Spdk/test/unit/lib/thread/thread.c/thread_ut.c
paul luse a6dbe3721e update Intel copyright notices
per Intel policy to include file commit date using git cmd
below.  The policy does not apply to non-Intel (C) notices.

git log --follow -C90% --format=%ad --date default <file> | tail -1

and then pull just the 4 digit year from the result.

Intel copyrights were not added to files where Intel either had
no contribution ot the contribution lacked substance (ie license
header updates, formatting changes, etc).  Contribution date used
"--follow -C95%" to get the most accurate date.

Note that several files in this patch didn't end the license/(c)
block with a blank comment line so these were added as the vast
majority of files do have this last blank line.  Simply there for
consistency.

Signed-off-by: paul luse <paul.e.luse@intel.com>
Change-Id: Id5b7ce4f658fe87132f14139ead58d6e285c04d4
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/15192
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Community-CI: Mellanox Build Bot
2022-11-10 08:28:53 +00:00

1815 lines
44 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2016 Intel Corporation.
* All rights reserved.
*/
#include "spdk/stdinc.h"
#include "spdk_cunit.h"
#include "thread/thread_internal.h"
#include "thread/thread.c"
#include "common/lib/ut_multithread.c"
static int g_sched_rc = 0;
static int
_thread_schedule(struct spdk_thread *thread)
{
return g_sched_rc;
}
static bool
_thread_op_supported(enum spdk_thread_op op)
{
switch (op) {
case SPDK_THREAD_OP_NEW:
return true;
default:
return false;
}
}
static int
_thread_op(struct spdk_thread *thread, enum spdk_thread_op op)
{
switch (op) {
case SPDK_THREAD_OP_NEW:
return _thread_schedule(thread);
default:
return -ENOTSUP;
}
}
static void
thread_alloc(void)
{
struct spdk_thread *thread;
/* No schedule callback */
spdk_thread_lib_init(NULL, 0);
thread = spdk_thread_create(NULL, NULL);
SPDK_CU_ASSERT_FATAL(thread != NULL);
spdk_set_thread(thread);
spdk_thread_exit(thread);
while (!spdk_thread_is_exited(thread)) {
spdk_thread_poll(thread, 0, 0);
}
spdk_thread_destroy(thread);
spdk_thread_lib_fini();
/* Schedule callback exists */
spdk_thread_lib_init(_thread_schedule, 0);
/* Scheduling succeeds */
g_sched_rc = 0;
thread = spdk_thread_create(NULL, NULL);
SPDK_CU_ASSERT_FATAL(thread != NULL);
spdk_set_thread(thread);
spdk_thread_exit(thread);
while (!spdk_thread_is_exited(thread)) {
spdk_thread_poll(thread, 0, 0);
}
spdk_thread_destroy(thread);
/* Scheduling fails */
g_sched_rc = -1;
thread = spdk_thread_create(NULL, NULL);
SPDK_CU_ASSERT_FATAL(thread == NULL);
spdk_thread_lib_fini();
/* Scheduling callback exists with extended thread library initialization. */
spdk_thread_lib_init_ext(_thread_op, _thread_op_supported, 0,
SPDK_DEFAULT_MSG_MEMPOOL_SIZE);
/* Scheduling succeeds */
g_sched_rc = 0;
thread = spdk_thread_create(NULL, NULL);
SPDK_CU_ASSERT_FATAL(thread != NULL);
spdk_set_thread(thread);
spdk_thread_exit(thread);
while (!spdk_thread_is_exited(thread)) {
spdk_thread_poll(thread, 0, 0);
}
spdk_thread_destroy(thread);
/* Scheduling fails */
g_sched_rc = -1;
thread = spdk_thread_create(NULL, NULL);
SPDK_CU_ASSERT_FATAL(thread == NULL);
spdk_thread_lib_fini();
}
static void
send_msg_cb(void *ctx)
{
bool *done = ctx;
*done = true;
}
static void
thread_send_msg(void)
{
struct spdk_thread *thread0;
bool done = false;
allocate_threads(2);
set_thread(0);
thread0 = spdk_get_thread();
set_thread(1);
/* Simulate thread 1 sending a message to thread 0. */
spdk_thread_send_msg(thread0, send_msg_cb, &done);
/* We have not polled thread 0 yet, so done should be false. */
CU_ASSERT(!done);
/*
* Poll thread 1. The message was sent to thread 0, so this should be
* a nop and done should still be false.
*/
poll_thread(1);
CU_ASSERT(!done);
/*
* Poll thread 0. This should execute the message and done should then
* be true.
*/
poll_thread(0);
CU_ASSERT(done);
free_threads();
}
static int
poller_run_done(void *ctx)
{
bool *poller_run = ctx;
*poller_run = true;
return -1;
}
static void
thread_poller(void)
{
struct spdk_poller *poller = NULL;
bool poller_run = false;
allocate_threads(1);
set_thread(0);
MOCK_SET(spdk_get_ticks, 0);
/* Register a poller with no-wait time and test execution */
poller = spdk_poller_register(poller_run_done, &poller_run, 0);
CU_ASSERT(poller != NULL);
poll_threads();
CU_ASSERT(poller_run == true);
spdk_poller_unregister(&poller);
CU_ASSERT(poller == NULL);
/* Register a poller with 1000us wait time and test single execution */
poller_run = false;
poller = spdk_poller_register(poller_run_done, &poller_run, 1000);
CU_ASSERT(poller != NULL);
poll_threads();
CU_ASSERT(poller_run == false);
spdk_delay_us(1000);
poll_threads();
CU_ASSERT(poller_run == true);
poller_run = false;
poll_threads();
CU_ASSERT(poller_run == false);
spdk_delay_us(1000);
poll_threads();
CU_ASSERT(poller_run == true);
spdk_poller_unregister(&poller);
CU_ASSERT(poller == NULL);
free_threads();
}
struct poller_ctx {
struct spdk_poller *poller;
bool run;
};
static int
poller_run_pause(void *ctx)
{
struct poller_ctx *poller_ctx = ctx;
poller_ctx->run = true;
spdk_poller_pause(poller_ctx->poller);
return 0;
}
/* Verify the same poller can be switched multiple times between
* pause and resume while it runs.
