Spdk/lib/nvmf/vfio_user.c
John Levon dda78a882f nvmf/vfio-user: fix _free_ctrlr()
In _free_ctrlr(), ->endpoint can never be NULL, and the code was
self-contradictory; assume it's not NULL.

Signed-off-by: John Levon <john.levon@nutanix.com>
Change-Id: I81a449123ca05f64460380dc3a8ad8af2143d166
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/15831
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Community-CI: Mellanox Build Bot
Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
Reviewed-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
2022-12-12 09:26:34 +00:00

5835 lines
155 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2020 Intel Corporation.
* Copyright (c) 2019-2022, Nutanix Inc. All rights reserved.
* Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*/
/*
* NVMe over vfio-user transport
*/
#include <sys/param.h>
#include <vfio-user/libvfio-user.h>
#include <vfio-user/pci_defs.h>
#include "spdk/barrier.h"
#include "spdk/stdinc.h"
#include "spdk/assert.h"
#include "spdk/thread.h"
#include "spdk/nvmf_transport.h"
#include "spdk/sock.h"
#include "spdk/string.h"
#include "spdk/util.h"
#include "spdk/log.h"
#include "transport.h"
#include "nvmf_internal.h"
#define SWAP(x, y) \
do \
{ \
typeof(x) _tmp = x; \
x = y; \
y = _tmp; \
} while (0)
#define NVMF_VFIO_USER_DEFAULT_MAX_QUEUE_DEPTH 256
#define NVMF_VFIO_USER_DEFAULT_AQ_DEPTH 32
#define NVMF_VFIO_USER_DEFAULT_MAX_IO_SIZE ((NVMF_REQ_MAX_BUFFERS - 1) << SHIFT_4KB)
#define NVMF_VFIO_USER_DEFAULT_IO_UNIT_SIZE NVMF_VFIO_USER_DEFAULT_MAX_IO_SIZE
#define NVME_DOORBELLS_OFFSET 0x1000
#define NVMF_VFIO_USER_SHADOW_DOORBELLS_BUFFER_COUNT 2
#define NVMF_VFIO_USER_SET_EVENTIDX_MAX_ATTEMPTS 3
#define NVMF_VFIO_USER_EVENTIDX_POLL UINT32_MAX
#define NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR 512
#define NVMF_VFIO_USER_DEFAULT_MAX_QPAIRS_PER_CTRLR (NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR / 4)
/* NVMe spec 1.4, section 5.21.1.7 */
SPDK_STATIC_ASSERT(NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR >= 2 &&
NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR <= SPDK_NVME_MAX_IO_QUEUES,
"bad number of queues");
/*
* NVMe driver reads 4096 bytes, which is the extended PCI configuration space
* available on PCI-X 2.0 and PCI Express buses
*/
#define NVME_REG_CFG_SIZE 0x1000
/*
* Doorbells must be page aligned so that they can memory mapped.
*
* TODO does the NVMe spec also require this? Document it.
*/
#define NVMF_VFIO_USER_DOORBELLS_SIZE \
SPDK_ALIGN_CEIL( \
(NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR * 2 * SPDK_NVME_DOORBELL_REGISTER_SIZE), \
0x1000)
#define NVME_REG_BAR0_SIZE (NVME_DOORBELLS_OFFSET + NVMF_VFIO_USER_DOORBELLS_SIZE)
/*
* TODO check the PCI spec whether BAR4 and BAR5 really have to be at least one
* page and a multiple of page size (maybe QEMU also needs this?). Document all
* this.
*/
/*
* MSI-X Pending Bit Array Size
*
* TODO according to the PCI spec we need one bit per vector, document the
* relevant section.
*
* If the first argument to SPDK_ALIGN_CEIL is 0 then the result is 0, so we
* would end up with a 0-size BAR5.
*/
#define NVME_IRQ_MSIX_NUM MAX(CHAR_BIT, NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR)
#define NVME_BAR5_SIZE SPDK_ALIGN_CEIL((NVME_IRQ_MSIX_NUM / CHAR_BIT), 0x1000)
SPDK_STATIC_ASSERT(NVME_BAR5_SIZE > 0, "Incorrect size");
/* MSI-X Table Size */
#define NVME_BAR4_SIZE SPDK_ALIGN_CEIL((NVME_IRQ_MSIX_NUM * 16), 0x1000)
SPDK_STATIC_ASSERT(NVME_BAR4_SIZE > 0, "Incorrect size");
struct nvmf_vfio_user_req;
typedef int (*nvmf_vfio_user_req_cb_fn)(struct nvmf_vfio_user_req *req, void *cb_arg);
/* 1 more for PRP2 list itself */
#define NVMF_VFIO_USER_MAX_IOVECS (NVMF_REQ_MAX_BUFFERS + 1)
enum nvmf_vfio_user_req_state {
VFIO_USER_REQUEST_STATE_FREE = 0,
VFIO_USER_REQUEST_STATE_EXECUTING,
};
/*
* Support for live migration in NVMf/vfio-user: live migration is implemented
* by stopping the NVMf subsystem when the device is instructed to enter the
* stop-and-copy state and then trivially, and most importantly safely,
* collecting migration state and providing it to the vfio-user client. We
* don't provide any migration state at the pre-copy state as that's too
* complicated to do, we might support this in the future.
*/
/* NVMe device state representation */
struct nvme_migr_sq_state {
uint16_t sqid;
uint16_t cqid;
uint32_t head;
uint32_t size;
uint32_t reserved;
uint64_t dma_addr;
};
SPDK_STATIC_ASSERT(sizeof(struct nvme_migr_sq_state) == 0x18, "Incorrect size");
struct nvme_migr_cq_state {
uint16_t cqid;
uint16_t phase;
uint32_t tail;
uint32_t size;
uint32_t iv;
uint32_t ien;
uint32_t reserved;
uint64_t dma_addr;
};
SPDK_STATIC_ASSERT(sizeof(struct nvme_migr_cq_state) == 0x20, "Incorrect size");
#define VFIO_USER_NVME_MIGR_MAGIC 0xAFEDBC23
/* The device state is in VFIO MIGRATION BAR(9) region, keep the device state page aligned.
*
* NVMe device migration region is defined as below:
* -------------------------------------------------------------------------
* | vfio_user_nvme_migr_header | nvmf controller data | queue pairs | BARs |
* -------------------------------------------------------------------------
*
* Keep vfio_user_nvme_migr_header as a fixed 0x1000 length, all new added fields
* can use the reserved space at the end of the data structure.
*/
struct vfio_user_nvme_migr_header {
/* Magic value to validate migration data */
uint32_t magic;
/* Version to check the data is same from source to destination */
uint32_t version;
/* The library uses this field to know how many fields in this
* structure are valid, starting at the beginning of this data
* structure. New added fields in future use `unused` memory
* spaces.
*/
uint32_t opts_size;
uint32_t reserved0;
/* BARs information */
uint64_t bar_offset[VFU_PCI_DEV_NUM_REGIONS];
uint64_t bar_len[VFU_PCI_DEV_NUM_REGIONS];
/* Queue pair start offset, starting at the beginning of this
* data structure.
*/
uint64_t qp_offset;
uint64_t qp_len;
/* Controller data structure */
uint32_t num_io_queues;
uint32_t reserved1;
/* NVMf controller data offset and length if exist, starting at
* the beginning of this data structure.
*/
uint64_t nvmf_data_offset;
uint64_t nvmf_data_len;
/*
* Whether or not shadow doorbells are used in the source. 0 is a valid DMA
* address.
*/
uint32_t sdbl;
/* Shadow doorbell DMA addresses. */
uint64_t shadow_doorbell_buffer;
uint64_t eventidx_buffer;
/* Reserved memory space for new added fields, the
* field is always at the end of this data structure.
*/
uint8_t unused[3856];
};
SPDK_STATIC_ASSERT(sizeof(struct vfio_user_nvme_migr_header) == 0x1000, "Incorrect size");
struct vfio_user_nvme_migr_qp {
struct nvme_migr_sq_state sq;
struct nvme_migr_cq_state cq;
};
/* NVMe state definition used to load/restore from/to NVMe migration BAR region */
struct vfio_user_nvme_migr_state {
struct vfio_user_nvme_migr_header ctrlr_header;
struct spdk_nvmf_ctrlr_migr_data nvmf_data;
struct vfio_user_nvme_migr_qp qps[NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR];
uint8_t doorbells[NVMF_VFIO_USER_DOORBELLS_SIZE];
uint8_t cfg[NVME_REG_CFG_SIZE];
};
struct nvmf_vfio_user_req {
struct spdk_nvmf_request req;
struct spdk_nvme_cpl rsp;
struct spdk_nvme_cmd cmd;
enum nvmf_vfio_user_req_state state;
nvmf_vfio_user_req_cb_fn cb_fn;
void *cb_arg;
/* old CC before prop_set_cc fabric command */
union spdk_nvme_cc_register cc;
TAILQ_ENTRY(nvmf_vfio_user_req) link;
struct iovec iov[NVMF_VFIO_USER_MAX_IOVECS];
uint8_t iovcnt;
/* NVMF_VFIO_USER_MAX_IOVECS worth of dma_sg_t. */
uint8_t sg[];
};
/*
* Mapping of an NVMe queue.
*
* This holds the information tracking a local process mapping of an NVMe queue
* shared by the client.
*/
struct nvme_q_mapping {
/* iov of local process mapping. */
struct iovec iov;
/* Stored sg, needed for unmap. */
dma_sg_t *sg;
/* Client PRP of queue. */
uint64_t prp1;
};
enum nvmf_vfio_user_sq_state {
VFIO_USER_SQ_UNUSED = 0,
VFIO_USER_SQ_CREATED,
VFIO_USER_SQ_DELETED,
VFIO_USER_SQ_ACTIVE,
VFIO_USER_SQ_INACTIVE
};
enum nvmf_vfio_user_cq_state {
VFIO_USER_CQ_UNUSED = 0,
VFIO_USER_CQ_CREATED,
VFIO_USER_CQ_DELETED,
};
enum nvmf_vfio_user_ctrlr_state {
VFIO_USER_CTRLR_CREATING = 0,
VFIO_USER_CTRLR_RUNNING,
/* Quiesce requested by libvfio-user */
VFIO_USER_CTRLR_PAUSING,
/* NVMf subsystem is paused, it's safe to do PCI reset, memory register,
* memory unergister, and vfio migration state transition in this state.
