Spdk/test/bdev/bdevio/bdevio.c
paul luse a6dbe3721e update Intel copyright notices
per Intel policy to include file commit date using git cmd
below.  The policy does not apply to non-Intel (C) notices.

git log --follow -C90% --format=%ad --date default <file> | tail -1

and then pull just the 4 digit year from the result.

Intel copyrights were not added to files where Intel either had
no contribution ot the contribution lacked substance (ie license
header updates, formatting changes, etc).  Contribution date used
"--follow -C95%" to get the most accurate date.

Note that several files in this patch didn't end the license/(c)
block with a blank comment line so these were added as the vast
majority of files do have this last blank line.  Simply there for
consistency.

Signed-off-by: paul luse <paul.e.luse@intel.com>
Change-Id: Id5b7ce4f658fe87132f14139ead58d6e285c04d4
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/15192
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Community-CI: Mellanox Build Bot
2022-11-10 08:28:53 +00:00

1534 lines
40 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2016 Intel Corporation.
* All rights reserved.
* Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*/
#include "spdk/stdinc.h"
#include "spdk/bdev.h"
#include "spdk/accel.h"
#include "spdk/env.h"
#include "spdk/log.h"
#include "spdk/thread.h"
#include "spdk/event.h"
#include "spdk/rpc.h"
#include "spdk/util.h"
#include "spdk/string.h"
#include "bdev_internal.h"
#include "CUnit/Basic.h"
#define BUFFER_IOVS 1024
#define BUFFER_SIZE 260 * 1024
#define BDEV_TASK_ARRAY_SIZE 2048
pthread_mutex_t g_test_mutex;
pthread_cond_t g_test_cond;
static struct spdk_thread *g_thread_init;
static struct spdk_thread *g_thread_ut;
static struct spdk_thread *g_thread_io;
static bool g_wait_for_tests = false;
static int g_num_failures = 0;
static bool g_shutdown = false;
struct io_target {
struct spdk_bdev *bdev;
struct spdk_bdev_desc *bdev_desc;
struct spdk_io_channel *ch;
struct io_target *next;
};
struct bdevio_request {
char *buf;
char *fused_buf;
int data_len;
uint64_t offset;
struct iovec iov[BUFFER_IOVS];
int iovcnt;
struct iovec fused_iov[BUFFER_IOVS];
int fused_iovcnt;
struct io_target *target;
uint64_t src_offset;
};
struct io_target *g_io_targets = NULL;
struct io_target *g_current_io_target = NULL;
static void rpc_perform_tests_cb(unsigned num_failures, struct spdk_jsonrpc_request *request);
static void
execute_spdk_function(spdk_msg_fn fn, void *arg)
{
pthread_mutex_lock(&g_test_mutex);
spdk_thread_send_msg(g_thread_io, fn, arg);
pthread_cond_wait(&g_test_cond, &g_test_mutex);
pthread_mutex_unlock(&g_test_mutex);
}
static void
wake_ut_thread(void)
{
pthread_mutex_lock(&g_test_mutex);
pthread_cond_signal(&g_test_cond);
pthread_mutex_unlock(&g_test_mutex);
}
static void
__get_io_channel(void *arg)
{
struct io_target *target = arg;
target->ch = spdk_bdev_get_io_channel(target->bdev_desc);
assert(target->ch);
wake_ut_thread();
}
static void
bdevio_construct_target_open_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev,
void *event_ctx)
{
}
static int
bdevio_construct_target(struct spdk_bdev *bdev)
{
struct io_target *target;
int rc;
uint64_t num_blocks = spdk_bdev_get_num_blocks(bdev);
uint32_t block_size = spdk_bdev_get_block_size(bdev);
target = malloc(sizeof(struct io_target));
if (target == NULL) {
return -ENOMEM;
}
rc = spdk_bdev_open_ext(spdk_bdev_get_name(bdev), true, bdevio_construct_target_open_cb, NULL,
&target->bdev_desc);
if (rc != 0) {
free(target);
SPDK_ERRLOG("Could not open leaf bdev %s, error=%d\n", spdk_bdev_get_name(bdev), rc);
return rc;
}
printf(" %s: %" PRIu64 " blocks of %" PRIu32 " bytes (%" PRIu64 " MiB)\n",
spdk_bdev_get_name(bdev),
num_blocks, block_size,
(num_blocks * block_size + 1024 * 1024 - 1) / (1024 * 1024));
target->bdev = bdev;
target->next = g_io_targets;
execute_spdk_function(__get_io_channel, target);
g_io_targets = target;
return 0;
}
static int
bdevio_construct_targets(void)
{
struct spdk_bdev *bdev;
int rc;
printf("I/O targets:\n");
bdev = spdk_bdev_first_leaf();
while (bdev != NULL) {
rc = bdevio_construct_target(bdev);
if (rc < 0) {
SPDK_ERRLOG("Could not construct bdev %s, error=%d\n", spdk_bdev_get_name(bdev), rc);
return rc;
}
bdev = spdk_bdev_next_leaf(bdev);
}
if (g_io_targets == NULL) {
SPDK_ERRLOG("No bdevs to perform tests on\n");
return -1;
}
return 0;
}
static void
__put_io_channel(void *arg)
{
struct io_target *target = arg;
spdk_put_io_channel(target->ch);
wake_ut_thread();
}
static void
bdevio_cleanup_targets(void)
{
struct io_target *target;
target = g_io_targets;
while (target != NULL) {
