct bdev_ut_io_wait_entry *entry = arg;
int rc;
rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
entry->submitted = true;
}
static void
bdev_io_types_test(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_opts bdev_opts = {};
int rc;
spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
bdev_opts.bdev_io_pool_size = 4;
bdev_opts.bdev_io_cache_size = 2;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
poll_threads();
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT(rc == 0);
poll_threads();
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
/* WRITE and WRITE ZEROES are not supported */
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
CU_ASSERT(rc == -ENOTSUP);
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
/* COPY is not supported */
ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
rc = spdk_bdev_copy_blocks(desc, io_ch, 128, 0, 128, io_done, NULL);
CU_ASSERT(rc == -ENOTSUP);
ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
/* NVME_IO, NVME_IO_MD and NVME_ADMIN are not supported */
ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, false);
ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, false);
ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, false);
rc = spdk_bdev_nvme_io_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
CU_ASSERT(rc == -ENOTSUP);
rc = spdk_bdev_nvme_io_passthru_md(desc, io_ch, NULL, NULL, 0, NULL, 0, NULL, NULL);
CU_ASSERT(rc == -ENOTSUP);
rc = spdk_bdev_nvme_admin_passthru(desc, io_ch, NULL, NULL, 0, NULL, NULL);
CU_ASSERT(rc == -ENOTSUP);
ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO, true);
ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_IO_MD, true);
ut_enable_io_type(SPDK_BDEV_IO_TYPE_NVME_ADMIN, true);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_io_wait_test(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_opts bdev_opts = {};
struct bdev_ut_io_wait_entry io_wait_entry;
struct bdev_ut_io_wait_entry io_wait_entry2;
int rc;
spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
bdev_opts.bdev_io_pool_size = 4;
bdev_opts.bdev_io_cache_size = 2;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
poll_threads();
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT(rc == 0);
poll_threads();
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
CU_ASSERT(rc == -ENOMEM);
io_wait_entry.entry.bdev = bdev;
io_wait_entry.entry.cb_fn = io_wait_cb;
io_wait_entry.entry.cb_arg = &io_wait_entry;
io_wait_entry.io_ch = io_ch;
io_wait_entry.desc = desc;
io_wait_entry.submitted = false;
/* Cannot use the same io_wait_entry for two different calls. */
memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
io_wait_entry2.entry.cb_arg = &io_wait_entry2;
/* Queue two I/O waits. */
rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
CU_ASSERT(rc == 0);
CU_ASSERT(io_wait_entry.submitted == false);
rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
CU_ASSERT(rc == 0);
CU_ASSERT(io_wait_entry2.submitted == false);
stub_complete_io(1);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
CU_ASSERT(io_wait_entry.submitted == true);
CU_ASSERT(io_wait_entry2.submitted == false);
stub_complete_io(1);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
CU_ASSERT(io_wait_entry2.submitted == true);
stub_complete_io(4);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_io_spans_split_test(void)
{
struct spdk_bdev bdev;
struct spdk_bdev_io bdev_io;
struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV];
memset(&bdev, 0, sizeof(bdev));
bdev_io.u.bdev.iovs = iov;
bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
bdev.optimal_io_boundary = 0;
bdev.max_segment_size = 0;
bdev.max_num_segments = 0;
bdev_io.bdev = &bdev;
/* bdev has no optimal_io_boundary and max_size set - so this should return false. */
CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
bdev.split_on_optimal_io_boundary = true;
bdev.optimal_io_boundary = 32;
bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
/* RESETs are not based on LBAs - so this should return false. */
CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
bdev_io.u.bdev.offset_blocks = 0;
bdev_io.u.bdev.num_blocks = 32;
/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
bdev_io.u.bdev.num_blocks = 33;
/* This I/O spans a boundary. */
CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
bdev_io.u.bdev.num_blocks = 32;
bdev.max_segment_size = 512 * 32;
bdev.max_num_segments = 1;
bdev_io.u.bdev.iovcnt = 1;
iov[0].iov_len = 512;
/* Does not cross and exceed max_size or max_segs */
CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
bdev.split_on_optimal_io_boundary = false;
bdev.max_segment_size = 512;
bdev.max_num_segments = 1;
bdev_io.u.bdev.iovcnt = 2;
/* Exceed max_segs */
CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
bdev.max_num_segments = 2;
iov[0].iov_len = 513;
iov[1].iov_len = 512;
/* Exceed max_sizes */
CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
bdev.max_segment_size = 0;
bdev.write_unit_size = 32;
bdev.split_on_write_unit = true;
bdev_io.type = SPDK_BDEV_IO_TYPE_WRITE;
/* This I/O is one write unit */
CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
bdev_io.u.bdev.num_blocks = 32 * 2;
/* This I/O is more than one write unit */
CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
bdev_io.u.bdev.offset_blocks = 1;
bdev_io.u.bdev.num_blocks = 32;
/* This I/O is not aligned to write unit size */
CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
}
static void
bdev_io_boundary_split_test(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_opts bdev_opts = {};
struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
struct ut_expected_io *expected_io;
void *md_buf = (void *)0xFF000000;
uint64_t i;
int rc;
spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
bdev_opts.bdev_io_pool_size = 512;
bdev_opts.bdev_io_cache_size = 64;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
bdev->optimal_io_boundary = 16;
bdev->split_on_optimal_io_boundary = false;
g_io_done = false;
/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
bdev->split_on_optimal_io_boundary = true;
bdev->md_interleave = false;
bdev->md_len = 8;
/* Now test that a single-vector command is split correctly.
* Offset 14, length 8, payload 0xF000
* Child - Offset 14, length 2, payload 0xF000
* Child - Offset 16, length 6, payload 0xF000 + 2 * 512
*
* Set up the expected values before calling spdk_bdev_read_blocks
*/
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
expected_io->md_buf = md_buf;
ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
expected_io->md_buf = md_buf + 2 * 8;
ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* spdk_bdev_read_blocks will submit the first child immediately. */
rc = spdk_bdev_read_blocks_with_md(desc, io_ch, (void *)0xF000, md_buf,
14, 8, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Now set up a more complex, multi-vector command that needs to be split,
* including splitting iovecs.
*/
iov[0].iov_base = (void *)0x10000;
iov[0].iov_len = 512;
iov[1].iov_base = (void *)0x20000;
iov[1].iov_len = 20 * 512;
iov[2].iov_base = (void *)0x30000;
iov[2].iov_len = 11 * 512;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
expected_io->md_buf = md_buf;
ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
expected_io->md_buf = md_buf + 2 * 8;
ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
expected_io->md_buf = md_buf + 18 * 8;
ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_writev_blocks_with_md(desc, io_ch, iov, 3, md_buf,
14, 32, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
stub_complete_io(3);
CU_ASSERT(g_io_done == true);
/* Test multi vector command that needs to be split by strip and then needs to be
* split further due to the capacity of child iovs.
*/
for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 512;
}
bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
SPDK_BDEV_IO_NUM_CHILD_IOV);
expected_io->md_buf = md_buf;
for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
}
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
ut_expected_io_set_iov(expected_io, i,
(void *)((i + 1 + SPDK_BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
}
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
0, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Test multi vector command that needs to be split by strip and then needs to be
* split further due to the capacity of child iovs. In this case, the length of
* the rest of iovec array with an I/O boundary is the multiple of block size.
*/
/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
* is SPDK_BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
*/
for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 512;
}
for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 256;
}
iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
/* Add an extra iovec to trigger split */
iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV);
expected_io->md_buf = md_buf;
for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
ut_expected_io_set_iov(expected_io, i,
(void *)((i + 1) * 0x10000), 512);
}
for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
ut_expected_io_set_iov(expected_io, i,
(void *)((i + 1) * 0x10000), 256);
}
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1, 1);
expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
ut_expected_io_set_iov(expected_io, 0,
(void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1, 1);
expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
ut_expected_io_set_iov(expected_io, 0,
(void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, md_buf,
0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Test multi vector command that needs to be split by strip and then needs to be
* split further due to the capacity of child iovs, the child request offset should
* be rewind to last aligned offset and go success without error.
*/
for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 512;
}
iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
g_io_done = false;
g_io_status = 0;
/* The first expected io should be start from offset 0 to SPDK_BDEV_IO_NUM_CHILD_IOV - 1 */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
SPDK_BDEV_IO_NUM_CHILD_IOV - 1, SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
expected_io->md_buf = md_buf;
for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
ut_expected_io_set_iov(expected_io, i,
(void *)((i + 1) * 0x10000), 512);
}
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The second expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV - 1 to SPDK_BDEV_IO_NUM_CHILD_IOV */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 1,
1, 2);
expected_io->md_buf = md_buf + (SPDK_BDEV_IO_NUM_CHILD_IOV - 1) * 8;
ut_expected_io_set_iov(expected_io, 0,
(void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
ut_expected_io_set_iov(expected_io, 1,
(void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The third expected io should be start from offset SPDK_BDEV_IO_NUM_CHILD_IOV to SPDK_BDEV_IO_NUM_CHILD_IOV + 1 */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
1, 1);
expected_io->md_buf = md_buf + SPDK_BDEV_IO_NUM_CHILD_IOV * 8;
ut_expected_io_set_iov(expected_io, 0,
(void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, md_buf,
0, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Test multi vector command that needs to be split due to the IO boundary and
* the capacity of child iovs. Especially test the case when the command is
* split due to the capacity of child iovs, the tail address is not aligned with
* block size and is rewinded to the aligned address.
*
* The iovecs used in read request is complex but is based on the data
* collected in the real issue. We change the base addresses but keep the lengths
* not to loose the credibility of the test.
*/
bdev->optimal_io_boundary = 128;
g_io_done = false;
g_io_status = 0;
for (i = 0; i < 31; i++) {
iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
iov[i].iov_len = 1024;
}
iov[31].iov_base = (void *)0xFEED1F00000;
iov[31].iov_len = 32768;
iov[32].iov_base = (void *)0xFEED2000000;
iov[32].iov_len = 160;
iov[33].iov_base = (void *)0xFEED2100000;
iov[33].iov_len = 4096;
iov[34].iov_base = (void *)0xFEED2200000;
iov[34].iov_len = 4096;
iov[35].iov_base = (void *)0xFEED2300000;
iov[35].iov_len = 4096;
iov[36].iov_base = (void *)0xFEED2400000;
iov[36].iov_len = 4096;
iov[37].iov_base = (void *)0xFEED2500000;
iov[37].iov_len = 4096;
iov[38].iov_base = (void *)0xFEED2600000;
iov[38].iov_len = 4096;
iov[39].iov_base = (void *)0xFEED2700000;
iov[39].iov_len = 4096;
iov[40].iov_base = (void *)0xFEED2800000;
iov[40].iov_len = 4096;
iov[41].iov_base = (void *)0xFEED2900000;
iov[41].iov_len = 4096;
iov[42].iov_base = (void *)0xFEED2A00000;
iov[42].iov_len = 4096;
iov[43].iov_base = (void *)0xFEED2B00000;
iov[43].iov_len = 12288;
iov[44].iov_base = (void *)0xFEED2C00000;
iov[44].iov_len = 8192;
iov[45].iov_base = (void *)0xFEED2F00000;
iov[45].iov_len = 4096;
iov[46].iov_base = (void *)0xFEED3000000;
iov[46].iov_len = 4096;
iov[47].iov_base = (void *)0xFEED3100000;
iov[47].iov_len = 4096;
iov[48].iov_base = (void *)0xFEED3200000;
iov[48].iov_len = 24576;
iov[49].iov_base = (void *)0xFEED3300000;
iov[49].iov_len = 16384;
iov[50].iov_base = (void *)0xFEED3400000;
iov[50].iov_len = 12288;
iov[51].iov_base = (void *)0xFEED3500000;
iov[51].iov_len = 4096;
iov[52].iov_base = (void *)0xFEED3600000;
iov[52].iov_len = 4096;
iov[53].iov_base = (void *)0xFEED3700000;
iov[53].iov_len = 4096;
iov[54].iov_base = (void *)0xFEED3800000;
iov[54].iov_len = 28672;
iov[55].iov_base = (void *)0xFEED3900000;
iov[55].iov_len = 20480;
iov[56].iov_base = (void *)0xFEED3A00000;
iov[56].iov_len = 4096;
iov[57].iov_base = (void *)0xFEED3B00000;
iov[57].iov_len = 12288;
iov[58].iov_base = (void *)0xFEED3C00000;
iov[58].iov_len = 4096;
iov[59].iov_base = (void *)0xFEED3D00000;
iov[59].iov_len = 4096;
iov[60].iov_base = (void *)0xFEED3E00000;
iov[60].iov_len = 352;
/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
* of child iovs,
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
expected_io->md_buf = md_buf;
for (i = 0; i < 32; i++) {
ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
}
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
* split by the IO boundary requirement.
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
expected_io->md_buf = md_buf + 126 * 8;
ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
* the first 864 bytes of iov[46] split by the IO boundary requirement.