*/
VFIO_USER_CTRLR_PAUSED,
/*
* Implies that the NVMf subsystem is paused. Device will be unquiesced (PCI
* reset, memory register and unregister, controller in destination VM has
* been restored). NVMf subsystem resume has been requested.
*/
VFIO_USER_CTRLR_RESUMING,
/*
* Implies that the NVMf subsystem is paused. Both controller in source VM and
* destinatiom VM is in this state when doing live migration.
*/
VFIO_USER_CTRLR_MIGRATING
};
struct nvmf_vfio_user_sq {
struct spdk_nvmf_qpair qpair;
struct spdk_nvmf_transport_poll_group *group;
struct nvmf_vfio_user_ctrlr *ctrlr;
uint32_t qid;
/* Number of entries in queue. */
uint32_t size;
struct nvme_q_mapping mapping;
enum nvmf_vfio_user_sq_state sq_state;
uint32_t head;
volatile uint32_t *dbl_tailp;
/* Whether a shadow doorbell eventidx needs setting. */
bool need_rearm;
/* multiple SQs can be mapped to the same CQ */
uint16_t cqid;
/* handle_queue_connect_rsp() can be used both for CREATE IO SQ response
* and SQ re-connect response in the destination VM, for the prior case,
* we will post a NVMe completion to VM, we will not set this flag when
* re-connecting SQs in the destination VM.
*/
bool post_create_io_sq_completion;
/* Copy of Create IO SQ command, this field is used together with
* `post_create_io_sq_completion` flag.
*/
struct spdk_nvme_cmd create_io_sq_cmd;
/* Currently unallocated reqs. */
TAILQ_HEAD(, nvmf_vfio_user_req) free_reqs;
/* Poll group entry */
TAILQ_ENTRY(nvmf_vfio_user_sq) link;
/* Connected SQ entry */
TAILQ_ENTRY(nvmf_vfio_user_sq) tailq;
};
struct nvmf_vfio_user_cq {
struct spdk_nvmf_transport_poll_group *group;
int cq_ref;
uint32_t qid;
/* Number of entries in queue. */
uint32_t size;
struct nvme_q_mapping mapping;
enum nvmf_vfio_user_cq_state cq_state;
uint32_t tail;
volatile uint32_t *dbl_headp;
bool phase;
uint16_t iv;
bool ien;
uint32_t last_head;
uint32_t last_trigger_irq_tail;
};
struct nvmf_vfio_user_poll_group {
struct spdk_nvmf_transport_poll_group group;
TAILQ_ENTRY(nvmf_vfio_user_poll_group) link;
TAILQ_HEAD(, nvmf_vfio_user_sq) sqs;
struct spdk_interrupt *intr;
int intr_fd;
struct {
/*
* ctrlr_intr and ctrlr_kicks will be zero for all other poll
* groups. However, they can be zero even for the poll group
* the controller belongs are if no vfio-user message has been
* received or the controller hasn't been kicked yet.
*/
/*
* Number of times vfio_user_ctrlr_intr() has run:
* vfio-user file descriptor has been ready or explicitly
* kicked (see below).
*/
uint64_t ctrlr_intr;
/*
* Kicks to the controller by ctrlr_kick().
* ctrlr_intr - ctrlr_kicks is the number of times the
* vfio-user poll file descriptor has been ready.
*/
uint64_t ctrlr_kicks;
/*
* How many times we won the race arming an SQ.
*/
uint64_t won;
/*
* How many times we lost the race arming an SQ
*/
uint64_t lost;
/*
* How many requests we processed in total each time we lost
* the rearm race.
*/
uint64_t lost_count;
/*
* Number of attempts we attempted to rearm all the SQs in the
* poll group.
*/
uint64_t rearms;
uint64_t pg_process_count;
uint64_t intr;
uint64_t polls;
uint64_t polls_spurious;
uint64_t poll_reqs;
uint64_t poll_reqs_squared;
uint64_t cqh_admin_writes;
uint64_t cqh_io_writes;
} stats;
};
struct nvmf_vfio_user_shadow_doorbells {
volatile uint32_t *shadow_doorbells;
volatile uint32_t *eventidxs;
dma_sg_t *sgs;
struct iovec *iovs;
};
struct nvmf_vfio_user_ctrlr {
struct nvmf_vfio_user_endpoint *endpoint;
struct nvmf_vfio_user_transport *transport;
/* Connected SQs list */
TAILQ_HEAD(, nvmf_vfio_user_sq) connected_sqs;
enum nvmf_vfio_user_ctrlr_state state;
/*
* Tells whether live migration data have been prepared. This is used
* by the get_pending_bytes callback to tell whether or not the
* previous iteration finished.
*/
bool migr_data_prepared;
/* Controller is in source VM when doing live migration */
bool in_source_vm;
struct spdk_thread *thread;
struct spdk_poller *vfu_ctx_poller;
struct spdk_interrupt *intr;
int intr_fd;
bool queued_quiesce;
bool reset_shn;
bool disconnect;
uint16_t cntlid;
struct spdk_nvmf_ctrlr *ctrlr;
struct nvmf_vfio_user_sq *sqs[NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR];
struct nvmf_vfio_user_cq *cqs[NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR];
TAILQ_ENTRY(nvmf_vfio_user_ctrlr) link;
volatile uint32_t *bar0_doorbells;
struct nvmf_vfio_user_shadow_doorbells *sdbl;
/*
* Shadow doorbells PRPs to provide during the stop-and-copy state.
*/
uint64_t shadow_doorbell_buffer;
uint64_t eventidx_buffer;
bool adaptive_irqs_enabled;
};
/* Endpoint in vfio-user is associated with a socket file, which
* is the representative of a PCI endpoint.
*/
struct nvmf_vfio_user_endpoint {
struct nvmf_vfio_user_transport *transport;
vfu_ctx_t *vfu_ctx;
struct spdk_poller *accept_poller;
struct spdk_thread *accept_thread;
bool interrupt_mode;
struct msixcap *msix;
vfu_pci_config_space_t *pci_config_space;
int devmem_fd;
int accept_intr_fd;
struct spdk_interrupt *accept_intr;
volatile uint32_t *bar0_doorbells;
int migr_fd;
void *migr_data;
struct spdk_nvme_transport_id trid;
struct spdk_nvmf_subsystem *subsystem;
/* Controller is associated with an active socket connection,
* the lifecycle of the controller is same as the VM.
* Currently we only support one active connection, as the NVMe
* specification defines, we may support multiple controllers in
* future, so that it can support e.g: RESERVATION.
*/
struct nvmf_vfio_user_ctrlr *ctrlr;
pthread_mutex_t lock;
bool need_async_destroy;
/* The subsystem is in PAUSED state and need to be resumed, TRUE
* only when migration is done successfully and the controller is
* in source VM.
*/
bool need_resume;
/* Start the accept poller again after destroying the controller */
bool need_relisten;
TAILQ_ENTRY(nvmf_vfio_user_endpoint) link;
};
struct nvmf_vfio_user_transport_opts {
bool disable_mappable_bar0;
bool disable_adaptive_irq;
bool disable_shadow_doorbells;
bool disable_compare;
bool enable_intr_mode_sq_spreading;
};
struct nvmf_vfio_user_transport {
struct spdk_nvmf_transport transport;
struct nvmf_vfio_user_transport_opts transport_opts;
bool intr_mode_supported;
pthread_mutex_t lock;
TAILQ_HEAD(, nvmf_vfio_user_endpoint) endpoints;
pthread_mutex_t pg_lock;
TAILQ_HEAD(, nvmf_vfio_user_poll_group) poll_groups;
struct nvmf_vfio_user_poll_group *next_pg;
};
/*
* function prototypes
*/
static int nvmf_vfio_user_req_free(struct spdk_nvmf_request *req);
static struct nvmf_vfio_user_req *get_nvmf_vfio_user_req(struct nvmf_vfio_user_sq *sq);
/*
* Local process virtual address of a queue.
*/
static inline void *
q_addr(struct nvme_q_mapping *mapping)
{
return mapping->iov.iov_base;
}
static inline int
queue_index(uint16_t qid, bool is_cq)
{
return (qid * 2) + is_cq;
}
static inline volatile uint32_t *
sq_headp(struct nvmf_vfio_user_sq *sq)
{
assert(sq != NULL);
return &sq->head;
}
static inline volatile uint32_t *
sq_dbl_tailp(struct nvmf_vfio_user_sq *sq)
{
assert(sq != NULL);
return sq->dbl_tailp;
}
static inline volatile uint32_t *
cq_dbl_headp(struct nvmf_vfio_user_cq *cq)
{
assert(cq != NULL);
return cq->dbl_headp;
}
static inline volatile uint32_t *
cq_tailp(struct nvmf_vfio_user_cq *cq)
{
assert(cq != NULL);
return &cq->tail;
}
static inline void
sq_head_advance(struct nvmf_vfio_user_sq *sq)
{
assert(sq != NULL);
assert(*sq_headp(sq) < sq->size);
(*sq_headp(sq))++;
if (spdk_unlikely(*sq_headp(sq) == sq->size)) {
*sq_headp(sq) = 0;
}
}
static inline void
cq_tail_advance(struct nvmf_vfio_user_cq *cq)
{
assert(cq != NULL);
assert(*cq_tailp(cq) < cq->size);
(*cq_tailp(cq))++;
if (spdk_unlikely(*cq_tailp(cq) == cq->size)) {
*cq_tailp(cq) = 0;
cq->phase = !cq->phase;
}
}
/*
* As per NVMe Base spec 3.3.1.2.1, we are supposed to implement CQ flow
* control: if there is no space in the CQ, we should wait until there is.