execute_spdk_function(__put_io_channel, target);
spdk_bdev_close(target->bdev_desc);
g_io_targets = target->next;
free(target);
target = g_io_targets;
}
}
static bool g_completion_success;
static void
initialize_buffer(char **buf, int pattern, int size)
{
*buf = spdk_zmalloc(size, 0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
memset(*buf, pattern, size);
}
static void
quick_test_complete(struct spdk_bdev_io *bdev_io, bool success, void *arg)
{
g_completion_success = success;
spdk_bdev_free_io(bdev_io);
wake_ut_thread();
}
static uint64_t
bdev_bytes_to_blocks(struct spdk_bdev *bdev, uint64_t bytes)
{
uint32_t block_size = spdk_bdev_get_block_size(bdev);
CU_ASSERT(bytes % block_size == 0);
return bytes / block_size;
}
static void
__blockdev_write(void *arg)
{
struct bdevio_request *req = arg;
struct io_target *target = req->target;
int rc;
if (req->iovcnt) {
rc = spdk_bdev_writev(target->bdev_desc, target->ch, req->iov, req->iovcnt, req->offset,
req->data_len, quick_test_complete, NULL);
} else {
rc = spdk_bdev_write(target->bdev_desc, target->ch, req->buf, req->offset,
req->data_len, quick_test_complete, NULL);
}
if (rc) {
g_completion_success = false;
wake_ut_thread();
}
}
static void
__blockdev_write_zeroes(void *arg)
{
struct bdevio_request *req = arg;
struct io_target *target = req->target;
int rc;
rc = spdk_bdev_write_zeroes(target->bdev_desc, target->ch, req->offset,
req->data_len, quick_test_complete, NULL);
if (rc) {
g_completion_success = false;
wake_ut_thread();
}
}
static void
__blockdev_compare_and_write(void *arg)
{
struct bdevio_request *req = arg;
struct io_target *target = req->target;
struct spdk_bdev *bdev = target->bdev;
int rc;
rc = spdk_bdev_comparev_and_writev_blocks(target->bdev_desc, target->ch, req->iov, req->iovcnt,
req->fused_iov, req->fused_iovcnt, bdev_bytes_to_blocks(bdev, req->offset),
bdev_bytes_to_blocks(bdev, req->data_len), quick_test_complete, NULL);
if (rc) {
g_completion_success = false;
wake_ut_thread();
}
}
static void
sgl_chop_buffer(struct bdevio_request *req, int iov_len)
{
int data_len = req->data_len;
char *buf = req->buf;
req->iovcnt = 0;
if (!iov_len) {
return;
}
for (; data_len > 0 && req->iovcnt < BUFFER_IOVS; req->iovcnt++) {
if (data_len < iov_len) {
iov_len = data_len;
}
req->iov[req->iovcnt].iov_base = buf;
req->iov[req->iovcnt].iov_len = iov_len;
buf += iov_len;
data_len -= iov_len;
}
CU_ASSERT_EQUAL_FATAL(data_len, 0);
}
static void
sgl_chop_fused_buffer(struct bdevio_request *req, int iov_len)
{
int data_len = req->data_len;
char *buf = req->fused_buf;
req->fused_iovcnt = 0;
if (!iov_len) {
return;
}
for (; data_len > 0 && req->fused_iovcnt < BUFFER_IOVS; req->fused_iovcnt++) {
if (data_len < iov_len) {
iov_len = data_len;
}
req->fused_iov[req->fused_iovcnt].iov_base = buf;
req->fused_iov[req->fused_iovcnt].iov_len = iov_len;
buf += iov_len;
data_len -= iov_len;
}
CU_ASSERT_EQUAL_FATAL(data_len, 0);
}
static void
blockdev_write(struct io_target *target, char *tx_buf,
uint64_t offset, int data_len, int iov_len)
{
struct bdevio_request req;
req.target = target;
req.buf = tx_buf;
req.data_len = data_len;
req.offset = offset;
sgl_chop_buffer(&req, iov_len);
g_completion_success = false;
execute_spdk_function(__blockdev_write, &req);
}
static void
_blockdev_compare_and_write(struct io_target *target, char *cmp_buf, char *write_buf,
uint64_t offset, int data_len, int iov_len)
{
struct bdevio_request req;
req.target = target;
req.buf = cmp_buf;
req.fused_buf = write_buf;
req.data_len = data_len;
req.offset = offset;
sgl_chop_buffer(&req, iov_len);
sgl_chop_fused_buffer(&req, iov_len);
g_completion_success = false;
execute_spdk_function(__blockdev_compare_and_write, &req);
}
static void
blockdev_write_zeroes(struct io_target *target, char *tx_buf,
uint64_t offset, int data_len)
{
struct bdevio_request req;
req.target = target;
req.buf = tx_buf;
req.data_len = data_len;
req.offset = offset;
g_completion_success = false;
execute_spdk_function(__blockdev_write_zeroes, &req);
}
static void
__blockdev_read(void *arg)
{
struct bdevio_request *req = arg;
struct io_target *target = req->target;
int rc;
if (req->iovcnt) {
rc = spdk_bdev_readv(target->bdev_desc, target->ch, req->iov, req->iovcnt, req->offset,
req->data_len, quick_test_complete, NULL);
} else {
rc = spdk_bdev_read(target->bdev_desc, target->ch, req->buf, req->offset,
req->data_len, quick_test_complete, NULL);
}
if (rc) {
g_completion_success = false;
wake_ut_thread();
}
}
static void
blockdev_read(struct io_target *target, char *rx_buf,
uint64_t offset, int data_len, int iov_len)
{
struct bdevio_request req;
req.target = target;
req.buf = rx_buf;
req.data_len = data_len;
