Spdk/test/unit/lib/nvme/nvme_qpair.c/nvme_qpair_ut.c
paul luse a6dbe3721e update Intel copyright notices
per Intel policy to include file commit date using git cmd
below.  The policy does not apply to non-Intel (C) notices.

git log --follow -C90% --format=%ad --date default <file> | tail -1

and then pull just the 4 digit year from the result.

Intel copyrights were not added to files where Intel either had
no contribution ot the contribution lacked substance (ie license
header updates, formatting changes, etc).  Contribution date used
"--follow -C95%" to get the most accurate date.

Note that several files in this patch didn't end the license/(c)
block with a blank comment line so these were added as the vast
majority of files do have this last blank line.  Simply there for
consistency.

Signed-off-by: paul luse <paul.e.luse@intel.com>
Change-Id: Id5b7ce4f658fe87132f14139ead58d6e285c04d4
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/15192
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Community-CI: Mellanox Build Bot
2022-11-10 08:28:53 +00:00

771 lines
23 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2015 Intel Corporation.
* All rights reserved.
* Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*/
#include "spdk/stdinc.h"
#include "spdk_cunit.h"
#include "common/lib/test_env.c"
pid_t g_spdk_nvme_pid;
bool trace_flag = false;
#define SPDK_LOG_NVME trace_flag
#include "nvme/nvme_qpair.c"
SPDK_LOG_REGISTER_COMPONENT(nvme)
struct nvme_driver _g_nvme_driver = {
.lock = PTHREAD_MUTEX_INITIALIZER,
};
DEFINE_STUB_V(nvme_transport_qpair_abort_reqs, (struct spdk_nvme_qpair *qpair, uint32_t dnr));
DEFINE_STUB(nvme_transport_qpair_submit_request, int,
(struct spdk_nvme_qpair *qpair, struct nvme_request *req), 0);
DEFINE_STUB(spdk_nvme_ctrlr_free_io_qpair, int, (struct spdk_nvme_qpair *qpair), 0);
DEFINE_STUB_V(nvme_transport_ctrlr_disconnect_qpair, (struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *qpair));
DEFINE_STUB_V(nvme_ctrlr_disconnect_qpair, (struct spdk_nvme_qpair *qpair));
DEFINE_STUB_V(nvme_ctrlr_complete_queued_async_events, (struct spdk_nvme_ctrlr *ctrlr));
DEFINE_STUB_V(nvme_ctrlr_abort_queued_aborts, (struct spdk_nvme_ctrlr *ctrlr));
void
nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove)
{
if (hot_remove) {
ctrlr->is_removed = true;
}
ctrlr->is_failed = true;
}
static bool g_called_transport_process_completions = false;
static int32_t g_transport_process_completions_rc = 0;
int32_t
nvme_transport_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
{
g_called_transport_process_completions = true;
return g_transport_process_completions_rc;
}
static void
prepare_submit_request_test(struct spdk_nvme_qpair *qpair,
struct spdk_nvme_ctrlr *ctrlr)
{
memset(ctrlr, 0, sizeof(*ctrlr));
ctrlr->free_io_qids = NULL;
TAILQ_INIT(&ctrlr->active_io_qpairs);
TAILQ_INIT(&ctrlr->active_procs);
MOCK_CLEAR(spdk_zmalloc);
nvme_qpair_init(qpair, 1, ctrlr, 0, 32, false);
}
static void
cleanup_submit_request_test(struct spdk_nvme_qpair *qpair)
{
free(qpair->req_buf);
}
static void
expected_success_callback(void *arg, const struct spdk_nvme_cpl *cpl)
{
CU_ASSERT(!spdk_nvme_cpl_is_error(cpl));
}
static void
expected_failure_callback(void *arg, const struct spdk_nvme_cpl *cpl)
{
CU_ASSERT(spdk_nvme_cpl_is_error(cpl));
}
static void
test3(void)
{
struct spdk_nvme_qpair qpair = {};
struct nvme_request *req;
struct spdk_nvme_ctrlr ctrlr = {};
qpair.state = NVME_QPAIR_ENABLED;
prepare_submit_request_test(&qpair, &ctrlr);
req = nvme_allocate_request_null(&qpair, expected_success_callback, NULL);
SPDK_CU_ASSERT_FATAL(req != NULL);
CU_ASSERT(nvme_qpair_submit_request(&qpair, req) == 0);
nvme_free_request(req);
cleanup_submit_request_test(&qpair);
}
static void
test_ctrlr_failed(void)
{
struct spdk_nvme_qpair qpair = {};
struct nvme_request *req;
struct spdk_nvme_ctrlr ctrlr = {};
char payload[4096];
prepare_submit_request_test(&qpair, &ctrlr);
req = nvme_allocate_request_contig(&qpair, payload, sizeof(payload), expected_failure_callback,
NULL);
SPDK_CU_ASSERT_FATAL(req != NULL);
/* Set the controller to failed.
