Spdk/examples/nvmf/nvmf/nvmf.c
GangCao 5ba9f929a6 examples/nvmf: explicitly set the initial value for local variables
Change-Id: Id1638718328d911a4d19aeb00ae9a0d7c650262e
Signed-off-by: GangCao <gang.cao@intel.com>
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/15872
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: wanghailiang <hailiangx.e.wang@intel.com>
Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
Reviewed-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
2022-12-13 09:26:18 +00:00

882 lines
22 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2019 Intel Corporation.
* All rights reserved.
*/
#include "spdk/stdinc.h"
#include "spdk/env.h"
#include "spdk/event.h"
#include "spdk/init.h"
#include "spdk/string.h"
#include "spdk/thread.h"
#include "spdk/bdev.h"
#include "spdk/rpc.h"
#include "spdk/nvmf.h"
#include "spdk/likely.h"
#include "spdk_internal/event.h"
#define NVMF_DEFAULT_SUBSYSTEMS 32
static const char *g_rpc_addr = SPDK_DEFAULT_RPC_ADDR;
enum nvmf_target_state {
NVMF_INIT_SUBSYSTEM = 0,
NVMF_INIT_TARGET,
NVMF_INIT_POLL_GROUPS,
NVMF_INIT_START_SUBSYSTEMS,
NVMF_RUNNING,
NVMF_FINI_STOP_SUBSYSTEMS,
NVMF_FINI_POLL_GROUPS,
NVMF_FINI_TARGET,
NVMF_FINI_SUBSYSTEM,
};
struct nvmf_lw_thread {
TAILQ_ENTRY(nvmf_lw_thread) link;
bool resched;
};
struct nvmf_reactor {
uint32_t core;
struct spdk_ring *threads;
TAILQ_ENTRY(nvmf_reactor) link;
};
struct nvmf_target_poll_group {
struct spdk_nvmf_poll_group *group;
struct spdk_thread *thread;
TAILQ_ENTRY(nvmf_target_poll_group) link;
};
struct nvmf_target {
struct spdk_nvmf_tgt *tgt;
int max_subsystems;
};
TAILQ_HEAD(, nvmf_reactor) g_reactors = TAILQ_HEAD_INITIALIZER(g_reactors);
TAILQ_HEAD(, nvmf_target_poll_group) g_poll_groups = TAILQ_HEAD_INITIALIZER(g_poll_groups);
static uint32_t g_num_poll_groups = 0;
static struct nvmf_reactor *g_main_reactor = NULL;
static struct nvmf_reactor *g_next_reactor = NULL;
static struct spdk_thread *g_init_thread = NULL;
static struct spdk_thread *g_fini_thread = NULL;
static struct nvmf_target g_nvmf_tgt = {
.max_subsystems = NVMF_DEFAULT_SUBSYSTEMS,
};
static struct nvmf_target_poll_group *g_next_pg = NULL;
static pthread_mutex_t g_mutex = PTHREAD_MUTEX_INITIALIZER;
static bool g_reactors_exit = false;
static enum nvmf_target_state g_target_state;
static bool g_intr_received = false;
static uint32_t g_migrate_pg_period_us = 0;
static struct spdk_poller *g_migrate_pg_poller = NULL;
static void nvmf_target_advance_state(void);
static int nvmf_schedule_spdk_thread(struct spdk_thread *thread);
static void
usage(char *program_name)
{
printf("%s options", program_name);
printf("\n");
printf("\t[-g period of round robin poll group migration (us) (default: 0 (disabled))]\n");
printf("\t[-h show this usage]\n");
printf("\t[-i shared memory ID (optional)]\n");
printf("\t[-m core mask for DPDK]\n");
printf("\t[-n max subsystems for target(default: 32)]\n");