req.offset = offset;
req.iovcnt = 0;
sgl_chop_buffer(&req, iov_len);
g_completion_success = false;
execute_spdk_function(__blockdev_read, &req);
}
static void
_blockdev_copy(void *arg)
{
struct bdevio_request *req = arg;
struct io_target *target = req->target;
struct spdk_bdev *bdev = target->bdev;
int rc;
rc = spdk_bdev_copy_blocks(target->bdev_desc, target->ch,
bdev_bytes_to_blocks(bdev, req->offset),
bdev_bytes_to_blocks(bdev, req->src_offset),
bdev_bytes_to_blocks(bdev, req->data_len),
quick_test_complete, NULL);
if (rc) {
g_completion_success = false;
wake_ut_thread();
}
}
static void
blockdev_copy(struct io_target *target, uint64_t dst_offset, uint64_t src_offset, int data_len)
{
struct bdevio_request req;
req.target = target;
req.data_len = data_len;
req.offset = dst_offset;
req.src_offset = src_offset;
g_completion_success = false;
execute_spdk_function(_blockdev_copy, &req);
}
static int
blockdev_write_read_data_match(char *rx_buf, char *tx_buf, int data_length)
{
return memcmp(rx_buf, tx_buf, data_length);
}
static void
blockdev_write_read(uint32_t data_length, uint32_t iov_len, int pattern, uint64_t offset,
int expected_rc, bool write_zeroes)
{
struct io_target *target;
char *tx_buf = NULL;
char *rx_buf = NULL;
int rc;
uint64_t write_offset = offset;
uint32_t write_data_len = data_length;
target = g_current_io_target;
if (spdk_bdev_get_write_unit_size(target->bdev) > 1 && expected_rc == 0) {
uint32_t write_unit_bytes;
write_unit_bytes = spdk_bdev_get_write_unit_size(target->bdev) *
spdk_bdev_get_block_size(target->bdev);
write_offset -= offset % write_unit_bytes;
write_data_len += (offset - write_offset);
if (write_data_len % write_unit_bytes) {
write_data_len += write_unit_bytes - write_data_len % write_unit_bytes;
}
}
if (!write_zeroes) {
initialize_buffer(&tx_buf, pattern, write_data_len);
initialize_buffer(&rx_buf, 0, data_length);
blockdev_write(target, tx_buf, write_offset, write_data_len, iov_len);
} else {
initialize_buffer(&tx_buf, 0, write_data_len);
initialize_buffer(&rx_buf, pattern, data_length);
blockdev_write_zeroes(target, tx_buf, write_offset, write_data_len);
}
if (expected_rc == 0) {
CU_ASSERT_EQUAL(g_completion_success, true);
} else {
CU_ASSERT_EQUAL(g_completion_success, false);
}
blockdev_read(target, rx_buf, offset, data_length, iov_len);
if (expected_rc == 0) {
CU_ASSERT_EQUAL(g_completion_success, true);
} else {
CU_ASSERT_EQUAL(g_completion_success, false);
}
if (g_completion_success) {
rc = blockdev_write_read_data_match(rx_buf, tx_buf + (offset - write_offset), data_length);
/* Assert the write by comparing it with values read
* from each blockdev */
CU_ASSERT_EQUAL(rc, 0);
}
spdk_free(rx_buf);
spdk_free(tx_buf);
}
static void
blockdev_compare_and_write(uint32_t data_length, uint32_t iov_len, uint64_t offset)
{
struct io_target *target;
char *tx_buf = NULL;
char *write_buf = NULL;
char *rx_buf = NULL;
int rc;
target = g_current_io_target;
initialize_buffer(&tx_buf, 0xAA, data_length);
initialize_buffer(&rx_buf, 0, data_length);
initialize_buffer(&write_buf, 0xBB, data_length);
blockdev_write(target, tx_buf, offset, data_length, iov_len);
CU_ASSERT_EQUAL(g_completion_success, true);
_blockdev_compare_and_write(target, tx_buf, write_buf, offset, data_length, iov_len);
CU_ASSERT_EQUAL(g_completion_success, true);
_blockdev_compare_and_write(target, tx_buf, write_buf, offset, data_length, iov_len);
CU_ASSERT_EQUAL(g_completion_success, false);
blockdev_read(target, rx_buf, offset, data_length, iov_len);
CU_ASSERT_EQUAL(g_completion_success, true);
rc = blockdev_write_read_data_match(rx_buf, write_buf, data_length);
/* Assert the write by comparing it with values read
* from each blockdev */
CU_ASSERT_EQUAL(rc, 0);
spdk_free(rx_buf);
spdk_free(tx_buf);
spdk_free(write_buf);
}
static void
blockdev_write_read_block(void)
{
uint32_t data_length;
uint64_t offset;
int pattern;
int expected_rc;
struct io_target *target = g_current_io_target;
struct spdk_bdev *bdev = target->bdev;
/* Data size = 1 block */
data_length = spdk_bdev_get_block_size(bdev);
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
offset = 0;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 0);
}
static void
blockdev_write_zeroes_read_block(void)
{
uint32_t data_length;
uint64_t offset;
int pattern;
int expected_rc;
struct io_target *target = g_current_io_target;
struct spdk_bdev *bdev = target->bdev;
/* Data size = 1 block */
data_length = spdk_bdev_get_block_size(bdev);
offset = 0;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write_zeroes and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 1);
}
/*
* This i/o will not have to split at the bdev layer.
