For the latest TLC NAND, one write buffer unit (rwb batch) needs to be spread over three PUs instead of being allocated to a single PU for better sequential read performance since the optimal write size(ws_opt) of 3D TLC NAND is 3 times bigger than the optimal read size(rs_opt). I added num_interleave_units in 'struct spdk_ftl_conf' to configure the number of interleaving units per ws_opt. If num_interleave_units is set as 1, the whole of the ws_opt blocks are placed sequentially around each PU. If num_interleave_units is set as N, the 1/N of the ws_opt blocks are staggered. So consecutively numbered blocks are separated by ws_opt / num_interleave_units. The sequential read performance is improved from 1.9GiB/s up to 2.97GiB/S with this patch on our system. No performance degradation is observed on sequential writes or 4KB random reads/writes. Please refer to the Trello card for more details. https://trello.com/c/Osol93ZU Change-Id: I371e72067b278ef43c3ac87a3d9ce9010d3fcb15 Signed-off-by: Claire J. In <claire.in@circuitblvd.com> Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/450976 Reviewed-by: Young Tack Jin <youngtack.jin@circuitblvd.com> Reviewed-by: Konrad Sztyber <konrad.sztyber@intel.com> Reviewed-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com> Reviewed-by: Wojciech Malikowski <wojciech.malikowski@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
590 lines
15 KiB
C
590 lines
15 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "spdk/stdinc.h"
|
|
|
|
#include "spdk_cunit.h"
|
|
#include "common/lib/test_env.c"
|
|
|
|
#include "ftl/ftl_rwb.c"
|
|
|
|
struct ftl_rwb_ut {
|
|
/* configurations */
|
|
struct spdk_ftl_conf conf;
|
|
size_t metadata_size;
|
|
size_t num_punits;
|
|
size_t xfer_size;
|
|
|
|
/* the fields below are calculated by the configurations */
|
|
size_t max_batches;
|
|
size_t max_active_batches;
|
|
size_t max_entries;
|
|
size_t max_allocable_entries;
|
|
size_t interleave_offset;
|
|
size_t num_entries_per_worker;
|
|
};
|
|
|
|
static struct ftl_rwb *g_rwb;
|
|
static struct ftl_rwb_ut g_ut;
|
|
|
|
static int _init_suite(void);
|
|
|
|
static int
|
|
init_suite1(void)
|
|
{
|
|
g_ut.conf.rwb_size = 1024 * 1024;
|
|
g_ut.conf.num_interleave_units = 1;
|
|
g_ut.metadata_size = 64;
|
|
g_ut.num_punits = 4;
|
|
g_ut.xfer_size = 16;
|
|
|
|
return _init_suite();
|
|
}
|
|
|
|
static int
|
|
init_suite2(void)
|
|
{
|
|
g_ut.conf.rwb_size = 2 * 1024 * 1024;
|
|
g_ut.conf.num_interleave_units = 4;
|
|
g_ut.metadata_size = 64;
|
|
g_ut.num_punits = 8;
|
|
g_ut.xfer_size = 16;
|
|
|
|
return _init_suite();
|
|
}
|
|
|
|
static int
|
|
_init_suite(void)
|
|
{
|
|
struct spdk_ftl_conf *conf = &g_ut.conf;
|
|
|
|
if (conf->num_interleave_units == 0 ||
|
|