*
* In practice, we just fail the controller instead: as it happens, all host
* implementations we care about right-size the CQ: this is required anyway for
* NVMEoF support (see 3.3.2.8).
*
* Since reading the head doorbell is relatively expensive, we use the cached
* value, so we only have to read it for real if it appears that we are full.
*/
static inline bool
cq_is_full(struct nvmf_vfio_user_cq *cq)
{
uint32_t qindex;
assert(cq != NULL);
qindex = *cq_tailp(cq) + 1;
if (spdk_unlikely(qindex == cq->size)) {
qindex = 0;
}
if (qindex != cq->last_head) {
return false;
}
cq->last_head = *cq_dbl_headp(cq);
return qindex == cq->last_head;
}
static bool
io_q_exists(struct nvmf_vfio_user_ctrlr *vu_ctrlr, const uint16_t qid, const bool is_cq)
{
assert(vu_ctrlr != NULL);
if (qid == 0 || qid >= NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR) {
return false;
}
if (is_cq) {
if (vu_ctrlr->cqs[qid] == NULL) {
return false;
}
return (vu_ctrlr->cqs[qid]->cq_state != VFIO_USER_CQ_DELETED &&
vu_ctrlr->cqs[qid]->cq_state != VFIO_USER_CQ_UNUSED);
}
if (vu_ctrlr->sqs[qid] == NULL) {
return false;
}
return (vu_ctrlr->sqs[qid]->sq_state != VFIO_USER_SQ_DELETED &&
vu_ctrlr->sqs[qid]->sq_state != VFIO_USER_SQ_UNUSED);
}
static char *
endpoint_id(struct nvmf_vfio_user_endpoint *endpoint)
{
return endpoint->trid.traddr;
}
static char *
ctrlr_id(struct nvmf_vfio_user_ctrlr *ctrlr)
{
if (!ctrlr || !ctrlr->endpoint) {
return "Null Ctrlr";
}
return endpoint_id(ctrlr->endpoint);
}
/* Return the poll group for the admin queue of the controller. */
static inline struct nvmf_vfio_user_poll_group *
ctrlr_to_poll_group(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
{
return SPDK_CONTAINEROF(vu_ctrlr->sqs[0]->group,
struct nvmf_vfio_user_poll_group,
group);
}
static inline struct spdk_thread *
poll_group_to_thread(struct nvmf_vfio_user_poll_group *vu_pg)
{
return vu_pg->group.group->thread;
}
static dma_sg_t *
index_to_sg_t(void *arr, size_t i)
{
return (dma_sg_t *)((uintptr_t)arr + i * dma_sg_size());
}
static inline size_t
vfio_user_migr_data_len(void)
{
return SPDK_ALIGN_CEIL(sizeof(struct vfio_user_nvme_migr_state), PAGE_SIZE);
}
static inline bool
in_interrupt_mode(struct nvmf_vfio_user_transport *vu_transport)
{
return spdk_interrupt_mode_is_enabled() &&
vu_transport->intr_mode_supported;
}
static int vfio_user_ctrlr_intr(void *ctx);
static void
vfio_user_msg_ctrlr_intr(void *ctx)
{
struct nvmf_vfio_user_ctrlr *vu_ctrlr = ctx;
struct nvmf_vfio_user_poll_group *vu_ctrlr_group = ctrlr_to_poll_group(vu_ctrlr);
vu_ctrlr_group->stats.ctrlr_kicks++;
vfio_user_ctrlr_intr(ctx);
}
/*
* Kick (force a wakeup) of all poll groups for this controller.
* vfio_user_ctrlr_intr() itself arranges for kicking other poll groups if
* needed.
*/
static void
ctrlr_kick(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
{
struct nvmf_vfio_user_poll_group *vu_ctrlr_group;
SPDK_DEBUGLOG(vfio_user_db, "%s: kicked\n", ctrlr_id(vu_ctrlr));
vu_ctrlr_group = ctrlr_to_poll_group(vu_ctrlr);
spdk_thread_send_msg(poll_group_to_thread(vu_ctrlr_group),
vfio_user_msg_ctrlr_intr, vu_ctrlr);
}
/*
* Make the given DMA address and length available (locally mapped) via iov.
*/
static void *
map_one(vfu_ctx_t *ctx, uint64_t addr, uint64_t len, dma_sg_t *sg,
struct iovec *iov, int prot)
{
int ret;
assert(ctx != NULL);
assert(sg != NULL);
assert(iov != NULL);
ret = vfu_addr_to_sgl(ctx, (void *)(uintptr_t)addr, len, sg, 1, prot);
if (ret < 0) {
return NULL;
}
ret = vfu_sgl_get(ctx, sg, iov, 1, 0);
if (ret != 0) {
return NULL;
}
assert(iov->iov_base != NULL);
return iov->iov_base;
}
static int
nvme_cmd_map_prps(void *prv, struct spdk_nvme_cmd *cmd, struct iovec *iovs,
uint32_t max_iovcnt, uint32_t len, size_t mps,
void *(*gpa_to_vva)(void *prv, uint64_t addr, uint64_t len, int prot))
{
uint64_t prp1, prp2;
void *vva;
uint32_t i;
uint32_t residue_len, nents;
uint64_t *prp_list;
uint32_t iovcnt;
assert(max_iovcnt > 0);
prp1 = cmd->dptr.prp.prp1;
prp2 = cmd->dptr.prp.prp2;
/* PRP1 may started with unaligned page address */
residue_len = mps - (prp1 % mps);
residue_len = spdk_min(len, residue_len);
vva = gpa_to_vva(prv, prp1, residue_len, PROT_READ | PROT_WRITE);
if (spdk_unlikely(vva == NULL)) {
SPDK_ERRLOG("GPA to VVA failed\n");
return -EINVAL;
}
len -= residue_len;
if (len && max_iovcnt < 2) {
SPDK_ERRLOG("Too many page entries, at least two iovs are required\n");
return -ERANGE;
}
iovs[0].iov_base = vva;
iovs[0].iov_len = residue_len;
if (len) {
if (spdk_unlikely(prp2 == 0)) {
SPDK_ERRLOG("no PRP2, %d remaining\n", len);
return -EINVAL;
}
if (len <= mps) {
/* 2 PRP used */
iovcnt = 2;
vva = gpa_to_vva(prv, prp2, len, PROT_READ | PROT_WRITE);
if (spdk_unlikely(vva == NULL)) {
SPDK_ERRLOG("no VVA for %#" PRIx64 ", len%#x\n",
prp2, len);
return -EINVAL;
}
iovs[1].iov_base = vva;
iovs[1].iov_len = len;
} else {
/* PRP list used */
nents = (len + mps - 1) / mps;
if (spdk_unlikely(nents + 1 > max_iovcnt)) {
SPDK_ERRLOG("Too many page entries\n");
return -ERANGE;
}
vva = gpa_to_vva(prv, prp2, nents * sizeof(*prp_list), PROT_READ);
if (spdk_unlikely(vva == NULL)) {
SPDK_ERRLOG("no VVA for %#" PRIx64 ", nents=%#x\n",
prp2, nents);
return -EINVAL;
}
prp_list = vva;
i = 0;
while (len != 0) {
residue_len = spdk_min(len, mps);
vva = gpa_to_vva(prv, prp_list[i], residue_len, PROT_READ | PROT_WRITE);
if (spdk_unlikely(vva == NULL)) {
SPDK_ERRLOG("no VVA for %#" PRIx64 ", residue_len=%#x\n",
prp_list[i], residue_len);
return -EINVAL;
}
iovs[i + 1].iov_base = vva;
iovs[i + 1].iov_len = residue_len;
len -= residue_len;
i++;
}
iovcnt = i + 1;
}
} else {
/* 1 PRP used */
iovcnt = 1;
}
assert(iovcnt <= max_iovcnt);
return iovcnt;
}
static int
nvme_cmd_map_sgls_data(void *prv, struct spdk_nvme_sgl_descriptor *sgls, uint32_t num_sgls,
struct iovec *iovs, uint32_t max_iovcnt,
void *(*gpa_to_vva)(void *prv, uint64_t addr, uint64_t len, int prot))
{
uint32_t i;
void *vva;
if (spdk_unlikely(max_iovcnt < num_sgls)) {
return -ERANGE;
}
for (i = 0; i < num_sgls; i++) {
if (spdk_unlikely(sgls[i].unkeyed.type != SPDK_NVME_SGL_TYPE_DATA_BLOCK)) {
SPDK_ERRLOG("Invalid SGL type %u\n", sgls[i].unkeyed.type);
return -EINVAL;
}
vva = gpa_to_vva(prv, sgls[i].address, sgls[i].unkeyed.length, PROT_READ | PROT_WRITE);
if (spdk_unlikely(vva == NULL)) {
SPDK_ERRLOG("GPA to VVA failed\n");
return -EINVAL;
}
iovs[i].iov_base = vva;
iovs[i].iov_len = sgls[i].unkeyed.length;
}
return num_sgls;
}
static int
nvme_cmd_map_sgls(void *prv, struct spdk_nvme_cmd *cmd, struct iovec *iovs, uint32_t max_iovcnt,
uint32_t len, size_t mps,
void *(*gpa_to_vva)(void *prv, uint64_t addr, uint64_t len, int prot))
{
struct spdk_nvme_sgl_descriptor *sgl, *last_sgl;
uint32_t num_sgls, seg_len;
void *vva;
int ret;
uint32_t total_iovcnt = 0;
/* SGL cases */
sgl = &cmd->dptr.sgl1;
/* only one SGL segment */
if (sgl->unkeyed.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK) {
assert(max_iovcnt > 0);
vva = gpa_to_vva(prv, sgl->address, sgl->unkeyed.length, PROT_READ | PROT_WRITE);
if (spdk_unlikely(vva == NULL)) {
SPDK_ERRLOG("GPA to VVA failed\n");
return -EINVAL;
}
iovs[0].iov_base = vva;
iovs[0].iov_len = sgl->unkeyed.length;
assert(sgl->unkeyed.length == len);
return 1;
}
for (;;) {
if (spdk_unlikely((sgl->unkeyed.type != SPDK_NVME_SGL_TYPE_SEGMENT) &&
(sgl->unkeyed.type != SPDK_NVME_SGL_TYPE_LAST_SEGMENT))) {
SPDK_ERRLOG("Invalid SGL type %u\n", sgl->unkeyed.type);
return -EINVAL;
}
seg_len = sgl->unkeyed.length;
if (spdk_unlikely(seg_len % sizeof(struct spdk_nvme_sgl_descriptor))) {
SPDK_ERRLOG("Invalid SGL segment len %u\n", seg_len);
return -EINVAL;
}
num_sgls = seg_len / sizeof(struct spdk_nvme_sgl_descriptor);
vva = gpa_to_vva(prv, sgl->address, sgl->unkeyed.length, PROT_READ);
if (spdk_unlikely(vva == NULL)) {
SPDK_ERRLOG("GPA to VVA failed\n");
return -EINVAL;
}
/* sgl point to the first segment */
sgl = (struct spdk_nvme_sgl_descriptor *)vva;
last_sgl = &sgl[num_sgls - 1];
/* we are done */
if (last_sgl->unkeyed.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK) {
/* map whole sgl list */
ret = nvme_cmd_map_sgls_data(prv, sgl, num_sgls, &iovs[total_iovcnt],
max_iovcnt - total_iovcnt, gpa_to_vva);
if (spdk_unlikely(ret < 0)) {
return ret;
}
total_iovcnt += ret;
return total_iovcnt;
}
if (num_sgls > 1) {
/* map whole sgl exclude last_sgl */
ret = nvme_cmd_map_sgls_data(prv, sgl, num_sgls - 1, &iovs[total_iovcnt],
max_iovcnt - total_iovcnt, gpa_to_vva);
if (spdk_unlikely(ret < 0)) {
return ret;
}
total_iovcnt += ret;
}
/* move to next level's segments */
sgl = last_sgl;
}
return 0;
}
static int
nvme_map_cmd(void *prv, struct spdk_nvme_cmd *cmd, struct iovec *iovs, uint32_t max_iovcnt,
uint32_t len, size_t mps,
void *(*gpa_to_vva)(void *prv, uint64_t addr, uint64_t len, int prot))
{
if (cmd->psdt == SPDK_NVME_PSDT_PRP) {
return nvme_cmd_map_prps(prv, cmd, iovs, max_iovcnt, len, mps, gpa_to_vva);
}
return nvme_cmd_map_sgls(prv, cmd, iovs, max_iovcnt, len, mps, gpa_to_vva);
}
/*
* For each queue, update the location of its doorbell to the correct location:
* either our own BAR0, or the guest's configured shadow doorbell area.