printf("\t[-r RPC listen address (default /var/tmp/spdk.sock)]\n");
printf("\t[-s memory size in MB for DPDK (default: 0MB)]\n");
printf("\t[-u disable PCI access]\n");
}
static int
parse_args(int argc, char **argv, struct spdk_env_opts *opts)
{
int op;
long int value;
while ((op = getopt(argc, argv, "g:i:m:n:p:r:s:u:h")) != -1) {
switch (op) {
case 'g':
value = spdk_strtol(optarg, 10);
if (value < 0) {
fprintf(stderr, "converting a string to integer failed\n");
return -EINVAL;
}
g_migrate_pg_period_us = value;
break;
case 'i':
value = spdk_strtol(optarg, 10);
if (value < 0) {
fprintf(stderr, "converting a string to integer failed\n");
return -EINVAL;
}
opts->shm_id = value;
break;
case 'm':
opts->core_mask = optarg;
break;
case 'n':
g_nvmf_tgt.max_subsystems = spdk_strtol(optarg, 10);
if (g_nvmf_tgt.max_subsystems < 0) {
fprintf(stderr, "converting a string to integer failed\n");
return -EINVAL;
}
break;
case 'r':
g_rpc_addr = optarg;
break;
case 's':
value = spdk_strtol(optarg, 10);
if (value < 0) {
fprintf(stderr, "converting a string to integer failed\n");
return -EINVAL;
}
opts->mem_size = value;
break;
case 'u':
opts->no_pci = true;
break;
case 'h':
usage(argv[0]);
exit(EXIT_SUCCESS);
default:
usage(argv[0]);
return 1;
}
}
return 0;
}
static int
nvmf_reactor_run(void *arg)
{
struct nvmf_reactor *nvmf_reactor = arg;
struct nvmf_lw_thread *lw_thread;
struct spdk_thread *thread;
/* run all the lightweight threads in this nvmf_reactor by FIFO. */
do {
if (spdk_ring_dequeue(nvmf_reactor->threads, (void **)&lw_thread, 1)) {
thread = spdk_thread_get_from_ctx(lw_thread);
spdk_thread_poll(thread, 0, 0);
if (spdk_unlikely(spdk_thread_is_exited(thread) &&
spdk_thread_is_idle(thread))) {
spdk_thread_destroy(thread);
} else if (spdk_unlikely(lw_thread->resched)) {
lw_thread->resched = false;
nvmf_schedule_spdk_thread(thread);
} else {
spdk_ring_enqueue(nvmf_reactor->threads, (void **)&lw_thread, 1, NULL);
}
}
} while (!g_reactors_exit);
/* free all the lightweight threads */
while (spdk_ring_dequeue(nvmf_reactor->threads, (void **)&lw_thread, 1)) {
thread = spdk_thread_get_from_ctx(lw_thread);
spdk_set_thread(thread);
if (spdk_thread_is_exited(thread)) {
spdk_thread_destroy(thread);
} else {
/* This thread is not exited yet, and may need to communicate with other threads
* to be exited. So mark it as exiting, and check again after traversing other threads.
*/
spdk_thread_exit(thread);
spdk_thread_poll(thread, 0, 0);
spdk_ring_enqueue(nvmf_reactor->threads, (void **)&lw_thread, 1, NULL);
}
}
return 0;
}
static int
nvmf_schedule_spdk_thread(struct spdk_thread *thread)
{
struct nvmf_reactor *nvmf_reactor;
struct nvmf_lw_thread *lw_thread;
struct spdk_cpuset *cpumask;
uint32_t i;
/* Lightweight threads may have a requested cpumask.
* This is a request only - the scheduler does not have to honor it.
* For this scheduler implementation, each reactor is pinned to
* a particular core so honoring the request is reasonably easy.