*/
static void
blockdev_write_zeroes_read_no_split(void)
{
uint32_t data_length;
uint64_t offset;
int pattern;
int expected_rc;
struct io_target *target = g_current_io_target;
struct spdk_bdev *bdev = target->bdev;
/* Data size = block size aligned ZERO_BUFFER_SIZE */
data_length = ZERO_BUFFER_SIZE; /* from bdev_internal.h */
data_length -= ZERO_BUFFER_SIZE % spdk_bdev_get_block_size(bdev);
offset = 0;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write_zeroes and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 1);
}
/*
* This i/o will have to split at the bdev layer if
* write-zeroes is not supported by the bdev.
*/
static void
blockdev_write_zeroes_read_split(void)
{
uint32_t data_length;
uint64_t offset;
int pattern;
int expected_rc;
struct io_target *target = g_current_io_target;
struct spdk_bdev *bdev = target->bdev;
/* Data size = block size aligned 3 * ZERO_BUFFER_SIZE */
data_length = 3 * ZERO_BUFFER_SIZE; /* from bdev_internal.h */
data_length -= data_length % spdk_bdev_get_block_size(bdev);
offset = 0;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write_zeroes and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 1);
}
/*
* This i/o will have to split at the bdev layer if
* write-zeroes is not supported by the bdev. It also
* tests a write size that is not an even multiple of
* the bdev layer zero buffer size.
*/
static void
blockdev_write_zeroes_read_split_partial(void)
{
uint32_t data_length;
uint64_t offset;
int pattern;
int expected_rc;
struct io_target *target = g_current_io_target;
struct spdk_bdev *bdev = target->bdev;
uint32_t block_size = spdk_bdev_get_block_size(bdev);
/* Data size = block size aligned 7 * ZERO_BUFFER_SIZE / 2 */
data_length = ZERO_BUFFER_SIZE * 7 / 2;
data_length -= data_length % block_size;
offset = 0;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write_zeroes and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 1);
}
static void
blockdev_writev_readv_block(void)
{
uint32_t data_length, iov_len;
uint64_t offset;
int pattern;
int expected_rc;
struct io_target *target = g_current_io_target;
struct spdk_bdev *bdev = target->bdev;
/* Data size = 1 block */
data_length = spdk_bdev_get_block_size(bdev);
iov_len = data_length;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
offset = 0;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, iov_len, pattern, offset, expected_rc, 0);
}
static void
blockdev_comparev_and_writev(void)
{
uint32_t data_length, iov_len;
uint64_t offset;
struct io_target *target = g_current_io_target;
struct spdk_bdev *bdev = target->bdev;
if (spdk_bdev_is_md_separate(bdev)) {
/* TODO: remove this check once bdev layer properly supports
* compare and write for bdevs with separate md.
*/
SPDK_ERRLOG("skipping comparev_and_writev on bdev %s since it has\n"
"separate metadata which is not supported yet.\n",
spdk_bdev_get_name(bdev));
return;
}
/* Data size = acwu size */
data_length = spdk_bdev_get_block_size(bdev) * spdk_bdev_get_acwu(bdev);
iov_len = data_length;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
offset = 0;
blockdev_compare_and_write(data_length, iov_len, offset);
}
static void
blockdev_writev_readv_30x1block(void)
{
uint32_t data_length, iov_len;
uint64_t offset;
int pattern;
int expected_rc;
struct io_target *target = g_current_io_target;
struct spdk_bdev *bdev = target->bdev;
uint32_t block_size = spdk_bdev_get_block_size(bdev);
/* Data size = 30 * block size */
data_length = block_size * 30;
iov_len = block_size;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
offset = 0;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, iov_len, pattern, offset, expected_rc, 0);
}
static void
blockdev_write_read_8blocks(void)
{
uint32_t data_length;
uint64_t offset;
int pattern;
int expected_rc;
struct io_target *target = g_current_io_target;
struct spdk_bdev *bdev = target->bdev;
/* Data size = 8 * block size */
data_length = spdk_bdev_get_block_size(bdev) * 8;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
offset = data_length;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 0);
}
static void
blockdev_writev_readv_8blocks(void)
{
uint32_t data_length, iov_len;
uint64_t offset;
int pattern;
int expected_rc;
struct io_target *target = g_current_io_target;
struct spdk_bdev *bdev = target->bdev;
/* Data size = 8 * block size */
data_length = spdk_bdev_get_block_size(bdev) * 8;
iov_len = data_length;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
offset = data_length;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, iov_len, pattern, offset, expected_rc, 0);
}
static void
blockdev_write_read_size_gt_128k(void)
{
uint32_t data_length;
uint64_t offset;
int pattern;
int expected_rc;
struct io_target *target = g_current_io_target;
struct spdk_bdev *bdev = target->bdev;
uint32_t block_size = spdk_bdev_get_block_size(bdev);
/* Data size = block size aligned 128K + 1 block */
data_length = 128 * 1024;
data_length -= data_length % block_size;
data_length += block_size;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