*/
static int
poller_run_pause_resume_pause(void *ctx)
{
struct poller_ctx *poller_ctx = ctx;
poller_ctx->run = true;
spdk_poller_pause(poller_ctx->poller);
spdk_poller_resume(poller_ctx->poller);
spdk_poller_pause(poller_ctx->poller);
return 0;
}
static void
poller_msg_pause_cb(void *ctx)
{
struct spdk_poller *poller = ctx;
spdk_poller_pause(poller);
}
static void
poller_msg_resume_cb(void *ctx)
{
struct spdk_poller *poller = ctx;
spdk_poller_resume(poller);
}
static void
poller_pause(void)
{
struct poller_ctx poller_ctx = {};
unsigned int delay[] = { 0, 1000 };
unsigned int i;
allocate_threads(1);
set_thread(0);
/* Register a poller that pauses itself */
poller_ctx.poller = spdk_poller_register(poller_run_pause, &poller_ctx, 0);
CU_ASSERT_PTR_NOT_NULL(poller_ctx.poller);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, true);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, false);
spdk_poller_unregister(&poller_ctx.poller);
CU_ASSERT_PTR_NULL(poller_ctx.poller);
/* Register a poller that switches between pause and resume itself */
poller_ctx.poller = spdk_poller_register(poller_run_pause_resume_pause, &poller_ctx, 0);
CU_ASSERT_PTR_NOT_NULL(poller_ctx.poller);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, true);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, false);
spdk_poller_unregister(&poller_ctx.poller);
CU_ASSERT_PTR_NULL(poller_ctx.poller);
/* Verify that resuming an unpaused poller doesn't do anything */
poller_ctx.poller = spdk_poller_register(poller_run_done, &poller_ctx.run, 0);
CU_ASSERT_PTR_NOT_NULL(poller_ctx.poller);
spdk_poller_resume(poller_ctx.poller);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, true);
/* Verify that pausing the same poller twice works too */
spdk_poller_pause(poller_ctx.poller);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, false);
spdk_poller_pause(poller_ctx.poller);
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, false);
spdk_poller_resume(poller_ctx.poller);
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, true);
/* Verify that a poller is run when it's resumed immediately after pausing */
poller_ctx.run = false;
spdk_poller_pause(poller_ctx.poller);
spdk_poller_resume(poller_ctx.poller);
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, true);
spdk_poller_unregister(&poller_ctx.poller);
CU_ASSERT_PTR_NULL(poller_ctx.poller);
/* Poll the thread to make sure the previous poller gets unregistered */
poll_threads();
CU_ASSERT_EQUAL(spdk_thread_has_pollers(spdk_get_thread()), false);
/* Verify that it's possible to unregister a paused poller */
poller_ctx.poller = spdk_poller_register(poller_run_done, &poller_ctx.run, 0);
CU_ASSERT_PTR_NOT_NULL(poller_ctx.poller);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, true);
spdk_poller_pause(poller_ctx.poller);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, false);
spdk_poller_unregister(&poller_ctx.poller);
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, false);
CU_ASSERT_EQUAL(spdk_thread_has_pollers(spdk_get_thread()), false);
/* Register pollers with 0 and 1000us wait time and pause/resume them */
for (i = 0; i < SPDK_COUNTOF(delay); ++i) {
poller_ctx.poller = spdk_poller_register(poller_run_done, &poller_ctx.run, delay[i]);
CU_ASSERT_PTR_NOT_NULL(poller_ctx.poller);
spdk_delay_us(delay[i]);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, true);
spdk_poller_pause(poller_ctx.poller);
spdk_delay_us(delay[i]);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, false);
spdk_poller_resume(poller_ctx.poller);
spdk_delay_us(delay[i]);
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, true);
/* Verify that the poller can be paused/resumed from spdk_thread_send_msg */
spdk_thread_send_msg(spdk_get_thread(), poller_msg_pause_cb, poller_ctx.poller);
spdk_delay_us(delay[i]);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, false);
spdk_thread_send_msg(spdk_get_thread(), poller_msg_resume_cb, poller_ctx.poller);
poll_threads();
if (delay[i] > 0) {
spdk_delay_us(delay[i]);
poll_threads();
}
CU_ASSERT_EQUAL(poller_ctx.run, true);
spdk_poller_unregister(&poller_ctx.poller);
CU_ASSERT_PTR_NULL(poller_ctx.poller);
/* Register a timed poller that pauses itself */
poller_ctx.poller = spdk_poller_register(poller_run_pause, &poller_ctx, delay[i]);
CU_ASSERT_PTR_NOT_NULL(poller_ctx.poller);
spdk_delay_us(delay[i]);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, true);
poller_ctx.run = false;
spdk_delay_us(delay[i]);
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, false);
spdk_poller_resume(poller_ctx.poller);
CU_ASSERT_EQUAL(poller_ctx.run, false);
spdk_delay_us(delay[i]);
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, true);
spdk_poller_unregister(&poller_ctx.poller);
CU_ASSERT_PTR_NULL(poller_ctx.poller);
/* Register a timed poller that switches between pause and resume itself */
poller_ctx.poller = spdk_poller_register(poller_run_pause_resume_pause,
&poller_ctx, delay[i]);
CU_ASSERT_PTR_NOT_NULL(poller_ctx.poller);
spdk_delay_us(delay[i]);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, true);
poller_ctx.run = false;
spdk_delay_us(delay[i]);
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, false);
spdk_poller_resume(poller_ctx.poller);
CU_ASSERT_EQUAL(poller_ctx.run, false);
spdk_delay_us(delay[i]);
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, true);
spdk_poller_unregister(&poller_ctx.poller);
CU_ASSERT_PTR_NULL(poller_ctx.poller);
}
free_threads();
}
static void
for_each_cb(void *ctx)
{
int *count = ctx;
(*count)++;
}
static void
thread_for_each(void)
{
int count = 0;
int i;
allocate_threads(3);
set_thread(0);
spdk_for_each_thread(for_each_cb, &count, for_each_cb);
/* We have not polled thread 0 yet, so count should be 0 */
CU_ASSERT(count == 0);
/* Poll each thread to verify the message is passed to each */
for (i = 0; i < 3; i++) {
poll_thread(i);
CU_ASSERT(count == (i + 1));
}
/*
* After each thread is called, the completion calls it
* one more time.
*/
poll_thread(0);
CU_ASSERT(count == 4);
free_threads();
}
static int
channel_create(void *io_device, void *ctx_buf)
{
int *ch_count = io_device;
(*ch_count)++;
return 0;
}
static void
channel_destroy(void *io_device, void *ctx_buf)
{
int *ch_count = io_device;
(*ch_count)--;
}
static void
channel_msg(struct spdk_io_channel_iter *i)
{
int *msg_count = spdk_io_channel_iter_get_ctx(i);
(*msg_count)++;
spdk_for_each_channel_continue(i, 0);
}
static void
channel_cpl(struct spdk_io_channel_iter *i, int status)
{
int *msg_count = spdk_io_channel_iter_get_ctx(i);
(*msg_count)++;
}
static void
for_each_channel_remove(void)
{
struct spdk_io_channel *ch0, *ch1, *ch2;
int ch_count = 0;
int msg_count = 0;
allocate_threads(3);
set_thread(0);
spdk_io_device_register(&ch_count, channel_create, channel_destroy, sizeof(int), NULL);
ch0 = spdk_get_io_channel(&ch_count);
set_thread(1);
ch1 = spdk_get_io_channel(&ch_count);
set_thread(2);
ch2 = spdk_get_io_channel(&ch_count);
CU_ASSERT(ch_count == 3);
/*
* Test that io_channel handles the case where we start to iterate through
* the channels, and during the iteration, one of the channels is deleted.
* This is done in some different and sometimes non-intuitive orders, because
* some operations are deferred and won't execute until their threads are
* polled.
*
* Case #1: Put the I/O channel before spdk_for_each_channel.