*/
cpumask = spdk_thread_get_cpumask(thread);
lw_thread = spdk_thread_get_ctx(thread);
assert(lw_thread != NULL);
memset(lw_thread, 0, sizeof(*lw_thread));
/* assign lightweight threads to nvmf reactor(core)
* Here we use the mutex.The way the actual SPDK event framework
* solves this is by using internal rings for messages between reactors
*/
pthread_mutex_lock(&g_mutex);
for (i = 0; i < spdk_env_get_core_count(); i++) {
if (g_next_reactor == NULL) {
g_next_reactor = TAILQ_FIRST(&g_reactors);
}
nvmf_reactor = g_next_reactor;
g_next_reactor = TAILQ_NEXT(g_next_reactor, link);
/* each spdk_thread has the core affinity */
if (spdk_cpuset_get_cpu(cpumask, nvmf_reactor->core)) {
spdk_ring_enqueue(nvmf_reactor->threads, (void **)&lw_thread, 1, NULL);
break;
}
}
pthread_mutex_unlock(&g_mutex);
if (i == spdk_env_get_core_count()) {
fprintf(stderr, "failed to schedule spdk thread\n");
return -1;
}
return 0;
}
static void
nvmf_request_spdk_thread_reschedule(struct spdk_thread *thread)
{
struct nvmf_lw_thread *lw_thread;
assert(thread == spdk_get_thread());
lw_thread = spdk_thread_get_ctx(thread);
assert(lw_thread != NULL);
lw_thread->resched = true;
}
static int
nvmf_reactor_thread_op(struct spdk_thread *thread, enum spdk_thread_op op)
{
switch (op) {
case SPDK_THREAD_OP_NEW:
return nvmf_schedule_spdk_thread(thread);
case SPDK_THREAD_OP_RESCHED:
nvmf_request_spdk_thread_reschedule(thread);
return 0;
default:
return -ENOTSUP;
}
}
static bool
nvmf_reactor_thread_op_supported(enum spdk_thread_op op)
{
switch (op) {
case SPDK_THREAD_OP_NEW:
case SPDK_THREAD_OP_RESCHED:
return true;
default:
return false;
}
}
static int
nvmf_init_threads(void)
{
int rc;
uint32_t i;
char thread_name[32];
struct nvmf_reactor *nvmf_reactor;
struct spdk_cpuset cpumask;
uint32_t main_core = spdk_env_get_current_core();
/* Whenever SPDK creates a new lightweight thread it will call
* nvmf_schedule_spdk_thread asking for the application to begin
* polling it via spdk_thread_poll(). Each lightweight thread in
* SPDK optionally allocates extra memory to be used by the application
* framework. The size of the extra memory allocated is the second parameter.
*/
spdk_thread_lib_init_ext(nvmf_reactor_thread_op, nvmf_reactor_thread_op_supported,
sizeof(struct nvmf_lw_thread), SPDK_DEFAULT_MSG_MEMPOOL_SIZE);
/* Spawn one system thread per CPU core. The system thread is called a reactor.
* SPDK will spawn lightweight threads that must be mapped to reactors in
* nvmf_schedule_spdk_thread. Using a single system thread per CPU core is a
* choice unique to this application. SPDK itself does not require this specific
* threading model. For example, another viable threading model would be
* dynamically scheduling the lightweight threads onto a thread pool using a
* work queue.
*/
SPDK_ENV_FOREACH_CORE(i) {
nvmf_reactor = calloc(1, sizeof(struct nvmf_reactor));
if (!nvmf_reactor) {
fprintf(stderr, "failed to alloc nvmf reactor\n");
rc = -ENOMEM;
goto err_exit;
}
nvmf_reactor->core = i;
nvmf_reactor->threads = spdk_ring_create(SPDK_RING_TYPE_MP_SC, 1024, SPDK_ENV_SOCKET_ID_ANY);
if (!nvmf_reactor->threads) {
fprintf(stderr, "failed to alloc ring\n");
free(nvmf_reactor);
rc = -ENOMEM;
goto err_exit;
}
TAILQ_INSERT_TAIL(&g_reactors, nvmf_reactor, link);
if (i == main_core) {