offset = block_size * 2;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 0);
}
static void
blockdev_writev_readv_size_gt_128k(void)
{
uint32_t data_length, iov_len;
uint64_t offset;
int pattern;
int expected_rc;
struct io_target *target = g_current_io_target;
struct spdk_bdev *bdev = target->bdev;
uint32_t block_size = spdk_bdev_get_block_size(bdev);
/* Data size = block size aligned 128K + 1 block */
data_length = 128 * 1024;
data_length -= data_length % block_size;
data_length += block_size;
iov_len = data_length;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
offset = block_size * 2;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, iov_len, pattern, offset, expected_rc, 0);
}
static void
blockdev_writev_readv_size_gt_128k_two_iov(void)
{
uint32_t data_length, iov_len;
uint64_t offset;
int pattern;
int expected_rc;
struct io_target *target = g_current_io_target;
struct spdk_bdev *bdev = target->bdev;
uint32_t block_size = spdk_bdev_get_block_size(bdev);
/* Data size = block size aligned 128K + 1 block */
data_length = 128 * 1024;
data_length -= data_length % block_size;
iov_len = data_length;
data_length += block_size;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
offset = block_size * 2;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, iov_len, pattern, offset, expected_rc, 0);
}
static void
blockdev_write_read_invalid_size(void)
{
uint32_t data_length;
uint64_t offset;
int pattern;
int expected_rc;
struct io_target *target = g_current_io_target;
struct spdk_bdev *bdev = target->bdev;
uint32_t block_size = spdk_bdev_get_block_size(bdev);
/* Data size is not a multiple of the block size */
data_length = block_size - 1;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
offset = block_size * 2;
pattern = 0xA3;
/* Params are invalid, hence the expected return value
* of write and read for all blockdevs is < 0 */
expected_rc = -1;
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 0);
}
static void
blockdev_write_read_offset_plus_nbytes_equals_bdev_size(void)
{
uint32_t data_length;
uint64_t offset;
int pattern;
int expected_rc;
struct io_target *target = g_current_io_target;
struct spdk_bdev *bdev = target->bdev;
uint32_t block_size = spdk_bdev_get_block_size(bdev);
data_length = block_size;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
/* The start offset has been set to a marginal value
* such that offset + nbytes == Total size of
* blockdev. */
offset = ((spdk_bdev_get_num_blocks(bdev) - 1) * block_size);
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 0);
}
static void
blockdev_write_read_offset_plus_nbytes_gt_bdev_size(void)
{
uint32_t data_length;
uint64_t offset;
int pattern;
int expected_rc;
struct io_target *target = g_current_io_target;
struct spdk_bdev *bdev = target->bdev;
uint32_t block_size = spdk_bdev_get_block_size(bdev);
/* Tests the overflow condition of the blockdevs. */
data_length = block_size * 2;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
pattern = 0xA3;
/* The start offset has been set to a valid value
* but offset + nbytes is greater than the Total size
* of the blockdev. The test should fail. */
offset = (spdk_bdev_get_num_blocks(bdev) - 1) * block_size;
/* Params are invalid, hence the expected return value
* of write and read for all blockdevs is < 0 */
expected_rc = -1;
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 0);
}
static void
blockdev_write_read_max_offset(void)
{
int data_length;
uint64_t offset;
int pattern;
int expected_rc;
struct io_target *target = g_current_io_target;
struct spdk_bdev *bdev = target->bdev;
data_length = spdk_bdev_get_block_size(bdev);
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
/* The start offset has been set to UINT64_MAX such that
* adding nbytes wraps around and points to an invalid address. */
offset = UINT64_MAX;
pattern = 0xA3;
/* Params are invalid, hence the expected return value
* of write and read for all blockdevs is < 0 */
expected_rc = -1;
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 0);
}
static void
blockdev_overlapped_write_read_2blocks(void)
{
int data_length;
uint64_t offset;
int pattern;
int expected_rc;
struct io_target *target = g_current_io_target;
struct spdk_bdev *bdev = target->bdev;
/* Data size = 2 blocks */
data_length = spdk_bdev_get_block_size(bdev) * 2;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
offset = 0;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write and read for all blockdevs is 0. */
expected_rc = 0;
/* Assert the write by comparing it with values read
* from the same offset for each blockdev */
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 0);
/* Overwrite the pattern 0xbb of size 2*block size on an address offset
* overlapping with the address written above and assert the new value in
* the overlapped address range */
/* Populate 2*block size with value 0xBB */
pattern = 0xBB;
/* Offset = 1 block; Overlap offset addresses and write value 0xbb */
offset = spdk_bdev_get_block_size(bdev);
/* Assert the write by comparing it with values read
* from the overlapped offset for each blockdev */