*/
set_thread(0);
spdk_put_io_channel(ch0);
CU_ASSERT(ch_count == 3);
poll_threads();
CU_ASSERT(ch_count == 2);
spdk_for_each_channel(&ch_count, channel_msg, &msg_count, channel_cpl);
CU_ASSERT(msg_count == 0);
poll_threads();
CU_ASSERT(msg_count == 3);
msg_count = 0;
/*
* Case #2: Put the I/O channel after spdk_for_each_channel, but before
* thread 0 is polled.
*/
ch0 = spdk_get_io_channel(&ch_count);
CU_ASSERT(ch_count == 3);
spdk_for_each_channel(&ch_count, channel_msg, &msg_count, channel_cpl);
spdk_put_io_channel(ch0);
CU_ASSERT(ch_count == 3);
poll_threads();
CU_ASSERT(ch_count == 2);
CU_ASSERT(msg_count == 4);
set_thread(1);
spdk_put_io_channel(ch1);
CU_ASSERT(ch_count == 2);
set_thread(2);
spdk_put_io_channel(ch2);
CU_ASSERT(ch_count == 2);
poll_threads();
CU_ASSERT(ch_count == 0);
spdk_io_device_unregister(&ch_count, NULL);
poll_threads();
free_threads();
}
struct unreg_ctx {
bool ch_done;
bool foreach_done;
};
static void
unreg_ch_done(struct spdk_io_channel_iter *i)
{
struct unreg_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
ctx->ch_done = true;
SPDK_CU_ASSERT_FATAL(i->cur_thread != NULL);
spdk_for_each_channel_continue(i, 0);
}
static void
unreg_foreach_done(struct spdk_io_channel_iter *i, int status)
{
struct unreg_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
ctx->foreach_done = true;
}
static void
for_each_channel_unreg(void)
{
struct spdk_io_channel *ch0;
struct io_device *dev;
struct unreg_ctx ctx = {};
int io_target = 0;
allocate_threads(1);
set_thread(0);
CU_ASSERT(RB_EMPTY(&g_io_devices));
spdk_io_device_register(&io_target, channel_create, channel_destroy, sizeof(int), NULL);
CU_ASSERT(!RB_EMPTY(&g_io_devices));
dev = RB_MIN(io_device_tree, &g_io_devices);
SPDK_CU_ASSERT_FATAL(dev != NULL);
CU_ASSERT(RB_NEXT(io_device_tree, &g_io_devices, dev) == NULL);
ch0 = spdk_get_io_channel(&io_target);
spdk_io_device_register(&io_target, channel_create, channel_destroy, sizeof(int), NULL);
/*
* There is already a device registered at &io_target, so a new io_device should not
* have been added to g_io_devices.
*/
CU_ASSERT(dev == RB_MIN(io_device_tree, &g_io_devices));
CU_ASSERT(RB_NEXT(io_device_tree, &g_io_devices, dev) == NULL);
spdk_for_each_channel(&io_target, unreg_ch_done, &ctx, unreg_foreach_done);
spdk_io_device_unregister(&io_target, NULL);
/*
* There is an outstanding foreach call on the io_device, so the unregister should not
* have immediately removed the device.
*/
CU_ASSERT(dev == RB_MIN(io_device_tree, &g_io_devices));
poll_thread(0);
CU_ASSERT(ctx.ch_done == true);
CU_ASSERT(ctx.foreach_done == true);
/*
* There are no more foreach operations outstanding, so the device should be
* unregistered.
*/
CU_ASSERT(RB_EMPTY(&g_io_devices));
set_thread(0);
spdk_put_io_channel(ch0);
poll_threads();
free_threads();
}
static void
thread_name(void)
{
struct spdk_thread *thread;
const char *name;
spdk_thread_lib_init(NULL, 0);
/* Create thread with no name, which automatically generates one */
thread = spdk_thread_create(NULL, NULL);
spdk_set_thread(thread);
thread = spdk_get_thread();
SPDK_CU_ASSERT_FATAL(thread != NULL);
name = spdk_thread_get_name(thread);
CU_ASSERT(name != NULL);
spdk_thread_exit(thread);
while (!spdk_thread_is_exited(thread)) {
spdk_thread_poll(thread, 0, 0);
}
spdk_thread_destroy(thread);
/* Create thread named "test_thread" */
thread = spdk_thread_create("test_thread", NULL);
spdk_set_thread(thread);
thread = spdk_get_thread();
SPDK_CU_ASSERT_FATAL(thread != NULL);
name = spdk_thread_get_name(thread);
SPDK_CU_ASSERT_FATAL(name != NULL);
CU_ASSERT(strcmp(name, "test_thread") == 0);
spdk_thread_exit(thread);
while (!spdk_thread_is_exited(thread)) {
spdk_thread_poll(thread, 0, 0);
}
spdk_thread_destroy(thread);
spdk_thread_lib_fini();
}
static uint64_t g_device1;
static uint64_t g_device2;
static uint64_t g_device3;
static uint64_t g_ctx1 = 0x1111;
static uint64_t g_ctx2 = 0x2222;
static int g_create_cb_calls = 0;
static int g_destroy_cb_calls = 0;
static int
create_cb_1(void *io_device, void *ctx_buf)
{
CU_ASSERT(io_device == &g_device1);
*(uint64_t *)ctx_buf = g_ctx1;
g_create_cb_calls++;
return 0;
}
static void
destroy_cb_1(void *io_device, void *ctx_buf)
{
CU_ASSERT(io_device == &g_device1);
CU_ASSERT(*(uint64_t *)ctx_buf == g_ctx1);
g_destroy_cb_calls++;
}
static int
create_cb_2(void *io_device, void *ctx_buf)
{
CU_ASSERT(io_device == &g_device2);
*(uint64_t *)ctx_buf = g_ctx2;
g_create_cb_calls++;
return 0;
}
static void
destroy_cb_2(void *io_device, void *ctx_buf)
{
CU_ASSERT(io_device == &g_device2);
CU_ASSERT(*(uint64_t *)ctx_buf == g_ctx2);
g_destroy_cb_calls++;
}
static void
channel(void)
{
struct spdk_io_channel *ch1, *ch2;
void *ctx;
allocate_threads(1);
set_thread(0);
spdk_io_device_register(&g_device1, create_cb_1, destroy_cb_1, sizeof(g_ctx1), NULL);
spdk_io_device_register(&g_device2, create_cb_2, destroy_cb_2, sizeof(g_ctx2), NULL);
g_create_cb_calls = 0;
ch1 = spdk_get_io_channel(&g_device1);
CU_ASSERT(g_create_cb_calls == 1);
SPDK_CU_ASSERT_FATAL(ch1 != NULL);
CU_ASSERT(spdk_io_channel_get_io_device(ch1) == &g_device1);
g_create_cb_calls = 0;
ch2 = spdk_get_io_channel(&g_device1);
CU_ASSERT(g_create_cb_calls == 0);
CU_ASSERT(ch1 == ch2);
SPDK_CU_ASSERT_FATAL(ch2 != NULL);
CU_ASSERT(spdk_io_channel_get_io_device(ch2) == &g_device1);
g_destroy_cb_calls = 0;
spdk_put_io_channel(ch2);
poll_threads();
CU_ASSERT(g_destroy_cb_calls == 0);
g_create_cb_calls = 0;
ch2 = spdk_get_io_channel(&g_device2);
CU_ASSERT(g_create_cb_calls == 1);
CU_ASSERT(ch1 != ch2);
SPDK_CU_ASSERT_FATAL(ch2 != NULL);
CU_ASSERT(spdk_io_channel_get_io_device(ch2) == &g_device2);
ctx = spdk_io_channel_get_ctx(ch2);
CU_ASSERT(*(uint64_t *)ctx == g_ctx2);
g_destroy_cb_calls = 0;
spdk_put_io_channel(ch1);
poll_threads();
CU_ASSERT(g_destroy_cb_calls == 1);
g_destroy_cb_calls = 0;
spdk_put_io_channel(ch2);
poll_threads();
CU_ASSERT(g_destroy_cb_calls == 1);
ch1 = spdk_get_io_channel(&g_device3);
CU_ASSERT(ch1 == NULL);
spdk_io_device_unregister(&g_device1, NULL);
poll_threads();
spdk_io_device_unregister(&g_device2, NULL);
poll_threads();
CU_ASSERT(RB_EMPTY(&g_io_devices));
free_threads();
CU_ASSERT(TAILQ_EMPTY(&g_threads));
}
static int
create_cb(void *io_device, void *ctx_buf)
{
uint64_t *refcnt = (uint64_t *)ctx_buf;
CU_ASSERT(*refcnt == 0);
*refcnt = 1;
return 0;
}
static void
destroy_cb(void *io_device, void *ctx_buf)
{
uint64_t *refcnt = (uint64_t *)ctx_buf;
CU_ASSERT(*refcnt == 1);
*refcnt = 0;
}
/**
* This test is checking that a sequence of get, put, get, put without allowing
* the deferred put operation to complete doesn't result in releasing the memory
* for the channel twice.