* Set the controller to resetting so that the qpair won't get re-enabled.
*/
ctrlr.is_failed = true;
ctrlr.is_resetting = true;
CU_ASSERT(nvme_qpair_submit_request(&qpair, req) != 0);
cleanup_submit_request_test(&qpair);
}
static void
struct_packing(void)
{
/* ctrlr is the first field in nvme_qpair after the fields
* that are used in the I/O path. Make sure the I/O path fields
* all fit into two cache lines.
*/
CU_ASSERT(offsetof(struct spdk_nvme_qpair, ctrlr) <= 128);
}
static int g_num_cb_failed = 0;
static int g_num_cb_passed = 0;
static void
dummy_cb_fn(void *cb_arg, const struct spdk_nvme_cpl *cpl)
{
if (cpl->status.sc == SPDK_NVME_SC_SUCCESS) {
g_num_cb_passed++;
} else {
g_num_cb_failed++;
}
}
static void
test_nvme_qpair_process_completions(void)
{
struct spdk_nvme_qpair admin_qp = {0};
struct spdk_nvme_qpair qpair = {0};
struct spdk_nvme_ctrlr ctrlr = {{0}};
struct nvme_request dummy_1 = {{0}};
struct nvme_request dummy_2 = {{0}};
int rc;
dummy_1.cb_fn = dummy_cb_fn;
dummy_2.cb_fn = dummy_cb_fn;
dummy_1.qpair = &qpair;
dummy_2.qpair = &qpair;
TAILQ_INIT(&ctrlr.active_io_qpairs);
TAILQ_INIT(&ctrlr.active_procs);
CU_ASSERT(pthread_mutex_init(&ctrlr.ctrlr_lock, NULL) == 0);
nvme_qpair_init(&qpair, 1, &ctrlr, 0, 32, false);
nvme_qpair_init(&admin_qp, 0, &ctrlr, 0, 32, false);
ctrlr.adminq = &admin_qp;
STAILQ_INIT(&qpair.queued_req);
STAILQ_INSERT_TAIL(&qpair.queued_req, &dummy_1, stailq);
STAILQ_INSERT_TAIL(&qpair.queued_req, &dummy_2, stailq);
/* If the controller is failed, return -ENXIO */
ctrlr.is_failed = true;
ctrlr.is_removed = false;
rc = spdk_nvme_qpair_process_completions(&qpair, 0);
CU_ASSERT(rc == -ENXIO);
CU_ASSERT(!STAILQ_EMPTY(&qpair.queued_req));
CU_ASSERT(g_num_cb_passed == 0);
CU_ASSERT(g_num_cb_failed == 0);
/* Same if the qpair is failed at the transport layer. */
ctrlr.is_failed = false;
ctrlr.is_removed = false;
qpair.state = NVME_QPAIR_DISCONNECTED;
rc = spdk_nvme_qpair_process_completions(&qpair, 0);
CU_ASSERT(rc == -ENXIO);
CU_ASSERT(!STAILQ_EMPTY(&qpair.queued_req));
CU_ASSERT(g_num_cb_passed == 0);
CU_ASSERT(g_num_cb_failed == 0);
/* If the controller is removed, make sure we abort the requests. */
ctrlr.is_failed = true;
ctrlr.is_removed = true;
qpair.state = NVME_QPAIR_CONNECTED;
rc = spdk_nvme_qpair_process_completions(&qpair, 0);
CU_ASSERT(rc == -ENXIO);
CU_ASSERT(STAILQ_EMPTY(&qpair.queued_req));
CU_ASSERT(g_num_cb_passed == 0);
CU_ASSERT(g_num_cb_failed == 2);
/* If we are resetting, make sure that we don't call into the transport. */
STAILQ_INSERT_TAIL(&qpair.queued_req, &dummy_1, stailq);
dummy_1.queued = true;
STAILQ_INSERT_TAIL(&qpair.queued_req, &dummy_2, stailq);
dummy_2.queued = true;
g_num_cb_failed = 0;
ctrlr.is_failed = false;
ctrlr.is_removed = false;
ctrlr.is_resetting = true;
rc = spdk_nvme_qpair_process_completions(&qpair, 0);
CU_ASSERT(rc == -ENXIO);
CU_ASSERT(g_called_transport_process_completions == false);
/* We also need to make sure we didn't abort the requests. */
CU_ASSERT(!STAILQ_EMPTY(&qpair.queued_req));
CU_ASSERT(g_num_cb_passed == 0);
CU_ASSERT(g_num_cb_failed == 0);