*
* The Admin queue (qid: 0) does not ever use shadow doorbells.
*/
static void
vfio_user_ctrlr_switch_doorbells(struct nvmf_vfio_user_ctrlr *ctrlr, bool shadow)
{
volatile uint32_t *doorbells = shadow ? ctrlr->sdbl->shadow_doorbells :
ctrlr->bar0_doorbells;
assert(doorbells != NULL);
for (size_t i = 1; i < NVMF_VFIO_USER_DEFAULT_MAX_QPAIRS_PER_CTRLR; i++) {
struct nvmf_vfio_user_sq *sq = ctrlr->sqs[i];
struct nvmf_vfio_user_cq *cq = ctrlr->cqs[i];
if (sq != NULL) {
sq->dbl_tailp = doorbells + queue_index(sq->qid, false);
ctrlr->sqs[i]->need_rearm = shadow;
}
if (cq != NULL) {
cq->dbl_headp = doorbells + queue_index(cq->qid, true);
}
}
}
static void
unmap_sdbl(vfu_ctx_t *vfu_ctx, struct nvmf_vfio_user_shadow_doorbells *sdbl)
{
assert(vfu_ctx != NULL);
assert(sdbl != NULL);
/*
* An allocation error would result in only one of the two being
* non-NULL. If that is the case, no memory should have been mapped.
*/
if (sdbl->iovs == NULL || sdbl->sgs == NULL) {
return;
}
for (size_t i = 0; i < NVMF_VFIO_USER_SHADOW_DOORBELLS_BUFFER_COUNT; ++i) {
struct iovec *iov;
dma_sg_t *sg;
if (!sdbl->iovs[i].iov_len) {
continue;
}
sg = index_to_sg_t(sdbl->sgs, i);
iov = sdbl->iovs + i;
vfu_sgl_put(vfu_ctx, sg, iov, 1);
}
}
static void
free_sdbl(vfu_ctx_t *vfu_ctx, struct nvmf_vfio_user_shadow_doorbells *sdbl)
{
if (sdbl == NULL) {
return;
}
unmap_sdbl(vfu_ctx, sdbl);
/*
* sdbl->shadow_doorbells and sdbl->eventidxs were mapped,
* not allocated, so don't free() them.
*/
free(sdbl->sgs);
free(sdbl->iovs);
free(sdbl);
}
static struct nvmf_vfio_user_shadow_doorbells *
map_sdbl(vfu_ctx_t *vfu_ctx, uint64_t prp1, uint64_t prp2, size_t len)
{
struct nvmf_vfio_user_shadow_doorbells *sdbl = NULL;
dma_sg_t *sg2 = NULL;
void *p;
assert(vfu_ctx != NULL);
sdbl = calloc(1, sizeof(*sdbl));
if (sdbl == NULL) {
goto err;
}
sdbl->sgs = calloc(NVMF_VFIO_USER_SHADOW_DOORBELLS_BUFFER_COUNT, dma_sg_size());
sdbl->iovs = calloc(NVMF_VFIO_USER_SHADOW_DOORBELLS_BUFFER_COUNT, sizeof(*sdbl->iovs));
if (sdbl->sgs == NULL || sdbl->iovs == NULL) {
goto err;
}
/* Map shadow doorbell buffer (PRP1). */
p = map_one(vfu_ctx, prp1, len, sdbl->sgs, sdbl->iovs,
PROT_READ | PROT_WRITE);
if (p == NULL) {
goto err;
}
/*
* Map eventidx buffer (PRP2).
* Should only be written to by the controller.
*/
sg2 = index_to_sg_t(sdbl->sgs, 1);
p = map_one(vfu_ctx, prp2, len, sg2, sdbl->iovs + 1,
PROT_READ | PROT_WRITE);
if (p == NULL) {
goto err;
}
sdbl->shadow_doorbells = (uint32_t *)sdbl->iovs[0].iov_base;
sdbl->eventidxs = (uint32_t *)sdbl->iovs[1].iov_base;
return sdbl;
err:
free_sdbl(vfu_ctx, sdbl);
return NULL;
}
/*
* Copy doorbells from one buffer to the other, during switches betweeen BAR0
* doorbells and shadow doorbells.
*/
static void
copy_doorbells(struct nvmf_vfio_user_ctrlr *ctrlr,
const volatile uint32_t *from, volatile uint32_t *to)
{
assert(ctrlr != NULL);
assert(from != NULL);
assert(to != NULL);
SPDK_DEBUGLOG(vfio_user_db,
"%s: migrating shadow doorbells from %p to %p\n",
ctrlr_id(ctrlr), from, to);
/* Can't use memcpy because it doesn't respect volatile semantics. */
for (size_t i = 0; i < NVMF_VFIO_USER_DEFAULT_MAX_QPAIRS_PER_CTRLR; ++i) {
if (ctrlr->sqs[i] != NULL) {
to[queue_index(i, false)] = from[queue_index(i, false)];
}
if (ctrlr->cqs[i] != NULL) {
to[queue_index(i, true)] = from[queue_index(i, true)];
}
}
}
static void
fail_ctrlr(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
{
const struct spdk_nvmf_registers *regs;
assert(vu_ctrlr != NULL);
assert(vu_ctrlr->ctrlr != NULL);
regs = spdk_nvmf_ctrlr_get_regs(vu_ctrlr->ctrlr);
if (regs->csts.bits.cfs == 0) {
SPDK_ERRLOG(":%s failing controller\n", ctrlr_id(vu_ctrlr));
}
nvmf_ctrlr_set_fatal_status(vu_ctrlr->ctrlr);
}
static inline bool
ctrlr_interrupt_enabled(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
{
assert(vu_ctrlr != NULL);
assert(vu_ctrlr->endpoint != NULL);
vfu_pci_config_space_t *pci = vu_ctrlr->endpoint->pci_config_space;
return (!pci->hdr.cmd.id || vu_ctrlr->endpoint->msix->mxc.mxe);
}
static void
nvmf_vfio_user_destroy_endpoint(struct nvmf_vfio_user_endpoint *endpoint)
{
SPDK_DEBUGLOG(nvmf_vfio, "destroy endpoint %s\n", endpoint_id(endpoint));
spdk_interrupt_unregister(&endpoint->accept_intr);
spdk_poller_unregister(&endpoint->accept_poller);
if (endpoint->bar0_doorbells) {
munmap((void *)endpoint->bar0_doorbells, NVMF_VFIO_USER_DOORBELLS_SIZE);
}
if (endpoint->devmem_fd > 0) {
close(endpoint->devmem_fd);
}
if (endpoint->migr_data) {
munmap(endpoint->migr_data, vfio_user_migr_data_len());
}
if (endpoint->migr_fd > 0) {
close(endpoint->migr_fd);
}
if (endpoint->vfu_ctx) {
vfu_destroy_ctx(endpoint->vfu_ctx);
}
pthread_mutex_destroy(&endpoint->lock);
free(endpoint);
}
/* called when process exits */
static int
nvmf_vfio_user_destroy(struct spdk_nvmf_transport *transport,
spdk_nvmf_transport_destroy_done_cb cb_fn, void *cb_arg)
{
struct nvmf_vfio_user_transport *vu_transport;
struct nvmf_vfio_user_endpoint *endpoint, *tmp;
SPDK_DEBUGLOG(nvmf_vfio, "destroy transport\n");
vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport,
transport);
pthread_mutex_destroy(&vu_transport->lock);
pthread_mutex_destroy(&vu_transport->pg_lock);
TAILQ_FOREACH_SAFE(endpoint, &vu_transport->endpoints, link, tmp) {
TAILQ_REMOVE(&vu_transport->endpoints, endpoint, link);
nvmf_vfio_user_destroy_endpoint(endpoint);
}
free(vu_transport);
if (cb_fn) {
cb_fn(cb_arg);
}
return 0;
}
static const struct spdk_json_object_decoder vfio_user_transport_opts_decoder[] = {
{
"disable_mappable_bar0",
offsetof(struct nvmf_vfio_user_transport, transport_opts.disable_mappable_bar0),
spdk_json_decode_bool, true
},
{
"disable_adaptive_irq",
offsetof(struct nvmf_vfio_user_transport, transport_opts.disable_adaptive_irq),
spdk_json_decode_bool, true
},
{
"disable_shadow_doorbells",
offsetof(struct nvmf_vfio_user_transport, transport_opts.disable_shadow_doorbells),
spdk_json_decode_bool, true
},
{
"disable_compare",
offsetof(struct nvmf_vfio_user_transport, transport_opts.disable_compare),
spdk_json_decode_bool, true
},
{
"enable_intr_mode_sq_spreading",
offsetof(struct nvmf_vfio_user_transport, transport_opts.enable_intr_mode_sq_spreading),
spdk_json_decode_bool, true
},
};
static struct spdk_nvmf_transport *
nvmf_vfio_user_create(struct spdk_nvmf_transport_opts *opts)
{
struct nvmf_vfio_user_transport *vu_transport;
int err;