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
expected_io->md_buf = md_buf + 128 * 8;
ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
iov[33].iov_len - 864);
ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
* first 864 bytes of iov[52] split by the IO boundary requirement.
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
expected_io->md_buf = md_buf + 256 * 8;
ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
iov[46].iov_len - 864);
ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
* the first 4096 bytes of iov[57] split by the IO boundary requirement.
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
expected_io->md_buf = md_buf + 384 * 8;
ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
iov[52].iov_len - 864);
ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
* to the first 3936 bytes of iov[58] split by the capacity of child iovs.
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
expected_io->md_buf = md_buf + 512 * 8;
ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
iov[57].iov_len - 4960);
ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
expected_io->md_buf = md_buf + 542 * 8;
ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
iov[59].iov_len - 3936);
ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_readv_blocks_with_md(desc, io_ch, iov, 61, md_buf,
0, 543, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
stub_complete_io(5);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
/* Test a WRITE_ZEROES that would span an I/O boundary. WRITE_ZEROES should not be
* split, so test that.
*/
bdev->optimal_io_boundary = 15;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
/* Test an UNMAP. This should also not be split. */
bdev->optimal_io_boundary = 16;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
/* Test a FLUSH. This should also not be split. */
bdev->optimal_io_boundary = 16;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
/* Test a COPY. This should also not be split. */
bdev->optimal_io_boundary = 15;
g_io_done = false;
expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
/* Children requests return an error status */
bdev->optimal_io_boundary = 16;
iov[0].iov_base = (void *)0x10000;
iov[0].iov_len = 512 * 64;
g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
g_io_done = false;
g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
stub_complete_io(4);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
/* Test if a multi vector command terminated with failure before continuing
* splitting process when one of child I/O failed.
* The multi vector command is as same as the above that needs to be split by strip
* and then needs to be split further due to the capacity of child iovs.
*/
for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 1; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 512;
}
iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(SPDK_BDEV_IO_NUM_CHILD_IOV * 0x10000);
iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
iov[SPDK_BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((SPDK_BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
iov[SPDK_BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
g_io_done = false;
g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
/* for this test we will create the following conditions to hit the code path where
* we are trying to send and IO following a split that has no iovs because we had to
* trim them for alignment reasons.
*
* - 16K boundary, our IO will start at offset 0 with a length of 0x4200
* - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
* position 30 and overshoot by 0x2e.
* - That means we'll send the IO and loop back to pick up the remaining bytes at
* child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
* which eliniates that vector so we just send the first split IO with 30 vectors
* and let the completion pick up the last 2 vectors.
*/
bdev->optimal_io_boundary = 32;
bdev->split_on_optimal_io_boundary = true;
g_io_done = false;
/* Init all parent IOVs to 0x212 */
for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 0x212;
}
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, SPDK_BDEV_IO_NUM_CHILD_IOV,
SPDK_BDEV_IO_NUM_CHILD_IOV - 1);
/* expect 0-29 to be 1:1 with the parent iov */
for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
}
/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
* where 0x1e is the amount we overshot the 16K boundary
*/
ut_expected_io_set_iov(expected_io, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
(void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
* shortened that take it to the next boundary and then a final one to get us to
* 0x4200 bytes for the IO.
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV,
SPDK_BDEV_IO_NUM_CHILD_IOV, 2);
/* position 30 picked up the remaining bytes to the next boundary */
ut_expected_io_set_iov(expected_io, 0,
(void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
/* position 31 picked the the rest of the transfer to get us to 0x4200 */
ut_expected_io_set_iov(expected_io, 1,
(void *)(iov[SPDK_BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 1, 0,
SPDK_BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_io_max_size_and_segment_split_test(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_opts bdev_opts = {};
struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
struct ut_expected_io *expected_io;
uint64_t i;
int rc;
spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
bdev_opts.bdev_io_pool_size = 512;
bdev_opts.bdev_io_cache_size = 64;
bdev_opts.opts_size = sizeof(bdev_opts);
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
bdev->split_on_optimal_io_boundary = false;
bdev->optimal_io_boundary = 0;
/* Case 0 max_num_segments == 0.
* but segment size 2 * 512 > 512
*/
bdev->max_segment_size = 512;
bdev->max_num_segments = 0;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Case 1 max_segment_size == 0
* but iov num 2 > 1.
*/
bdev->max_segment_size = 0;
bdev->max_num_segments = 1;
g_io_done = false;
iov[0].iov_base = (void *)0x10000;
iov[0].iov_len = 512;
iov[1].iov_base = (void *)0x20000;
iov[1].iov_len = 8 * 512;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, iov[0].iov_len);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 8, 1);
ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, iov[1].iov_len);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 14, 9, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Test that a non-vector command is split correctly.
* Set up the expected values before calling spdk_bdev_read_blocks
*/
bdev->max_segment_size = 512;
bdev->max_num_segments = 1;
g_io_done = false;
/* Child IO 0 */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 1, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* Child IO 1 */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 1 * 512), 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* spdk_bdev_read_blocks will submit the first child immediately. */
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 2, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Now set up a more complex, multi-vector command that needs to be split,
* including splitting iovecs.
*/
bdev->max_segment_size = 2 * 512;
bdev->max_num_segments = 1;
g_io_done = false;
iov[0].iov_base = (void *)0x10000;
iov[0].iov_len = 2 * 512;
iov[1].iov_base = (void *)0x20000;
iov[1].iov_len = 4 * 512;
iov[2].iov_base = (void *)0x30000;
iov[2].iov_len = 6 * 512;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 2);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* Split iov[1].size to 2 iov entries then split the segments */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base, 512 * 2);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 18, 2, 1);
ut_expected_io_set_iov(expected_io, 0, iov[1].iov_base + 512 * 2, 512 * 2);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* Split iov[2].size to 3 iov entries then split the segments */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 20, 2, 1);
ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base, 512 * 2);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 22, 2, 1);
ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 2, 512 * 2);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 24, 2, 1);
ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 4, 512 * 2);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 12, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
stub_complete_io(6);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Test multi vector command that needs to be split by strip and then needs to be
* split further due to the capacity of parent IO child iovs.
*/
bdev->max_segment_size = 512;
bdev->max_num_segments = 1;
g_io_done = false;
for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 512 * 2;
}
/* Each input iov.size is split into 2 iovs,
* half of the input iov can fill all child iov entries of a single IO.
*/
for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i++) {
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i, 1, 1);
ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 2 * i + 1, 1, 1);
ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
}
/* The remaining iov is split in the second round */
for (i = SPDK_BDEV_IO_NUM_CHILD_IOV / 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2, 1, 1);
ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 2 + 1, 1, 1);
ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base + 512, 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
}
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == SPDK_BDEV_IO_NUM_CHILD_IOV);
stub_complete_io(SPDK_BDEV_IO_NUM_CHILD_IOV);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* A wrong case, a child IO that is divided does
* not meet the principle of multiples of block size,
* and exits with error
*/
bdev->max_segment_size = 512;
bdev->max_num_segments = 1;
g_io_done = false;
iov[0].iov_base = (void *)0x10000;
iov[0].iov_len = 512 + 256;
iov[1].iov_base = (void *)0x20000;
iov[1].iov_len = 256;
/* iov[0] is split to 512 and 256.
* 256 is less than a block size, and it is found
* in the next round of split that it is the first child IO smaller than
* the block size, so the error exit
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 1, 1);
ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 2, 0, 2, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
/* First child IO is OK */
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* error exit */
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Test multi vector command that needs to be split by strip and then needs to be
* split further due to the capacity of child iovs.
*
* In this case, the last two iovs need to be split, but it will exceed the capacity
* of child iovs, so it needs to wait until the first batch completed.
*/
bdev->max_segment_size = 512;
bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
g_io_done = false;
for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 512;
}
for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 512 * 2;
}
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
SPDK_BDEV_IO_NUM_CHILD_IOV, SPDK_BDEV_IO_NUM_CHILD_IOV);
/* 0 ~ (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) Will not be split */
for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
}
/* (SPDK_BDEV_IO_NUM_CHILD_IOV - 2) is split */
ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, 512);
ut_expected_io_set_iov(expected_io, i + 1, iov[i].iov_base + 512, 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* Child iov entries exceed the max num of parent IO so split it in next round */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV, 2, 2);
ut_expected_io_set_iov(expected_io, 0, iov[i + 1].iov_base, 512);
ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base + 512, 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV, 0,
SPDK_BDEV_IO_NUM_CHILD_IOV + 2, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == false);
/* Next round */
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* This case is similar to the previous one, but the io composed of
* the last few entries of child iov is not enough for a blocklen, so they
* cannot be put into this IO, but wait until the next time.
*/
bdev->max_segment_size = 512;
bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
g_io_done = false;
for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 512;
}
for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 128;
}
/* First child iovcnt is't SPDK_BDEV_IO_NUM_CHILD_IOV but SPDK_BDEV_IO_NUM_CHILD_IOV - 2.
* Because the left 2 iov is not enough for a blocklen.
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
SPDK_BDEV_IO_NUM_CHILD_IOV - 2, SPDK_BDEV_IO_NUM_CHILD_IOV - 2);
for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
}
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The second child io waits until the end of the first child io before executing.
* Because the iovcnt of the two IOs exceeds the child iovcnt of the parent IO.
* SPDK_BDEV_IO_NUM_CHILD_IOV - 2 to SPDK_BDEV_IO_NUM_CHILD_IOV + 2
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, SPDK_BDEV_IO_NUM_CHILD_IOV - 2,
1, 4);
ut_expected_io_set_iov(expected_io, 0, iov[i].iov_base, iov[i].iov_len);
ut_expected_io_set_iov(expected_io, 1, iov[i + 1].iov_base, iov[i + 1].iov_len);
ut_expected_io_set_iov(expected_io, 2, iov[i + 2].iov_base, iov[i + 2].iov_len);
ut_expected_io_set_iov(expected_io, 3, iov[i + 3].iov_base, iov[i + 3].iov_len);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
SPDK_BDEV_IO_NUM_CHILD_IOV - 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* A very complicated case. Each sg entry exceeds max_segment_size and
* needs to be split. At the same time, child io must be a multiple of blocklen.
* At the same time, child iovcnt exceeds parent iovcnt.
*/
bdev->max_segment_size = 512 + 128;
bdev->max_num_segments = 3;
g_io_done = false;
for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 512 + 256;
}
for (i = SPDK_BDEV_IO_NUM_CHILD_IOV - 2; i < SPDK_BDEV_IO_NUM_CHILD_IOV + 2; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 512 + 128;
}
/* Child IOs use 9 entries per for() round and 3 * 9 = 27 child iov entries.
* Consume 4 parent IO iov entries per for() round and 6 block size.
* Generate 9 child IOs.
*/
for (i = 0; i < 3; i++) {
uint32_t j = i * 4;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6, 2, 3);
ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* Child io must be a multiple of blocklen
* iov[j + 2] must be split. If the third entry is also added,
* the multiple of blocklen cannot be guaranteed. But it still
* occupies one iov entry of the parent child iov.
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 2, 2, 2);
ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, i * 6 + 4, 2, 3);
ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
}
/* Child iov position at 27, the 10th child IO
* iov entry index is 3 * 4 and offset is 3 * 6
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 18, 2, 3);
ut_expected_io_set_iov(expected_io, 0, iov[12].iov_base, 640);
ut_expected_io_set_iov(expected_io, 1, iov[12].iov_base + 640, 128);
ut_expected_io_set_iov(expected_io, 2, iov[13].iov_base, 256);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* Child iov position at 30, the 11th child IO */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 20, 2, 2);
ut_expected_io_set_iov(expected_io, 0, iov[13].iov_base + 256, 512);
ut_expected_io_set_iov(expected_io, 1, iov[14].iov_base, 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The 2nd split round and iovpos is 0, the 12th child IO */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 22, 2, 3);
ut_expected_io_set_iov(expected_io, 0, iov[14].iov_base + 512, 256);
ut_expected_io_set_iov(expected_io, 1, iov[15].iov_base, 640);
ut_expected_io_set_iov(expected_io, 2, iov[15].iov_base + 640, 128);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* Consume 9 child IOs and 27 child iov entries.
* Consume 4 parent IO iov entries per for() round and 6 block size.
* Parent IO iov index start from 16 and block offset start from 24
*/
for (i = 0; i < 3; i++) {
uint32_t j = i * 4 + 16;
uint32_t offset = i * 6 + 24;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, 2, 3);
ut_expected_io_set_iov(expected_io, 0, iov[j].iov_base, 640);
ut_expected_io_set_iov(expected_io, 1, iov[j].iov_base + 640, 128);
ut_expected_io_set_iov(expected_io, 2, iov[j + 1].iov_base, 256);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* Child io must be a multiple of blocklen
* iov[j + 2] must be split. If the third entry is also added,
* the multiple of blocklen cannot be guaranteed. But it still
* occupies one iov entry of the parent child iov.