/* The case where we aren't resetting, but are enabling the qpair is the same as above. */
ctrlr.is_resetting = false;
qpair.state = NVME_QPAIR_ENABLING;
rc = spdk_nvme_qpair_process_completions(&qpair, 0);
CU_ASSERT(rc == -ENXIO);
CU_ASSERT(g_called_transport_process_completions == false);
CU_ASSERT(!STAILQ_EMPTY(&qpair.queued_req));
CU_ASSERT(g_num_cb_passed == 0);
CU_ASSERT(g_num_cb_failed == 0);
/* For other qpair states, we want to enable the qpair. */
qpair.state = NVME_QPAIR_CONNECTED;
rc = spdk_nvme_qpair_process_completions(&qpair, 1);
CU_ASSERT(rc == 0);
CU_ASSERT(g_called_transport_process_completions == true);
/* These should have been submitted to the lower layer. */
CU_ASSERT(STAILQ_EMPTY(&qpair.queued_req));
CU_ASSERT(g_num_cb_passed == 0);
CU_ASSERT(g_num_cb_failed == 0);
CU_ASSERT(nvme_qpair_get_state(&qpair) == NVME_QPAIR_ENABLED);
g_called_transport_process_completions = false;
g_transport_process_completions_rc = -ENXIO;
/* Fail the controller if we get an error from the transport on admin qpair. */
admin_qp.state = NVME_QPAIR_ENABLED;
rc = spdk_nvme_qpair_process_completions(&admin_qp, 0);
CU_ASSERT(rc == -ENXIO);
CU_ASSERT(g_called_transport_process_completions == true);
CU_ASSERT(ctrlr.is_failed == true);
/* Don't fail the controller for regular qpairs. */
ctrlr.is_failed = false;
g_called_transport_process_completions = false;
rc = spdk_nvme_qpair_process_completions(&qpair, 0);
CU_ASSERT(rc == -ENXIO);
CU_ASSERT(g_called_transport_process_completions == true);
CU_ASSERT(ctrlr.is_failed == false);
/* Make sure we don't modify the return value from the transport. */
ctrlr.is_failed = false;
g_called_transport_process_completions = false;
g_transport_process_completions_rc = 23;
rc = spdk_nvme_qpair_process_completions(&qpair, 0);
CU_ASSERT(rc == 23);
CU_ASSERT(g_called_transport_process_completions == true);
CU_ASSERT(ctrlr.is_failed == false);
free(qpair.req_buf);
free(admin_qp.req_buf);
}
static void
test_nvme_completion_is_retry(void)
{
struct spdk_nvme_cpl cpl = {};
cpl.status.sct = SPDK_NVME_SCT_GENERIC;
cpl.status.sc = SPDK_NVME_SC_NAMESPACE_NOT_READY;
cpl.status.dnr = 0;
CU_ASSERT_TRUE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_FORMAT_IN_PROGRESS;
cpl.status.dnr = 1;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.dnr = 0;
CU_ASSERT_TRUE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_INVALID_OPCODE;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_INVALID_FIELD;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_COMMAND_ID_CONFLICT;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_DATA_TRANSFER_ERROR;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_ABORTED_POWER_LOSS;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_ABORTED_FAILED_FUSED;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_INVALID_NAMESPACE_OR_FORMAT;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_COMMAND_SEQUENCE_ERROR;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_INVALID_SGL_SEG_DESCRIPTOR;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_INVALID_NUM_SGL_DESCIRPTORS;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_METADATA_SGL_LENGTH_INVALID;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_INVALID_CONTROLLER_MEM_BUF;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_INVALID_PRP_OFFSET;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_LBA_OUT_OF_RANGE;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_CAPACITY_EXCEEDED;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_RESERVATION_CONFLICT;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = 0x70;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sct = SPDK_NVME_SCT_PATH;
cpl.status.sc = SPDK_NVME_SC_INTERNAL_PATH_ERROR;
cpl.status.dnr = 0;
CU_ASSERT_TRUE(nvme_completion_is_retry(&cpl));
cpl.status.sct = SPDK_NVME_SCT_PATH;
cpl.status.sc = SPDK_NVME_SC_INTERNAL_PATH_ERROR;
cpl.status.dnr = 1;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sct = SPDK_NVME_SCT_VENDOR_SPECIFIC;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sct = 0x4;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
}
#ifdef DEBUG
static void
test_get_status_string(void)
{
const char *status_string;
struct spdk_nvme_status status;
status.sct = SPDK_NVME_SCT_GENERIC;
status.sc = SPDK_NVME_SC_SUCCESS;
status_string = spdk_nvme_cpl_get_status_string(&status);
CU_ASSERT(strcmp(status_string, "SUCCESS") == 0);
status.sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
status.sc = SPDK_NVME_SC_COMPLETION_QUEUE_INVALID;
status_string = spdk_nvme_cpl_get_status_string(&status);
CU_ASSERT(strcmp(status_string, "INVALID COMPLETION QUEUE") == 0);
status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
status.sc = SPDK_NVME_SC_UNRECOVERED_READ_ERROR;
status_string = spdk_nvme_cpl_get_status_string(&status);
CU_ASSERT(strcmp(status_string, "UNRECOVERED READ ERROR") == 0);
status.sct = SPDK_NVME_SCT_VENDOR_SPECIFIC;
status.sc = 0;
status_string = spdk_nvme_cpl_get_status_string(&status);
CU_ASSERT(strcmp(status_string, "VENDOR SPECIFIC") == 0);
status.sct = 0x4;
status.sc = 0;
status_string = spdk_nvme_cpl_get_status_string(&status);
CU_ASSERT(strcmp(status_string, "RESERVED") == 0);
}
#endif
static void
test_nvme_qpair_add_cmd_error_injection(void)
{
struct spdk_nvme_qpair qpair = {};
struct spdk_nvme_ctrlr ctrlr = {};
pthread_mutexattr_t attr;
int rc;
prepare_submit_request_test(&qpair, &ctrlr);
ctrlr.adminq = &qpair;
SPDK_CU_ASSERT_FATAL(pthread_mutexattr_init(&attr) == 0);
SPDK_CU_ASSERT_FATAL(pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) == 0);
SPDK_CU_ASSERT_FATAL(pthread_mutex_init(&ctrlr.ctrlr_lock, &attr) == 0);
pthread_mutexattr_destroy(&attr);
/* Admin error injection at submission path */
MOCK_CLEAR(spdk_zmalloc);
rc = spdk_nvme_qpair_add_cmd_error_injection(&ctrlr, NULL,
SPDK_NVME_OPC_GET_FEATURES, true, 5000, 1,
SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INVALID_FIELD);
CU_ASSERT(rc == 0);
CU_ASSERT(!TAILQ_EMPTY(&qpair.err_cmd_head));
/* Remove cmd error injection */
spdk_nvme_qpair_remove_cmd_error_injection(&ctrlr, NULL, SPDK_NVME_OPC_GET_FEATURES);
CU_ASSERT(TAILQ_EMPTY(&qpair.err_cmd_head));
/* IO error injection at completion path */
rc = spdk_nvme_qpair_add_cmd_error_injection(&ctrlr, &qpair,
SPDK_NVME_OPC_READ, false, 0, 1,