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 0);
}
static void
__blockdev_reset(void *arg)
{
struct bdevio_request *req = arg;
struct io_target *target = req->target;
int rc;
rc = spdk_bdev_reset(target->bdev_desc, target->ch, quick_test_complete, NULL);
if (rc < 0) {
g_completion_success = false;
wake_ut_thread();
}
}
static void
blockdev_test_reset(void)
{
struct bdevio_request req;
struct io_target *target;
bool reset_supported;
target = g_current_io_target;
req.target = target;
reset_supported = spdk_bdev_io_type_supported(target->bdev, SPDK_BDEV_IO_TYPE_RESET);
g_completion_success = false;
execute_spdk_function(__blockdev_reset, &req);
CU_ASSERT_EQUAL(g_completion_success, reset_supported);
}
struct bdevio_passthrough_request {
struct spdk_nvme_cmd cmd;
void *buf;
uint32_t len;
struct io_target *target;
int sct;
int sc;
uint32_t cdw0;
};
static void
nvme_pt_test_complete(struct spdk_bdev_io *bdev_io, bool success, void *arg)
{
struct bdevio_passthrough_request *pt_req = arg;
spdk_bdev_io_get_nvme_status(bdev_io, &pt_req->cdw0, &pt_req->sct, &pt_req->sc);
spdk_bdev_free_io(bdev_io);
wake_ut_thread();
}
static void
__blockdev_nvme_passthru(void *arg)
{
struct bdevio_passthrough_request *pt_req = arg;
struct io_target *target = pt_req->target;
int rc;
rc = spdk_bdev_nvme_io_passthru(target->bdev_desc, target->ch,
&pt_req->cmd, pt_req->buf, pt_req->len,
nvme_pt_test_complete, pt_req);
if (rc) {
wake_ut_thread();
}
}
static void
blockdev_test_nvme_passthru_rw(void)
{
struct bdevio_passthrough_request pt_req;
void *write_buf, *read_buf;
struct io_target *target;
target = g_current_io_target;
if (!spdk_bdev_io_type_supported(target->bdev, SPDK_BDEV_IO_TYPE_NVME_IO)) {
return;
}
memset(&pt_req, 0, sizeof(pt_req));
pt_req.target = target;
pt_req.cmd.opc = SPDK_NVME_OPC_WRITE;
pt_req.cmd.nsid = 1;
*(uint64_t *)&pt_req.cmd.cdw10 = 4;
pt_req.cmd.cdw12 = 0;
pt_req.len = spdk_bdev_get_block_size(target->bdev);
write_buf = spdk_malloc(pt_req.len, 0, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
memset(write_buf, 0xA5, pt_req.len);
pt_req.buf = write_buf;
pt_req.sct = SPDK_NVME_SCT_VENDOR_SPECIFIC;
pt_req.sc = SPDK_NVME_SC_INVALID_FIELD;
execute_spdk_function(__blockdev_nvme_passthru, &pt_req);
CU_ASSERT(pt_req.sct == SPDK_NVME_SCT_GENERIC);
CU_ASSERT(pt_req.sc == SPDK_NVME_SC_SUCCESS);
pt_req.cmd.opc = SPDK_NVME_OPC_READ;
read_buf = spdk_zmalloc(pt_req.len, 0, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
pt_req.buf = read_buf;
pt_req.sct = SPDK_NVME_SCT_VENDOR_SPECIFIC;
pt_req.sc = SPDK_NVME_SC_INVALID_FIELD;
execute_spdk_function(__blockdev_nvme_passthru, &pt_req);
CU_ASSERT(pt_req.sct == SPDK_NVME_SCT_GENERIC);
CU_ASSERT(pt_req.sc == SPDK_NVME_SC_SUCCESS);
CU_ASSERT(!memcmp(read_buf, write_buf, pt_req.len));
spdk_free(read_buf);
spdk_free(write_buf);
}
static void
blockdev_test_nvme_passthru_vendor_specific(void)
{
struct bdevio_passthrough_request pt_req;
struct io_target *target;
target = g_current_io_target;
if (!spdk_bdev_io_type_supported(target->bdev, SPDK_BDEV_IO_TYPE_NVME_IO)) {
return;
}
memset(&pt_req, 0, sizeof(pt_req));
pt_req.target = target;
pt_req.cmd.opc = 0x7F; /* choose known invalid opcode */
pt_req.cmd.nsid = 1;
pt_req.sct = SPDK_NVME_SCT_VENDOR_SPECIFIC;
pt_req.sc = SPDK_NVME_SC_SUCCESS;
pt_req.cdw0 = 0xbeef;
execute_spdk_function(__blockdev_nvme_passthru, &pt_req);
CU_ASSERT(pt_req.sct == SPDK_NVME_SCT_GENERIC);
CU_ASSERT(pt_req.sc == SPDK_NVME_SC_INVALID_OPCODE);
CU_ASSERT(pt_req.cdw0 == 0x0);
}
static void
__blockdev_nvme_admin_passthru(void *arg)
{
struct bdevio_passthrough_request *pt_req = arg;
struct io_target *target = pt_req->target;
int rc;
rc = spdk_bdev_nvme_admin_passthru(target->bdev_desc, target->ch,
&pt_req->cmd, pt_req->buf, pt_req->len,
nvme_pt_test_complete, pt_req);
if (rc) {
wake_ut_thread();
}
}
static void
blockdev_test_nvme_admin_passthru(void)
{
struct io_target *target;
struct bdevio_passthrough_request pt_req;
target = g_current_io_target;
if (!spdk_bdev_io_type_supported(target->bdev, SPDK_BDEV_IO_TYPE_NVME_ADMIN)) {
return;
}
memset(&pt_req, 0, sizeof(pt_req));
pt_req.target = target;
pt_req.cmd.opc = SPDK_NVME_OPC_IDENTIFY;
pt_req.cmd.nsid = 0;
*(uint64_t *)&pt_req.cmd.cdw10 = SPDK_NVME_IDENTIFY_CTRLR;
pt_req.len = sizeof(struct spdk_nvme_ctrlr_data);
pt_req.buf = spdk_malloc(pt_req.len, 0, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
pt_req.sct = SPDK_NVME_SCT_GENERIC;
pt_req.sc = SPDK_NVME_SC_SUCCESS;
execute_spdk_function(__blockdev_nvme_admin_passthru, &pt_req);
CU_ASSERT(pt_req.sct == SPDK_NVME_SCT_GENERIC);
CU_ASSERT(pt_req.sc == SPDK_NVME_SC_SUCCESS);
}
static void
blockdev_test_copy(void)
{
uint32_t data_length;
uint64_t src_offset, dst_offset;
struct io_target *target = g_current_io_target;
struct spdk_bdev *bdev = target->bdev;
char *tx_buf = NULL;
char *rx_buf = NULL;
int rc;
if (!spdk_bdev_io_type_supported(target->bdev, SPDK_BDEV_IO_TYPE_COPY)) {
return;
}
data_length = spdk_bdev_get_block_size(bdev);
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
src_offset = 0;
dst_offset = spdk_bdev_get_block_size(bdev);