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 2, 2, 2);
ut_expected_io_set_iov(expected_io, 0, iov[j + 1].iov_base + 256, 512);
ut_expected_io_set_iov(expected_io, 1, iov[j + 2].iov_base, 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset + 4, 2, 3);
ut_expected_io_set_iov(expected_io, 0, iov[j + 2].iov_base + 512, 256);
ut_expected_io_set_iov(expected_io, 1, iov[j + 3].iov_base, 640);
ut_expected_io_set_iov(expected_io, 2, iov[j + 3].iov_base + 640, 128);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
}
/* The 22th child IO, child iov position at 30 */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 42, 1, 1);
ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base, 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The third round */
/* Here is the 23nd child IO and child iovpos is 0 */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 43, 2, 3);
ut_expected_io_set_iov(expected_io, 0, iov[28].iov_base + 512, 256);
ut_expected_io_set_iov(expected_io, 1, iov[29].iov_base, 640);
ut_expected_io_set_iov(expected_io, 2, iov[29].iov_base + 640, 128);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The 24th child IO */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 45, 3, 3);
ut_expected_io_set_iov(expected_io, 0, iov[30].iov_base, 640);
ut_expected_io_set_iov(expected_io, 1, iov[31].iov_base, 640);
ut_expected_io_set_iov(expected_io, 2, iov[32].iov_base, 256);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The 25th child IO */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 48, 2, 2);
ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base + 256, 384);
ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 640);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV + 2, 0,
50, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
/* Parent IO supports up to 32 child iovs, so it is calculated that
* a maximum of 11 IOs can be split at a time, and the
* splitting will continue after the first batch is over.
*/
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
stub_complete_io(11);
CU_ASSERT(g_io_done == false);
/* The 2nd round */
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 11);
stub_complete_io(11);
CU_ASSERT(g_io_done == false);
/* The last round */
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
stub_complete_io(3);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Test an WRITE_ZEROES. This should also not be split. */
bdev->max_segment_size = 512;
bdev->max_num_segments = 1;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
/* Test an UNMAP. This should also not be split. */
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 4, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 4, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
/* Test a FLUSH. This should also not be split. */
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 4, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
/* Test a COPY. This should also not be split. */
g_io_done = false;
expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 9, 45, 36);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_copy_blocks(desc, io_ch, 9, 45, 36, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_io_mix_split_test(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_opts bdev_opts = {};
struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
struct ut_expected_io *expected_io;
uint64_t i;
int rc;
spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
bdev_opts.bdev_io_pool_size = 512;
bdev_opts.bdev_io_cache_size = 64;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
/* First case optimal_io_boundary == max_segment_size * max_num_segments */
bdev->split_on_optimal_io_boundary = true;
bdev->optimal_io_boundary = 16;
bdev->max_segment_size = 512;
bdev->max_num_segments = 16;
g_io_done = false;
/* IO crossing the IO boundary requires split
* Total 2 child IOs.
*/
/* The 1st child IO split the segment_size to multiple segment entry */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 2);
ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512);
ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 512), 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The 2nd child IO split the segment_size to multiple segment entry */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 2);
ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 512);
ut_expected_io_set_iov(expected_io, 1, (void *)(0xF000 + 3 * 512), 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 4, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Second case optimal_io_boundary > max_segment_size * max_num_segments */
bdev->max_segment_size = 15 * 512;
bdev->max_num_segments = 1;
g_io_done = false;
/* IO crossing the IO boundary requires split.
* The 1st child IO segment size exceeds the max_segment_size,
* So 1st child IO will be splitted to multiple segment entry.
* Then it split to 2 child IOs because of the max_num_segments.
* Total 3 child IOs.
*/
/* The first 2 IOs are in an IO boundary.
* Because the optimal_io_boundary > max_segment_size * max_num_segments
* So it split to the first 2 IOs.
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 15, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 15);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 15, 1, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 15), 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The 3rd Child IO is because of the io boundary */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
stub_complete_io(3);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Third case optimal_io_boundary < max_segment_size * max_num_segments */
bdev->max_segment_size = 17 * 512;
bdev->max_num_segments = 1;
g_io_done = false;
/* IO crossing the IO boundary requires split.
* Child IO does not split.
* Total 2 child IOs.
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 16, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 512 * 16);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 2, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 512 * 16), 512 * 2);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 0, 18, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Now set up a more complex, multi-vector command that needs to be split,
* including splitting iovecs.
* optimal_io_boundary < max_segment_size * max_num_segments
*/
bdev->max_segment_size = 3 * 512;
bdev->max_num_segments = 6;
g_io_done = false;
iov[0].iov_base = (void *)0x10000;
iov[0].iov_len = 4 * 512;
iov[1].iov_base = (void *)0x20000;
iov[1].iov_len = 4 * 512;
iov[2].iov_base = (void *)0x30000;
iov[2].iov_len = 10 * 512;
/* IO crossing the IO boundary requires split.
* The 1st child IO segment size exceeds the max_segment_size and after
* splitting segment_size, the num_segments exceeds max_num_segments.
* So 1st child IO will be splitted to 2 child IOs.
* Total 3 child IOs.
*/
/* The first 2 IOs are in an IO boundary.
* After splitting segment size the segment num exceeds.
* So it splits to 2 child IOs.
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 14, 6);
ut_expected_io_set_iov(expected_io, 0, iov[0].iov_base, 512 * 3);
ut_expected_io_set_iov(expected_io, 1, iov[0].iov_base + 512 * 3, 512);
ut_expected_io_set_iov(expected_io, 2, iov[1].iov_base, 512 * 3);
ut_expected_io_set_iov(expected_io, 3, iov[1].iov_base + 512 * 3, 512);
ut_expected_io_set_iov(expected_io, 4, iov[2].iov_base, 512 * 3);
ut_expected_io_set_iov(expected_io, 5, iov[2].iov_base + 512 * 3, 512 * 3);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The 2nd child IO has the left segment entry */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 6, 512 * 2);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 2, 1);
ut_expected_io_set_iov(expected_io, 0, iov[2].iov_base + 512 * 8, 512 * 2);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 0, 18, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
stub_complete_io(3);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* A very complicated case. Each sg entry exceeds max_segment_size
* and split on io boundary.
* optimal_io_boundary < max_segment_size * max_num_segments
*/
bdev->max_segment_size = 3 * 512;
bdev->max_num_segments = SPDK_BDEV_IO_NUM_CHILD_IOV;
g_io_done = false;
for (i = 0; i < 20; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 512 * 4;
}
/* IO crossing the IO boundary requires split.
* 80 block length can split 5 child IOs base on offset and IO boundary.
* Each iov entry needs to be splitted to 2 entries because of max_segment_size
* Total 5 child IOs.
*/
/* 4 iov entries are in an IO boundary and each iov entry splits to 2.
* So each child IO occupies 8 child iov entries.
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 16, 8);
for (i = 0; i < 4; i++) {
int iovcnt = i * 2;
ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
}
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* 2nd child IO and total 16 child iov entries of parent IO */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 8);
for (i = 4; i < 8; i++) {
int iovcnt = (i - 4) * 2;
ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
}
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* 3rd child IO and total 24 child iov entries of parent IO */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 16, 8);
for (i = 8; i < 12; i++) {
int iovcnt = (i - 8) * 2;
ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
}
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* 4th child IO and total 32 child iov entries of parent IO */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 48, 16, 8);
for (i = 12; i < 16; i++) {
int iovcnt = (i - 12) * 2;
ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
}
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* 5th child IO and because of the child iov entry it should be splitted
* in next round.
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 64, 16, 8);
for (i = 16; i < 20; i++) {
int iovcnt = (i - 16) * 2;
ut_expected_io_set_iov(expected_io, iovcnt, iov[i].iov_base, 512 * 3);
ut_expected_io_set_iov(expected_io, iovcnt + 1, iov[i].iov_base + 512 * 3, 512);
}
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 20, 0, 80, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
/* First split round */
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
stub_complete_io(4);
CU_ASSERT(g_io_done == false);
/* Second split round */
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_io_split_with_io_wait(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_channel *channel;
struct spdk_bdev_mgmt_channel *mgmt_ch;
struct spdk_bdev_opts bdev_opts = {};
struct iovec iov[3];
struct ut_expected_io *expected_io;
int rc;
spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
bdev_opts.bdev_io_pool_size = 2;
bdev_opts.bdev_io_cache_size = 1;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT(rc == 0);
CU_ASSERT(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
channel = spdk_io_channel_get_ctx(io_ch);
mgmt_ch = channel->shared_resource->mgmt_ch;
bdev->optimal_io_boundary = 16;
bdev->split_on_optimal_io_boundary = true;
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
/* Now test that a single-vector command is split correctly.
* Offset 14, length 8, payload 0xF000
* Child - Offset 14, length 2, payload 0xF000
* Child - Offset 16, length 6, payload 0xF000 + 2 * 512
*
* Set up the expected values before calling spdk_bdev_read_blocks
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The following children will be submitted sequentially due to the capacity of
* spdk_bdev_io.
*/
/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
/* Completing the first read I/O will submit the first child */
stub_complete_io(1);
CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
/* Completing the first child will submit the second child */
stub_complete_io(1);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
/* Complete the second child I/O. This should result in our callback getting
* invoked since the parent I/O is now complete.
*/
stub_complete_io(1);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Now set up a more complex, multi-vector command that needs to be split,
* including splitting iovecs.
*/
iov[0].iov_base = (void *)0x10000;
iov[0].iov_len = 512;
iov[1].iov_base = (void *)0x20000;
iov[1].iov_len = 20 * 512;
iov[2].iov_base = (void *)0x30000;
iov[2].iov_len = 11 * 512;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
/* The following children will be submitted sequentially due to the capacity of
* spdk_bdev_io.
*/
/* Completing the first child will submit the second child */
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == false);
/* Completing the second child will submit the third child */
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == false);
/* Completing the third child will result in our callback getting invoked
* since the parent I/O is now complete.