SPDK_NVME_SCT_MEDIA_ERROR, SPDK_NVME_SC_UNRECOVERED_READ_ERROR);
CU_ASSERT(rc == 0);
CU_ASSERT(!TAILQ_EMPTY(&qpair.err_cmd_head));
/* Provide the same opc, and check whether allocate a new entry */
rc = spdk_nvme_qpair_add_cmd_error_injection(&ctrlr, &qpair,
SPDK_NVME_OPC_READ, false, 0, 1,
SPDK_NVME_SCT_MEDIA_ERROR, SPDK_NVME_SC_UNRECOVERED_READ_ERROR);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&qpair.err_cmd_head));
CU_ASSERT(TAILQ_NEXT(TAILQ_FIRST(&qpair.err_cmd_head), link) == NULL);
/* Remove cmd error injection */
spdk_nvme_qpair_remove_cmd_error_injection(&ctrlr, &qpair, SPDK_NVME_OPC_READ);
CU_ASSERT(TAILQ_EMPTY(&qpair.err_cmd_head));
rc = spdk_nvme_qpair_add_cmd_error_injection(&ctrlr, &qpair,
SPDK_NVME_OPC_COMPARE, true, 0, 5,
SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_COMPARE_FAILURE);
CU_ASSERT(rc == 0);
CU_ASSERT(!TAILQ_EMPTY(&qpair.err_cmd_head));
/* Remove cmd error injection */
spdk_nvme_qpair_remove_cmd_error_injection(&ctrlr, &qpair, SPDK_NVME_OPC_COMPARE);
CU_ASSERT(TAILQ_EMPTY(&qpair.err_cmd_head));
pthread_mutex_destroy(&ctrlr.ctrlr_lock);
cleanup_submit_request_test(&qpair);
}
static struct nvme_request *
allocate_request_tree(struct spdk_nvme_qpair *qpair)
{
struct nvme_request *req, *req1, *req2, *req3, *req2_1, *req2_2, *req2_3;
/*
* Build a request chain like the following:
* req
* |
* ---------------
* | | |
* req1 req2 req3
* |
* ---------------
* | | |
* req2_1 req2_2 req2_3
*/
req = nvme_allocate_request_null(qpair, NULL, NULL);
CU_ASSERT(req != NULL);
TAILQ_INIT(&req->children);
req1 = nvme_allocate_request_null(qpair, NULL, NULL);
CU_ASSERT(req1 != NULL);
req->num_children++;
TAILQ_INSERT_TAIL(&req->children, req1, child_tailq);
req1->parent = req;
req2 = nvme_allocate_request_null(qpair, NULL, NULL);
CU_ASSERT(req2 != NULL);
TAILQ_INIT(&req2->children);
req->num_children++;
TAILQ_INSERT_TAIL(&req->children, req2, child_tailq);
req2->parent = req;
req3 = nvme_allocate_request_null(qpair, NULL, NULL);
CU_ASSERT(req3 != NULL);
req->num_children++;
TAILQ_INSERT_TAIL(&req->children, req3, child_tailq);
req3->parent = req;
req2_1 = nvme_allocate_request_null(qpair, NULL, NULL);
CU_ASSERT(req2_1 != NULL);
req2->num_children++;
TAILQ_INSERT_TAIL(&req2->children, req2_1, child_tailq);
req2_1->parent = req2;
req2_2 = nvme_allocate_request_null(qpair, NULL, NULL);
CU_ASSERT(req2_2 != NULL);
req2->num_children++;
TAILQ_INSERT_TAIL(&req2->children, req2_2, child_tailq);
req2_2->parent = req2;
req2_3 = nvme_allocate_request_null(qpair, NULL, NULL);
CU_ASSERT(req2_3 != NULL);
req2->num_children++;
TAILQ_INSERT_TAIL(&req2->children, req2_3, child_tailq);
req2_3->parent = req2;
return req;
}
static void
test_nvme_qpair_submit_request(void)
{
int rc;
struct spdk_nvme_qpair qpair = {};
struct spdk_nvme_ctrlr ctrlr = {};
struct nvme_request *req;
prepare_submit_request_test(&qpair, &ctrlr);
req = allocate_request_tree(&qpair);
ctrlr.is_failed = true;
rc = nvme_qpair_submit_request(&qpair, req);
SPDK_CU_ASSERT_FATAL(rc == -ENXIO);
req = allocate_request_tree(&qpair);
ctrlr.is_failed = false;
qpair.state = NVME_QPAIR_DISCONNECTING;