initialize_buffer(&tx_buf, 0xAA, data_length);
initialize_buffer(&rx_buf, 0, data_length);
blockdev_write(target, tx_buf, src_offset, data_length, data_length);
CU_ASSERT_EQUAL(g_completion_success, true);
blockdev_copy(target, dst_offset, src_offset, data_length);
CU_ASSERT_EQUAL(g_completion_success, true);
blockdev_read(target, rx_buf, dst_offset, data_length, data_length);
CU_ASSERT_EQUAL(g_completion_success, true);
rc = blockdev_write_read_data_match(rx_buf, tx_buf, data_length);
CU_ASSERT_EQUAL(rc, 0);
}
static void
__stop_init_thread(void *arg)
{
unsigned num_failures = g_num_failures;
struct spdk_jsonrpc_request *request = arg;
g_num_failures = 0;
bdevio_cleanup_targets();
if (g_wait_for_tests && !g_shutdown) {
/* Do not stop the app yet, wait for another RPC */
rpc_perform_tests_cb(num_failures, request);
return;
}
spdk_app_stop(num_failures);
}
static void
stop_init_thread(unsigned num_failures, struct spdk_jsonrpc_request *request)
{
g_num_failures = num_failures;
spdk_thread_send_msg(g_thread_init, __stop_init_thread, request);
}
static int
suite_init(void)
{
if (g_current_io_target == NULL) {
g_current_io_target = g_io_targets;
}
return 0;
}
static int
suite_fini(void)
{
g_current_io_target = g_current_io_target->next;
return 0;
}
#define SUITE_NAME_MAX 64
static int
__setup_ut_on_single_target(struct io_target *target)
{
unsigned rc = 0;
CU_pSuite suite = NULL;
char name[SUITE_NAME_MAX];
snprintf(name, sizeof(name), "bdevio tests on: %s", spdk_bdev_get_name(target->bdev));
suite = CU_add_suite(name, suite_init, suite_fini);
if (suite == NULL) {
CU_cleanup_registry();
rc = CU_get_error();
return -rc;
}
if (
CU_add_test(suite, "blockdev write read block",
blockdev_write_read_block) == NULL
|| CU_add_test(suite, "blockdev write zeroes read block",
blockdev_write_zeroes_read_block) == NULL
|| CU_add_test(suite, "blockdev write zeroes read no split",
blockdev_write_zeroes_read_no_split) == NULL
|| CU_add_test(suite, "blockdev write zeroes read split",
blockdev_write_zeroes_read_split) == NULL
|| CU_add_test(suite, "blockdev write zeroes read split partial",
blockdev_write_zeroes_read_split_partial) == NULL
|| CU_add_test(suite, "blockdev reset",
blockdev_test_reset) == NULL
|| CU_add_test(suite, "blockdev write read 8 blocks",
blockdev_write_read_8blocks) == NULL
|| CU_add_test(suite, "blockdev write read size > 128k",
blockdev_write_read_size_gt_128k) == NULL
|| CU_add_test(suite, "blockdev write read invalid size",
blockdev_write_read_invalid_size) == NULL
|| CU_add_test(suite, "blockdev write read offset + nbytes == size of blockdev",
blockdev_write_read_offset_plus_nbytes_equals_bdev_size) == NULL
|| CU_add_test(suite, "blockdev write read offset + nbytes > size of blockdev",
blockdev_write_read_offset_plus_nbytes_gt_bdev_size) == NULL
|| CU_add_test(suite, "blockdev write read max offset",
blockdev_write_read_max_offset) == NULL
|| CU_add_test(suite, "blockdev write read 2 blocks on overlapped address offset",
blockdev_overlapped_write_read_2blocks) == NULL
|| CU_add_test(suite, "blockdev writev readv 8 blocks",
blockdev_writev_readv_8blocks) == NULL
|| CU_add_test(suite, "blockdev writev readv 30 x 1block",
blockdev_writev_readv_30x1block) == NULL
|| CU_add_test(suite, "blockdev writev readv block",
blockdev_writev_readv_block) == NULL
|| CU_add_test(suite, "blockdev writev readv size > 128k",
blockdev_writev_readv_size_gt_128k) == NULL
|| CU_add_test(suite, "blockdev writev readv size > 128k in two iovs",
blockdev_writev_readv_size_gt_128k_two_iov) == NULL
|| CU_add_test(suite, "blockdev comparev and writev",
blockdev_comparev_and_writev) == NULL
|| CU_add_test(suite, "blockdev nvme passthru rw",
blockdev_test_nvme_passthru_rw) == NULL
|| CU_add_test(suite, "blockdev nvme passthru vendor specific",
blockdev_test_nvme_passthru_vendor_specific) == NULL
|| CU_add_test(suite, "blockdev nvme admin passthru",
blockdev_test_nvme_admin_passthru) == NULL
|| CU_add_test(suite, "blockdev copy",
blockdev_test_copy) == NULL
) {
CU_cleanup_registry();
rc = CU_get_error();
return -rc;
}
return 0;
}
static void
__run_ut_thread(void *arg)
{
struct spdk_jsonrpc_request *request = arg;
int rc = 0;
struct io_target *target;
unsigned num_failures;
if (CU_initialize_registry() != CUE_SUCCESS) {
/* CUnit error, probably won't recover */
rc = CU_get_error();
stop_init_thread(-rc, request);
}
target = g_io_targets;
while (target != NULL) {
rc = __setup_ut_on_single_target(target);
if (rc < 0) {
/* CUnit error, probably won't recover */
stop_init_thread(-rc, request);
}
target = target->next;
}
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
stop_init_thread(num_failures, request);
}
static void
__construct_targets(void *arg)
{
if (bdevio_construct_targets() < 0) {
spdk_app_stop(-1);
return;
}
spdk_thread_send_msg(g_thread_ut, __run_ut_thread, NULL);
}
static void
test_main(void *arg1)
{
struct spdk_cpuset tmpmask = {};
uint32_t i;
pthread_mutex_init(&g_test_mutex, NULL);
pthread_cond_init(&g_test_cond, NULL);
/* This test runs specifically on at least three cores.