*/
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_io_write_unit_split_test(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_opts bdev_opts = {};
struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 4];
struct ut_expected_io *expected_io;
uint64_t i;
int rc;
spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
bdev_opts.bdev_io_pool_size = 512;
bdev_opts.bdev_io_cache_size = 64;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open_ext(bdev->name, true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
/* Write I/O 2x larger than write_unit_size should get split into 2 I/Os */
bdev->write_unit_size = 32;
bdev->split_on_write_unit = true;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 0, 32, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 32 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 32, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 32 * 512), 32 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
/* Same as above but with optimal_io_boundary < write_unit_size - the I/O should be split
* based on write_unit_size, not optimal_io_boundary */
bdev->split_on_optimal_io_boundary = true;
bdev->optimal_io_boundary = 16;
g_io_done = false;
rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 64, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
/* Write I/O should fail if it is smaller than write_unit_size */
g_io_done = false;
rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 0, 31, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
poll_threads();
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
/* Same for I/O not aligned to write_unit_size */
g_io_done = false;
rc = spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 1, 32, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
poll_threads();
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
/* Write should fail if it needs to be split but there are not enough iovs to submit
* an entire write unit */
bdev->write_unit_size = SPDK_COUNTOF(iov) / 2;
g_io_done = false;
for (i = 0; i < SPDK_COUNTOF(iov); i++) {
iov[i].iov_base = (void *)(0x1000 + 512 * i);
iov[i].iov_len = 512;
}
rc = spdk_bdev_writev_blocks(desc, io_ch, iov, SPDK_COUNTOF(iov), 0, SPDK_COUNTOF(iov),
io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
poll_threads();
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_io_alignment(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_opts bdev_opts = {};
int rc;
void *buf = NULL;
struct iovec iovs[2];
int iovcnt;
uint64_t alignment;
spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
bdev_opts.bdev_io_pool_size = 20;
bdev_opts.bdev_io_cache_size = 2;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
fn_table.submit_request = stub_submit_request_get_buf;
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT(rc == 0);
CU_ASSERT(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
/* Create aligned buffer */
rc = posix_memalign(&buf, 4096, 8192);
SPDK_CU_ASSERT_FATAL(rc == 0);
/* Pass aligned single buffer with no alignment required */
alignment = 1;
bdev->required_alignment = spdk_u32log2(alignment);
rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
stub_complete_io(1);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
stub_complete_io(1);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
/* Pass unaligned single buffer with no alignment required */
alignment = 1;
bdev->required_alignment = spdk_u32log2(alignment);
rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
stub_complete_io(1);
rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
stub_complete_io(1);
/* Pass unaligned single buffer with 512 alignment required */
alignment = 512;
bdev->required_alignment = spdk_u32log2(alignment);
rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
/* Pass unaligned single buffer with 4096 alignment required */
alignment = 4096;
bdev->required_alignment = spdk_u32log2(alignment);
rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
/* Pass aligned iovs with no alignment required */
alignment = 1;
bdev->required_alignment = spdk_u32log2(alignment);
iovcnt = 1;
iovs[0].iov_base = buf;
iovs[0].iov_len = 512;
rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
stub_complete_io(1);
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
stub_complete_io(1);
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
/* Pass unaligned iovs with no alignment required */
alignment = 1;
bdev->required_alignment = spdk_u32log2(alignment);
iovcnt = 2;
iovs[0].iov_base = buf + 16;
iovs[0].iov_len = 256;
iovs[1].iov_base = buf + 16 + 256 + 32;
iovs[1].iov_len = 256;
rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
stub_complete_io(1);
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
stub_complete_io(1);
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
/* Pass unaligned iov with 2048 alignment required */
alignment = 2048;
bdev->required_alignment = spdk_u32log2(alignment);
iovcnt = 2;
iovs[0].iov_base = buf + 16;
iovs[0].iov_len = 256;
iovs[1].iov_base = buf + 16 + 256 + 32;
iovs[1].iov_len = 256;
rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
/* Pass iov without allocated buffer without alignment required */
alignment = 1;
bdev->required_alignment = spdk_u32log2(alignment);
iovcnt = 1;
iovs[0].iov_base = NULL;
iovs[0].iov_len = 0;
rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
/* Pass iov without allocated buffer with 1024 alignment required */
alignment = 1024;
bdev->required_alignment = spdk_u32log2(alignment);
iovcnt = 1;
iovs[0].iov_base = NULL;
iovs[0].iov_len = 0;
rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
fn_table.submit_request = stub_submit_request;
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
free(buf);
}
static void
bdev_io_alignment_with_boundary(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_opts bdev_opts = {};
int rc;
void *buf = NULL;
struct iovec iovs[2];
int iovcnt;
uint64_t alignment;
spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
bdev_opts.bdev_io_pool_size = 20;
bdev_opts.bdev_io_cache_size = 2;
bdev_opts.opts_size = sizeof(bdev_opts);
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
fn_table.submit_request = stub_submit_request_get_buf;
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT(rc == 0);
CU_ASSERT(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
/* Create aligned buffer */
rc = posix_memalign(&buf, 4096, 131072);
SPDK_CU_ASSERT_FATAL(rc == 0);
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
alignment = 512;
bdev->required_alignment = spdk_u32log2(alignment);
bdev->optimal_io_boundary = 2;
bdev->split_on_optimal_io_boundary = true;
iovcnt = 1;
iovs[0].iov_base = NULL;
iovs[0].iov_len = 512 * 3;
rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
alignment = 512;
bdev->required_alignment = spdk_u32log2(alignment);
bdev->optimal_io_boundary = 16;
bdev->split_on_optimal_io_boundary = true;
iovcnt = 1;
iovs[0].iov_base = NULL;
iovs[0].iov_len = 512 * 16;
rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
alignment = 512;
bdev->required_alignment = spdk_u32log2(alignment);
bdev->optimal_io_boundary = 128;
bdev->split_on_optimal_io_boundary = true;
iovcnt = 1;
iovs[0].iov_base = buf + 16;
iovs[0].iov_len = 512 * 160;
rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
/* 512 * 3 with 2 IO boundary */
alignment = 512;
bdev->required_alignment = spdk_u32log2(alignment);
bdev->optimal_io_boundary = 2;
bdev->split_on_optimal_io_boundary = true;
iovcnt = 2;
iovs[0].iov_base = buf + 16;
iovs[0].iov_len = 512;
iovs[1].iov_base = buf + 16 + 512 + 32;
iovs[1].iov_len = 1024;
rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
/* 512 * 64 with 32 IO boundary */
bdev->optimal_io_boundary = 32;
iovcnt = 2;
iovs[0].iov_base = buf + 16;
iovs[0].iov_len = 16384;
iovs[1].iov_base = buf + 16 + 16384 + 32;
iovs[1].iov_len = 16384;
rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
stub_complete_io(3);
rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
stub_complete_io(3);
/* 512 * 160 with 32 IO boundary */
iovcnt = 1;
iovs[0].iov_base = buf + 16;
iovs[0].iov_len = 16384 + 65536;
rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
stub_complete_io(6);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
fn_table.submit_request = stub_submit_request;
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
free(buf);
}
static void
histogram_status_cb(void *cb_arg, int status)
{
g_status = status;
}
static void
histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
{
g_status = status;
g_histogram = histogram;
}
static void
histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
uint64_t total, uint64_t so_far)
{
g_count += count;
}
static void
bdev_histograms(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *ch;
struct spdk_histogram_data *histogram;
uint8_t buf[4096];
int rc;
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT(rc == 0);
CU_ASSERT(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(ch != NULL);
/* Enable histogram */
g_status = -1;
spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
poll_threads();
CU_ASSERT(g_status == 0);
CU_ASSERT(bdev->internal.histogram_enabled == true);
/* Allocate histogram */
histogram = spdk_histogram_data_alloc();
SPDK_CU_ASSERT_FATAL(histogram != NULL);
/* Check if histogram is zeroed */
spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
poll_threads();
CU_ASSERT(g_status == 0);
SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
g_count = 0;
spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
CU_ASSERT(g_count == 0);
rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
spdk_delay_us(10);
stub_complete_io(1);
poll_threads();
rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
spdk_delay_us(10);
stub_complete_io(1);
poll_threads();
/* Check if histogram gathered data from all I/O channels */
g_histogram = NULL;
spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
poll_threads();
CU_ASSERT(g_status == 0);
CU_ASSERT(bdev->internal.histogram_enabled == true);
SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
g_count = 0;
spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
CU_ASSERT(g_count == 2);
/* Disable histogram */
spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
poll_threads();
CU_ASSERT(g_status == 0);
CU_ASSERT(bdev->internal.histogram_enabled == false);
/* Try to run histogram commands on disabled bdev */
spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
poll_threads();
CU_ASSERT(g_status == -EFAULT);
spdk_histogram_data_free(histogram);
spdk_put_io_channel(ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
_bdev_compare(bool emulated)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *ioch;
struct ut_expected_io *expected_io;
uint64_t offset, num_blocks;
uint32_t num_completed;
char aa_buf[512];
char bb_buf[512];
struct iovec compare_iov;
uint8_t expected_io_type;
int rc;
if (emulated) {
expected_io_type = SPDK_BDEV_IO_TYPE_READ;
} else {
expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
}
memset(aa_buf, 0xaa, sizeof(aa_buf));
memset(bb_buf, 0xbb, sizeof(bb_buf));
g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
spdk_bdev_initialize(bdev_init_cb, NULL);
fn_table.submit_request = stub_submit_request_get_buf;
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT_EQUAL(rc, 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
ioch = spdk_bdev_get_io_channel(desc);
SPDK_CU_ASSERT_FATAL(ioch != NULL);
fn_table.submit_request = stub_submit_request_get_buf;
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
offset = 50;
num_blocks = 1;
compare_iov.iov_base = aa_buf;
compare_iov.iov_len = sizeof(aa_buf);
/* 1. successful compare */
expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
g_io_done = false;
g_compare_read_buf = aa_buf;
g_compare_read_buf_len = sizeof(aa_buf);
rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(1);
CU_ASSERT_EQUAL(num_completed, 1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
/* 2. miscompare */
expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
g_io_done = false;
g_compare_read_buf = bb_buf;
g_compare_read_buf_len = sizeof(bb_buf);
rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(1);
CU_ASSERT_EQUAL(num_completed, 1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
spdk_put_io_channel(ioch);
spdk_bdev_close(desc);
free_bdev(bdev);
fn_table.submit_request = stub_submit_request;
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
g_compare_read_buf = NULL;
}
static void
_bdev_compare_with_md(bool emulated)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *ioch;
struct ut_expected_io *expected_io;
uint64_t offset, num_blocks;
uint32_t num_completed;
char buf[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
char buf_interleaved_miscompare[1024 + 16 /* 2 * blocklen + 2 * mdlen */];
char buf_miscompare[1024 /* 2 * blocklen */];
char md_buf[16];
char md_buf_miscompare[16];
struct iovec compare_iov;
uint8_t expected_io_type;
int rc;
if (emulated) {
expected_io_type = SPDK_BDEV_IO_TYPE_READ;
} else {
expected_io_type = SPDK_BDEV_IO_TYPE_COMPARE;
}
memset(buf, 0xaa, sizeof(buf));
memset(buf_interleaved_miscompare, 0xaa, sizeof(buf_interleaved_miscompare));
/* make last md different */
memset(buf_interleaved_miscompare + 1024 + 8, 0xbb, 8);
memset(buf_miscompare, 0xbb, sizeof(buf_miscompare));
memset(md_buf, 0xaa, 16);
memset(md_buf_miscompare, 0xbb, 16);
g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
spdk_bdev_initialize(bdev_init_cb, NULL);
fn_table.submit_request = stub_submit_request_get_buf;
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT_EQUAL(rc, 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
ioch = spdk_bdev_get_io_channel(desc);
SPDK_CU_ASSERT_FATAL(ioch != NULL);
fn_table.submit_request = stub_submit_request_get_buf;
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
offset = 50;
num_blocks = 2;
/* interleaved md & data */
bdev->md_interleave = true;
bdev->md_len = 8;
bdev->blocklen = 512 + 8;
compare_iov.iov_base = buf;
compare_iov.iov_len = sizeof(buf);
/* 1. successful compare with md interleaved */
expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
g_io_done = false;
g_compare_read_buf = buf;
g_compare_read_buf_len = sizeof(buf);
rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(1);
CU_ASSERT_EQUAL(num_completed, 1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
/* 2. miscompare with md interleaved */
expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
g_io_done = false;
g_compare_read_buf = buf_interleaved_miscompare;
g_compare_read_buf_len = sizeof(buf_interleaved_miscompare);
rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(1);
CU_ASSERT_EQUAL(num_completed, 1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
/* Separate data & md buffers */
bdev->md_interleave = false;
bdev->blocklen = 512;
compare_iov.iov_base = buf;
compare_iov.iov_len = 1024;
/* 3. successful compare with md separated */
expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
g_io_done = false;
g_compare_read_buf = buf;
g_compare_read_buf_len = 1024;
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
g_compare_md_buf = md_buf;
rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
offset, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(1);
CU_ASSERT_EQUAL(num_completed, 1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
/* 4. miscompare with md separated where md buf is different */
expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
g_io_done = false;
g_compare_read_buf = buf;
g_compare_read_buf_len = 1024;
g_compare_md_buf = md_buf_miscompare;
rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
offset, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(1);
CU_ASSERT_EQUAL(num_completed, 1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
/* 5. miscompare with md separated where buf is different */