rc = nvme_qpair_submit_request(&qpair, req);
SPDK_CU_ASSERT_FATAL(rc == -ENXIO);
cleanup_submit_request_test(&qpair);
}
static void
test_nvme_qpair_resubmit_request_with_transport_failed(void)
{
int rc;
struct spdk_nvme_qpair qpair = {};
struct spdk_nvme_ctrlr ctrlr = {};
struct nvme_request *req;
prepare_submit_request_test(&qpair, &ctrlr);
req = nvme_allocate_request_null(&qpair, dummy_cb_fn, NULL);
CU_ASSERT(req != NULL);
TAILQ_INIT(&req->children);
STAILQ_INSERT_TAIL(&qpair.queued_req, req, stailq);
req->queued = true;
g_transport_process_completions_rc = 1;
qpair.state = NVME_QPAIR_ENABLED;
g_num_cb_failed = 0;
MOCK_SET(nvme_transport_qpair_submit_request, -EINVAL);
rc = spdk_nvme_qpair_process_completions(&qpair, g_transport_process_completions_rc);
MOCK_CLEAR(nvme_transport_qpair_submit_request);
CU_ASSERT(rc == g_transport_process_completions_rc);
CU_ASSERT(STAILQ_EMPTY(&qpair.queued_req));
CU_ASSERT(g_num_cb_failed == 1);
cleanup_submit_request_test(&qpair);
}
static void
ut_spdk_nvme_cmd_cb(void *cb_arg, const struct spdk_nvme_cpl *cpl)
{
CU_ASSERT(cb_arg == (void *)0xDEADBEEF);
CU_ASSERT(cpl->sqid == 1);
CU_ASSERT(cpl->status.sct == SPDK_NVME_SCT_GENERIC);
CU_ASSERT(cpl->status.sc == SPDK_NVME_SC_SUCCESS);
CU_ASSERT(cpl->status.dnr == 1);
}
static void
test_nvme_qpair_manual_complete_request(void)
{
struct spdk_nvme_qpair qpair = {};
struct nvme_request req = {};
struct spdk_nvme_ctrlr ctrlr = {};
qpair.ctrlr = &ctrlr;
qpair.id = 1;
req.cb_fn = ut_spdk_nvme_cmd_cb;
req.cb_arg = (void *) 0xDEADBEEF;
req.qpair = &qpair;
req.num_children = 0;
qpair.ctrlr->opts.disable_error_logging = false;
STAILQ_INIT(&qpair.free_req);
SPDK_CU_ASSERT_FATAL(STAILQ_EMPTY(&qpair.free_req));
nvme_qpair_manual_complete_request(&qpair, &req, SPDK_NVME_SCT_GENERIC,
SPDK_NVME_SC_SUCCESS, 1, true);
CU_ASSERT(!STAILQ_EMPTY(&qpair.free_req));
}
static void
ut_spdk_nvme_cmd_cb_empty(void *cb_arg, const struct spdk_nvme_cpl *cpl)
{
}
static void
test_nvme_qpair_init_deinit(void)
{
struct spdk_nvme_qpair qpair = {};
struct nvme_request *reqs[3] = {};
struct spdk_nvme_ctrlr ctrlr = {};
struct nvme_error_cmd *cmd = NULL;
struct nvme_request *var_req = NULL;
int rc, i = 0;
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
rc = nvme_qpair_init(&qpair, 1, &ctrlr, SPDK_NVME_QPRIO_HIGH, 3, false);
CU_ASSERT(rc == 0);
CU_ASSERT(qpair.id == 1);
CU_ASSERT(qpair.qprio == SPDK_NVME_QPRIO_HIGH);
CU_ASSERT(qpair.in_completion_context == 0);
CU_ASSERT(qpair.delete_after_completion_context == 0);
CU_ASSERT(qpair.no_deletion_notification_needed == 0);
CU_ASSERT(qpair.ctrlr == &ctrlr);
CU_ASSERT(qpair.trtype == SPDK_NVME_TRANSPORT_PCIE);
CU_ASSERT(qpair.req_buf != NULL);
SPDK_CU_ASSERT_FATAL(!STAILQ_EMPTY(&qpair.free_req));
STAILQ_FOREACH(var_req, &qpair.free_req, stailq) {
/* Check requests address alignment */
CU_ASSERT((uint64_t)var_req % 64 == 0);
CU_ASSERT(var_req->qpair == &qpair);
reqs[i++] = var_req;
}
CU_ASSERT(i == 3);
/* Allocate cmd memory for deinit using */
cmd = spdk_zmalloc(sizeof(*cmd), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
SPDK_CU_ASSERT_FATAL(cmd != NULL);