*/
static void
channel_destroy_races(void)
{
uint64_t device;
struct spdk_io_channel *ch;
allocate_threads(1);
set_thread(0);
spdk_io_device_register(&device, create_cb, destroy_cb, sizeof(uint64_t), NULL);
ch = spdk_get_io_channel(&device);
SPDK_CU_ASSERT_FATAL(ch != NULL);
spdk_put_io_channel(ch);
ch = spdk_get_io_channel(&device);
SPDK_CU_ASSERT_FATAL(ch != NULL);
spdk_put_io_channel(ch);
poll_threads();
spdk_io_device_unregister(&device, NULL);
poll_threads();
CU_ASSERT(RB_EMPTY(&g_io_devices));
free_threads();
CU_ASSERT(TAILQ_EMPTY(&g_threads));
}
static void
thread_exit_test(void)
{
struct spdk_thread *thread;
struct spdk_io_channel *ch;
struct spdk_poller *poller1, *poller2;
void *ctx;
bool done1 = false, done2 = false, poller1_run = false, poller2_run = false;
int rc __attribute__((unused));
MOCK_SET(spdk_get_ticks, 10);
MOCK_SET(spdk_get_ticks_hz, 1);
allocate_threads(4);
/* Test if all pending messages are reaped for the exiting thread, and the
* thread moves to the exited state.
*/
set_thread(0);
thread = spdk_get_thread();
/* Sending message to thread 0 will be accepted. */
rc = spdk_thread_send_msg(thread, send_msg_cb, &done1);
CU_ASSERT(rc == 0);
CU_ASSERT(!done1);
/* Move thread 0 to the exiting state. */
spdk_thread_exit(thread);
CU_ASSERT(spdk_thread_is_exited(thread) == false);
/* Sending message to thread 0 will be still accepted. */
rc = spdk_thread_send_msg(thread, send_msg_cb, &done2);
CU_ASSERT(rc == 0);
/* Thread 0 will reap pending messages. */
poll_thread(0);
CU_ASSERT(done1 == true);
CU_ASSERT(done2 == true);
/* Thread 0 will move to the exited state. */
CU_ASSERT(spdk_thread_is_exited(thread) == true);
/* Test releasing I/O channel is reaped even after the thread moves to
* the exiting state
*/
set_thread(1);
spdk_io_device_register(&g_device1, create_cb_1, destroy_cb_1, sizeof(g_ctx1), NULL);
g_create_cb_calls = 0;
ch = spdk_get_io_channel(&g_device1);
CU_ASSERT(g_create_cb_calls == 1);
SPDK_CU_ASSERT_FATAL(ch != NULL);
ctx = spdk_io_channel_get_ctx(ch);
CU_ASSERT(*(uint64_t *)ctx == g_ctx1);
g_destroy_cb_calls = 0;
spdk_put_io_channel(ch);
thread = spdk_get_thread();
spdk_thread_exit(thread);
/* Thread 1 will not move to the exited state yet because I/O channel release
* does not complete yet.
*/
CU_ASSERT(spdk_thread_is_exited(thread) == false);
/* Thread 1 will be able to get the another reference of I/O channel
* even after the thread moves to the exiting state.
*/
g_create_cb_calls = 0;
ch = spdk_get_io_channel(&g_device1);
CU_ASSERT(g_create_cb_calls == 0);
SPDK_CU_ASSERT_FATAL(ch != NULL);
ctx = spdk_io_channel_get_ctx(ch);
CU_ASSERT(*(uint64_t *)ctx == g_ctx1);
spdk_put_io_channel(ch);
poll_threads();
CU_ASSERT(g_destroy_cb_calls == 1);
/* Thread 1 will move to the exited state after I/O channel is released.
* are released.
*/
CU_ASSERT(spdk_thread_is_exited(thread) == true);
spdk_io_device_unregister(&g_device1, NULL);
poll_threads();
/* Test if unregistering poller is reaped for the exiting thread, and the
* thread moves to the exited thread.