g_ut.xfer_size % conf->num_interleave_units ||
|
|
g_ut.num_punits == 0) {
|
|
return -1;
|
|
}
|
|
|
|
g_ut.max_batches = conf->rwb_size / (FTL_BLOCK_SIZE * g_ut.xfer_size);
|
|
if (conf->num_interleave_units > 1) {
|
|
g_ut.max_batches += g_ut.num_punits;
|
|
g_ut.max_active_batches = g_ut.num_punits;
|
|
} else {
|
|
g_ut.max_batches++;
|
|
g_ut.max_active_batches = 1;
|
|
}
|
|
|
|
g_ut.max_entries = g_ut.max_batches * g_ut.xfer_size;
|
|
g_ut.max_allocable_entries = (g_ut.max_batches / g_ut.max_active_batches) *
|
|
g_ut.max_active_batches * g_ut.xfer_size;
|
|
|
|
g_ut.interleave_offset = g_ut.xfer_size / conf->num_interleave_units;
|
|
|
|
/* if max_batches is less than max_active_batches * 2, */
|
|
/* test_rwb_limits_applied will be failed. */
|
|
if (g_ut.max_batches < g_ut.max_active_batches * 2) {
|
|
return -1;
|
|
}
|
|
|
|
g_ut.num_entries_per_worker = 16 * g_ut.max_allocable_entries;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
setup_rwb(void)
|
|
{
|
|
g_rwb = ftl_rwb_init(&g_ut.conf, g_ut.xfer_size,
|
|
g_ut.metadata_size, g_ut.num_punits);
|
|
SPDK_CU_ASSERT_FATAL(g_rwb != NULL);
|
|
}
|
|
|
|
static void
|
|
cleanup_rwb(void)
|
|
{
|
|
ftl_rwb_free(g_rwb);
|
|
g_rwb = NULL;
|
|
}
|
|
|
|
static void
|
|
test_rwb_acquire(void)
|
|
{
|
|
struct ftl_rwb_entry *entry;
|
|
size_t i;
|
|
|
|
setup_rwb();
|
|
/* Verify that it's possible to acquire all of the entries */
|
|
for (i = 0; i < g_ut.max_allocable_entries; ++i) {
|
|
entry = ftl_rwb_acquire(g_rwb, FTL_RWB_TYPE_USER);
|
|
SPDK_CU_ASSERT_FATAL(entry);
|
|
ftl_rwb_push(entry);
|
|
}
|
|
|
|
entry = ftl_rwb_acquire(g_rwb, FTL_RWB_TYPE_USER);
|
|
CU_ASSERT_PTR_NULL(entry);
|
|
cleanup_rwb();
|
|
}
|
|
|
|
static void
|
|
test_rwb_pop(void)
|
|
{
|
|
struct ftl_rwb_entry *entry;
|
|
struct ftl_rwb_batch *batch;
|
|
size_t entry_count, i, i_reset = 0, i_offset = 0;
|
|
uint64_t expected_lba;
|
|
|
|
setup_rwb();
|
|
|
|
/* Acquire all entries */
|
|
for (i = 0; i < g_ut.max_allocable_entries; ++i) {
|
|
entry = ftl_rwb_acquire(g_rwb, FTL_RWB_TYPE_USER);
|
|
|
|
SPDK_CU_ASSERT_FATAL(entry);
|
|
entry->lba = i;
|
|
ftl_rwb_push(entry);
|
|
}
|
|
|
|
/* Pop all batches and free them */
|
|
for (i = 0; i < g_ut.max_allocable_entries / g_ut.xfer_size; ++i) {
|
|
batch = ftl_rwb_pop(g_rwb);
|
|
SPDK_CU_ASSERT_FATAL(batch);
|
|
entry_count = 0;
|
|
|
|
ftl_rwb_foreach(entry, batch) {
|
|
if (i % g_ut.max_active_batches == 0) {
|
|
i_offset = i * g_ut.xfer_size;
|
|
}
|
|
|
|
if (entry_count % g_ut.interleave_offset == 0) {
|
|
i_reset = i % g_ut.max_active_batches +
|
|
(entry_count / g_ut.interleave_offset) *
|
|
g_ut.max_active_batches;
|
|
}
|
|
|
|
expected_lba = i_offset +
|
|
i_reset * g_ut.interleave_offset +
|
|
entry_count % g_ut.interleave_offset;
|
|