g_main_reactor = nvmf_reactor;
g_next_reactor = g_main_reactor;
} else {
rc = spdk_env_thread_launch_pinned(i,
nvmf_reactor_run,
nvmf_reactor);
if (rc) {
fprintf(stderr, "failed to pin reactor launch\n");
goto err_exit;
}
}
}
/* Spawn a lightweight thread only on the current core to manage this application. */
spdk_cpuset_zero(&cpumask);
spdk_cpuset_set_cpu(&cpumask, main_core, true);
snprintf(thread_name, sizeof(thread_name), "nvmf_main_thread");
g_init_thread = spdk_thread_create(thread_name, &cpumask);
if (!g_init_thread) {
fprintf(stderr, "failed to create spdk thread\n");
return -1;
}
fprintf(stdout, "nvmf threads initialize successfully\n");
return 0;
err_exit:
return rc;
}
static void
nvmf_destroy_threads(void)
{
struct nvmf_reactor *nvmf_reactor, *tmp;
TAILQ_FOREACH_SAFE(nvmf_reactor, &g_reactors, link, tmp) {
spdk_ring_free(nvmf_reactor->threads);
free(nvmf_reactor);
}
pthread_mutex_destroy(&g_mutex);
spdk_thread_lib_fini();
fprintf(stdout, "nvmf threads destroy successfully\n");
}
static void
nvmf_tgt_destroy_done(void *ctx, int status)
{
fprintf(stdout, "destroyed the nvmf target service\n");
g_target_state = NVMF_FINI_SUBSYSTEM;
nvmf_target_advance_state();
}
static void
nvmf_destroy_nvmf_tgt(void)
{
if (g_nvmf_tgt.tgt) {
spdk_nvmf_tgt_destroy(g_nvmf_tgt.tgt, nvmf_tgt_destroy_done, NULL);
} else {
g_target_state = NVMF_FINI_SUBSYSTEM;
}
}
static void
nvmf_create_nvmf_tgt(void)
{
struct spdk_nvmf_subsystem *subsystem;
struct spdk_nvmf_target_opts tgt_opts = {};
tgt_opts.max_subsystems = g_nvmf_tgt.max_subsystems;
snprintf(tgt_opts.name, sizeof(tgt_opts.name), "%s", "nvmf_example");
/* Construct the default NVMe-oF target
* An NVMe-oF target is a collection of subsystems, namespace, and poll
* groups, and defines the scope of the NVMe-oF discovery service.
*/
g_nvmf_tgt.tgt = spdk_nvmf_tgt_create(&tgt_opts);
if (g_nvmf_tgt.tgt == NULL) {
fprintf(stderr, "spdk_nvmf_tgt_create() failed\n");
goto error;
}
/* Create and add discovery subsystem to the NVMe-oF target.
* NVMe-oF defines a discovery mechanism that a host uses to determine
* the NVM subsystems that expose namespaces that the host may access.
* It provides a host with following capabilities:
* 1,The ability to discover a list of NVM subsystems with namespaces
* that are accessible to the host.
* 2,The ability to discover multiple paths to an NVM subsystem.
* 3,The ability to discover controllers that are statically configured.
*/
subsystem = spdk_nvmf_subsystem_create(g_nvmf_tgt.tgt, SPDK_NVMF_DISCOVERY_NQN,
SPDK_NVMF_SUBTYPE_DISCOVERY, 0);
if (subsystem == NULL) {
fprintf(stderr, "failed to create discovery nvmf library subsystem\n");
goto error;
}
/* Allow any host to access the discovery subsystem */
spdk_nvmf_subsystem_set_allow_any_host(subsystem, true);
fprintf(stdout, "created a nvmf target service\n");
g_target_state = NVMF_INIT_POLL_GROUPS;
return;
error:
g_target_state = NVMF_FINI_TARGET;
}
static void
nvmf_tgt_subsystem_stop_next(struct spdk_nvmf_subsystem *subsystem,
void *cb_arg, int status)
{
int rc;
subsystem = spdk_nvmf_subsystem_get_next(subsystem);
if (subsystem) {
rc = spdk_nvmf_subsystem_stop(subsystem,
nvmf_tgt_subsystem_stop_next,
cb_arg);
if (rc) {
nvmf_tgt_subsystem_stop_next(subsystem, cb_arg, 0);
fprintf(stderr, "Unable to stop NVMe-oF subsystem. Trying others.\n");
