Spdk/examples/accel/perf/accel_perf.c
paul luse ac9a1a8373 examples/accel_perf: refactor task mgmt in prep for batching changes
* change how tasks are allocated and freed (simplifcation)
* added helper for getting and freeting a single task
* minor drive-by in chaning function parms for _submit_tasks()

Note that the task pool is used to manage tasks and their data
buffers.  It is fully allocated and populated before the first IO
is sent and tasks are never retired, they are re-used so they are
not removed from the list except for error or exit cleanup.

Signed-off-by: paul luse <paul.e.luse@intel.com>
Change-Id: I5fea5ef8c989df6310f15b2c9bb4e8aef9bd3d3b
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/5487
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Ziye Yang <ziye.yang@intel.com>
2021-01-12 08:06:53 +00:00

718 lines
19 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/thread.h"
#include "spdk/env.h"
#include "spdk/event.h"
#include "spdk/log.h"
#include "spdk/string.h"
#include "spdk/accel_engine.h"
#include "spdk/crc32.h"
#include "spdk/util.h"
#define DATA_PATTERN 0x5a
#define ALIGN_4K 0x1000
static uint64_t g_tsc_rate;
static uint64_t g_tsc_us_rate;
static uint64_t g_tsc_end;
static int g_xfer_size_bytes = 4096;
static int g_queue_depth = 32;
static int g_time_in_sec = 5;
static uint32_t g_crc32c_seed = 0;
static int g_fail_percent_goal = 0;
static uint8_t g_fill_pattern = 255;
static bool g_verify = false;
static const char *g_workload_type = NULL;
static enum accel_capability g_workload_selection;
static struct worker_thread *g_workers = NULL;
static int g_num_workers = 0;
static pthread_mutex_t g_workers_lock = PTHREAD_MUTEX_INITIALIZER;
uint64_t g_capabilites;
struct worker_thread;
static void accel_done(void *ref, int status);
struct ap_task {
void *src;
void *dst;
void *dst2;
struct worker_thread *worker;
int status;
int expected_status; /* used for the compare operation */
TAILQ_ENTRY(ap_task) link;
};
struct worker_thread {
struct spdk_io_channel *ch;
uint64_t xfer_completed;
uint64_t xfer_failed;
uint64_t injected_miscompares;
uint64_t current_queue_depth;
TAILQ_HEAD(, ap_task) tasks_pool;
struct worker_thread *next;
unsigned core;
struct spdk_thread *thread;
bool is_draining;
struct spdk_poller *is_draining_poller;
struct spdk_poller *stop_poller;
void *task_base;
};
static void
dump_user_config(struct spdk_app_opts *opts)
{
printf("SPDK Configuration:\n");
printf("Core mask: %s\n\n", opts->reactor_mask);
printf("Accel Perf Configuration:\n");
printf("Workload Type: %s\n", g_workload_type);
if (g_workload_selection == ACCEL_CRC32C) {
printf("CRC-32C seed: %u\n", g_crc32c_seed);
} else if (g_workload_selection == ACCEL_FILL) {
printf("Fill pattern: 0x%x\n", g_fill_pattern);
} else if ((g_workload_selection == ACCEL_COMPARE) && g_fail_percent_goal > 0) {
printf("Failure inject: %u percent\n", g_fail_percent_goal);
}
printf("Transfer size: %u bytes\n", g_xfer_size_bytes);
printf("Queue depth: %u\n", g_queue_depth);
printf("Run time: %u seconds\n", g_time_in_sec);
printf("Verify: %s\n\n", g_verify ? "Yes" : "No");
}
static void
usage(void)
{
printf("accel_perf options:\n");
printf("\t[-h help message]\n");
printf("\t[-q queue depth]\n");
printf("\t[-n number of channels]\n");
printf("\t[-o transfer size in bytes]\n");
printf("\t[-t time in seconds]\n");
printf("\t[-w workload type must be one of these: copy, fill, crc32c, compare, dualcast\n");
printf("\t[-s for crc32c workload, use this seed value (default 0)\n");
printf("\t[-P for compare workload, percentage of operations that should miscompare (percent, default 0)\n");