* g_thread_init is the app_thread on main core from event framework.
* Next two are only for the tests and should always be on separate CPU cores. */
if (spdk_env_get_core_count() < 3) {
spdk_app_stop(-1);
return;
}
SPDK_ENV_FOREACH_CORE(i) {
if (i == spdk_env_get_current_core()) {
g_thread_init = spdk_get_thread();
continue;
}
spdk_cpuset_zero(&tmpmask);
spdk_cpuset_set_cpu(&tmpmask, i, true);
if (g_thread_ut == NULL) {
g_thread_ut = spdk_thread_create("ut_thread", &tmpmask);
} else if (g_thread_io == NULL) {
g_thread_io = spdk_thread_create("io_thread", &tmpmask);
}
}
if (g_wait_for_tests) {
/* Do not perform any tests until RPC is received */
return;
}
spdk_thread_send_msg(g_thread_init, __construct_targets, NULL);
}
static void
bdevio_usage(void)
{
printf(" -w start bdevio app and wait for RPC to start the tests\n");
}
static int
bdevio_parse_arg(int ch, char *arg)
{
switch (ch) {
case 'w':
g_wait_for_tests = true;
break;
default:
return -EINVAL;
}
return 0;
}
struct rpc_perform_tests {
char *name;
};
static void
free_rpc_perform_tests(struct rpc_perform_tests *r)
{
free(r->name);
}
static const struct spdk_json_object_decoder rpc_perform_tests_decoders[] = {
{"name", offsetof(struct rpc_perform_tests, name), spdk_json_decode_string, true},
};
static void
rpc_perform_tests_cb(unsigned num_failures, struct spdk_jsonrpc_request *request)
{
struct spdk_json_write_ctx *w;
if (num_failures == 0) {
w = spdk_jsonrpc_begin_result(request);
spdk_json_write_uint32(w, num_failures);
spdk_jsonrpc_end_result(request, w);
} else {
spdk_jsonrpc_send_error_response_fmt(request, SPDK_JSONRPC_ERROR_INTERNAL_ERROR,
"%d test cases failed", num_failures);
}
}
static void
rpc_perform_tests(struct spdk_jsonrpc_request *request, const struct spdk_json_val *params)
{
struct rpc_perform_tests req = {NULL};
struct spdk_bdev *bdev;
int rc;
if (params && spdk_json_decode_object(params, rpc_perform_tests_decoders,
SPDK_COUNTOF(rpc_perform_tests_decoders),
&req)) {
SPDK_ERRLOG("spdk_json_decode_object failed\n");
spdk_jsonrpc_send_error_response(request, SPDK_JSONRPC_ERROR_INVALID_PARAMS, "Invalid parameters");
goto invalid;
}
if (req.name) {
bdev = spdk_bdev_get_by_name(req.name);
if (bdev == NULL) {
SPDK_ERRLOG("Bdev '%s' does not exist\n", req.name);
spdk_jsonrpc_send_error_response_fmt(request, SPDK_JSONRPC_ERROR_INTERNAL_ERROR,
"Bdev '%s' does not exist: %s",
req.name, spdk_strerror(ENODEV));
goto invalid;
}
rc = bdevio_construct_target(bdev);
if (rc < 0) {
SPDK_ERRLOG("Could not construct target for bdev '%s'\n", spdk_bdev_get_name(bdev));
spdk_jsonrpc_send_error_response_fmt(request, SPDK_JSONRPC_ERROR_INTERNAL_ERROR,
"Could not construct target for bdev '%s': %s",
spdk_bdev_get_name(bdev), spdk_strerror(-rc));
goto invalid;
}
} else {
rc = bdevio_construct_targets();
if (rc < 0) {
SPDK_ERRLOG("Could not construct targets for all bdevs\n");
spdk_jsonrpc_send_error_response_fmt(request, SPDK_JSONRPC_ERROR_INTERNAL_ERROR,
"Could not construct targets for all bdevs: %s",
spdk_strerror(-rc));
goto invalid;
}
}
free_rpc_perform_tests(&req);
spdk_thread_send_msg(g_thread_ut, __run_ut_thread, request);
return;
invalid:
free_rpc_perform_tests(&req);
}
SPDK_RPC_REGISTER("perform_tests", rpc_perform_tests, SPDK_RPC_RUNTIME)
static void
spdk_bdevio_shutdown_cb(void)
{
g_shutdown = true;
spdk_thread_send_msg(g_thread_init, __stop_init_thread, NULL);
}
int
main(int argc, char **argv)
{
int rc;
struct spdk_app_opts opts = {};
spdk_app_opts_init(&opts, sizeof(opts));
opts.name = "bdevio";
opts.reactor_mask = "0x7";
opts.shutdown_cb = spdk_bdevio_shutdown_cb;
if ((rc = spdk_app_parse_args(argc, argv, &opts, "w", NULL,
bdevio_parse_arg, bdevio_usage)) !=
SPDK_APP_PARSE_ARGS_SUCCESS) {
return rc;
}
rc = spdk_app_start(&opts, test_main, NULL);
spdk_app_fini();
return rc;
}