*/
set_thread(2);
thread = spdk_get_thread();
poller1 = spdk_poller_register(poller_run_done, &poller1_run, 0);
CU_ASSERT(poller1 != NULL);
spdk_poller_unregister(&poller1);
spdk_thread_exit(thread);
poller2 = spdk_poller_register(poller_run_done, &poller2_run, 0);
poll_threads();
CU_ASSERT(poller1_run == false);
CU_ASSERT(poller2_run == true);
CU_ASSERT(spdk_thread_is_exited(thread) == false);
spdk_poller_unregister(&poller2);
poll_threads();
CU_ASSERT(spdk_thread_is_exited(thread) == true);
/* Test if the exiting thread is exited forcefully after timeout. */
set_thread(3);
thread = spdk_get_thread();
poller1 = spdk_poller_register(poller_run_done, &poller1_run, 0);
CU_ASSERT(poller1 != NULL);
spdk_thread_exit(thread);
CU_ASSERT(spdk_thread_is_exited(thread) == false);
MOCK_SET(spdk_get_ticks, 11);
poll_threads();
CU_ASSERT(spdk_thread_is_exited(thread) == false);
/* Cause timeout forcefully. */
MOCK_SET(spdk_get_ticks, 15);
poll_threads();
CU_ASSERT(spdk_thread_is_exited(thread) == true);
spdk_poller_unregister(&poller1);
poll_threads();
MOCK_CLEAR(spdk_get_ticks);
MOCK_CLEAR(spdk_get_ticks_hz);
free_threads();
}
static int
poller_run_idle(void *ctx)
{
uint64_t delay_us = (uint64_t)ctx;
spdk_delay_us(delay_us);
return 0;
}
static int
poller_run_busy(void *ctx)
{
uint64_t delay_us = (uint64_t)ctx;
spdk_delay_us(delay_us);
return 1;
}
static void
thread_update_stats_test(void)
{
struct spdk_poller *poller;
struct spdk_thread *thread;
MOCK_SET(spdk_get_ticks, 10);
allocate_threads(1);
set_thread(0);
thread = spdk_get_thread();
CU_ASSERT(thread->tsc_last == 10);
CU_ASSERT(thread->stats.idle_tsc == 0);
CU_ASSERT(thread->stats.busy_tsc == 0);
/* Test if idle_tsc is updated expectedly. */
poller = spdk_poller_register(poller_run_idle, (void *)1000, 0);
CU_ASSERT(poller != NULL);
spdk_delay_us(100);
poll_thread_times(0, 1);
CU_ASSERT(thread->tsc_last == 1110);
CU_ASSERT(thread->stats.idle_tsc == 1000);
CU_ASSERT(thread->stats.busy_tsc == 0);
spdk_delay_us(100);
poll_thread_times(0, 1);
CU_ASSERT(thread->tsc_last == 2210);
CU_ASSERT(thread->stats.idle_tsc == 2000);
CU_ASSERT(thread->stats.busy_tsc == 0);
spdk_poller_unregister(&poller);
/* Test if busy_tsc is updated expectedly. */
poller = spdk_poller_register(poller_run_busy, (void *)100000, 0);
CU_ASSERT(poller != NULL);
spdk_delay_us(10000);
poll_thread_times(0, 1);
CU_ASSERT(thread->tsc_last == 112210);
CU_ASSERT(thread->stats.idle_tsc == 2000);
CU_ASSERT(thread->stats.busy_tsc == 100000);
spdk_delay_us(10000);
poll_thread_times(0, 1);
CU_ASSERT(thread->tsc_last == 222210);
CU_ASSERT(thread->stats.idle_tsc == 2000);
CU_ASSERT(thread->stats.busy_tsc == 200000);
spdk_poller_unregister(&poller);
MOCK_CLEAR(spdk_get_ticks);
free_threads();
}
struct ut_nested_ch {
struct spdk_io_channel *child;
struct spdk_poller *poller;
};
struct ut_nested_dev {
struct ut_nested_dev *child;
};
static int
ut_null_poll(void *ctx)
{
return -1;
}
static int
ut_nested_ch_create_cb(void *io_device, void *ctx_buf)
{
struct ut_nested_ch *_ch = ctx_buf;
struct ut_nested_dev *_dev = io_device;
struct ut_nested_dev *_child;
_child = _dev->child;
if (_child != NULL) {
_ch->child = spdk_get_io_channel(_child);
SPDK_CU_ASSERT_FATAL(_ch->child != NULL);
} else {
_ch->child = NULL;
}
_ch->poller = spdk_poller_register(ut_null_poll, NULL, 0);
SPDK_CU_ASSERT_FATAL(_ch->poller != NULL);
return 0;
}
static void
ut_nested_ch_destroy_cb(void *io_device, void *ctx_buf)
{
struct ut_nested_ch *_ch = ctx_buf;
struct spdk_io_channel *child;
child = _ch->child;
if (child != NULL) {
spdk_put_io_channel(child);
}
spdk_poller_unregister(&_ch->poller);
}
static void
ut_check_nested_ch_create(struct spdk_io_channel *ch, struct io_device *dev)
{
CU_ASSERT(ch->ref == 1);
CU_ASSERT(ch->dev == dev);
CU_ASSERT(dev->refcnt == 1);
}
static void
ut_check_nested_ch_destroy_pre(struct spdk_io_channel *ch, struct io_device *dev)
{
CU_ASSERT(ch->ref == 0);
CU_ASSERT(ch->destroy_ref == 1);
CU_ASSERT(dev->refcnt == 1);
}
static void
ut_check_nested_ch_destroy_post(struct io_device *dev)
{
CU_ASSERT(dev->refcnt == 0);
}
static void
ut_check_nested_poller_register(struct spdk_poller *poller)
{
SPDK_CU_ASSERT_FATAL(poller != NULL);
}
static void
nested_channel(void)
{
struct ut_nested_dev _dev1, _dev2, _dev3;
struct ut_nested_ch *_ch1, *_ch2, *_ch3;
struct io_device *dev1, *dev2, *dev3;
struct spdk_io_channel *ch1, *ch2, *ch3;
struct spdk_poller *poller;
struct spdk_thread *thread;
allocate_threads(1);
set_thread(0);
thread = spdk_get_thread();
SPDK_CU_ASSERT_FATAL(thread != NULL);
_dev1.child = &_dev2;
_dev2.child = &_dev3;
_dev3.child = NULL;
spdk_io_device_register(&_dev1, ut_nested_ch_create_cb, ut_nested_ch_destroy_cb,
sizeof(struct ut_nested_ch), "dev1");
spdk_io_device_register(&_dev2, ut_nested_ch_create_cb, ut_nested_ch_destroy_cb,
sizeof(struct ut_nested_ch), "dev2");
spdk_io_device_register(&_dev3, ut_nested_ch_create_cb, ut_nested_ch_destroy_cb,
sizeof(struct ut_nested_ch), "dev3");
dev1 = io_device_get(&_dev1);
SPDK_CU_ASSERT_FATAL(dev1 != NULL);
dev2 = io_device_get(&_dev2);
SPDK_CU_ASSERT_FATAL(dev2 != NULL);
dev3 = io_device_get(&_dev3);
SPDK_CU_ASSERT_FATAL(dev3 != NULL);
/* A single call spdk_get_io_channel() to dev1 will also create channels
* to dev2 and dev3 continuously. Pollers will be registered together.
*/
ch1 = spdk_get_io_channel(&_dev1);
SPDK_CU_ASSERT_FATAL(ch1 != NULL);
_ch1 = spdk_io_channel_get_ctx(ch1);
ch2 = _ch1->child;
SPDK_CU_ASSERT_FATAL(ch2 != NULL);
_ch2 = spdk_io_channel_get_ctx(ch2);
ch3 = _ch2->child;
SPDK_CU_ASSERT_FATAL(ch3 != NULL);
_ch3 = spdk_io_channel_get_ctx(ch3);
CU_ASSERT(_ch3->child == NULL);
ut_check_nested_ch_create(ch1, dev1);
ut_check_nested_ch_create(ch2, dev2);
ut_check_nested_ch_create(ch3, dev3);
poller = spdk_poller_register(ut_null_poll, NULL, 0);
ut_check_nested_poller_register(poller);
ut_check_nested_poller_register(_ch1->poller);
ut_check_nested_poller_register(_ch2->poller);
ut_check_nested_poller_register(_ch3->poller);
spdk_poller_unregister(&poller);
poll_thread_times(0, 1);
/* A single call spdk_put_io_channel() to dev1 will also destroy channels
* to dev2 and dev3 continuously. Pollers will be unregistered together.