printf("\t[-f for fill workload, use this BYTE value (default 255)\n");
printf("\t[-y verify result if this switch is on]\n");
}
static int
parse_args(int argc, char *argv)
{
switch (argc) {
case 'f':
g_fill_pattern = (uint8_t)spdk_strtol(optarg, 10);
break;
case 'o':
g_xfer_size_bytes = spdk_strtol(optarg, 10);
break;
case 'P':
g_fail_percent_goal = spdk_strtol(optarg, 10);
break;
case 'q':
g_queue_depth = spdk_strtol(optarg, 10);
break;
case 's':
g_crc32c_seed = spdk_strtol(optarg, 10);
break;
case 't':
g_time_in_sec = spdk_strtol(optarg, 10);
break;
case 'y':
g_verify = true;
break;
case 'w':
g_workload_type = optarg;
if (!strcmp(g_workload_type, "copy")) {
g_workload_selection = ACCEL_COPY;
} else if (!strcmp(g_workload_type, "fill")) {
g_workload_selection = ACCEL_FILL;
} else if (!strcmp(g_workload_type, "crc32c")) {
g_workload_selection = ACCEL_CRC32C;
} else if (!strcmp(g_workload_type, "compare")) {
g_workload_selection = ACCEL_COMPARE;
} else if (!strcmp(g_workload_type, "dualcast")) {
g_workload_selection = ACCEL_DUALCAST;
}
break;
default:
usage();
return 1;
}
return 0;
}
static void
unregister_worker(void *arg1)
{
struct worker_thread *worker = arg1;
free(worker->task_base);
spdk_put_io_channel(worker->ch);
pthread_mutex_lock(&g_workers_lock);
assert(g_num_workers >= 1);
if (--g_num_workers == 0) {
pthread_mutex_unlock(&g_workers_lock);
spdk_app_stop(0);
}
pthread_mutex_unlock(&g_workers_lock);
}
static int
_get_task_data_bufs(struct ap_task *task)
{
uint32_t align = 0;
/* For dualcast, the DSA HW requires 4K alignment on destination addresses but
* we do this for all engines to keep it simple.
*/
if (g_workload_selection == ACCEL_DUALCAST) {
align = ALIGN_4K;
}
task->src = spdk_dma_zmalloc(g_xfer_size_bytes, 0, NULL);
if (task->src == NULL) {
fprintf(stderr, "Unable to alloc src buffer\n");
return -ENOMEM;
}
memset(task->src, DATA_PATTERN, g_xfer_size_bytes);
task->dst = spdk_dma_zmalloc(g_xfer_size_bytes, align, NULL);
if (task->dst == NULL) {
fprintf(stderr, "Unable to alloc dst buffer\n");
return -ENOMEM;
}
/* For compare we want the buffers to match, otherwise not. */
if (g_workload_selection == ACCEL_COMPARE) {
memset(task->dst, DATA_PATTERN, g_xfer_size_bytes);
} else {
memset(task->dst, ~DATA_PATTERN, g_xfer_size_bytes);
}
/* For fill, set the entire src buffer so we can check if verify is enabled. */
if (g_workload_selection == ACCEL_FILL) {
memset(task->src, g_fill_pattern, g_xfer_size_bytes);
}
if (g_workload_selection == ACCEL_DUALCAST) {
task->dst2 = spdk_dma_zmalloc(g_xfer_size_bytes, align, NULL);
if (task->dst2 == NULL) {
fprintf(stderr, "Unable to alloc dst buffer\n");
return -ENOMEM;
}
memset(task->dst2, ~DATA_PATTERN, g_xfer_size_bytes);
}
return 0;
}
inline static struct ap_task *
_get_task(struct worker_thread *worker)
{
struct ap_task *task;
if (!TAILQ_EMPTY(&worker->tasks_pool)) {
task = TAILQ_FIRST(&worker->tasks_pool);
TAILQ_REMOVE(&worker->tasks_pool, task, link);
} else {
fprintf(stderr, "Unable to get ap_task\n");
return NULL;
}
task->worker = worker;
task->worker->current_queue_depth++;
return task;
}
static void accel_done(void *ref, int status);
static void
_submit_single(struct worker_thread *worker, struct ap_task *task)
{
int random_num;
int rc = 0;
assert(worker);
switch (g_workload_selection) {
case ACCEL_COPY:
rc = spdk_accel_submit_copy(worker->ch, task->dst, task->src,
g_xfer_size_bytes, accel_done, task);
break;
case ACCEL_FILL:
/* For fill use the first byte of the task->dst buffer */
rc = spdk_accel_submit_fill(worker->ch, task->dst, *(uint8_t *)task->src,