|
|
CU_ASSERT_EQUAL(entry->lba, expected_lba);
|
|
entry_count++;
|
|
}
|
|
|
|
CU_ASSERT_EQUAL(entry_count, g_ut.xfer_size);
|
|
ftl_rwb_batch_release(batch);
|
|
}
|
|
|
|
/* Acquire all entries once more */
|
|
for (i = 0; i < g_ut.max_allocable_entries; ++i) {
|
|
entry = ftl_rwb_acquire(g_rwb, FTL_RWB_TYPE_USER);
|
|
SPDK_CU_ASSERT_FATAL(entry);
|
|
ftl_rwb_push(entry);
|
|
}
|
|
|
|
/* Pop one batch and check we can acquire xfer_size entries */
|
|
for (i = 0; i < g_ut.max_active_batches; i++) {
|
|
batch = ftl_rwb_pop(g_rwb);
|
|
SPDK_CU_ASSERT_FATAL(batch);
|
|
ftl_rwb_batch_release(batch);
|
|
}
|
|
|
|
for (i = 0; i < g_ut.xfer_size * g_ut.max_active_batches; ++i) {
|
|
entry = ftl_rwb_acquire(g_rwb, FTL_RWB_TYPE_USER);
|
|
|
|
SPDK_CU_ASSERT_FATAL(entry);
|
|
ftl_rwb_push(entry);
|
|
}
|
|
|
|
entry = ftl_rwb_acquire(g_rwb, FTL_RWB_TYPE_USER);
|
|
CU_ASSERT_PTR_NULL(entry);
|
|
|
|
/* Pop and Release all batches */
|
|
for (i = 0; i < g_ut.max_allocable_entries / g_ut.xfer_size; ++i) {
|
|
batch = ftl_rwb_pop(g_rwb);
|
|
SPDK_CU_ASSERT_FATAL(batch);
|
|
ftl_rwb_batch_release(batch);
|
|
}
|
|
|
|
cleanup_rwb();
|
|
}
|
|
|
|
static void
|
|
test_rwb_disable_interleaving(void)
|
|
{
|
|
struct ftl_rwb_entry *entry;
|
|
struct ftl_rwb_batch *batch;
|
|
size_t entry_count, i;
|
|
|
|
setup_rwb();
|
|
|
|
ftl_rwb_disable_interleaving(g_rwb);
|
|
|
|
/* Acquire all entries and assign sequential lbas */
|
|
for (i = 0; i < g_ut.max_allocable_entries; ++i) {
|
|
entry = ftl_rwb_acquire(g_rwb, FTL_RWB_TYPE_USER);
|
|
|
|
SPDK_CU_ASSERT_FATAL(entry);
|
|
entry->lba = i;
|
|
ftl_rwb_push(entry);
|
|
}
|
|
|
|
/* Check for expected lbas */
|
|
for (i = 0; i < g_ut.max_allocable_entries / g_ut.xfer_size; ++i) {
|
|
batch = ftl_rwb_pop(g_rwb);
|
|
SPDK_CU_ASSERT_FATAL(batch);
|
|
entry_count = 0;
|
|
|
|
ftl_rwb_foreach(entry, batch) {
|
|
CU_ASSERT_EQUAL(entry->lba, i * g_ut.xfer_size + entry_count);
|
|
entry_count++;
|
|
}
|
|
|
|
CU_ASSERT_EQUAL(entry_count, g_ut.xfer_size);
|
|
ftl_rwb_batch_release(batch);
|
|
}
|
|
|
|
cleanup_rwb();
|
|
}
|
|
|
|
static void
|
|
test_rwb_batch_revert(void)
|
|
{
|
|
struct ftl_rwb_batch *batch;
|
|
struct ftl_rwb_entry *entry;
|
|
size_t i;
|
|
|
|
setup_rwb();
|
|
for (i = 0; i < g_ut.max_allocable_entries; ++i) {
|
|
entry = ftl_rwb_acquire(g_rwb, FTL_RWB_TYPE_USER);
|
|
SPDK_CU_ASSERT_FATAL(entry);
|
|
ftl_rwb_push(entry);
|
|
}
|
|
|
|
/* Pop one batch and revert it */
|
|
batch = ftl_rwb_pop(g_rwb);
|
|
SPDK_CU_ASSERT_FATAL(batch);
|
|
|
|
ftl_rwb_batch_revert(batch);
|
|
|
|
/* Verify all of the batches */
|
|
for (i = 0; i < g_ut.max_allocable_entries / g_ut.xfer_size; ++i) {
|
|
batch = ftl_rwb_pop(g_rwb);
|
|
CU_ASSERT_PTR_NOT_NULL_FATAL(batch);
|
|
}
|
|
cleanup_rwb();