expected_io = ut_alloc_expected_io(expected_io_type, offset, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
g_io_done = false;
g_compare_read_buf = buf_miscompare;
g_compare_read_buf_len = sizeof(buf_miscompare);
g_compare_md_buf = md_buf;
rc = spdk_bdev_comparev_blocks_with_md(desc, ioch, &compare_iov, 1, md_buf,
offset, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(1);
CU_ASSERT_EQUAL(num_completed, 1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
bdev->md_len = 0;
g_compare_md_buf = NULL;
spdk_put_io_channel(ioch);
spdk_bdev_close(desc);
free_bdev(bdev);
fn_table.submit_request = stub_submit_request;
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
g_compare_read_buf = NULL;
}
static void
bdev_compare(void)
{
_bdev_compare(false);
_bdev_compare_with_md(false);
}
static void
bdev_compare_emulated(void)
{
_bdev_compare(true);
_bdev_compare_with_md(true);
}
static void
bdev_compare_and_write(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *ioch;
struct ut_expected_io *expected_io;
uint64_t offset, num_blocks;
uint32_t num_completed;
char aa_buf[512];
char bb_buf[512];
char cc_buf[512];
char write_buf[512];
struct iovec compare_iov;
struct iovec write_iov;
int rc;
memset(aa_buf, 0xaa, sizeof(aa_buf));
memset(bb_buf, 0xbb, sizeof(bb_buf));
memset(cc_buf, 0xcc, sizeof(cc_buf));
g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
spdk_bdev_initialize(bdev_init_cb, NULL);
fn_table.submit_request = stub_submit_request_get_buf;
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT_EQUAL(rc, 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
ioch = spdk_bdev_get_io_channel(desc);
SPDK_CU_ASSERT_FATAL(ioch != NULL);
fn_table.submit_request = stub_submit_request_get_buf;
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
offset = 50;
num_blocks = 1;
compare_iov.iov_base = aa_buf;
compare_iov.iov_len = sizeof(aa_buf);
write_iov.iov_base = bb_buf;
write_iov.iov_len = sizeof(bb_buf);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
g_io_done = false;
g_compare_read_buf = aa_buf;
g_compare_read_buf_len = sizeof(aa_buf);
memset(write_buf, 0, sizeof(write_buf));
g_compare_write_buf = write_buf;
g_compare_write_buf_len = sizeof(write_buf);
rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
offset, num_blocks, io_done, NULL);
/* Trigger range locking */
poll_threads();
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(1);
CU_ASSERT_EQUAL(num_completed, 1);
CU_ASSERT(g_io_done == false);
num_completed = stub_complete_io(1);
/* Trigger range unlocking */
poll_threads();
CU_ASSERT_EQUAL(num_completed, 1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
/* Test miscompare */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
g_io_done = false;
g_compare_read_buf = cc_buf;
g_compare_read_buf_len = sizeof(cc_buf);
memset(write_buf, 0, sizeof(write_buf));
g_compare_write_buf = write_buf;
g_compare_write_buf_len = sizeof(write_buf);
rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
offset, num_blocks, io_done, NULL);
/* Trigger range locking */
poll_threads();
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(1);
/* Trigger range unlocking earlier because we expect error here */
poll_threads();
CU_ASSERT_EQUAL(num_completed, 1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
num_completed = stub_complete_io(1);
CU_ASSERT_EQUAL(num_completed, 0);
spdk_put_io_channel(ioch);
spdk_bdev_close(desc);
free_bdev(bdev);
fn_table.submit_request = stub_submit_request;
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
g_compare_read_buf = NULL;
g_compare_write_buf = NULL;
}
static void
bdev_write_zeroes(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *ioch;
struct ut_expected_io *expected_io;
uint64_t offset, num_io_blocks, num_blocks;
uint32_t num_completed, num_requests;
int rc;
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT_EQUAL(rc, 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
ioch = spdk_bdev_get_io_channel(desc);
SPDK_CU_ASSERT_FATAL(ioch != NULL);
fn_table.submit_request = stub_submit_request;
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
/* First test that if the bdev supports write_zeroes, the request won't be split */
bdev->md_len = 0;
bdev->blocklen = 4096;
num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(1);
CU_ASSERT_EQUAL(num_completed, 1);
/* Check that if write zeroes is not supported it'll be replaced by regular writes */
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
num_requests = 2;
num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
for (offset = 0; offset < num_requests; ++offset) {
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
offset * num_io_blocks, num_io_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
}
rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(num_requests);
CU_ASSERT_EQUAL(num_completed, num_requests);
/* Check that the splitting is correct if bdev has interleaved metadata */
bdev->md_interleave = true;
bdev->md_len = 64;
bdev->blocklen = 4096 + 64;
num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
num_requests = offset = 0;
while (offset < num_blocks) {
num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
offset, num_io_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
offset += num_io_blocks;
num_requests++;
}
rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(num_requests);
CU_ASSERT_EQUAL(num_completed, num_requests);
num_completed = stub_complete_io(num_requests);
assert(num_completed == 0);
/* Check the the same for separate metadata buffer */
bdev->md_interleave = false;
bdev->md_len = 64;
bdev->blocklen = 4096;
num_requests = offset = 0;
while (offset < num_blocks) {
num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
offset, num_io_blocks, 0);
expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
offset += num_io_blocks;
num_requests++;
}
rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(num_requests);
CU_ASSERT_EQUAL(num_completed, num_requests);
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
spdk_put_io_channel(ioch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_zcopy_write(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *ioch;
struct ut_expected_io *expected_io;
uint64_t offset, num_blocks;
uint32_t num_completed;
char aa_buf[512];
struct iovec iov;
int rc;
const bool populate = false;
const bool commit = true;
memset(aa_buf, 0xaa, sizeof(aa_buf));
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT_EQUAL(rc, 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
ioch = spdk_bdev_get_io_channel(desc);
SPDK_CU_ASSERT_FATAL(ioch != NULL);
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
offset = 50;
num_blocks = 1;
iov.iov_base = NULL;
iov.iov_len = 0;
g_zcopy_read_buf = (void *) 0x1122334455667788UL;
g_zcopy_read_buf_len = (uint32_t) -1;
/* Do a zcopy start for a write (populate=false) */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
g_io_done = false;
g_zcopy_write_buf = aa_buf;
g_zcopy_write_buf_len = sizeof(aa_buf);
g_zcopy_bdev_io = NULL;
rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(1);
CU_ASSERT_EQUAL(num_completed, 1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
/* Check that the iov has been set up */
CU_ASSERT(iov.iov_base == g_zcopy_write_buf);
CU_ASSERT(iov.iov_len == g_zcopy_write_buf_len);
/* Check that the bdev_io has been saved */
CU_ASSERT(g_zcopy_bdev_io != NULL);
/* Now do the zcopy end for a write (commit=true) */
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(1);
CU_ASSERT_EQUAL(num_completed, 1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
/* Check the g_zcopy are reset by io_done */
CU_ASSERT(g_zcopy_write_buf == NULL);
CU_ASSERT(g_zcopy_write_buf_len == 0);
/* Check that io_done has freed the g_zcopy_bdev_io */
CU_ASSERT(g_zcopy_bdev_io == NULL);
/* Check the zcopy read buffer has not been touched which
* ensures that the correct buffers were used.
*/
CU_ASSERT(g_zcopy_read_buf == (void *) 0x1122334455667788UL);
CU_ASSERT(g_zcopy_read_buf_len == (uint32_t) -1);
spdk_put_io_channel(ioch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_zcopy_read(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *ioch;
struct ut_expected_io *expected_io;
uint64_t offset, num_blocks;
uint32_t num_completed;
char aa_buf[512];
struct iovec iov;
int rc;
const bool populate = true;
const bool commit = false;
memset(aa_buf, 0xaa, sizeof(aa_buf));
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT_EQUAL(rc, 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
ioch = spdk_bdev_get_io_channel(desc);
SPDK_CU_ASSERT_FATAL(ioch != NULL);
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
offset = 50;
num_blocks = 1;
iov.iov_base = NULL;
iov.iov_len = 0;
g_zcopy_write_buf = (void *) 0x1122334455667788UL;
g_zcopy_write_buf_len = (uint32_t) -1;
/* Do a zcopy start for a read (populate=true) */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
g_io_done = false;
g_zcopy_read_buf = aa_buf;
g_zcopy_read_buf_len = sizeof(aa_buf);
g_zcopy_bdev_io = NULL;
rc = spdk_bdev_zcopy_start(desc, ioch, &iov, 1, offset, num_blocks, populate, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(1);
CU_ASSERT_EQUAL(num_completed, 1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
/* Check that the iov has been set up */
CU_ASSERT(iov.iov_base == g_zcopy_read_buf);
CU_ASSERT(iov.iov_len == g_zcopy_read_buf_len);
/* Check that the bdev_io has been saved */
CU_ASSERT(g_zcopy_bdev_io != NULL);
/* Now do the zcopy end for a read (commit=false) */
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_ZCOPY, offset, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_zcopy_end(g_zcopy_bdev_io, commit, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(1);
CU_ASSERT_EQUAL(num_completed, 1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
/* Check the g_zcopy are reset by io_done */
CU_ASSERT(g_zcopy_read_buf == NULL);
CU_ASSERT(g_zcopy_read_buf_len == 0);
/* Check that io_done has freed the g_zcopy_bdev_io */
CU_ASSERT(g_zcopy_bdev_io == NULL);
/* Check the zcopy write buffer has not been touched which
* ensures that the correct buffers were used.
*/
CU_ASSERT(g_zcopy_write_buf == (void *) 0x1122334455667788UL);
CU_ASSERT(g_zcopy_write_buf_len == (uint32_t) -1);
spdk_put_io_channel(ioch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_open_while_hotremove(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc[2] = {};
int rc;
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[0]);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc[0]));
spdk_bdev_unregister(bdev, NULL, NULL);
/* Bdev unregister is handled asynchronously. Poll thread to complete. */
poll_threads();
rc = spdk_bdev_open_ext("bdev", false, bdev_ut_event_cb, NULL, &desc[1]);
CU_ASSERT(rc == -ENODEV);
SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
spdk_bdev_close(desc[0]);
free_bdev(bdev);
}
static void
bdev_close_while_hotremove(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
int rc = 0;
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
CU_ASSERT_EQUAL(rc, 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
/* Simulate hot-unplug by unregistering bdev */
g_event_type1 = 0xFF;
g_unregister_arg = NULL;
g_unregister_rc = -1;
spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
/* Close device while remove event is in flight */
spdk_bdev_close(desc);
/* Ensure that unregister callback is delayed */
CU_ASSERT_EQUAL(g_unregister_arg, NULL);
CU_ASSERT_EQUAL(g_unregister_rc, -1);
poll_threads();
/* Event callback shall not be issued because device was closed */
CU_ASSERT_EQUAL(g_event_type1, 0xFF);
/* Unregister callback is issued */
CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
CU_ASSERT_EQUAL(g_unregister_rc, 0);
free_bdev(bdev);
}
static void
bdev_open_ext(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc1 = NULL;
struct spdk_bdev_desc *desc2 = NULL;
int rc = 0;
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
CU_ASSERT_EQUAL(rc, -EINVAL);
rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
CU_ASSERT_EQUAL(rc, 0);
rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
CU_ASSERT_EQUAL(rc, 0);
g_event_type1 = 0xFF;
g_event_type2 = 0xFF;
/* Simulate hot-unplug by unregistering bdev */
spdk_bdev_unregister(bdev, NULL, NULL);
poll_threads();
/* Check if correct events have been triggered in event callback fn */
CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
free_bdev(bdev);
poll_threads();
}
static void
bdev_open_ext_unregister(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc1 = NULL;
struct spdk_bdev_desc *desc2 = NULL;
struct spdk_bdev_desc *desc3 = NULL;
struct spdk_bdev_desc *desc4 = NULL;
int rc = 0;
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
CU_ASSERT_EQUAL(rc, -EINVAL);
rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
CU_ASSERT_EQUAL(rc, 0);
rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
CU_ASSERT_EQUAL(rc, 0);
rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb3, &desc3, &desc3);
CU_ASSERT_EQUAL(rc, 0);
rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb4, &desc4, &desc4);
CU_ASSERT_EQUAL(rc, 0);
g_event_type1 = 0xFF;
g_event_type2 = 0xFF;
g_event_type3 = 0xFF;
g_event_type4 = 0xFF;
g_unregister_arg = NULL;
g_unregister_rc = -1;
/* Simulate hot-unplug by unregistering bdev */
spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
/*
* Unregister is handled asynchronously and event callback
* (i.e., above bdev_open_cbN) will be called.
* For bdev_open_cb3 and bdev_open_cb4, it is intended to not
* close the desc3 and desc4 so that the bdev is not closed.
*/
poll_threads();
/* Check if correct events have been triggered in event callback fn */
CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
CU_ASSERT_EQUAL(g_event_type3, SPDK_BDEV_EVENT_REMOVE);
CU_ASSERT_EQUAL(g_event_type4, SPDK_BDEV_EVENT_REMOVE);
/* Check that unregister callback is delayed */
CU_ASSERT(g_unregister_arg == NULL);
CU_ASSERT(g_unregister_rc == -1);
/*
* Explicitly close desc3. As desc4 is still opened there, the
* unergister callback is still delayed to execute.
*/
spdk_bdev_close(desc3);
CU_ASSERT(g_unregister_arg == NULL);
CU_ASSERT(g_unregister_rc == -1);
/*
* Explicitly close desc4 to trigger the ongoing bdev unregister
* operation after last desc is closed.
*/
spdk_bdev_close(desc4);
/* Poll the thread for the async unregister operation */
poll_threads();
/* Check that unregister callback is executed */
CU_ASSERT(g_unregister_arg == (void *)0x12345678);
CU_ASSERT(g_unregister_rc == 0);
free_bdev(bdev);
poll_threads();
}
struct timeout_io_cb_arg {
struct iovec iov;
uint8_t type;
};
static int
bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
{
struct spdk_bdev_io *bdev_io;
int n = 0;
if (!ch) {
return -1;
}
TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
n++;
}
return n;
}
static void
bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
{
struct timeout_io_cb_arg *ctx = cb_arg;
ctx->type = bdev_io->type;
ctx->iov.iov_base = bdev_io->iov.iov_base;
ctx->iov.iov_len = bdev_io->iov.iov_len;
}
static void
bdev_set_io_timeout(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch = NULL;
struct spdk_bdev_channel *bdev_ch = NULL;
struct timeout_io_cb_arg cb_arg;
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev");
CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
bdev_ch = spdk_io_channel_get_ctx(io_ch);
CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
/* This is the part1.
* We will check the bdev_ch->io_submitted list
* TO make sure that it can link IOs and only the user submitted IOs
*/
CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
stub_complete_io(1);
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
stub_complete_io(1);
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
/* Split IO */
bdev->optimal_io_boundary = 16;
bdev->split_on_optimal_io_boundary = true;
/* Now test that a single-vector command is split correctly.