if (opts->max_qpairs_per_ctrlr > NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR) {
SPDK_ERRLOG("Invalid max_qpairs_per_ctrlr=%d, supported max_qpairs_per_ctrlr=%d\n",
opts->max_qpairs_per_ctrlr, NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR);
return NULL;
}
vu_transport = calloc(1, sizeof(*vu_transport));
if (vu_transport == NULL) {
SPDK_ERRLOG("Transport alloc fail: %m\n");
return NULL;
}
err = pthread_mutex_init(&vu_transport->lock, NULL);
if (err != 0) {
SPDK_ERRLOG("Pthread initialisation failed (%d)\n", err);
goto err;
}
TAILQ_INIT(&vu_transport->endpoints);
err = pthread_mutex_init(&vu_transport->pg_lock, NULL);
if (err != 0) {
pthread_mutex_destroy(&vu_transport->lock);
SPDK_ERRLOG("Pthread initialisation failed (%d)\n", err);
goto err;
}
TAILQ_INIT(&vu_transport->poll_groups);
if (opts->transport_specific != NULL &&
spdk_json_decode_object_relaxed(opts->transport_specific, vfio_user_transport_opts_decoder,
SPDK_COUNTOF(vfio_user_transport_opts_decoder),
vu_transport)) {
SPDK_ERRLOG("spdk_json_decode_object_relaxed failed\n");
goto cleanup;
}
/*
* To support interrupt mode, the transport must be configured with
* mappable BAR0 disabled: we need a vfio-user message to wake us up
* when a client writes new doorbell values to BAR0, via the
* libvfio-user socket fd.
*/
vu_transport->intr_mode_supported =
vu_transport->transport_opts.disable_mappable_bar0;
/*
* If BAR0 is mappable, it doesn't make sense to support shadow
* doorbells, so explicitly turn it off.
*/
if (!vu_transport->transport_opts.disable_mappable_bar0) {
vu_transport->transport_opts.disable_shadow_doorbells = true;
}
if (spdk_interrupt_mode_is_enabled()) {
if (!vu_transport->intr_mode_supported) {
SPDK_ERRLOG("interrupt mode not supported\n");
goto cleanup;
}
/*
* If we are in interrupt mode, we cannot support adaptive IRQs,
* as there is no guarantee the SQ poller will run subsequently
* to send pending IRQs.
*/
vu_transport->transport_opts.disable_adaptive_irq = true;
}
SPDK_DEBUGLOG(nvmf_vfio, "vfio_user transport: disable_mappable_bar0=%d\n",
vu_transport->transport_opts.disable_mappable_bar0);
SPDK_DEBUGLOG(nvmf_vfio, "vfio_user transport: disable_adaptive_irq=%d\n",
vu_transport->transport_opts.disable_adaptive_irq);
SPDK_DEBUGLOG(nvmf_vfio, "vfio_user transport: disable_shadow_doorbells=%d\n",
vu_transport->transport_opts.disable_shadow_doorbells);
return &vu_transport->transport;
cleanup:
pthread_mutex_destroy(&vu_transport->lock);
pthread_mutex_destroy(&vu_transport->pg_lock);
err:
free(vu_transport);
return NULL;
}
static uint32_t
max_queue_size(struct nvmf_vfio_user_ctrlr const *vu_ctrlr)
{
assert(vu_ctrlr != NULL);
assert(vu_ctrlr->ctrlr != NULL);
return vu_ctrlr->ctrlr->vcprop.cap.bits.mqes + 1;
}
static uint32_t
doorbell_stride(const struct nvmf_vfio_user_ctrlr *vu_ctrlr)
{
assert(vu_ctrlr != NULL);
assert(vu_ctrlr->ctrlr != NULL);
return vu_ctrlr->ctrlr->vcprop.cap.bits.dstrd;
}
static uintptr_t
memory_page_size(const struct nvmf_vfio_user_ctrlr *vu_ctrlr)
{
uint32_t memory_page_shift = vu_ctrlr->ctrlr->vcprop.cc.bits.mps + 12;
return 1ul << memory_page_shift;
}
static uintptr_t
memory_page_mask(const struct nvmf_vfio_user_ctrlr *ctrlr)
{
return ~(memory_page_size(ctrlr) - 1);
}
static int
map_q(struct nvmf_vfio_user_ctrlr *vu_ctrlr, struct nvme_q_mapping *mapping,
uint32_t q_size, bool is_cq, bool unmap)
{
uint64_t len;
void *ret;
assert(q_size);
assert(q_addr(mapping) == NULL);
if (is_cq) {
len = q_size * sizeof(struct spdk_nvme_cpl);
} else {
len = q_size * sizeof(struct spdk_nvme_cmd);
}
ret = map_one(vu_ctrlr->endpoint->vfu_ctx, mapping->prp1, len,
mapping->sg, &mapping->iov,
is_cq ? PROT_READ | PROT_WRITE : PROT_READ);
if (ret == NULL) {
return -EFAULT;
}
if (unmap) {
memset(q_addr(mapping), 0, len);
}
return 0;
}
static inline void
unmap_q(struct nvmf_vfio_user_ctrlr *vu_ctrlr, struct nvme_q_mapping *mapping)
{
if (q_addr(mapping) != NULL) {
vfu_sgl_put(vu_ctrlr->endpoint->vfu_ctx, mapping->sg,
&mapping->iov, 1);
mapping->iov.iov_base = NULL;
}
}
static int
asq_setup(struct nvmf_vfio_user_ctrlr *ctrlr)
{
struct nvmf_vfio_user_sq *sq;
const struct spdk_nvmf_registers *regs;
int ret;
assert(ctrlr != NULL);
sq = ctrlr->sqs[0];
assert(sq != NULL);
assert(q_addr(&sq->mapping) == NULL);
/* XXX ctrlr->asq == 0 is a valid memory address */
regs = spdk_nvmf_ctrlr_get_regs(ctrlr->ctrlr);
sq->qid = 0;
sq->size = regs->aqa.bits.asqs + 1;
sq->mapping.prp1 = regs->asq;
*sq_headp(sq) = 0;
sq->cqid = 0;
ret = map_q(ctrlr, &sq->mapping, sq->size, false, true);
if (ret) {
return ret;
}
/* The Admin queue (qid: 0) does not ever use shadow doorbells. */
sq->dbl_tailp = ctrlr->bar0_doorbells + queue_index(0, false);
*sq_dbl_tailp(sq) = 0;
return 0;
}
/*
* Updates eventidx to set an SQ into interrupt or polling mode.
*
* Returns false if the current SQ tail does not match the SQ head, as
* this means that the host has submitted more items to the queue while we were
* not looking - or during the event index update. In that case, we must retry,
* or otherwise make sure we are going to wake up again.
*/
static bool
set_sq_eventidx(struct nvmf_vfio_user_sq *sq)
{
struct nvmf_vfio_user_ctrlr *ctrlr;
volatile uint32_t *sq_tail_eidx;
uint32_t old_tail, new_tail;
assert(sq != NULL);
assert(sq->ctrlr != NULL);
assert(sq->ctrlr->sdbl != NULL);
assert(sq->need_rearm);
assert(sq->qid != 0);
ctrlr = sq->ctrlr;
SPDK_DEBUGLOG(vfio_user_db, "%s: updating eventidx of sqid:%u\n",
ctrlr_id(ctrlr), sq->qid);
sq_tail_eidx = ctrlr->sdbl->eventidxs + queue_index(sq->qid, false);
assert(ctrlr->endpoint != NULL);
if (!ctrlr->endpoint->interrupt_mode) {
/* No synchronisation necessary. */
*sq_tail_eidx = NVMF_VFIO_USER_EVENTIDX_POLL;
return true;
}
old_tail = *sq_dbl_tailp(sq);
*sq_tail_eidx = old_tail;
/*
* Ensure that the event index is updated before re-reading the tail
* doorbell. If it's not, then the host might race us and update the
* tail after the second read but before the event index is written, so
* it won't write to BAR0 and we'll miss the update.
*
* The driver should provide similar ordering with an mb().
*/
spdk_mb();
/*
* Check if the host has updated the tail doorbell after we've read it
* for the first time, but before the event index was written. If that's
* the case, then we've lost the race and we need to update the event
* index again (after polling the queue, since the host won't write to
* BAR0).