g_xfer_size_bytes, accel_done, task);
break;
case ACCEL_CRC32C:
rc = spdk_accel_submit_crc32c(worker->ch, (uint32_t *)task->dst,
task->src, g_crc32c_seed,
g_xfer_size_bytes, accel_done, task);
break;
case ACCEL_COMPARE:
random_num = rand() % 100;
if (random_num < g_fail_percent_goal) {
task->expected_status = -EILSEQ;
*(uint8_t *)task->dst = ~DATA_PATTERN;
} else {
task->expected_status = 0;
*(uint8_t *)task->dst = DATA_PATTERN;
}
rc = spdk_accel_submit_compare(worker->ch, task->dst, task->src,
g_xfer_size_bytes, accel_done, task);
break;
case ACCEL_DUALCAST:
rc = spdk_accel_submit_dualcast(worker->ch, task->dst, task->dst2,
task->src, g_xfer_size_bytes, accel_done, task);
break;
default:
assert(false);
break;
}
if (rc) {
accel_done(task, rc);
}
}
static void
_free_task(struct ap_task *task)
{
spdk_dma_free(task->src);
spdk_dma_free(task->dst);
if (g_workload_selection == ACCEL_DUALCAST) {
spdk_dma_free(task->dst2);
}
}
static void
_accel_done(void *arg1)
{
struct ap_task *task = arg1;
struct worker_thread *worker = task->worker;
uint32_t sw_crc32c;
assert(worker);
assert(worker->current_queue_depth > 0);
if (g_verify && task->status == 0) {
switch (g_workload_selection) {
case ACCEL_CRC32C:
/* calculate sw CRC-32C and compare to sw aceel result. */
sw_crc32c = spdk_crc32c_update(task->src, g_xfer_size_bytes, ~g_crc32c_seed);
if (*(uint32_t *)task->dst != sw_crc32c) {
SPDK_NOTICELOG("CRC-32C miscompare\n");
worker->xfer_failed++;
}
break;
case ACCEL_COPY:
if (memcmp(task->src, task->dst, g_xfer_size_bytes)) {
SPDK_NOTICELOG("Data miscompare\n");
worker->xfer_failed++;
}
break;
case ACCEL_DUALCAST:
if (memcmp(task->src, task->dst, g_xfer_size_bytes)) {
SPDK_NOTICELOG("Data miscompare, first destination\n");
worker->xfer_failed++;
}
if (memcmp(task->src, task->dst2, g_xfer_size_bytes)) {
SPDK_NOTICELOG("Data miscompare, second destination\n");
worker->xfer_failed++;
}
break;
case ACCEL_FILL:
if (memcmp(task->dst, task->src, g_xfer_size_bytes)) {
SPDK_NOTICELOG("Data miscompare\n");
worker->xfer_failed++;
}
break;
case ACCEL_COMPARE:
break;
default:
assert(false);
break;
}
}
if (task->expected_status == -EILSEQ) {
assert(task->status != 0);
worker->injected_miscompares++;
} else if (task->status) {
/* Expected to pass but API reported error. */
worker->xfer_failed++;
}
worker->xfer_completed++;
worker->current_queue_depth--;
if (!worker->is_draining) {
_submit_single(worker, task);
worker->current_queue_depth++;
}
}
static void
batch_done(void *cb_arg, int status)
{
struct ap_task *task = (struct ap_task *)cb_arg;
struct worker_thread *worker = task->worker;
worker->current_queue_depth--;
}
static int
dump_result(void)
{
uint64_t total_completed = 0;
uint64_t total_failed = 0;
uint64_t total_miscompared = 0;
uint64_t total_xfer_per_sec, total_bw_in_MiBps;
struct worker_thread *worker = g_workers;
printf("\nCore Transfers Bandwidth Failed Miscompares\n");
printf("-----------------------------------------------------------------\n");
while (worker != NULL) {
uint64_t xfer_per_sec = worker->xfer_completed / g_time_in_sec;
uint64_t bw_in_MiBps = (worker->xfer_completed * g_xfer_size_bytes) /
(g_time_in_sec * 1024 * 1024);
total_completed += worker->xfer_completed;
total_failed += worker->xfer_failed;
total_miscompared += worker->injected_miscompares;
if (xfer_per_sec) {
printf("%10d%12" PRIu64 "/s%8" PRIu64 " MiB/s%11" PRIu64 " %11" PRIu64 "\n",
worker->core, xfer_per_sec,
bw_in_MiBps, worker->xfer_failed, worker->injected_miscompares);
}
worker = worker->next;
}
total_xfer_per_sec = total_completed / g_time_in_sec;