* Offset 14, length 8, payload 0xF000
* Child - Offset 14, length 2, payload 0xF000
* Child - Offset 16, length 6, payload 0xF000 + 2 * 512
*
* Set up the expected values before calling spdk_bdev_read_blocks
*/
CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
/* We count all submitted IOs including IO that are generated by splitting. */
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
stub_complete_io(1);
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
stub_complete_io(1);
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
/* Also include the reset IO */
CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
poll_threads();
stub_complete_io(1);
poll_threads();
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
/* This is part2
* Test the desc timeout poller register
*/
/* Successfully set the timeout */
CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
CU_ASSERT(desc->io_timeout_poller != NULL);
CU_ASSERT(desc->timeout_in_sec == 30);
CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
CU_ASSERT(desc->cb_arg == &cb_arg);
/* Change the timeout limit */
CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
CU_ASSERT(desc->io_timeout_poller != NULL);
CU_ASSERT(desc->timeout_in_sec == 20);
CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
CU_ASSERT(desc->cb_arg == &cb_arg);
/* Disable the timeout */
CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
CU_ASSERT(desc->io_timeout_poller == NULL);
/* This the part3
* We will test to catch timeout IO and check whether the IO is
* the submitted one.
*/
memset(&cb_arg, 0, sizeof(cb_arg));
CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
/* Don't reach the limit */
spdk_delay_us(15 * spdk_get_ticks_hz());
poll_threads();
CU_ASSERT(cb_arg.type == 0);
CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
CU_ASSERT(cb_arg.iov.iov_len == 0);
/* 15 + 15 = 30 reach the limit */
spdk_delay_us(15 * spdk_get_ticks_hz());
poll_threads();
CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
stub_complete_io(1);
/* Use the same split IO above and check the IO */
memset(&cb_arg, 0, sizeof(cb_arg));
CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
/* The first child complete in time */
spdk_delay_us(15 * spdk_get_ticks_hz());
poll_threads();
stub_complete_io(1);
CU_ASSERT(cb_arg.type == 0);
CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
CU_ASSERT(cb_arg.iov.iov_len == 0);
/* The second child reach the limit */
spdk_delay_us(15 * spdk_get_ticks_hz());
poll_threads();
CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
stub_complete_io(1);
/* Also include the reset IO */
memset(&cb_arg, 0, sizeof(cb_arg));
CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
spdk_delay_us(30 * spdk_get_ticks_hz());
poll_threads();
CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
stub_complete_io(1);
poll_threads();
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_set_qd_sampling(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch = NULL;
struct spdk_bdev_channel *bdev_ch = NULL;
struct timeout_io_cb_arg cb_arg;
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev");
CU_ASSERT(spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc) == 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
bdev_ch = spdk_io_channel_get_ctx(io_ch);
CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
/* This is the part1.
* We will check the bdev_ch->io_submitted list
* TO make sure that it can link IOs and only the user submitted IOs
*/
CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
stub_complete_io(1);
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
stub_complete_io(1);
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
/* This is the part2.
* Test the bdev's qd poller register
*/
/* 1st Successfully set the qd sampling period */
spdk_bdev_set_qd_sampling_period(bdev, 10);
CU_ASSERT(bdev->internal.new_period == 10);
CU_ASSERT(bdev->internal.period == 10);
CU_ASSERT(bdev->internal.qd_desc != NULL);
poll_threads();
CU_ASSERT(bdev->internal.qd_poller != NULL);
/* 2nd Change the qd sampling period */
spdk_bdev_set_qd_sampling_period(bdev, 20);
CU_ASSERT(bdev->internal.new_period == 20);
CU_ASSERT(bdev->internal.period == 10);
CU_ASSERT(bdev->internal.qd_desc != NULL);
poll_threads();
CU_ASSERT(bdev->internal.qd_poller != NULL);
CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
/* 3rd Change the qd sampling period and verify qd_poll_in_progress */
spdk_delay_us(20);
poll_thread_times(0, 1);
CU_ASSERT(bdev->internal.qd_poll_in_progress == true);
spdk_bdev_set_qd_sampling_period(bdev, 30);
CU_ASSERT(bdev->internal.new_period == 30);
CU_ASSERT(bdev->internal.period == 20);
poll_threads();
CU_ASSERT(bdev->internal.qd_poll_in_progress == false);
CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
/* 4th Disable the qd sampling period */
spdk_bdev_set_qd_sampling_period(bdev, 0);
CU_ASSERT(bdev->internal.new_period == 0);
CU_ASSERT(bdev->internal.period == 30);
poll_threads();
CU_ASSERT(bdev->internal.qd_poller == NULL);
CU_ASSERT(bdev->internal.period == bdev->internal.new_period);
CU_ASSERT(bdev->internal.qd_desc == NULL);
/* This is the part3.
* We will test the submitted IO and reset works
* properly with the qd sampling.
*/
memset(&cb_arg, 0, sizeof(cb_arg));
spdk_bdev_set_qd_sampling_period(bdev, 1);
poll_threads();
CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
/* Also include the reset IO */
memset(&cb_arg, 0, sizeof(cb_arg));
CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
poll_threads();
/* Close the desc */
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
/* Complete the submitted IO and reset */
stub_complete_io(2);
poll_threads();
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
lba_range_overlap(void)
{
struct lba_range r1, r2;
r1.offset = 100;
r1.length = 50;
r2.offset = 0;
r2.length = 1;
CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
r2.offset = 0;
r2.length = 100;
CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
r2.offset = 0;
r2.length = 110;
CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
r2.offset = 100;
r2.length = 10;
CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
r2.offset = 110;
r2.length = 20;
CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
r2.offset = 140;
r2.length = 150;
CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
r2.offset = 130;
r2.length = 200;
CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
r2.offset = 150;
r2.length = 100;
CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
r2.offset = 110;
r2.length = 0;
CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
}
static bool g_lock_lba_range_done;
static bool g_unlock_lba_range_done;
static void
lock_lba_range_done(void *ctx, int status)
{
g_lock_lba_range_done = true;
}
static void
unlock_lba_range_done(void *ctx, int status)
{
g_unlock_lba_range_done = true;
}
static void
lock_lba_range_check_ranges(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_channel *channel;
struct lba_range *range;
int ctx1;
int rc;
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT(rc == 0);
CU_ASSERT(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
channel = spdk_io_channel_get_ctx(io_ch);
g_lock_lba_range_done = false;
rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(g_lock_lba_range_done == true);
range = TAILQ_FIRST(&channel->locked_ranges);
SPDK_CU_ASSERT_FATAL(range != NULL);
CU_ASSERT(range->offset == 20);
CU_ASSERT(range->length == 10);
CU_ASSERT(range->owner_ch == channel);
/* Unlocks must exactly match a lock. */
g_unlock_lba_range_done = false;
rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
CU_ASSERT(rc == -EINVAL);
CU_ASSERT(g_unlock_lba_range_done == false);
rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
spdk_delay_us(100);
poll_threads();
CU_ASSERT(g_unlock_lba_range_done == true);
CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
lock_lba_range_with_io_outstanding(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_channel *channel;
struct lba_range *range;
char buf[4096];
int ctx1;
int rc;
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT(rc == 0);
CU_ASSERT(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
channel = spdk_io_channel_get_ctx(io_ch);
g_io_done = false;
rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
CU_ASSERT(rc == 0);
g_lock_lba_range_done = false;
rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
/* The lock should immediately become valid, since there are no outstanding
* write I/O.
*/
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_lock_lba_range_done == true);
range = TAILQ_FIRST(&channel->locked_ranges);
SPDK_CU_ASSERT_FATAL(range != NULL);
CU_ASSERT(range->offset == 20);
CU_ASSERT(range->length == 10);
CU_ASSERT(range->owner_ch == channel);
CU_ASSERT(range->locked_ctx == &ctx1);
rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
stub_complete_io(1);
spdk_delay_us(100);
poll_threads();
CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
/* Now try again, but with a write I/O. */
g_io_done = false;
rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
CU_ASSERT(rc == 0);
g_lock_lba_range_done = false;
rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
/* The lock should not be fully valid yet, since a write I/O is outstanding.
* But note that the range should be on the channel's locked_list, to make sure no
* new write I/O are started.
*/
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_lock_lba_range_done == false);
range = TAILQ_FIRST(&channel->locked_ranges);
SPDK_CU_ASSERT_FATAL(range != NULL);
CU_ASSERT(range->offset == 20);
CU_ASSERT(range->length == 10);
/* Complete the write I/O. This should make the lock valid (checked by confirming
* our callback was invoked).
*/
stub_complete_io(1);
spdk_delay_us(100);
poll_threads();
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_lock_lba_range_done == true);
rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
lock_lba_range_overlapped(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_channel *channel;
struct lba_range *range;
int ctx1;
int rc;
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT(rc == 0);
CU_ASSERT(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
channel = spdk_io_channel_get_ctx(io_ch);
/* Lock range 20-29. */
g_lock_lba_range_done = false;
rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(g_lock_lba_range_done == true);
range = TAILQ_FIRST(&channel->locked_ranges);
SPDK_CU_ASSERT_FATAL(range != NULL);
CU_ASSERT(range->offset == 20);
CU_ASSERT(range->length == 10);
/* Try to lock range 25-39. It should not lock immediately, since it overlaps with
* 20-29.
*/
g_lock_lba_range_done = false;
rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(g_lock_lba_range_done == false);
range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
SPDK_CU_ASSERT_FATAL(range != NULL);
CU_ASSERT(range->offset == 25);
CU_ASSERT(range->length == 15);
/* Unlock 20-29. This should result in range 25-39 now getting locked since it
* no longer overlaps with an active lock.
*/
g_unlock_lba_range_done = false;
rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(g_unlock_lba_range_done == true);
CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
range = TAILQ_FIRST(&channel->locked_ranges);
SPDK_CU_ASSERT_FATAL(range != NULL);
CU_ASSERT(range->offset == 25);
CU_ASSERT(range->length == 15);
/* Lock 40-59. This should immediately lock since it does not overlap with the
* currently active 25-39 lock.
*/
g_lock_lba_range_done = false;
rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(g_lock_lba_range_done == true);
range = TAILQ_FIRST(&bdev->internal.locked_ranges);
SPDK_CU_ASSERT_FATAL(range != NULL);
range = TAILQ_NEXT(range, tailq);
SPDK_CU_ASSERT_FATAL(range != NULL);
CU_ASSERT(range->offset == 40);
CU_ASSERT(range->length == 20);
/* Try to lock 35-44. Note that this overlaps with both 25-39 and 40-59. */
g_lock_lba_range_done = false;
rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(g_lock_lba_range_done == false);
range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
SPDK_CU_ASSERT_FATAL(range != NULL);
CU_ASSERT(range->offset == 35);
CU_ASSERT(range->length == 10);
/* Unlock 25-39. Make sure that 35-44 is still in the pending list, since
* the 40-59 lock is still active.
*/
g_unlock_lba_range_done = false;
rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(g_unlock_lba_range_done == true);
CU_ASSERT(g_lock_lba_range_done == false);
range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
SPDK_CU_ASSERT_FATAL(range != NULL);
CU_ASSERT(range->offset == 35);
CU_ASSERT(range->length == 10);
/* Unlock 40-59. This should result in 35-44 now getting locked, since there are
* no longer any active overlapping locks.
*/
g_unlock_lba_range_done = false;
rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(g_unlock_lba_range_done == true);
CU_ASSERT(g_lock_lba_range_done == true);
CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
range = TAILQ_FIRST(&bdev->internal.locked_ranges);
SPDK_CU_ASSERT_FATAL(range != NULL);
CU_ASSERT(range->offset == 35);
CU_ASSERT(range->length == 10);
/* Finally, unlock 35-44. */
g_unlock_lba_range_done = false;
rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(g_unlock_lba_range_done == true);
CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
g_abort_done = true;
g_abort_status = bdev_io->internal.status;
spdk_bdev_free_io(bdev_io);
}
static void
bdev_io_abort(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_channel *channel;
struct spdk_bdev_mgmt_channel *mgmt_ch;
struct spdk_bdev_opts bdev_opts = {};
struct iovec iov[SPDK_BDEV_IO_NUM_CHILD_IOV * 2];
uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
int rc;
spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
bdev_opts.bdev_io_pool_size = 7;
bdev_opts.bdev_io_cache_size = 2;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT(rc == 0);
CU_ASSERT(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
channel = spdk_io_channel_get_ctx(io_ch);
mgmt_ch = channel->shared_resource->mgmt_ch;
g_abort_done = false;
ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
CU_ASSERT(rc == -ENOTSUP);
ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_abort_done == true);
CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
/* Test the case that the target I/O was successfully aborted. */
g_io_done = false;
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
g_abort_done = false;
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
stub_complete_io(1);
CU_ASSERT(g_abort_done == true);
CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
/* Test the case that the target I/O was not aborted because it completed
* in the middle of execution of the abort.
*/
g_io_done = false;
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
g_abort_done = false;
g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
stub_complete_io(1);
CU_ASSERT(g_abort_done == true);
CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
bdev->optimal_io_boundary = 16;
bdev->split_on_optimal_io_boundary = true;
/* Test that a single-vector command which is split is aborted correctly.
* Offset 14, length 8, payload 0xF000
* Child - Offset 14, length 2, payload 0xF000
* Child - Offset 16, length 6, payload 0xF000 + 2 * 512
*/
g_io_done = false;
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
stub_complete_io(2);
CU_ASSERT(g_abort_done == true);
CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
/* Test that a multi-vector command that needs to be split by strip and then
* needs to be split is aborted correctly. Abort is requested before the second
* child I/O was submitted. The parent I/O should complete with failure without
* submitting the second child I/O.