*/
spdk_put_io_channel(ch1);
/* Start exiting the current thread after unregistering the non-nested
* I/O channel.
*/
spdk_thread_exit(thread);
ut_check_nested_ch_destroy_pre(ch1, dev1);
poll_thread_times(0, 1);
ut_check_nested_ch_destroy_post(dev1);
CU_ASSERT(spdk_thread_is_exited(thread) == false);
ut_check_nested_ch_destroy_pre(ch2, dev2);
poll_thread_times(0, 1);
ut_check_nested_ch_destroy_post(dev2);
CU_ASSERT(spdk_thread_is_exited(thread) == false);
ut_check_nested_ch_destroy_pre(ch3, dev3);
poll_thread_times(0, 1);
ut_check_nested_ch_destroy_post(dev3);
CU_ASSERT(spdk_thread_is_exited(thread) == true);
spdk_io_device_unregister(&_dev1, NULL);
spdk_io_device_unregister(&_dev2, NULL);
spdk_io_device_unregister(&_dev3, NULL);
CU_ASSERT(RB_EMPTY(&g_io_devices));
free_threads();
CU_ASSERT(TAILQ_EMPTY(&g_threads));
}
static int
create_cb2(void *io_device, void *ctx_buf)
{
uint64_t *devcnt = (uint64_t *)io_device;
*devcnt += 1;
return 0;
}
static void
destroy_cb2(void *io_device, void *ctx_buf)
{
uint64_t *devcnt = (uint64_t *)io_device;
CU_ASSERT(*devcnt > 0);
*devcnt -= 1;
}
static void
unregister_cb2(void *io_device)
{
uint64_t *devcnt = (uint64_t *)io_device;
CU_ASSERT(*devcnt == 0);
}
static void
device_unregister_and_thread_exit_race(void)
{
uint64_t device = 0;
struct spdk_io_channel *ch1, *ch2;
struct spdk_thread *thread1, *thread2;
/* Create two threads and each thread gets a channel from the same device. */
allocate_threads(2);
set_thread(0);
thread1 = spdk_get_thread();
SPDK_CU_ASSERT_FATAL(thread1 != NULL);
spdk_io_device_register(&device, create_cb2, destroy_cb2, sizeof(uint64_t), NULL);
ch1 = spdk_get_io_channel(&device);
SPDK_CU_ASSERT_FATAL(ch1 != NULL);
set_thread(1);
thread2 = spdk_get_thread();
SPDK_CU_ASSERT_FATAL(thread2 != NULL);
ch2 = spdk_get_io_channel(&device);
SPDK_CU_ASSERT_FATAL(ch2 != NULL);
set_thread(0);
/* Move thread 0 to the exiting state, but it should keep exiting until two channels
* and a device are released.
*/
spdk_thread_exit(thread1);
poll_thread(0);
spdk_put_io_channel(ch1);
spdk_io_device_unregister(&device, unregister_cb2);
poll_thread(0);
CU_ASSERT(spdk_thread_is_exited(thread1) == false);
set_thread(1);
/* Move thread 1 to the exiting state, but it should keep exiting until its channel
* is released.
*/
spdk_thread_exit(thread2);
poll_thread(1);
CU_ASSERT(spdk_thread_is_exited(thread2) == false);
spdk_put_io_channel(ch2);
poll_thread(1);
CU_ASSERT(spdk_thread_is_exited(thread1) == false);
CU_ASSERT(spdk_thread_is_exited(thread2) == true);
poll_thread(0);
CU_ASSERT(spdk_thread_is_exited(thread1) == true);
free_threads();
}
static int
dummy_poller(void *arg)
{
return SPDK_POLLER_IDLE;
}
static void
cache_closest_timed_poller(void)
{
struct spdk_thread *thread;
struct spdk_poller *poller1, *poller2, *poller3, *tmp;
allocate_threads(1);
set_thread(0);
thread = spdk_get_thread();
SPDK_CU_ASSERT_FATAL(thread != NULL);
poller1 = spdk_poller_register(dummy_poller, NULL, 1000);
SPDK_CU_ASSERT_FATAL(poller1 != NULL);
poller2 = spdk_poller_register(dummy_poller, NULL, 1500);
SPDK_CU_ASSERT_FATAL(poller2 != NULL);
poller3 = spdk_poller_register(dummy_poller, NULL, 1800);
SPDK_CU_ASSERT_FATAL(poller3 != NULL);
poll_threads();
/* When multiple timed pollers are inserted, the cache should
* have the closest timed poller.
*/
CU_ASSERT(thread->first_timed_poller == poller1);
CU_ASSERT(RB_MIN(timed_pollers_tree, &thread->timed_pollers) == poller1);
spdk_delay_us(1000);
poll_threads();
CU_ASSERT(thread->first_timed_poller == poller2);
CU_ASSERT(RB_MIN(timed_pollers_tree, &thread->timed_pollers) == poller2);
/* If we unregister a timed poller by spdk_poller_unregister()
* when it is waiting, it is marked as being unregistered and
* is actually unregistered when it is expired.
*
* Hence if we unregister the closest timed poller when it is waiting,
* the cache is not updated to the next timed poller until it is expired.
*/
tmp = poller2;
spdk_poller_unregister(&poller2);
CU_ASSERT(poller2 == NULL);
spdk_delay_us(499);
poll_threads();
CU_ASSERT(thread->first_timed_poller == tmp);
CU_ASSERT(RB_MIN(timed_pollers_tree, &thread->timed_pollers) == tmp);
spdk_delay_us(1);
poll_threads();
CU_ASSERT(thread->first_timed_poller == poller3);
CU_ASSERT(RB_MIN(timed_pollers_tree, &thread->timed_pollers) == poller3);
/* If we pause a timed poller by spdk_poller_pause() when it is waiting,
* it is marked as being paused and is actually paused when it is expired.
*
* Hence if we pause the closest timed poller when it is waiting, the cache
* is not updated to the next timed poller until it is expired.
*/
spdk_poller_pause(poller3);
spdk_delay_us(299);
poll_threads();
CU_ASSERT(thread->first_timed_poller == poller3);
CU_ASSERT(RB_MIN(timed_pollers_tree, &thread->timed_pollers) == poller3);
spdk_delay_us(1);
poll_threads();
CU_ASSERT(thread->first_timed_poller == poller1);
CU_ASSERT(RB_MIN(timed_pollers_tree, &thread->timed_pollers) == poller1);
/* After unregistering all timed pollers, the cache should
* be NULL.
*/
spdk_poller_unregister(&poller1);
spdk_poller_unregister(&poller3);
spdk_delay_us(200);
poll_threads();
CU_ASSERT(thread->first_timed_poller == NULL);
CU_ASSERT(RB_EMPTY(&thread->timed_pollers));
free_threads();
}
static void
multi_timed_pollers_have_same_expiration(void)
{
struct spdk_thread *thread;
struct spdk_poller *poller1, *poller2, *poller3, *poller4, *tmp;
uint64_t start_ticks;
allocate_threads(1);
set_thread(0);
thread = spdk_get_thread();
SPDK_CU_ASSERT_FATAL(thread != NULL);
/*
* case 1: multiple timed pollers have the same next_run_tick.