*/
new_tail = *sq_dbl_tailp(sq);
/*
* We might poll the queue straight after this function returns if the
* tail has been updated, so we need to ensure that any changes to the
* queue will be visible to us if the doorbell has been updated.
*
* The driver should provide similar ordering with a wmb() to ensure
* that the queue is written before it updates the tail doorbell.
*/
spdk_rmb();
SPDK_DEBUGLOG(vfio_user_db, "%s: sqid:%u, old_tail=%u, new_tail=%u, "
"sq_head=%u\n", ctrlr_id(ctrlr), sq->qid, old_tail,
new_tail, *sq_headp(sq));
if (new_tail == *sq_headp(sq)) {
sq->need_rearm = false;
return true;
}
/*
* We've lost the race: the tail was updated since we last polled,
* including if it happened within this routine.
*
* The caller should retry after polling (think of this as a cmpxchg
* loop); if we go to sleep while the SQ is not empty, then we won't
* process the remaining events.
*/
return false;
}
static int nvmf_vfio_user_sq_poll(struct nvmf_vfio_user_sq *sq);
/*
* Arrange for an SQ to interrupt us if written. Returns non-zero if we
* processed some SQ entries.
*/
static int
vfio_user_sq_rearm(struct nvmf_vfio_user_ctrlr *ctrlr,
struct nvmf_vfio_user_sq *sq,
struct nvmf_vfio_user_poll_group *vu_group)
{
int count = 0;
size_t i;
assert(sq->need_rearm);
for (i = 0; i < NVMF_VFIO_USER_SET_EVENTIDX_MAX_ATTEMPTS; i++) {
int ret;
if (set_sq_eventidx(sq)) {
/* We won the race and set eventidx; done. */
vu_group->stats.won++;
return count;
}
ret = nvmf_vfio_user_sq_poll(sq);
count += (ret < 0) ? 1 : ret;
/*
* set_sq_eventidx() hit the race, so we expected
* to process at least one command from this queue.
* If there were no new commands waiting for us, then
* we must have hit an unexpected race condition.
*/
if (ret == 0) {
SPDK_ERRLOG("%s: unexpected race condition detected "
"while updating the shadow doorbell buffer\n",
ctrlr_id(ctrlr));
fail_ctrlr(ctrlr);
return count;
}
}
SPDK_DEBUGLOG(vfio_user_db,
"%s: set_sq_eventidx() lost the race %zu times\n",
ctrlr_id(ctrlr), i);
vu_group->stats.lost++;
vu_group->stats.lost_count += count;
/*
* We couldn't arrange an eventidx guaranteed to cause a BAR0 write, as
* we raced with the producer too many times; force ourselves to wake up
* instead. We'll process all queues at that point.
*/
ctrlr_kick(ctrlr);
return count;
}
/*
* We're in interrupt mode, and potentially about to go to sleep. We need to
* make sure any further I/O submissions are guaranteed to wake us up: for
* shadow doorbells that means we may need to go through set_sq_eventidx() for
* every SQ that needs re-arming.
*
* Returns non-zero if we processed something.
*/
static int
vfio_user_poll_group_rearm(struct nvmf_vfio_user_poll_group *vu_group)
{
struct nvmf_vfio_user_sq *sq;
int count = 0;
vu_group->stats.rearms++;
TAILQ_FOREACH(sq, &vu_group->sqs, link) {
if (spdk_unlikely(sq->sq_state != VFIO_USER_SQ_ACTIVE || !sq->size)) {
continue;
}
if (sq->need_rearm) {
count += vfio_user_sq_rearm(sq->ctrlr, sq, vu_group);
}
}
return count;
}
static int
acq_setup(struct nvmf_vfio_user_ctrlr *ctrlr)
{
struct nvmf_vfio_user_cq *cq;
const struct spdk_nvmf_registers *regs;
int ret;
assert(ctrlr != NULL);
cq = ctrlr->cqs[0];
assert(cq != NULL);
assert(q_addr(&cq->mapping) == NULL);
regs = spdk_nvmf_ctrlr_get_regs(ctrlr->ctrlr);
assert(regs != NULL);
cq->qid = 0;
cq->size = regs->aqa.bits.acqs + 1;
cq->mapping.prp1 = regs->acq;
*cq_tailp(cq) = 0;
cq->ien = true;
cq->phase = true;
ret = map_q(ctrlr, &cq->mapping, cq->size, true, true);
if (ret) {
return ret;
}
/* The Admin queue (qid: 0) does not ever use shadow doorbells. */
cq->dbl_headp = ctrlr->bar0_doorbells + queue_index(0, true);
*cq_dbl_headp(cq) = 0;
return 0;
}
static void *
_map_one(void *prv, uint64_t addr, uint64_t len, int prot)
{
struct spdk_nvmf_request *req = (struct spdk_nvmf_request *)prv;
struct spdk_nvmf_qpair *qpair;
struct nvmf_vfio_user_req *vu_req;
struct nvmf_vfio_user_sq *sq;
void *ret;
assert(req != NULL);
qpair = req->qpair;
vu_req = SPDK_CONTAINEROF(req, struct nvmf_vfio_user_req, req);
sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
assert(vu_req->iovcnt < NVMF_VFIO_USER_MAX_IOVECS);
ret = map_one(sq->ctrlr->endpoint->vfu_ctx, addr, len,
index_to_sg_t(vu_req->sg, vu_req->iovcnt),
&vu_req->iov[vu_req->iovcnt], prot);
if (spdk_likely(ret != NULL)) {
vu_req->iovcnt++;
}
return ret;
}
static int
vfio_user_map_cmd(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvmf_request *req,
struct iovec *iov, uint32_t length)
{
/* Map PRP list to from Guest physical memory to
* virtual memory address.
*/
return nvme_map_cmd(req, &req->cmd->nvme_cmd, iov, NVMF_REQ_MAX_BUFFERS,
length, 4096, _map_one);
}
static int handle_cmd_req(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvme_cmd *cmd,
struct nvmf_vfio_user_sq *sq);
/*
* Posts a CQE in the completion queue.
*
* @ctrlr: the vfio-user controller
* @cq: the completion queue
* @cdw0: cdw0 as reported by NVMf
* @sqid: submission queue ID
* @cid: command identifier in NVMe command
* @sc: the NVMe CQE status code
* @sct: the NVMe CQE status code type
*/
static int
post_completion(struct nvmf_vfio_user_ctrlr *ctrlr, struct nvmf_vfio_user_cq *cq,
uint32_t cdw0, uint16_t sqid, uint16_t cid, uint16_t sc, uint16_t sct)
{
struct spdk_nvme_status cpl_status = { 0 };
struct spdk_nvme_cpl *cpl;
int err;
assert(ctrlr != NULL);
if (spdk_unlikely(cq == NULL || q_addr(&cq->mapping) == NULL)) {
return 0;
}
if (cq->qid == 0) {
assert(spdk_get_thread() == cq->group->group->thread);
}
if (cq_is_full(cq)) {
SPDK_ERRLOG("%s: cqid:%d full (tail=%d, head=%d)\n",
ctrlr_id(ctrlr), cq->qid, *cq_tailp(cq),
*cq_dbl_headp(cq));
return -1;
}
cpl = ((struct spdk_nvme_cpl *)q_addr(&cq->mapping)) + *cq_tailp(cq);
assert(ctrlr->sqs[sqid] != NULL);
SPDK_DEBUGLOG(nvmf_vfio,
"%s: request complete sqid:%d cid=%d status=%#x "
"sqhead=%d cq tail=%d\n", ctrlr_id(ctrlr), sqid, cid, sc,
*sq_headp(ctrlr->sqs[sqid]), *cq_tailp(cq));
cpl->sqhd = *sq_headp(ctrlr->sqs[sqid]);
cpl->sqid = sqid;
cpl->cid = cid;
cpl->cdw0 = cdw0;
/*
* This is a bitfield: instead of setting the individual bits we need
* directly in cpl->status, which would cause a read-modify-write cycle,
* we'll avoid reading from the CPL altogether by filling in a local
* cpl_status variable, then writing the whole thing.
*/
cpl_status.sct = sct;
cpl_status.sc = sc;
cpl_status.p = cq->phase;
cpl->status = cpl_status;
/* Ensure the Completion Queue Entry is visible. */
spdk_wmb();
cq_tail_advance(cq);
if ((cq->qid == 0 || !ctrlr->adaptive_irqs_enabled) &&
cq->ien && ctrlr_interrupt_enabled(ctrlr)) {
err = vfu_irq_trigger(ctrlr->endpoint->vfu_ctx, cq->iv);
if (err != 0) {
SPDK_ERRLOG("%s: failed to trigger interrupt: %m\n",
ctrlr_id(ctrlr));
return err;
}
}
return 0;
}
static void
free_sq_reqs(struct nvmf_vfio_user_sq *sq)
{
while (!TAILQ_EMPTY(&sq->free_reqs)) {
struct nvmf_vfio_user_req *vu_req = TAILQ_FIRST(&sq->free_reqs);
TAILQ_REMOVE(&sq->free_reqs, vu_req, link);
free(vu_req);
}
}
static void
delete_cq_done(struct nvmf_vfio_user_ctrlr *ctrlr, struct nvmf_vfio_user_cq *cq)
{
assert(cq->cq_ref == 0);
unmap_q(ctrlr, &cq->mapping);
cq->size = 0;
cq->cq_state = VFIO_USER_CQ_DELETED;
cq->group = NULL;
}
/* Deletes a SQ, if this SQ is the last user of the associated CQ
* and the controller is being shut down/reset or vfio-user client disconnects,
* then the CQ is also deleted.
*/
static void
delete_sq_done(struct nvmf_vfio_user_ctrlr *vu_ctrlr, struct nvmf_vfio_user_sq *sq)
{
struct nvmf_vfio_user_cq *cq;
uint16_t cqid;
SPDK_DEBUGLOG(nvmf_vfio, "%s: delete sqid:%d=%p done\n", ctrlr_id(vu_ctrlr),
sq->qid, sq);
/* Free SQ resources */
unmap_q(vu_ctrlr, &sq->mapping);
free_sq_reqs(sq);
sq->size = 0;
sq->sq_state = VFIO_USER_SQ_DELETED;
/* Controller RESET and SHUTDOWN are special cases,
* VM may not send DELETE IO SQ/CQ commands, NVMf library
* will disconnect IO queue pairs.