*/
for (i = 0; i < SPDK_BDEV_IO_NUM_CHILD_IOV * 2; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 512;
}
bdev->optimal_io_boundary = SPDK_BDEV_IO_NUM_CHILD_IOV;
g_io_done = false;
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, SPDK_BDEV_IO_NUM_CHILD_IOV * 2, 0,
SPDK_BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
stub_complete_io(1);
CU_ASSERT(g_abort_done == true);
CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
bdev->optimal_io_boundary = 16;
g_io_done = false;
/* Test that a ingle-vector command which is split is aborted correctly.
* Differently from the above, the child abort request will be submitted
* sequentially due to the capacity of spdk_bdev_io.
*/
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
g_abort_done = false;
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
stub_complete_io(3);
CU_ASSERT(g_abort_done == true);
CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_unmap(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *ioch;
struct spdk_bdev_channel *bdev_ch;
struct ut_expected_io *expected_io;
struct spdk_bdev_opts bdev_opts = {};
uint32_t i, num_outstanding;
uint64_t offset, num_blocks, max_unmap_blocks, num_children;
int rc;
spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
bdev_opts.bdev_io_pool_size = 512;
bdev_opts.bdev_io_cache_size = 64;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT_EQUAL(rc, 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
ioch = spdk_bdev_get_io_channel(desc);
SPDK_CU_ASSERT_FATAL(ioch != NULL);
bdev_ch = spdk_io_channel_get_ctx(ioch);
CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
fn_table.submit_request = stub_submit_request;
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
/* Case 1: First test the request won't be split */
num_blocks = 32;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 0, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Case 2: Test the split with 2 children requests */
bdev->max_unmap = 8;
bdev->max_unmap_segments = 2;
max_unmap_blocks = bdev->max_unmap * bdev->max_unmap_segments;
num_blocks = max_unmap_blocks * 2;
offset = 0;
g_io_done = false;
for (i = 0; i < 2; i++) {
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
offset += max_unmap_blocks;
}
rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
num_children = 15;
num_blocks = max_unmap_blocks * num_children;
g_io_done = false;
offset = 0;
for (i = 0; i < num_children; i++) {
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, offset, max_unmap_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
offset += max_unmap_blocks;
}
rc = spdk_bdev_unmap_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
CU_ASSERT(g_io_done == false);
while (num_children > 0) {
num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
stub_complete_io(num_outstanding);
num_children -= num_outstanding;
}
CU_ASSERT(g_io_done == true);
spdk_put_io_channel(ioch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_write_zeroes_split_test(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *ioch;
struct spdk_bdev_channel *bdev_ch;
struct ut_expected_io *expected_io;
struct spdk_bdev_opts bdev_opts = {};
uint32_t i, num_outstanding;
uint64_t offset, num_blocks, max_write_zeroes_blocks, num_children;
int rc;
spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
bdev_opts.bdev_io_pool_size = 512;
bdev_opts.bdev_io_cache_size = 64;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT_EQUAL(rc, 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
ioch = spdk_bdev_get_io_channel(desc);
SPDK_CU_ASSERT_FATAL(ioch != NULL);
bdev_ch = spdk_io_channel_get_ctx(ioch);
CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
fn_table.submit_request = stub_submit_request;
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
/* Case 1: First test the request won't be split */
num_blocks = 32;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Case 2: Test the split with 2 children requests */
max_write_zeroes_blocks = 8;
bdev->max_write_zeroes = max_write_zeroes_blocks;
num_blocks = max_write_zeroes_blocks * 2;
offset = 0;
g_io_done = false;
for (i = 0; i < 2; i++) {
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
offset += max_write_zeroes_blocks;
}
rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
num_children = 15;
num_blocks = max_write_zeroes_blocks * num_children;
g_io_done = false;
offset = 0;
for (i = 0; i < num_children; i++) {
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, offset, max_write_zeroes_blocks,
0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
offset += max_write_zeroes_blocks;
}
rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
CU_ASSERT(g_io_done == false);
while (num_children > 0) {
num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
stub_complete_io(num_outstanding);
num_children -= num_outstanding;
}
CU_ASSERT(g_io_done == true);
spdk_put_io_channel(ioch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_set_options_test(void)
{
struct spdk_bdev_opts bdev_opts = {};
int rc;
/* Case1: Do not set opts_size */
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == -1);
spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
bdev_opts.bdev_io_pool_size = 4;
bdev_opts.bdev_io_cache_size = 2;
bdev_opts.small_buf_pool_size = 4;
/* Case 2: Do not set valid small_buf_pool_size and large_buf_pool_size */
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == -1);
/* Case 3: Do not set valid large_buf_pool_size */
bdev_opts.small_buf_pool_size = BUF_SMALL_POOL_SIZE;
bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE - 1;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == -1);
/* Case4: set valid large buf_pool_size */
bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
/* Case5: Set different valid value for small and large buf pool */
bdev_opts.large_buf_pool_size = BUF_SMALL_POOL_SIZE + 3;
bdev_opts.large_buf_pool_size = BUF_LARGE_POOL_SIZE + 3;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
}
static uint64_t
get_ns_time(void)
{
int rc;
struct timespec ts;
rc = clock_gettime(CLOCK_MONOTONIC, &ts);
CU_ASSERT(rc == 0);
return ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec;
}
static int
rb_tree_get_height(struct spdk_bdev_name *bdev_name)
{
int h1, h2;
if (bdev_name == NULL) {
return -1;
} else {
h1 = rb_tree_get_height(RB_LEFT(bdev_name, node));
h2 = rb_tree_get_height(RB_RIGHT(bdev_name, node));
return spdk_max(h1, h2) + 1;
}
}
static void
bdev_multi_allocation(void)
{
const int max_bdev_num = 1024 * 16;
char name[max_bdev_num][16];
char noexist_name[] = "invalid_bdev";
struct spdk_bdev *bdev[max_bdev_num];
int i, j;
uint64_t last_time;
int bdev_num;
int height;
for (j = 0; j < max_bdev_num; j++) {
snprintf(name[j], sizeof(name[j]), "bdev%d", j);
}
for (i = 0; i < 16; i++) {
last_time = get_ns_time();
bdev_num = 1024 * (i + 1);
for (j = 0; j < bdev_num; j++) {
bdev[j] = allocate_bdev(name[j]);
height = rb_tree_get_height(&bdev[j]->internal.bdev_name);
CU_ASSERT(height <= (int)(spdk_u32log2(2 * j + 2)));
}
SPDK_NOTICELOG("alloc bdev num %d takes %" PRIu64 " ms\n", bdev_num,
(get_ns_time() - last_time) / 1000 / 1000);
for (j = 0; j < bdev_num; j++) {
CU_ASSERT(spdk_bdev_get_by_name(name[j]) != NULL);
}
CU_ASSERT(spdk_bdev_get_by_name(noexist_name) == NULL);
for (j = 0; j < bdev_num; j++) {
free_bdev(bdev[j]);
}
for (j = 0; j < bdev_num; j++) {
CU_ASSERT(spdk_bdev_get_by_name(name[j]) == NULL);
}
}
}
static struct spdk_memory_domain *g_bdev_memory_domain = (struct spdk_memory_domain *) 0xf00df00d;
static int
test_bdev_get_supported_dma_device_types_op(void *ctx, struct spdk_memory_domain **domains,
int array_size)
{
if (array_size > 0 && domains) {
domains[0] = g_bdev_memory_domain;
}
return 1;
}
static void
bdev_get_memory_domains(void)
{
struct spdk_bdev_fn_table fn_table = {
.get_memory_domains = test_bdev_get_supported_dma_device_types_op
};
struct spdk_bdev bdev = { .fn_table = &fn_table };
struct spdk_memory_domain *domains[2] = {};
int rc;
/* bdev is NULL */
rc = spdk_bdev_get_memory_domains(NULL, domains, 2);
CU_ASSERT(rc == -EINVAL);
/* domains is NULL */
rc = spdk_bdev_get_memory_domains(&bdev, NULL, 2);
CU_ASSERT(rc == 1);
/* array size is 0 */
rc = spdk_bdev_get_memory_domains(&bdev, domains, 0);
CU_ASSERT(rc == 1);
/* get_supported_dma_device_types op is set */
rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
CU_ASSERT(rc == 1);
CU_ASSERT(domains[0] == g_bdev_memory_domain);
/* get_supported_dma_device_types op is not set */
fn_table.get_memory_domains = NULL;
rc = spdk_bdev_get_memory_domains(&bdev, domains, 2);
CU_ASSERT(rc == 0);
}
static void
_bdev_io_ext(struct spdk_bdev_ext_io_opts *ext_io_opts)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
char io_buf[512];
struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
struct ut_expected_io *expected_io;
int rc;
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
bdev->md_interleave = false;
bdev->md_len = 8;
rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
/* read */
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
if (ext_io_opts) {
expected_io->md_buf = ext_io_opts->metadata;
expected_io->ext_io_opts = ext_io_opts;
}
ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
/* write */
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
if (ext_io_opts) {
expected_io->md_buf = ext_io_opts->metadata;
expected_io->ext_io_opts = ext_io_opts;
}
ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, ext_io_opts);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_io_ext(void)
{
struct spdk_bdev_ext_io_opts ext_io_opts = {
.metadata = (void *)0xFF000000,
.size = sizeof(ext_io_opts)
};
_bdev_io_ext(&ext_io_opts);
}
static void
bdev_io_ext_no_opts(void)
{
_bdev_io_ext(NULL);
}
static void
bdev_io_ext_invalid_opts(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
char io_buf[512];
struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
struct spdk_bdev_ext_io_opts ext_io_opts = {
.metadata = (void *)0xFF000000,
.size = sizeof(ext_io_opts)
};
int rc;
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
bdev->md_interleave = false;
bdev->md_len = 8;
rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
/* Test invalid ext_opts size */
ext_io_opts.size = 0;
rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
CU_ASSERT(rc == -EINVAL);
rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
CU_ASSERT(rc == -EINVAL);
ext_io_opts.size = sizeof(ext_io_opts) * 2;
rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
CU_ASSERT(rc == -EINVAL);
rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
CU_ASSERT(rc == -EINVAL);
ext_io_opts.size = offsetof(struct spdk_bdev_ext_io_opts, metadata) +
sizeof(ext_io_opts.metadata) - 1;
rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
CU_ASSERT(rc == -EINVAL);
rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
CU_ASSERT(rc == -EINVAL);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_io_ext_split(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
char io_buf[512];
struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
struct ut_expected_io *expected_io;
struct spdk_bdev_ext_io_opts ext_io_opts = {
.metadata = (void *)0xFF000000,
.size = sizeof(ext_io_opts)
};
int rc;
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
bdev->md_interleave = false;
bdev->md_len = 8;
rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
/* Check that IO request with ext_opts and metadata is split correctly
* Offset 14, length 8, payload 0xF000
* Child - Offset 14, length 2, payload 0xF000
* Child - Offset 16, length 6, payload 0xF000 + 2 * 512
*/
bdev->optimal_io_boundary = 16;
bdev->split_on_optimal_io_boundary = true;
bdev->md_interleave = false;
bdev->md_len = 8;
iov.iov_base = (void *)0xF000;
iov.iov_len = 4096;
memset(&ext_io_opts, 0, sizeof(ext_io_opts));
ext_io_opts.metadata = (void *)0xFF000000;
ext_io_opts.size = sizeof(ext_io_opts);
g_io_done = false;
/* read */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
expected_io->md_buf = ext_io_opts.metadata;
expected_io->ext_io_opts = &ext_io_opts;
expected_io->copy_opts = true;
ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
expected_io->ext_io_opts = &ext_io_opts;
expected_io->copy_opts = true;
ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* write */
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 1);
expected_io->md_buf = ext_io_opts.metadata;
expected_io->ext_io_opts = &ext_io_opts;
expected_io->copy_opts = true;
ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 6, 1);
expected_io->md_buf = ext_io_opts.metadata + 2 * 8;
expected_io->ext_io_opts = &ext_io_opts;
expected_io->copy_opts = true;
ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 14, 8, io_done, NULL, &ext_io_opts);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_io_ext_bounce_buffer(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