TAILQ_INSERT_TAIL(&qpair.err_cmd_head, cmd, link);
for (int i = 0; i < 3; i++) {
reqs[i]->cb_fn = ut_spdk_nvme_cmd_cb_empty;
reqs[i]->cb_arg = (void *) 0xDEADBEEF;
reqs[i]->num_children = 0;
}
/* Emulate requests into various type queues */
STAILQ_REMOVE(&qpair.free_req, reqs[0], nvme_request, stailq);
STAILQ_INSERT_TAIL(&qpair.queued_req, reqs[0], stailq);
STAILQ_REMOVE(&qpair.free_req, reqs[1], nvme_request, stailq);
STAILQ_INSERT_TAIL(&qpair.aborting_queued_req, reqs[1], stailq);
STAILQ_REMOVE(&qpair.free_req, reqs[2], nvme_request, stailq);
STAILQ_INSERT_TAIL(&qpair.err_req_head, reqs[2], stailq);
CU_ASSERT(STAILQ_EMPTY(&qpair.free_req));
nvme_qpair_deinit(&qpair);
CU_ASSERT(STAILQ_EMPTY(&qpair.queued_req));
CU_ASSERT(STAILQ_EMPTY(&qpair.aborting_queued_req));
CU_ASSERT(STAILQ_EMPTY(&qpair.err_req_head));
CU_ASSERT(TAILQ_EMPTY(&qpair.err_cmd_head));
}
static void
test_nvme_get_sgl_print_info(void)
{
char buf[NVME_CMD_DPTR_STR_SIZE] = {};
struct spdk_nvme_cmd cmd = {};
cmd.dptr.sgl1.keyed.length = 0x1000;
cmd.dptr.sgl1.keyed.key = 0xababccdd;
nvme_get_sgl_keyed(buf, NVME_CMD_DPTR_STR_SIZE, &cmd);
CU_ASSERT(!strncmp(buf, " len:0x1000 key:0xababccdd", NVME_CMD_DPTR_STR_SIZE));
memset(&cmd.dptr.sgl1, 0, sizeof(cmd.dptr.sgl1));
cmd.dptr.sgl1.unkeyed.length = 0x1000;
nvme_get_sgl_unkeyed(buf, NVME_CMD_DPTR_STR_SIZE, &cmd);
CU_ASSERT(!strncmp(buf, " len:0x1000", NVME_CMD_DPTR_STR_SIZE));
memset(&cmd.dptr.sgl1, 0, sizeof(cmd.dptr.sgl1));
cmd.dptr.sgl1.generic.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
cmd.dptr.sgl1.generic.subtype = 0;
cmd.dptr.sgl1.address = 0xdeadbeef;
cmd.dptr.sgl1.unkeyed.length = 0x1000;
nvme_get_sgl(buf, NVME_CMD_DPTR_STR_SIZE, &cmd);
CU_ASSERT(!strncmp(buf, "SGL DATA BLOCK ADDRESS 0xdeadbeef len:0x1000",
NVME_CMD_DPTR_STR_SIZE));
memset(&cmd.dptr.sgl1, 0, sizeof(cmd.dptr.sgl1));
cmd.dptr.sgl1.generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
cmd.dptr.sgl1.generic.subtype = 0;
cmd.dptr.sgl1.address = 0xdeadbeef;
cmd.dptr.sgl1.keyed.length = 0x1000;
cmd.dptr.sgl1.keyed.key = 0xababccdd;
nvme_get_sgl(buf, NVME_CMD_DPTR_STR_SIZE, &cmd);
CU_ASSERT(!strncmp(buf, "SGL KEYED DATA BLOCK ADDRESS 0xdeadbeef len:0x1000 key:0xababccdd",
NVME_CMD_DPTR_STR_SIZE));
}
int
main(int argc, char **argv)
{
CU_pSuite suite = NULL;
unsigned int num_failures;
CU_set_error_action(CUEA_ABORT);
CU_initialize_registry();
suite = CU_add_suite("nvme_qpair", NULL, NULL);
CU_ADD_TEST(suite, test3);
CU_ADD_TEST(suite, test_ctrlr_failed);
CU_ADD_TEST(suite, struct_packing);
CU_ADD_TEST(suite, test_nvme_qpair_process_completions);
CU_ADD_TEST(suite, test_nvme_completion_is_retry);
#ifdef DEBUG
CU_ADD_TEST(suite, test_get_status_string);
#endif
CU_ADD_TEST(suite, test_nvme_qpair_add_cmd_error_injection);
CU_ADD_TEST(suite, test_nvme_qpair_submit_request);
CU_ADD_TEST(suite, test_nvme_qpair_resubmit_request_with_transport_failed);
CU_ADD_TEST(suite, test_nvme_qpair_manual_complete_request);
CU_ADD_TEST(suite, test_nvme_qpair_init_deinit);
CU_ADD_TEST(suite, test_nvme_get_sgl_print_info);
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
return num_failures;
}