*/
start_ticks = spdk_get_ticks();
poller1 = spdk_poller_register(dummy_poller, NULL, 500);
SPDK_CU_ASSERT_FATAL(poller1 != NULL);
poller2 = spdk_poller_register(dummy_poller, NULL, 500);
SPDK_CU_ASSERT_FATAL(poller2 != NULL);
poller3 = spdk_poller_register(dummy_poller, NULL, 1000);
SPDK_CU_ASSERT_FATAL(poller3 != NULL);
poller4 = spdk_poller_register(dummy_poller, NULL, 1500);
SPDK_CU_ASSERT_FATAL(poller4 != NULL);
/* poller1 and poller2 have the same next_run_tick but cache has poller1
* because poller1 is registered earlier than poller2.
*/
CU_ASSERT(thread->first_timed_poller == poller1);
CU_ASSERT(poller1->next_run_tick == start_ticks + 500);
CU_ASSERT(poller2->next_run_tick == start_ticks + 500);
CU_ASSERT(poller3->next_run_tick == start_ticks + 1000);
CU_ASSERT(poller4->next_run_tick == start_ticks + 1500);
/* after 500 usec, poller1 and poller2 are expired. */
spdk_delay_us(500);
CU_ASSERT(spdk_get_ticks() == start_ticks + 500);
poll_threads();
/* poller1, poller2, and poller3 have the same next_run_tick but cache
* has poller3 because poller3 is not expired yet.
*/
CU_ASSERT(thread->first_timed_poller == poller3);
CU_ASSERT(poller1->next_run_tick == start_ticks + 1000);
CU_ASSERT(poller2->next_run_tick == start_ticks + 1000);
CU_ASSERT(poller3->next_run_tick == start_ticks + 1000);
CU_ASSERT(poller4->next_run_tick == start_ticks + 1500);
/* after 500 usec, poller1, poller2, and poller3 are expired. */
spdk_delay_us(500);
CU_ASSERT(spdk_get_ticks() == start_ticks + 1000);
poll_threads();
/* poller1, poller2, and poller4 have the same next_run_tick but cache
* has poller4 because poller4 is not expired yet.
*/
CU_ASSERT(thread->first_timed_poller == poller4);
CU_ASSERT(poller1->next_run_tick == start_ticks + 1500);
CU_ASSERT(poller2->next_run_tick == start_ticks + 1500);
CU_ASSERT(poller3->next_run_tick == start_ticks + 2000);
CU_ASSERT(poller4->next_run_tick == start_ticks + 1500);
/* after 500 usec, poller1, poller2, and poller4 are expired. */
spdk_delay_us(500);
CU_ASSERT(spdk_get_ticks() == start_ticks + 1500);
poll_threads();
/* poller1, poller2, and poller3 have the same next_run_tick but cache
* has poller3 because poller3 is updated earlier than poller1 and poller2.
*/
CU_ASSERT(thread->first_timed_poller == poller3);
CU_ASSERT(poller1->next_run_tick == start_ticks + 2000);
CU_ASSERT(poller2->next_run_tick == start_ticks + 2000);
CU_ASSERT(poller3->next_run_tick == start_ticks + 2000);
CU_ASSERT(poller4->next_run_tick == start_ticks + 3000);
spdk_poller_unregister(&poller1);
spdk_poller_unregister(&poller2);
spdk_poller_unregister(&poller3);
spdk_poller_unregister(&poller4);
spdk_delay_us(1500);
CU_ASSERT(spdk_get_ticks() == start_ticks + 3000);
poll_threads();
CU_ASSERT(thread->first_timed_poller == NULL);
CU_ASSERT(RB_EMPTY(&thread->timed_pollers));
/*
* case 2: unregister timed pollers while multiple timed pollers are registered.
*/
start_ticks = spdk_get_ticks();
poller1 = spdk_poller_register(dummy_poller, NULL, 500);
SPDK_CU_ASSERT_FATAL(poller1 != NULL);
CU_ASSERT(thread->first_timed_poller == poller1);
CU_ASSERT(poller1->next_run_tick == start_ticks + 500);
/* after 250 usec, register poller2 and poller3. */
spdk_delay_us(250);
CU_ASSERT(spdk_get_ticks() == start_ticks + 250);
poller2 = spdk_poller_register(dummy_poller, NULL, 500);
SPDK_CU_ASSERT_FATAL(poller2 != NULL);
poller3 = spdk_poller_register(dummy_poller, NULL, 750);
SPDK_CU_ASSERT_FATAL(poller3 != NULL);
CU_ASSERT(thread->first_timed_poller == poller1);
CU_ASSERT(poller1->next_run_tick == start_ticks + 500);
CU_ASSERT(poller2->next_run_tick == start_ticks + 750);
CU_ASSERT(poller3->next_run_tick == start_ticks + 1000);
/* unregister poller2 which is not the closest. */
tmp = poller2;
spdk_poller_unregister(&poller2);
/* after 250 usec, poller1 is expired. */
spdk_delay_us(250);
CU_ASSERT(spdk_get_ticks() == start_ticks + 500);
poll_threads();
/* poller2 is not unregistered yet because it is not expired. */
CU_ASSERT(thread->first_timed_poller == tmp);
CU_ASSERT(poller1->next_run_tick == start_ticks + 1000);
CU_ASSERT(tmp->next_run_tick == start_ticks + 750);
CU_ASSERT(poller3->next_run_tick == start_ticks + 1000);
spdk_delay_us(250);
CU_ASSERT(spdk_get_ticks() == start_ticks + 750);
poll_threads();
CU_ASSERT(thread->first_timed_poller == poller3);
CU_ASSERT(poller1->next_run_tick == start_ticks + 1000);
CU_ASSERT(poller3->next_run_tick == start_ticks + 1000);
spdk_poller_unregister(&poller3);
spdk_delay_us(250);
CU_ASSERT(spdk_get_ticks() == start_ticks + 1000);
poll_threads();
CU_ASSERT(thread->first_timed_poller == poller1);
CU_ASSERT(poller1->next_run_tick == start_ticks + 1500);
spdk_poller_unregister(&poller1);
spdk_delay_us(500);
CU_ASSERT(spdk_get_ticks() == start_ticks + 1500);
poll_threads();
CU_ASSERT(thread->first_timed_poller == NULL);
CU_ASSERT(RB_EMPTY(&thread->timed_pollers));
free_threads();
}
static int
dummy_create_cb(void *io_device, void *ctx_buf)
{
return 0;
}
static void
dummy_destroy_cb(void *io_device, void *ctx_buf)
{
}
/* We had a bug that the compare function for the io_device tree
* did not work as expected because subtraction caused overflow
* when the difference between two keys was more than 32 bits.
* This test case verifies the fix for the bug.
*/
static void
io_device_lookup(void)
{
struct io_device dev1, dev2, *dev;
struct spdk_io_channel *ch;
/* The compare function io_device_cmp() had a overflow bug.
* Verify the fix first.