char io_buf[512];
struct iovec iov = { .iov_base = io_buf, .iov_len = 512 };
struct ut_expected_io *expected_io;
struct spdk_bdev_ext_io_opts ext_io_opts = {
.metadata = (void *)0xFF000000,
.size = sizeof(ext_io_opts)
};
int rc;
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
bdev->md_interleave = false;
bdev->md_len = 8;
rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
/* Verify data pull/push
* bdev doesn't support memory domains, so buffers from bdev memory pool will be used */
ext_io_opts.memory_domain = (struct spdk_memory_domain *)0xdeadbeef;
/* read */
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 32, 14, 1);
ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
expected_io->ext_io_opts = &ext_io_opts;
expected_io->copy_opts = true;
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_readv_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_memory_domain_push_data_called == true);
CU_ASSERT(g_io_done == true);
/* write */
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 1);
ut_expected_io_set_iov(expected_io, 0, iov.iov_base, iov.iov_len);
expected_io->ext_io_opts = &ext_io_opts;
expected_io->copy_opts = true;
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_writev_blocks_ext(desc, io_ch, &iov, 1, 32, 14, io_done, NULL, &ext_io_opts);
CU_ASSERT(rc == 0);
CU_ASSERT(g_memory_domain_pull_data_called == true);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_register_uuid_alias(void)
{
struct spdk_bdev *bdev, *second;
char uuid[SPDK_UUID_STRING_LEN];
int rc;
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
/* Make sure an UUID was generated */
CU_ASSERT_FALSE(spdk_mem_all_zero(&bdev->uuid, sizeof(bdev->uuid)));
/* Check that an UUID alias was registered */
spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
/* Unregister the bdev */
spdk_bdev_unregister(bdev, NULL, NULL);
poll_threads();
CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
/* Check the same, but this time register the bdev with non-zero UUID */
rc = spdk_bdev_register(bdev);
CU_ASSERT_EQUAL(rc, 0);
CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
/* Unregister the bdev */
spdk_bdev_unregister(bdev, NULL, NULL);
poll_threads();
CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
/* Regiser the bdev using UUID as the name */
bdev->name = uuid;
rc = spdk_bdev_register(bdev);
CU_ASSERT_EQUAL(rc, 0);
CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
/* Unregister the bdev */
spdk_bdev_unregister(bdev, NULL, NULL);
poll_threads();
CU_ASSERT_PTR_NULL(spdk_bdev_get_by_name(uuid));
/* Check that it's not possible to register two bdevs with the same UUIDs */
bdev->name = "bdev0";
second = allocate_bdev("bdev1");
spdk_uuid_copy(&bdev->uuid, &second->uuid);
rc = spdk_bdev_register(bdev);
CU_ASSERT_EQUAL(rc, -EEXIST);
/* Regenerate the UUID and re-check */
spdk_uuid_generate(&bdev->uuid);
rc = spdk_bdev_register(bdev);
CU_ASSERT_EQUAL(rc, 0);
/* And check that both bdevs can be retrieved through their UUIDs */
spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), bdev);
spdk_uuid_fmt_lower(uuid, sizeof(uuid), &second->uuid);
CU_ASSERT_EQUAL(spdk_bdev_get_by_name(uuid), second);
free_bdev(second);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_unregister_by_name(void)
{
struct spdk_bdev *bdev;
int rc;
bdev = allocate_bdev("bdev");
g_event_type1 = 0xFF;
g_unregister_arg = NULL;
g_unregister_rc = -1;
rc = spdk_bdev_unregister_by_name("bdev1", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
CU_ASSERT(rc == -ENODEV);
rc = spdk_bdev_unregister_by_name("bdev", &vbdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
CU_ASSERT(rc == -ENODEV);
rc = spdk_bdev_unregister_by_name("bdev", &bdev_ut_if, bdev_unregister_cb, (void *)0x12345678);
CU_ASSERT(rc == 0);
/* Check that unregister callback is delayed */
CU_ASSERT(g_unregister_arg == NULL);
CU_ASSERT(g_unregister_rc == -1);
poll_threads();
/* Event callback shall not be issued because device was closed */
CU_ASSERT(g_event_type1 == 0xFF);
/* Unregister callback is issued */
CU_ASSERT(g_unregister_arg == (void *)0x12345678);
CU_ASSERT(g_unregister_rc == 0);
free_bdev(bdev);
}
static int
count_bdevs(void *ctx, struct spdk_bdev *bdev)
{
int *count = ctx;
(*count)++;
return 0;
}
static void
for_each_bdev_test(void)
{
struct spdk_bdev *bdev[8];
int rc, count;
bdev[0] = allocate_bdev("bdev0");
bdev[0]->internal.status = SPDK_BDEV_STATUS_REMOVING;
bdev[1] = allocate_bdev("bdev1");
rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
bdev[2] = allocate_bdev("bdev2");
bdev[3] = allocate_bdev("bdev3");
rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
bdev[4] = allocate_bdev("bdev4");
bdev[5] = allocate_bdev("bdev5");
rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
bdev[6] = allocate_bdev("bdev6");
bdev[7] = allocate_bdev("bdev7");
count = 0;
rc = spdk_for_each_bdev(&count, count_bdevs);
CU_ASSERT(rc == 0);
CU_ASSERT(count == 7);
count = 0;
rc = spdk_for_each_bdev_leaf(&count, count_bdevs);
CU_ASSERT(rc == 0);
CU_ASSERT(count == 4);
bdev[0]->internal.status = SPDK_BDEV_STATUS_READY;
free_bdev(bdev[0]);
free_bdev(bdev[1]);
free_bdev(bdev[2]);
free_bdev(bdev[3]);
free_bdev(bdev[4]);
free_bdev(bdev[5]);
free_bdev(bdev[6]);
free_bdev(bdev[7]);
}
static void
bdev_seek_test(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
int rc;
spdk_bdev_initialize(bdev_init_cb, NULL);
poll_threads();
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open_ext("bdev0", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT(rc == 0);
poll_threads();
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
/* Seek data not supported */
ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, false);
rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
poll_threads();
CU_ASSERT(g_seek_offset == 0);
/* Seek hole not supported */
ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, false);
rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
poll_threads();
CU_ASSERT(g_seek_offset == UINT64_MAX);
/* Seek data supported */
g_seek_data_offset = 12345;
ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_DATA, true);
rc = spdk_bdev_seek_data(desc, io_ch, 0, bdev_seek_cb, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
CU_ASSERT(g_seek_offset == 12345);
/* Seek hole supported */
g_seek_hole_offset = 67890;
ut_enable_io_type(SPDK_BDEV_IO_TYPE_SEEK_HOLE, true);
rc = spdk_bdev_seek_hole(desc, io_ch, 0, bdev_seek_cb, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
CU_ASSERT(g_seek_offset == 67890);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_copy(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *ioch;
struct ut_expected_io *expected_io;
uint64_t src_offset, num_blocks;
uint32_t num_completed;
int rc;
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT_EQUAL(rc, 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
ioch = spdk_bdev_get_io_channel(desc);
SPDK_CU_ASSERT_FATAL(ioch != NULL);
fn_table.submit_request = stub_submit_request;
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
/* First test that if the bdev supports copy, the request won't be split */
bdev->md_len = 0;
bdev->blocklen = 4096;
num_blocks = 512;
src_offset = bdev->blockcnt - num_blocks;
expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(1);
CU_ASSERT_EQUAL(num_completed, 1);
/* Check that if copy is not supported it'll fail */
ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, false);
rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, -ENOTSUP);
ut_enable_io_type(SPDK_BDEV_IO_TYPE_COPY, true);
spdk_put_io_channel(ioch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_copy_split_test(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *ioch;
struct spdk_bdev_channel *bdev_ch;
struct ut_expected_io *expected_io;
struct spdk_bdev_opts bdev_opts = {};
uint32_t i, num_outstanding;
uint64_t offset, src_offset, num_blocks, max_copy_blocks, num_children;
int rc;
spdk_bdev_get_opts(&bdev_opts, sizeof(bdev_opts));
bdev_opts.bdev_io_pool_size = 512;
bdev_opts.bdev_io_cache_size = 64;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open_ext("bdev", true, bdev_ut_event_cb, NULL, &desc);
CU_ASSERT_EQUAL(rc, 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
CU_ASSERT(bdev == spdk_bdev_desc_get_bdev(desc));
ioch = spdk_bdev_get_io_channel(desc);
SPDK_CU_ASSERT_FATAL(ioch != NULL);
bdev_ch = spdk_io_channel_get_ctx(ioch);
CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
fn_table.submit_request = stub_submit_request;
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
/* Case 1: First test the request won't be split */
num_blocks = 32;
src_offset = bdev->blockcnt - num_blocks;
g_io_done = false;
expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, 0, src_offset, num_blocks);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Case 2: Test the split with 2 children requests */
max_copy_blocks = 8;
bdev->max_copy = max_copy_blocks;
num_children = 2;
num_blocks = max_copy_blocks * num_children;
offset = 0;
src_offset = bdev->blockcnt - num_blocks;
g_io_done = false;
for (i = 0; i < num_children; i++) {
expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
src_offset + offset, max_copy_blocks);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
offset += max_copy_blocks;
}
rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_children);
stub_complete_io(num_children);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Case 3: Test the split with 15 children requests, will finish 8 requests first */
num_children = 15;
num_blocks = max_copy_blocks * num_children;
offset = 0;
src_offset = bdev->blockcnt - num_blocks;
g_io_done = false;
for (i = 0; i < num_children; i++) {
expected_io = ut_alloc_expected_copy_io(SPDK_BDEV_IO_TYPE_COPY, offset,
src_offset + offset, max_copy_blocks);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
offset += max_copy_blocks;
}
rc = spdk_bdev_copy_blocks(desc, ioch, 0, src_offset, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
CU_ASSERT(g_io_done == false);
while (num_children > 0) {
num_outstanding = spdk_min(num_children, SPDK_BDEV_MAX_CHILDREN_COPY_REQS);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == num_outstanding);
stub_complete_io(num_outstanding);
num_children -= num_outstanding;
}
CU_ASSERT(g_io_done == true);
spdk_put_io_channel(ioch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
int
main(int argc, char **argv)
{
CU_pSuite suite = NULL;
unsigned int num_failures;
CU_set_error_action(CUEA_ABORT);
CU_initialize_registry();
suite = CU_add_suite("bdev", null_init, null_clean);
CU_ADD_TEST(suite, bytes_to_blocks_test);
CU_ADD_TEST(suite, num_blocks_test);
CU_ADD_TEST(suite, io_valid_test);
CU_ADD_TEST(suite, open_write_test);
CU_ADD_TEST(suite, claim_test);
CU_ADD_TEST(suite, alias_add_del_test);
CU_ADD_TEST(suite, get_device_stat_test);
CU_ADD_TEST(suite, bdev_io_types_test);
CU_ADD_TEST(suite, bdev_io_wait_test);
CU_ADD_TEST(suite, bdev_io_spans_split_test);
CU_ADD_TEST(suite, bdev_io_boundary_split_test);
CU_ADD_TEST(suite, bdev_io_max_size_and_segment_split_test);
CU_ADD_TEST(suite, bdev_io_mix_split_test);
CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
CU_ADD_TEST(suite, bdev_io_write_unit_split_test);
CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
CU_ADD_TEST(suite, bdev_io_alignment);
CU_ADD_TEST(suite, bdev_histograms);
CU_ADD_TEST(suite, bdev_write_zeroes);
CU_ADD_TEST(suite, bdev_compare_and_write);
CU_ADD_TEST(suite, bdev_compare);
CU_ADD_TEST(suite, bdev_compare_emulated);
CU_ADD_TEST(suite, bdev_zcopy_write);
CU_ADD_TEST(suite, bdev_zcopy_read);
CU_ADD_TEST(suite, bdev_open_while_hotremove);
CU_ADD_TEST(suite, bdev_close_while_hotremove);
CU_ADD_TEST(suite, bdev_open_ext);
CU_ADD_TEST(suite, bdev_open_ext_unregister);
CU_ADD_TEST(suite, bdev_set_io_timeout);
CU_ADD_TEST(suite, bdev_set_qd_sampling);
CU_ADD_TEST(suite, lba_range_overlap);
CU_ADD_TEST(suite, lock_lba_range_check_ranges);
CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
CU_ADD_TEST(suite, lock_lba_range_overlapped);
CU_ADD_TEST(suite, bdev_io_abort);
CU_ADD_TEST(suite, bdev_unmap);
CU_ADD_TEST(suite, bdev_write_zeroes_split_test);
CU_ADD_TEST(suite, bdev_set_options_test);
CU_ADD_TEST(suite, bdev_multi_allocation);
CU_ADD_TEST(suite, bdev_get_memory_domains);
CU_ADD_TEST(suite, bdev_io_ext);
CU_ADD_TEST(suite, bdev_io_ext_no_opts);
CU_ADD_TEST(suite, bdev_io_ext_invalid_opts);
CU_ADD_TEST(suite, bdev_io_ext_split);
CU_ADD_TEST(suite, bdev_io_ext_bounce_buffer);
CU_ADD_TEST(suite, bdev_register_uuid_alias);
CU_ADD_TEST(suite, bdev_unregister_by_name);
CU_ADD_TEST(suite, for_each_bdev_test);
CU_ADD_TEST(suite, bdev_seek_test);
CU_ADD_TEST(suite, bdev_copy);
CU_ADD_TEST(suite, bdev_copy_split_test);
allocate_cores(1);
allocate_threads(1);
set_thread(0);
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
free_threads();
free_cores();
return num_failures;
}