|
|
}
|
|
|
|
static void
|
|
test_rwb_entry_from_offset(void)
|
|
{
|
|
struct ftl_rwb_entry *entry;
|
|
struct ftl_ppa ppa = { .cached = 1 };
|
|
size_t i;
|
|
|
|
setup_rwb();
|
|
for (i = 0; i < g_ut.max_allocable_entries; ++i) {
|
|
ppa.offset = i;
|
|
|
|
entry = ftl_rwb_entry_from_offset(g_rwb, i);
|
|
CU_ASSERT_EQUAL(ppa.offset, entry->pos);
|
|
}
|
|
cleanup_rwb();
|
|
}
|
|
|
|
static void *
|
|
test_rwb_worker(void *ctx)
|
|
{
|
|
struct ftl_rwb_entry *entry;
|
|
unsigned int *num_done = ctx;
|
|
size_t i;
|
|
|
|
for (i = 0; i < g_ut.num_entries_per_worker; ++i) {
|
|
while (1) {
|
|
entry = ftl_rwb_acquire(g_rwb, FTL_RWB_TYPE_USER);
|
|
if (entry) {
|
|
entry->flags = 0;
|
|
ftl_rwb_push(entry);
|
|
break;
|
|
} else {
|
|
/* Allow other threads to run under valgrind */
|
|
pthread_yield();
|
|
}
|
|
}
|
|
}
|
|
|
|
__atomic_fetch_add(num_done, 1, __ATOMIC_SEQ_CST);
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
test_rwb_parallel(void)
|
|
{
|
|
struct ftl_rwb_batch *batch;
|
|
struct ftl_rwb_entry *entry;
|
|
#define NUM_PARALLEL_WORKERS 4
|
|
pthread_t workers[NUM_PARALLEL_WORKERS];
|
|
unsigned int num_done = 0;
|
|
size_t i, num_entries = 0;
|
|
bool all_done = false;
|
|
int rc;
|
|
|
|
setup_rwb();
|
|
for (i = 0; i < NUM_PARALLEL_WORKERS; ++i) {
|
|
rc = pthread_create(&workers[i], NULL, test_rwb_worker, (void *)&num_done);
|
|
CU_ASSERT_TRUE(rc == 0);
|
|
}
|
|
|
|
while (1) {
|
|
batch = ftl_rwb_pop(g_rwb);
|
|
if (batch) {
|
|
ftl_rwb_foreach(entry, batch) {
|
|
num_entries++;
|
|
}
|
|
|
|
ftl_rwb_batch_release(batch);
|
|
} else {
|
|
if (NUM_PARALLEL_WORKERS == __atomic_load_n(&num_done, __ATOMIC_SEQ_CST)) {
|
|
if (!all_done) {
|
|
/* Pop all left entries from rwb */
|
|
all_done = true;
|
|
continue;
|
|
}
|
|
|
|
for (i = 0; i < NUM_PARALLEL_WORKERS; ++i) {
|
|
pthread_join(workers[i], NULL);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
/* Allow other threads to run under valgrind */
|
|
pthread_yield();
|
|
}
|
|
}
|
|
|
|
CU_ASSERT_TRUE(num_entries == NUM_PARALLEL_WORKERS * g_ut.num_entries_per_worker);
|
|
cleanup_rwb();
|
|
}
|
|
|
|
static void
|
|
test_rwb_limits_base(void)
|
|
{
|
|
struct ftl_rwb_entry *entry;
|
|
size_t limits[FTL_RWB_TYPE_MAX];
|
|
|
|
setup_rwb();
|
|
ftl_rwb_get_limits(g_rwb, limits);
|
|
CU_ASSERT_TRUE(limits[FTL_RWB_TYPE_INTERNAL] == ftl_rwb_entry_cnt(g_rwb));
|
|
CU_ASSERT_TRUE(limits[FTL_RWB_TYPE_USER] == ftl_rwb_entry_cnt(g_rwb));
|
|
|
|
/* Verify it's possible to acquire both type of entries */
|
|
entry = ftl_rwb_acquire(g_rwb, FTL_RWB_TYPE_INTERNAL);
|
|
CU_ASSERT_PTR_NOT_NULL_FATAL(entry);
|
|
|
|
entry = ftl_rwb_acquire(g_rwb, FTL_RWB_TYPE_USER);
|
|
CU_ASSERT_PTR_NOT_NULL_FATAL(entry);
|
|
cleanup_rwb();
|
|
}
|
|
|
|