}
return;
}
fprintf(stdout, "all subsystems of target stopped\n");
g_target_state = NVMF_FINI_POLL_GROUPS;
nvmf_target_advance_state();
}
static void
nvmf_tgt_stop_subsystems(struct nvmf_target *nvmf_tgt)
{
struct spdk_nvmf_subsystem *subsystem;
int rc;
subsystem = spdk_nvmf_subsystem_get_first(nvmf_tgt->tgt);
if (spdk_likely(subsystem)) {
rc = spdk_nvmf_subsystem_stop(subsystem,
nvmf_tgt_subsystem_stop_next,
NULL);
if (rc) {
nvmf_tgt_subsystem_stop_next(subsystem, NULL, 0);
fprintf(stderr, "Unable to stop NVMe-oF subsystem. Trying others.\n");
}
} else {
g_target_state = NVMF_FINI_POLL_GROUPS;
}
}
static void
nvmf_tgt_subsystem_start_next(struct spdk_nvmf_subsystem *subsystem,
void *cb_arg, int status)
{
int rc;
subsystem = spdk_nvmf_subsystem_get_next(subsystem);
if (subsystem) {
rc = spdk_nvmf_subsystem_start(subsystem, nvmf_tgt_subsystem_start_next,
cb_arg);
if (rc) {
g_target_state = NVMF_FINI_STOP_SUBSYSTEMS;
fprintf(stderr, "Unable to start NVMe-oF subsystem. shutting down app.\n");
nvmf_target_advance_state();
}
return;
}
fprintf(stdout, "all subsystems of target started\n");
g_target_state = NVMF_RUNNING;
nvmf_target_advance_state();
}
static void
nvmf_tgt_start_subsystems(struct nvmf_target *nvmf_tgt)
{
struct spdk_nvmf_subsystem *subsystem;
int rc;
/* Subsystem is the NVM subsystem which is a combine of namespaces
* except the discovery subsystem which is used for discovery service.
* It also controls the hosts that means the subsystem determines whether
* the host can access this subsystem.
*/
subsystem = spdk_nvmf_subsystem_get_first(nvmf_tgt->tgt);
if (spdk_likely(subsystem)) {
/* In SPDK there are three states in subsystem: Inactive, Active, Paused.
* Start subsystem means make it from inactive to active that means
* subsystem start to work or it can be accessed.
*/
rc = spdk_nvmf_subsystem_start(subsystem,
nvmf_tgt_subsystem_start_next,
NULL);
if (rc) {
fprintf(stderr, "Unable to start NVMe-oF subsystem. shutting down app.\n");
g_target_state = NVMF_FINI_STOP_SUBSYSTEMS;
}
} else {
g_target_state = NVMF_RUNNING;
}
}
static void
nvmf_tgt_create_poll_groups_done(void *ctx)
{
struct nvmf_target_poll_group *pg = ctx;
if (!g_next_pg) {
g_next_pg = pg;
}
TAILQ_INSERT_TAIL(&g_poll_groups, pg, link);
assert(g_num_poll_groups < spdk_env_get_core_count());
if (++g_num_poll_groups == spdk_env_get_core_count()) {
fprintf(stdout, "create targets's poll groups done\n");
g_target_state = NVMF_INIT_START_SUBSYSTEMS;
nvmf_target_advance_state();
}
}
static void
nvmf_tgt_create_poll_group(void *ctx)
{
struct nvmf_target_poll_group *pg;
pg = calloc(1, sizeof(struct nvmf_target_poll_group));
if (!pg) {
fprintf(stderr, "failed to allocate poll group\n");
assert(false);
return;
}
pg->thread = spdk_get_thread();
pg->group = spdk_nvmf_poll_group_create(g_nvmf_tgt.tgt);
if (!pg->group) {
fprintf(stderr, "failed to create poll group of the target\n");
free(pg);
assert(false);
return;
}
spdk_thread_send_msg(g_init_thread, nvmf_tgt_create_poll_groups_done, pg);
}
/* Create a lightweight thread per poll group instead of assuming a pool of lightweight
* threads already exist at start up time. A poll group is a collection of unrelated NVMe-oF
* connections. Each poll group is only accessed from the associated lightweight thread.