total_bw_in_MiBps = (total_completed * g_xfer_size_bytes) /
(g_time_in_sec * 1024 * 1024);
printf("==================================================================\n");
printf("Total:%16" PRIu64 "/s%8" PRIu64 " MiB/s%11" PRIu64 " %11" PRIu64"\n\n",
total_xfer_per_sec, total_bw_in_MiBps, total_failed, total_miscompared);
return total_failed ? 1 : 0;
}
static int
_check_draining(void *arg)
{
struct worker_thread *worker = arg;
struct ap_task *task;
assert(worker);
if (worker->current_queue_depth == 0) {
while ((task = TAILQ_FIRST(&worker->tasks_pool))) {
TAILQ_REMOVE(&worker->tasks_pool, task, link);
_free_task(task);
}
spdk_poller_unregister(&worker->is_draining_poller);
unregister_worker(worker);
}
return -1;
}
static int
_worker_stop(void *arg)
{
struct worker_thread *worker = arg;
assert(worker);
spdk_poller_unregister(&worker->stop_poller);
/* now let the worker drain and check it's outstanding IO with a poller */
worker->is_draining = true;
worker->is_draining_poller = SPDK_POLLER_REGISTER(_check_draining, worker, 0);
return 0;
}
static void
_init_thread_done(void *ctx)
{
}
static int
_batch_prep_cmd(struct worker_thread *worker, struct ap_task *task, struct spdk_accel_batch *batch)
{
int rc = 0;
switch (g_workload_selection) {
case ACCEL_COPY:
rc = spdk_accel_batch_prep_copy(worker->ch, batch, task->dst,
task->src, g_xfer_size_bytes, accel_done, task);
break;
case ACCEL_DUALCAST:
rc = spdk_accel_batch_prep_dualcast(worker->ch, batch, task->dst, task->dst2,
task->src, g_xfer_size_bytes, accel_done, task);
break;
case ACCEL_COMPARE:
rc = spdk_accel_batch_prep_compare(worker->ch, batch, task->dst, task->src,
g_xfer_size_bytes, accel_done, task);
break;
case ACCEL_FILL:
rc = spdk_accel_batch_prep_fill(worker->ch, batch, task->dst,
*(uint8_t *)task->src,
g_xfer_size_bytes, accel_done, task);
break;
case ACCEL_CRC32C:
rc = spdk_accel_batch_prep_crc32c(worker->ch, batch, (uint32_t *)task->dst,
task->src, g_crc32c_seed, g_xfer_size_bytes, accel_done, task);
break;
default:
assert(false);
break;
}
return rc;
}
static void
_init_thread(void *arg1)
{
struct worker_thread *worker;
struct ap_task *task;
int i, rc, max_per_batch, batch_count, num_tasks;
int remaining = g_queue_depth;
struct spdk_accel_batch *batch, *new_batch;
worker = calloc(1, sizeof(*worker));
if (worker == NULL) {
fprintf(stderr, "Unable to allocate worker\n");
return;
}
worker->core = spdk_env_get_current_core();
worker->thread = spdk_get_thread();
worker->next = g_workers;
worker->ch = spdk_accel_engine_get_io_channel();
max_per_batch = spdk_accel_batch_get_max(worker->ch);
assert(max_per_batch > 0);
num_tasks = g_queue_depth + spdk_divide_round_up(g_queue_depth, max_per_batch);
TAILQ_INIT(&worker->tasks_pool);
worker->task_base = calloc(num_tasks, sizeof(struct ap_task));
if (worker->task_base == NULL) {
fprintf(stderr, "Could not allocate task base.\n");
goto error;
}
task = worker->task_base;
for (i = 0; i < num_tasks; i++) {
TAILQ_INSERT_TAIL(&worker->tasks_pool, task, link);
if (_get_task_data_bufs(task)) {
fprintf(stderr, "Unable to get data bufs\n");
goto error;
}
task++;
}
/* Register a poller that will stop the worker at time elapsed */
worker->stop_poller = SPDK_POLLER_REGISTER(_worker_stop, worker,
g_time_in_sec * 1000000ULL);
g_workers = worker;
pthread_mutex_lock(&g_workers_lock);
g_num_workers++;
pthread_mutex_unlock(&g_workers_lock);
/* Batching is only possible if there is at least 2 operations. */
if (g_queue_depth > 1) {
/* Outter loop sets up each batch command, inner loop populates the
* batch descriptors.