*/
if (vu_ctrlr->reset_shn || vu_ctrlr->disconnect) {
cqid = sq->cqid;
cq = vu_ctrlr->cqs[cqid];
SPDK_DEBUGLOG(nvmf_vfio, "%s: try to delete cqid:%u=%p\n", ctrlr_id(vu_ctrlr),
cq->qid, cq);
assert(cq->cq_ref > 0);
if (--cq->cq_ref == 0) {
delete_cq_done(vu_ctrlr, cq);
}
}
}
static void
free_qp(struct nvmf_vfio_user_ctrlr *ctrlr, uint16_t qid)
{
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_cq *cq;
if (ctrlr == NULL) {
return;
}
sq = ctrlr->sqs[qid];
if (sq) {
SPDK_DEBUGLOG(nvmf_vfio, "%s: Free sqid:%u\n", ctrlr_id(ctrlr), qid);
unmap_q(ctrlr, &sq->mapping);
free_sq_reqs(sq);
free(sq->mapping.sg);
free(sq);
ctrlr->sqs[qid] = NULL;
}
cq = ctrlr->cqs[qid];
if (cq) {
SPDK_DEBUGLOG(nvmf_vfio, "%s: Free cqid:%u\n", ctrlr_id(ctrlr), qid);
unmap_q(ctrlr, &cq->mapping);
free(cq->mapping.sg);
free(cq);
ctrlr->cqs[qid] = NULL;
}
}
static int
init_sq(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvmf_transport *transport,
const uint16_t id)
{
struct nvmf_vfio_user_sq *sq;
assert(ctrlr != NULL);
assert(transport != NULL);
assert(ctrlr->sqs[id] == NULL);
sq = calloc(1, sizeof(*sq));
if (sq == NULL) {
return -ENOMEM;
}
sq->mapping.sg = calloc(1, dma_sg_size());
if (sq->mapping.sg == NULL) {
free(sq);
return -ENOMEM;
}
sq->qid = id;
sq->qpair.qid = id;
sq->qpair.transport = transport;
sq->ctrlr = ctrlr;
ctrlr->sqs[id] = sq;
TAILQ_INIT(&sq->free_reqs);
return 0;
}
static int
init_cq(struct nvmf_vfio_user_ctrlr *vu_ctrlr, const uint16_t id)
{
struct nvmf_vfio_user_cq *cq;
assert(vu_ctrlr != NULL);
assert(vu_ctrlr->cqs[id] == NULL);
cq = calloc(1, sizeof(*cq));
if (cq == NULL) {
return -ENOMEM;
}
cq->mapping.sg = calloc(1, dma_sg_size());
if (cq->mapping.sg == NULL) {
free(cq);
return -ENOMEM;
}
cq->qid = id;
vu_ctrlr->cqs[id] = cq;
return 0;
}
static int
alloc_sq_reqs(struct nvmf_vfio_user_ctrlr *vu_ctrlr, struct nvmf_vfio_user_sq *sq)
{
struct nvmf_vfio_user_req *vu_req, *tmp;
size_t req_size;
uint32_t i;
req_size = sizeof(struct nvmf_vfio_user_req) +
(dma_sg_size() * NVMF_VFIO_USER_MAX_IOVECS);
for (i = 0; i < sq->size; i++) {
struct spdk_nvmf_request *req;
vu_req = calloc(1, req_size);
if (vu_req == NULL) {
goto err;
}
req = &vu_req->req;
req->qpair = &sq->qpair;
req->rsp = (union nvmf_c2h_msg *)&vu_req->rsp;
req->cmd = (union nvmf_h2c_msg *)&vu_req->cmd;
req->stripped_data = NULL;
TAILQ_INSERT_TAIL(&sq->free_reqs, vu_req, link);
}
return 0;
err:
TAILQ_FOREACH_SAFE(vu_req, &sq->free_reqs, link, tmp) {
free(vu_req);
}
return -ENOMEM;
}
static volatile uint32_t *
ctrlr_doorbell_ptr(struct nvmf_vfio_user_ctrlr *ctrlr)
{
return ctrlr->sdbl != NULL ?
ctrlr->sdbl->shadow_doorbells :
ctrlr->bar0_doorbells;
}
static uint16_t
handle_create_io_sq(struct nvmf_vfio_user_ctrlr *ctrlr,
struct spdk_nvme_cmd *cmd, uint16_t *sct)
{
struct nvmf_vfio_user_transport *vu_transport = ctrlr->transport;
struct nvmf_vfio_user_sq *sq;
uint32_t qsize;
uint16_t cqid;
uint16_t qid;
int err;
qid = cmd->cdw10_bits.create_io_q.qid;
cqid = cmd->cdw11_bits.create_io_sq.cqid;
qsize = cmd->cdw10_bits.create_io_q.qsize + 1;
if (ctrlr->sqs[qid] == NULL) {
err = init_sq(ctrlr, ctrlr->sqs[0]->qpair.transport, qid);
if (err != 0) {
*sct = SPDK_NVME_SCT_GENERIC;
return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
}
}
if (cqid == 0 || cqid >= vu_transport->transport.opts.max_qpairs_per_ctrlr) {
SPDK_ERRLOG("%s: invalid cqid:%u\n", ctrlr_id(ctrlr), cqid);
*sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
return SPDK_NVME_SC_INVALID_QUEUE_IDENTIFIER;
}
/* CQ must be created before SQ. */
if (!io_q_exists(ctrlr, cqid, true)) {
SPDK_ERRLOG("%s: cqid:%u does not exist\n", ctrlr_id(ctrlr), cqid);
*sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
return SPDK_NVME_SC_COMPLETION_QUEUE_INVALID;
}
if (cmd->cdw11_bits.create_io_sq.pc != 0x1) {
SPDK_ERRLOG("%s: non-PC SQ not supported\n", ctrlr_id(ctrlr));
*sct = SPDK_NVME_SCT_GENERIC;
return SPDK_NVME_SC_INVALID_FIELD;
}
sq = ctrlr->sqs[qid];
sq->size = qsize;
SPDK_DEBUGLOG(nvmf_vfio, "%s: sqid:%d cqid:%d\n", ctrlr_id(ctrlr),
qid, cqid);
sq->mapping.prp1 = cmd->dptr.prp.prp1;
err = map_q(ctrlr, &sq->mapping, sq->size, false, true);
if (err) {
SPDK_ERRLOG("%s: failed to map I/O queue: %m\n", ctrlr_id(ctrlr));
*sct = SPDK_NVME_SCT_GENERIC;
return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
}
SPDK_DEBUGLOG(nvmf_vfio, "%s: mapped sqid:%d IOVA=%#lx vaddr=%p\n",
ctrlr_id(ctrlr), qid, cmd->dptr.prp.prp1,
q_addr(&sq->mapping));
err = alloc_sq_reqs(ctrlr, sq);
if (err < 0) {
SPDK_ERRLOG("%s: failed to allocate SQ requests: %m\n", ctrlr_id(ctrlr));
*sct = SPDK_NVME_SCT_GENERIC;
return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
}
sq->cqid = cqid;
ctrlr->cqs[sq->cqid]->cq_ref++;
sq->sq_state = VFIO_USER_SQ_CREATED;
*sq_headp(sq) = 0;
sq->dbl_tailp = ctrlr_doorbell_ptr(ctrlr) + queue_index(qid, false);
/*
* We should always reset the doorbells.
*
* The Specification prohibits the controller from writing to the shadow
* doorbell buffer, however older versions of the Linux NVMe driver
* don't reset the shadow doorbell buffer after a Queue-Level or
* Controller-Level reset, which means that we're left with garbage
* doorbell values.
*/
*sq_dbl_tailp(sq) = 0;
if (ctrlr->sdbl != NULL) {
sq->need_rearm = true;
if (!set_sq_eventidx(sq)) {
SPDK_ERRLOG("%s: host updated SQ tail doorbell before "
"sqid:%hu was initialized\n",
ctrlr_id(ctrlr), qid);
fail_ctrlr(ctrlr);
*sct = SPDK_NVME_SCT_GENERIC;
return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
}
}
/*
* Create our new I/O qpair. This asynchronously invokes, on a suitable
* poll group, the nvmf_vfio_user_poll_group_add() callback, which will
* call spdk_nvmf_request_exec_fabrics() with a generated fabrics
* connect command. This command is then eventually completed via
* handle_queue_connect_rsp().
*/
sq->create_io_sq_cmd = *cmd;
sq->post_create_io_sq_completion = true;
spdk_nvmf_tgt_new_qpair(ctrlr->transport->transport.tgt,
&sq->qpair);
*sct = SPDK_NVME_SCT_GENERIC;
return SPDK_NVME_SC_SUCCESS;
}
static uint16_t
handle_create_io_cq(struct nvmf_vfio_user_ctrlr *ctrlr,
struct spdk_nvme_cmd *cmd, uint16_t *sct)
{
struct nvmf_vfio_user_cq *cq;
uint32_t qsize;
uint16_t qid;
int err;
qid = cmd->cdw10_bits.create_io_q.qid;
qsize = cmd->cdw10_bits.create_io_q.qsize + 1;
if (ctrlr->cqs[qid] == NULL) {
err = init_cq(ctrlr, qid);
if (err != 0) {
*sct = SPDK_NVME_SCT_GENERIC;
return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
}
}
if (cmd->cdw11_bits.create_io_cq.pc != 0x1) {
SPDK_ERRLOG("%s: non-PC CQ not supported\n", ctrlr_id(ctrlr));
*sct = SPDK_NVME_SCT_GENERIC;
return SPDK_NVME_SC_INVALID_FIELD;
}
if (cmd->cdw11_bits.create_io_cq.iv > NVME_IRQ_MSIX_NUM - 1) {
SPDK_ERRLOG("%s: IV is too big\n", ctrlr_id(ctrlr));
*sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
return SPDK_NVME_SC_INVALID_INTERRUPT_VECTOR;
}
cq = ctrlr->cqs[qid];
cq->size = qsize;
cq->mapping.prp1 = cmd->dptr.prp.prp1;
cq->dbl_headp = ctrlr_doorbell_ptr(ctrlr) + queue_index(qid, true);
err = map_q(ctrlr, &cq->mapping, cq->size, true, true);
if (err) {
SPDK_ERRLOG("%s: failed to map I/O queue: %m\n", ctrlr_id(ctrlr));
*sct = SPDK_NVME_SCT_GENERIC;
return SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
}
SPDK_DEBUGLOG(nvmf_vfio, "%s: mapped cqid:%u IOVA=%#lx vaddr=%p\n",
ctrlr_id(ctrlr), qid, cmd->dptr.prp.prp1,
q_addr(&cq->mapping));
cq->ien = cmd->cdw11_bits.create_io_cq.ien;
cq->iv = cmd->cdw11_bits.create_io_cq.iv;
cq->phase = true;
cq->cq_state = VFIO_USER_CQ_CREATED;
*cq_tailp(cq) = 0;
/*
* We should always reset the doorbells.