*/
static void
nvmf_poll_groups_create(void)
{
struct spdk_cpuset tmp_cpumask = {};
uint32_t i;
char thread_name[32];
struct spdk_thread *thread;
assert(g_init_thread != NULL);
SPDK_ENV_FOREACH_CORE(i) {
spdk_cpuset_zero(&tmp_cpumask);
spdk_cpuset_set_cpu(&tmp_cpumask, i, true);
snprintf(thread_name, sizeof(thread_name), "nvmf_tgt_poll_group_%u", i);
thread = spdk_thread_create(thread_name, &tmp_cpumask);
assert(thread != NULL);
spdk_thread_send_msg(thread, nvmf_tgt_create_poll_group, NULL);
}
}
static void
_nvmf_tgt_destroy_poll_groups_done(void *ctx)
{
assert(g_num_poll_groups > 0);
if (--g_num_poll_groups == 0) {
fprintf(stdout, "destroy targets's poll groups done\n");
g_target_state = NVMF_FINI_TARGET;
nvmf_target_advance_state();
}
}
static void
nvmf_tgt_destroy_poll_groups_done(void *cb_arg, int status)
{
struct nvmf_target_poll_group *pg = cb_arg;
free(pg);
spdk_thread_send_msg(g_fini_thread, _nvmf_tgt_destroy_poll_groups_done, NULL);
spdk_thread_exit(spdk_get_thread());
}
static void
nvmf_tgt_destroy_poll_group(void *ctx)
{
struct nvmf_target_poll_group *pg = ctx;
spdk_nvmf_poll_group_destroy(pg->group, nvmf_tgt_destroy_poll_groups_done, pg);
}
static void
nvmf_poll_groups_destroy(void)
{
struct nvmf_target_poll_group *pg, *tmp;
g_fini_thread = spdk_get_thread();
assert(g_fini_thread != NULL);
TAILQ_FOREACH_SAFE(pg, &g_poll_groups, link, tmp) {
TAILQ_REMOVE(&g_poll_groups, pg, link);
spdk_thread_send_msg(pg->thread, nvmf_tgt_destroy_poll_group, pg);
}
}
static void
nvmf_subsystem_fini_done(void *cb_arg)
{
fprintf(stdout, "bdev subsystem finish successfully\n");
spdk_rpc_finish();
g_reactors_exit = true;
}
static void
nvmf_subsystem_init_done(int rc, void *cb_arg)
{
fprintf(stdout, "bdev subsystem init successfully\n");
rc = spdk_rpc_initialize(g_rpc_addr);
if (rc) {
spdk_app_stop(rc);
return;
}
spdk_rpc_set_state(SPDK_RPC_RUNTIME);
g_target_state = NVMF_INIT_TARGET;
nvmf_target_advance_state();
}
static void
migrate_poll_group_by_rr(void *ctx)
{
uint32_t current_core, next_core;
struct spdk_cpuset cpumask = {};
current_core = spdk_env_get_current_core();
next_core = spdk_env_get_next_core(current_core);
if (next_core == UINT32_MAX) {
next_core = spdk_env_get_first_core();
}
spdk_cpuset_set_cpu(&cpumask, next_core, true);
spdk_thread_set_cpumask(&cpumask);
}
static int
migrate_poll_groups_by_rr(void *ctx)
{
struct nvmf_target_poll_group *pg;
TAILQ_FOREACH(pg, &g_poll_groups, link) {
spdk_thread_send_msg(pg->thread, migrate_poll_group_by_rr, NULL);
}
return SPDK_POLLER_BUSY;
}
static void
nvmf_target_advance_state(void)
{
enum nvmf_target_state prev_state;
do {
prev_state = g_target_state;
switch (g_target_state) {
case NVMF_INIT_SUBSYSTEM:
/* initialize the bdev layer */
spdk_subsystem_init(nvmf_subsystem_init_done, NULL);
return;
case NVMF_INIT_TARGET:
nvmf_create_nvmf_tgt();
break;
case NVMF_INIT_POLL_GROUPS:
nvmf_poll_groups_create();
break;
case NVMF_INIT_START_SUBSYSTEMS:
nvmf_tgt_start_subsystems(&g_nvmf_tgt);