*/
do {
new_batch = spdk_accel_batch_create(worker->ch);
if (new_batch == NULL) {
break;
}
batch = new_batch;
batch_count = 0;
do {
task = _get_task(worker);
if (task == NULL) {
goto error;
}
rc = _batch_prep_cmd(worker, task, batch);
if (rc) {
fprintf(stderr, "error preping command\n");
goto error;
}
remaining--;
batch_count++;
} while (batch_count < max_per_batch && remaining > 0);
/* Now send the batch command. */
task = _get_task(worker);
if (task == NULL) {
goto error;
}
rc = spdk_accel_batch_submit(worker->ch, batch, batch_done, task);
if (rc) {
fprintf(stderr, "error ending batch %d\n", rc);
goto error;
}
/* We can't build a batch unless it has 2 descriptors (per spec). */
} while (remaining > 1);
/* If there are no more left, we're done. */
if (remaining == 0) {
return;
}
}
/* For engines that don't support batch or for the odd event that
* a batch ends with only one descriptor left.
*/
for (i = 0; i < remaining; i++) {
task = _get_task(worker);
if (task == NULL) {
goto error;
}
_submit_single(worker, task);
}
return;
error:
while ((task = TAILQ_FIRST(&worker->tasks_pool))) {
TAILQ_REMOVE(&worker->tasks_pool, task, link);
_free_task(task);
}
free(worker->task_base);
free(worker);
spdk_app_stop(-1);
}
static void
accel_done(void *cb_arg, int status)
{
struct ap_task *task = (struct ap_task *)cb_arg;
struct worker_thread *worker = task->worker;
assert(worker);
task->status = status;
spdk_thread_send_msg(worker->thread, _accel_done, task);
}
static void
accel_perf_start(void *arg1)
{
struct spdk_io_channel *accel_ch;
accel_ch = spdk_accel_engine_get_io_channel();
g_capabilites = spdk_accel_get_capabilities(accel_ch);
spdk_put_io_channel(accel_ch);
if ((g_capabilites & g_workload_selection) != g_workload_selection) {
SPDK_WARNLOG("The selected workload is not natively supported by the current engine\n");
SPDK_WARNLOG("The software engine will be used instead.\n\n");
}
g_tsc_rate = spdk_get_ticks_hz();
g_tsc_us_rate = g_tsc_rate / (1000 * 1000);
g_tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate;
printf("Running for %d seconds...\n", g_time_in_sec);
fflush(stdout);
spdk_for_each_thread(_init_thread, NULL, _init_thread_done);
}
int
main(int argc, char **argv)
{
struct spdk_app_opts opts = {};
struct worker_thread *worker, *tmp;
int rc = 0;
pthread_mutex_init(&g_workers_lock, NULL);
spdk_app_opts_init(&opts, sizeof(opts));
opts.reactor_mask = "0x1";
if (spdk_app_parse_args(argc, argv, &opts, "o:q:t:yw:P:f:", NULL, parse_args,
usage) != SPDK_APP_PARSE_ARGS_SUCCESS) {
rc = -1;
goto cleanup;
}
if ((g_workload_selection != ACCEL_COPY) &&
(g_workload_selection != ACCEL_FILL) &&
(g_workload_selection != ACCEL_CRC32C) &&
(g_workload_selection != ACCEL_COMPARE) &&
(g_workload_selection != ACCEL_DUALCAST)) {
usage();
rc = -1;
goto cleanup;
}
dump_user_config(&opts);
rc = spdk_app_start(&opts, accel_perf_start, NULL);
if (rc) {
SPDK_ERRLOG("ERROR starting application\n");
} else {
dump_result();
}
pthread_mutex_destroy(&g_workers_lock);
worker = g_workers;
while (worker) {
tmp = worker->next;
free(worker);
worker = tmp;
}
cleanup:
spdk_app_fini();
return rc;
}