*/
dev1.io_device = (void *)0x7FFFFFFF;
dev2.io_device = NULL;
CU_ASSERT(io_device_cmp(&dev1, &dev2) > 0);
CU_ASSERT(io_device_cmp(&dev2, &dev1) < 0);
/* Check if overflow due to 32 bits does not occur. */
dev1.io_device = (void *)0x80000000;
CU_ASSERT(io_device_cmp(&dev1, &dev2) > 0);
CU_ASSERT(io_device_cmp(&dev2, &dev1) < 0);
dev1.io_device = (void *)0x100000000;
CU_ASSERT(io_device_cmp(&dev1, &dev2) > 0);
CU_ASSERT(io_device_cmp(&dev2, &dev1) < 0);
dev1.io_device = (void *)0x8000000000000000;
CU_ASSERT(io_device_cmp(&dev1, &dev2) > 0);
CU_ASSERT(io_device_cmp(&dev2, &dev1) < 0);
allocate_threads(1);
set_thread(0);
spdk_io_device_register((void *)0x1, dummy_create_cb, dummy_destroy_cb, 0, NULL);
spdk_io_device_register((void *)0x7FFFFFFF, dummy_create_cb, dummy_destroy_cb, 0, NULL);
spdk_io_device_register((void *)0x80000000, dummy_create_cb, dummy_destroy_cb, 0, NULL);
spdk_io_device_register((void *)0x100000000, dummy_create_cb, dummy_destroy_cb, 0, NULL);
spdk_io_device_register((void *)0x8000000000000000, dummy_create_cb, dummy_destroy_cb, 0, NULL);
spdk_io_device_register((void *)0x8000000100000000, dummy_create_cb, dummy_destroy_cb, 0, NULL);
spdk_io_device_register((void *)UINT64_MAX, dummy_create_cb, dummy_destroy_cb, 0, NULL);
/* RB_MIN and RB_NEXT should return devs in ascending order by addresses.
* RB_FOREACH uses RB_MIN and RB_NEXT internally.
*/
dev = RB_MIN(io_device_tree, &g_io_devices);
SPDK_CU_ASSERT_FATAL(dev != NULL);
CU_ASSERT(dev->io_device == (void *)0x1);
dev = RB_NEXT(io_device_tree, &g_io_devices, dev);
SPDK_CU_ASSERT_FATAL(dev != NULL);
CU_ASSERT(dev->io_device == (void *)0x7FFFFFFF);
dev = RB_NEXT(io_device_tree, &g_io_devices, dev);
SPDK_CU_ASSERT_FATAL(dev != NULL);
CU_ASSERT(dev->io_device == (void *)0x80000000);
dev = RB_NEXT(io_device_tree, &g_io_devices, dev);
SPDK_CU_ASSERT_FATAL(dev != NULL);
CU_ASSERT(dev->io_device == (void *)0x100000000);
dev = RB_NEXT(io_device_tree, &g_io_devices, dev);
SPDK_CU_ASSERT_FATAL(dev != NULL);
CU_ASSERT(dev->io_device == (void *)0x8000000000000000);
dev = RB_NEXT(io_device_tree, &g_io_devices, dev);
SPDK_CU_ASSERT_FATAL(dev != NULL);
CU_ASSERT(dev->io_device == (void *)0x8000000100000000);
dev = RB_NEXT(io_device_tree, &g_io_devices, dev);
SPDK_CU_ASSERT_FATAL(dev != NULL);
CU_ASSERT(dev->io_device == (void *)UINT64_MAX);
/* Verify spdk_get_io_channel() creates io_channels associated with the
* correct io_devices.
*/
ch = spdk_get_io_channel((void *)0x1);
SPDK_CU_ASSERT_FATAL(ch != NULL);
CU_ASSERT(ch->dev->io_device == (void *)0x1);
spdk_put_io_channel(ch);
ch = spdk_get_io_channel((void *)0x7FFFFFFF);
SPDK_CU_ASSERT_FATAL(ch != NULL);
CU_ASSERT(ch->dev->io_device == (void *)0x7FFFFFFF);
spdk_put_io_channel(ch);
ch = spdk_get_io_channel((void *)0x80000000);
SPDK_CU_ASSERT_FATAL(ch != NULL);
CU_ASSERT(ch->dev->io_device == (void *)0x80000000);
spdk_put_io_channel(ch);
ch = spdk_get_io_channel((void *)0x100000000);
SPDK_CU_ASSERT_FATAL(ch != NULL);
CU_ASSERT(ch->dev->io_device == (void *)0x100000000);
spdk_put_io_channel(ch);
ch = spdk_get_io_channel((void *)0x8000000000000000);
SPDK_CU_ASSERT_FATAL(ch != NULL);
CU_ASSERT(ch->dev->io_device == (void *)0x8000000000000000);
spdk_put_io_channel(ch);
ch = spdk_get_io_channel((void *)0x8000000100000000);
SPDK_CU_ASSERT_FATAL(ch != NULL);
CU_ASSERT(ch->dev->io_device == (void *)0x8000000100000000);
spdk_put_io_channel(ch);
ch = spdk_get_io_channel((void *)UINT64_MAX);
SPDK_CU_ASSERT_FATAL(ch != NULL);
CU_ASSERT(ch->dev->io_device == (void *)UINT64_MAX);
spdk_put_io_channel(ch);
poll_threads();
spdk_io_device_unregister((void *)0x1, NULL);
spdk_io_device_unregister((void *)0x7FFFFFFF, NULL);
spdk_io_device_unregister((void *)0x80000000, NULL);
spdk_io_device_unregister((void *)0x100000000, NULL);
spdk_io_device_unregister((void *)0x8000000000000000, NULL);
spdk_io_device_unregister((void *)0x8000000100000000, NULL);
spdk_io_device_unregister((void *)UINT64_MAX, NULL);
poll_threads();
CU_ASSERT(RB_EMPTY(&g_io_devices));
free_threads();
}
int
main(int argc, char **argv)
{
CU_pSuite suite = NULL;
unsigned int num_failures;
CU_set_error_action(CUEA_ABORT);
CU_initialize_registry();
suite = CU_add_suite("io_channel", NULL, NULL);
CU_ADD_TEST(suite, thread_alloc);
CU_ADD_TEST(suite, thread_send_msg);
CU_ADD_TEST(suite, thread_poller);
CU_ADD_TEST(suite, poller_pause);
CU_ADD_TEST(suite, thread_for_each);
CU_ADD_TEST(suite, for_each_channel_remove);
CU_ADD_TEST(suite, for_each_channel_unreg);
CU_ADD_TEST(suite, thread_name);
CU_ADD_TEST(suite, channel);
CU_ADD_TEST(suite, channel_destroy_races);
CU_ADD_TEST(suite, thread_exit_test);
CU_ADD_TEST(suite, thread_update_stats_test);
CU_ADD_TEST(suite, nested_channel);
CU_ADD_TEST(suite, device_unregister_and_thread_exit_race);
CU_ADD_TEST(suite, cache_closest_timed_poller);
CU_ADD_TEST(suite, multi_timed_pollers_have_same_expiration);
CU_ADD_TEST(suite, io_device_lookup);
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
return num_failures;
}