static void
|
|
test_rwb_limits_set(void)
|
|
{
|
|
size_t limits[FTL_RWB_TYPE_MAX], check[FTL_RWB_TYPE_MAX];
|
|
size_t i;
|
|
|
|
setup_rwb();
|
|
|
|
/* Check valid limits */
|
|
ftl_rwb_get_limits(g_rwb, limits);
|
|
memcpy(check, limits, sizeof(limits));
|
|
ftl_rwb_set_limits(g_rwb, limits);
|
|
ftl_rwb_get_limits(g_rwb, limits);
|
|
CU_ASSERT(memcmp(check, limits, sizeof(limits)) == 0);
|
|
|
|
for (i = 0; i < FTL_RWB_TYPE_MAX; ++i) {
|
|
ftl_rwb_get_limits(g_rwb, limits);
|
|
limits[i] = 0;
|
|
}
|
|
|
|
memcpy(check, limits, sizeof(limits));
|
|
ftl_rwb_set_limits(g_rwb, limits);
|
|
ftl_rwb_get_limits(g_rwb, limits);
|
|
CU_ASSERT(memcmp(check, limits, sizeof(limits)) == 0);
|
|
cleanup_rwb();
|
|
}
|
|
|
|
static void
|
|
test_rwb_limits_applied(void)
|
|
{
|
|
struct ftl_rwb_entry *entry;
|
|
struct ftl_rwb_batch *batch;
|
|
size_t limits[FTL_RWB_TYPE_MAX];
|
|
const size_t test_limit = g_ut.xfer_size * g_ut.max_active_batches;
|
|
size_t i;
|
|
|
|
setup_rwb();
|
|
|
|
/* Check that it's impossible to acquire any entries when the limits are */
|
|
/* set to 0 */
|
|
ftl_rwb_get_limits(g_rwb, limits);
|
|
limits[FTL_RWB_TYPE_USER] = 0;
|
|
ftl_rwb_set_limits(g_rwb, limits);
|
|
entry = ftl_rwb_acquire(g_rwb, FTL_RWB_TYPE_USER);
|
|
CU_ASSERT_PTR_NULL(entry);
|
|
|
|
limits[FTL_RWB_TYPE_USER] = ftl_rwb_entry_cnt(g_rwb);
|
|
limits[FTL_RWB_TYPE_INTERNAL] = 0;
|
|
ftl_rwb_set_limits(g_rwb, limits);
|
|
entry = ftl_rwb_acquire(g_rwb, FTL_RWB_TYPE_INTERNAL);
|
|
CU_ASSERT_PTR_NULL(entry);
|
|
|
|
/* Check positive limits */
|
|
limits[FTL_RWB_TYPE_USER] = ftl_rwb_entry_cnt(g_rwb);
|
|
limits[FTL_RWB_TYPE_INTERNAL] = test_limit;
|
|
ftl_rwb_set_limits(g_rwb, limits);
|
|
for (i = 0; i < test_limit; ++i) {
|
|
entry = ftl_rwb_acquire(g_rwb, FTL_RWB_TYPE_INTERNAL);
|
|
SPDK_CU_ASSERT_FATAL(entry);
|
|
entry->flags = FTL_IO_INTERNAL;
|
|
ftl_rwb_push(entry);
|
|
}
|
|
|
|
/* Now we expect null, since we've reached threshold */
|
|
entry = ftl_rwb_acquire(g_rwb, FTL_RWB_TYPE_INTERNAL);
|
|
CU_ASSERT_PTR_NULL(entry);
|
|
|
|
for (i = 0; i < test_limit / g_ut.xfer_size; ++i) {
|
|
/* Complete the entries and check we can retrieve the entries once again */
|
|
batch = ftl_rwb_pop(g_rwb);
|
|
SPDK_CU_ASSERT_FATAL(batch);
|
|
ftl_rwb_batch_release(batch);
|
|
}
|
|
|
|
entry = ftl_rwb_acquire(g_rwb, FTL_RWB_TYPE_INTERNAL);
|
|
SPDK_CU_ASSERT_FATAL(entry);
|
|
entry->flags = FTL_IO_INTERNAL;
|
|
|
|
/* Set the same limit but this time for user entries */
|
|
limits[FTL_RWB_TYPE_USER] = test_limit;
|
|
limits[FTL_RWB_TYPE_INTERNAL] = ftl_rwb_entry_cnt(g_rwb);
|
|
ftl_rwb_set_limits(g_rwb, limits);
|
|
for (i = 0; i < test_limit; ++i) {
|
|
entry = ftl_rwb_acquire(g_rwb, FTL_RWB_TYPE_USER);
|
|
SPDK_CU_ASSERT_FATAL(entry);