break;
case NVMF_RUNNING:
fprintf(stdout, "nvmf target is running\n");
if (g_migrate_pg_period_us != 0) {
g_migrate_pg_poller = SPDK_POLLER_REGISTER(migrate_poll_groups_by_rr, NULL,
g_migrate_pg_period_us);
}
break;
case NVMF_FINI_STOP_SUBSYSTEMS:
spdk_poller_unregister(&g_migrate_pg_poller);
nvmf_tgt_stop_subsystems(&g_nvmf_tgt);
break;
case NVMF_FINI_POLL_GROUPS:
nvmf_poll_groups_destroy();
break;
case NVMF_FINI_TARGET:
nvmf_destroy_nvmf_tgt();
break;
case NVMF_FINI_SUBSYSTEM:
spdk_subsystem_fini(nvmf_subsystem_fini_done, NULL);
break;
}
} while (g_target_state != prev_state);
}
static void
nvmf_target_app_start(void *arg)
{
g_target_state = NVMF_INIT_SUBSYSTEM;
nvmf_target_advance_state();
}
static void
_nvmf_shutdown_cb(void *ctx)
{
/* Still in initialization state, defer shutdown operation */
if (g_target_state < NVMF_RUNNING) {
spdk_thread_send_msg(spdk_get_thread(), _nvmf_shutdown_cb, NULL);
return;
} else if (g_target_state > NVMF_RUNNING) {
/* Already in Shutdown status, ignore the signal */
return;
}
g_target_state = NVMF_FINI_STOP_SUBSYSTEMS;
nvmf_target_advance_state();
}
static void
nvmf_shutdown_cb(int signo)
{
if (!g_intr_received) {
g_intr_received = true;
spdk_thread_send_msg(g_init_thread, _nvmf_shutdown_cb, NULL);
}
}
static int
nvmf_setup_signal_handlers(void)
{
struct sigaction sigact;
sigset_t sigmask;
int signals[] = {SIGINT, SIGTERM};
int num_signals = sizeof(signals) / sizeof(int);
int rc, i;
rc = sigemptyset(&sigmask);
if (rc) {
fprintf(stderr, "errno:%d--failed to empty signal set\n", errno);
return rc;
}
memset(&sigact, 0, sizeof(sigact));
rc = sigemptyset(&sigact.sa_mask);
if (rc) {
fprintf(stderr, "errno:%d--failed to empty signal set\n", errno);
return rc;
}
/* Install the same handler for SIGINT and SIGTERM */
sigact.sa_handler = nvmf_shutdown_cb;
for (i = 0; i < num_signals; i++) {
rc = sigaction(signals[i], &sigact, NULL);
if (rc < 0) {
fprintf(stderr, "errno:%d--sigaction() failed\n", errno);
return rc;
}
rc = sigaddset(&sigmask, signals[i]);
if (rc) {
fprintf(stderr, "errno:%d--failed to add set\n", errno);
return rc;
}
}
pthread_sigmask(SIG_UNBLOCK, &sigmask, NULL);
return 0;
}
int
main(int argc, char **argv)
{
int rc;
struct spdk_env_opts opts;
spdk_env_opts_init(&opts);
opts.name = "nvmf-example";
rc = parse_args(argc, argv, &opts);
if (rc != 0) {
return rc;
}
if (spdk_env_init(&opts) < 0) {
fprintf(stderr, "unable to initialize SPDK env\n");
return -EINVAL;
}
/* Initialize the threads */
rc = nvmf_init_threads();
assert(rc == 0);
/* Send a message to the thread assigned to the main reactor
* that continues initialization. This is how we bootstrap the
* program so that all code from here on is running on an SPDK thread.
*/
assert(g_init_thread != NULL);
rc = nvmf_setup_signal_handlers();
assert(rc == 0);
spdk_thread_send_msg(g_init_thread, nvmf_target_app_start, NULL);
nvmf_reactor_run(g_main_reactor);
spdk_env_thread_wait_all();
nvmf_destroy_threads();
spdk_env_fini();
return rc;
}