|
|
ftl_rwb_push(entry);
|
|
}
|
|
|
|
/* Now we expect null, since we've reached threshold */
|
|
entry = ftl_rwb_acquire(g_rwb, FTL_RWB_TYPE_USER);
|
|
CU_ASSERT_PTR_NULL(entry);
|
|
|
|
/* Check that we're still able to acquire a number of internal entries */
|
|
/* while the user entires are being throttled */
|
|
for (i = 0; i < g_ut.xfer_size; ++i) {
|
|
entry = ftl_rwb_acquire(g_rwb, FTL_RWB_TYPE_INTERNAL);
|
|
SPDK_CU_ASSERT_FATAL(entry);
|
|
}
|
|
|
|
cleanup_rwb();
|
|
}
|
|
|
|
int
|
|
main(int argc, char **argv)
|
|
{
|
|
CU_pSuite suite1, suite2;
|
|
unsigned int num_failures;
|
|
|
|
if (CU_initialize_registry() != CUE_SUCCESS) {
|
|
return CU_get_error();
|
|
}
|
|
|
|
suite1 = CU_add_suite("suite1", init_suite1, NULL);
|
|
if (!suite1) {
|
|
CU_cleanup_registry();
|
|
return CU_get_error();
|
|
}
|
|
|
|
suite2 = CU_add_suite("suite2", init_suite2, NULL);
|
|
if (!suite2) {
|
|
CU_cleanup_registry();
|
|
return CU_get_error();
|
|
}
|
|
|
|
if (
|
|
CU_add_test(suite1, "test_rwb_acquire",
|
|
test_rwb_acquire) == NULL
|
|
|| CU_add_test(suite1, "test_rwb_pop",
|
|
test_rwb_pop) == NULL
|
|
|| CU_add_test(suite1, "test_rwb_disable_interleaving",
|
|
test_rwb_disable_interleaving) == NULL
|
|
|| CU_add_test(suite1, "test_rwb_batch_revert",
|
|
test_rwb_batch_revert) == NULL
|
|
|| CU_add_test(suite1, "test_rwb_entry_from_offset",
|
|
test_rwb_entry_from_offset) == NULL
|
|
|| CU_add_test(suite1, "test_rwb_parallel",
|
|
test_rwb_parallel) == NULL
|
|
|| CU_add_test(suite1, "test_rwb_limits_base",
|
|
test_rwb_limits_base) == NULL
|
|
|| CU_add_test(suite1, "test_rwb_limits_set",
|
|
test_rwb_limits_set) == NULL
|
|
|| CU_add_test(suite1, "test_rwb_limits_applied",
|
|
test_rwb_limits_applied) == NULL
|
|
|| CU_add_test(suite2, "test_rwb_acquire",
|
|
test_rwb_acquire) == NULL
|
|
|| CU_add_test(suite2, "test_rwb_pop",
|
|
test_rwb_pop) == NULL
|
|
|| CU_add_test(suite2, "test_rwb_disable_interleaving",
|
|
test_rwb_disable_interleaving) == NULL
|
|
|| CU_add_test(suite2, "test_rwb_batch_revert",
|
|
test_rwb_batch_revert) == NULL
|
|
|| CU_add_test(suite2, "test_rwb_entry_from_offset",
|
|
test_rwb_entry_from_offset) == NULL
|
|
|| CU_add_test(suite2, "test_rwb_parallel",
|
|
test_rwb_parallel) == NULL
|
|
|| CU_add_test(suite2, "test_rwb_limits_base",
|
|
test_rwb_limits_base) == NULL
|
|
|| CU_add_test(suite2, "test_rwb_limits_set",
|
|
test_rwb_limits_set) == NULL
|
|
|| CU_add_test(suite2, "test_rwb_limits_applied",
|
|
test_rwb_limits_applied) == NULL
|
|
) {
|
|
CU_cleanup_registry();
|
|
return CU_get_error();
|
|
}
|
|
|
|
CU_basic_set_mode(CU_BRM_VERBOSE);
|
|
CU_basic_run_tests();
|
|
num_failures = CU_get_number_of_failures();
|
|
CU_cleanup_registry();
|
|
|
|
return num_failures;
|
|
}
|