*
* The Specification prohibits the controller from writing to the shadow
* doorbell buffer, however older versions of the Linux NVMe driver
* don't reset the shadow doorbell buffer after a Queue-Level or
* Controller-Level reset, which means that we're left with garbage
* doorbell values.
*/
*cq_dbl_headp(cq) = 0;
*sct = SPDK_NVME_SCT_GENERIC;
return SPDK_NVME_SC_SUCCESS;
}
/*
* Creates a completion or submission I/O queue. Returns 0 on success, -errno
* on error.
*/
static int
handle_create_io_q(struct nvmf_vfio_user_ctrlr *ctrlr,
struct spdk_nvme_cmd *cmd, const bool is_cq)
{
struct nvmf_vfio_user_transport *vu_transport = ctrlr->transport;
uint16_t sct = SPDK_NVME_SCT_GENERIC;
uint16_t sc = SPDK_NVME_SC_SUCCESS;
uint32_t qsize;
uint16_t qid;
assert(ctrlr != NULL);
assert(cmd != NULL);
qid = cmd->cdw10_bits.create_io_q.qid;
if (qid == 0 || qid >= vu_transport->transport.opts.max_qpairs_per_ctrlr) {
SPDK_ERRLOG("%s: invalid qid=%d, max=%d\n", ctrlr_id(ctrlr),
qid, vu_transport->transport.opts.max_qpairs_per_ctrlr);
sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
sc = SPDK_NVME_SC_INVALID_QUEUE_IDENTIFIER;
goto out;
}
if (io_q_exists(ctrlr, qid, is_cq)) {
SPDK_ERRLOG("%s: %cqid:%d already exists\n", ctrlr_id(ctrlr),
is_cq ? 'c' : 's', qid);
sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
sc = SPDK_NVME_SC_INVALID_QUEUE_IDENTIFIER;
goto out;
}
qsize = cmd->cdw10_bits.create_io_q.qsize + 1;
if (qsize == 1 || qsize > max_queue_size(ctrlr)) {
SPDK_ERRLOG("%s: invalid I/O queue size %u\n", ctrlr_id(ctrlr), qsize);
sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
sc = SPDK_NVME_SC_INVALID_QUEUE_SIZE;
goto out;
}
if (is_cq) {
sc = handle_create_io_cq(ctrlr, cmd, &sct);
} else {
sc = handle_create_io_sq(ctrlr, cmd, &sct);
if (sct == SPDK_NVME_SCT_GENERIC &&
sc == SPDK_NVME_SC_SUCCESS) {
/* Completion posted asynchronously. */
return 0;
}
}
out:
return post_completion(ctrlr, ctrlr->cqs[0], 0, 0, cmd->cid, sc, sct);
}
/* For ADMIN I/O DELETE SUBMISSION QUEUE the NVMf library will disconnect and free
* queue pair, so save the command in a context.
*/
struct vfio_user_delete_sq_ctx {
struct nvmf_vfio_user_ctrlr *vu_ctrlr;
struct spdk_nvme_cmd delete_io_sq_cmd;
};
static void
vfio_user_qpair_delete_cb(void *cb_arg)
{
struct vfio_user_delete_sq_ctx *ctx = cb_arg;
struct nvmf_vfio_user_ctrlr *vu_ctrlr = ctx->vu_ctrlr;
struct nvmf_vfio_user_cq *admin_cq = vu_ctrlr->cqs[0];
assert(admin_cq != NULL);
assert(admin_cq->group != NULL);
assert(admin_cq->group->group->thread != NULL);
if (admin_cq->group->group->thread != spdk_get_thread()) {
spdk_thread_send_msg(admin_cq->group->group->thread,
vfio_user_qpair_delete_cb,
cb_arg);
} else {
post_completion(vu_ctrlr, admin_cq, 0, 0,
ctx->delete_io_sq_cmd.cid,
SPDK_NVME_SC_SUCCESS, SPDK_NVME_SCT_GENERIC);
free(ctx);
}
}
/*
* Deletes a completion or submission I/O queue.
*/
static int
handle_del_io_q(struct nvmf_vfio_user_ctrlr *ctrlr,
struct spdk_nvme_cmd *cmd, const bool is_cq)
{
uint16_t sct = SPDK_NVME_SCT_GENERIC;
uint16_t sc = SPDK_NVME_SC_SUCCESS;
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_cq *cq;
struct vfio_user_delete_sq_ctx *ctx;
SPDK_DEBUGLOG(nvmf_vfio, "%s: delete I/O %cqid:%d\n",
ctrlr_id(ctrlr), is_cq ? 'c' : 's',
cmd->cdw10_bits.delete_io_q.qid);
if (!io_q_exists(ctrlr, cmd->cdw10_bits.delete_io_q.qid, is_cq)) {
SPDK_ERRLOG("%s: I/O %cqid:%d does not exist\n", ctrlr_id(ctrlr),
is_cq ? 'c' : 's', cmd->cdw10_bits.delete_io_q.qid);
sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
sc = SPDK_NVME_SC_INVALID_QUEUE_IDENTIFIER;
goto out;
}
if (is_cq) {
cq = ctrlr->cqs[cmd->cdw10_bits.delete_io_q.qid];
if (cq->cq_ref) {
SPDK_ERRLOG("%s: the associated SQ must be deleted first\n", ctrlr_id(ctrlr));
sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
sc = SPDK_NVME_SC_INVALID_QUEUE_DELETION;
goto out;
}
delete_cq_done(ctrlr, cq);
} else {
/*
* Deletion of the CQ is only deferred to delete_sq_done() on
* VM reboot or CC.EN change, so we have to delete it in all
* other cases.
*/
ctx = calloc(1, sizeof(*ctx));
if (!ctx) {
sct = SPDK_NVME_SCT_GENERIC;
sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
goto out;
}
ctx->vu_ctrlr = ctrlr;
ctx->delete_io_sq_cmd = *cmd;
sq = ctrlr->sqs[cmd->cdw10_bits.delete_io_q.qid];
sq->sq_state = VFIO_USER_SQ_DELETED;
assert(ctrlr->cqs[sq->cqid]->cq_ref);
ctrlr->cqs[sq->cqid]->cq_ref--;
spdk_nvmf_qpair_disconnect(&sq->qpair, vfio_user_qpair_delete_cb, ctx);
return 0;
}
out:
return post_completion(ctrlr, ctrlr->cqs[0], 0, 0, cmd->cid, sc, sct);
}
/*
* Configures Shadow Doorbells.
*/
static int
handle_doorbell_buffer_config(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvme_cmd *cmd)
{
struct nvmf_vfio_user_shadow_doorbells *sdbl = NULL;
uint32_t dstrd;
uintptr_t page_size, page_mask;
uint64_t prp1, prp2;
uint16_t sct = SPDK_NVME_SCT_GENERIC;
uint16_t sc = SPDK_NVME_SC_INVALID_FIELD;
assert(ctrlr != NULL);
assert(ctrlr->endpoint != NULL);
assert(cmd != NULL);
dstrd = doorbell_stride(ctrlr);
page_size = memory_page_size(ctrlr);
page_mask = memory_page_mask(ctrlr);
/* FIXME: we don't check doorbell stride when setting queue doorbells. */
if ((4u << dstrd) * NVMF_VFIO_USER_DEFAULT_MAX_QPAIRS_PER_CTRLR > page_size) {
SPDK_ERRLOG("%s: doorbells do not fit in a single host page",
ctrlr_id(ctrlr));
goto out;
}
/* Verify guest physical addresses passed as PRPs. */
if (cmd->psdt != SPDK_NVME_PSDT_PRP) {
SPDK_ERRLOG("%s: received Doorbell Buffer Config without PRPs",
ctrlr_id(ctrlr));
goto out;
}
prp1 = cmd->dptr.prp.prp1;
prp2 = cmd->dptr.prp.prp2;
SPDK_DEBUGLOG(nvmf_vfio,
"%s: configuring shadow doorbells with PRP1=%#lx and PRP2=%#lx (GPAs)\n",
ctrlr_id(ctrlr), prp1, prp2);
if (prp1 == prp2
|| prp1 != (prp1 & page_mask)
|| prp2 != (prp2 & page_mask)) {
SPDK_ERRLOG("%s: invalid shadow doorbell GPAs\n",
ctrlr_id(ctrlr));
goto out;
}
/* Map guest physical addresses to our virtual address space. */
sdbl = map_sdbl(ctrlr->endpoint->vfu_ctx, prp1, prp2, page_size);
if (sdbl == NULL) {
SPDK_ERRLOG("%s: failed to map shadow doorbell buffers\n",
ctrlr_id(ctrlr));
goto out;
}
ctrlr->shadow_doorbell_buffer = prp1;
ctrlr->eventidx_buffer = prp2;
SPDK_DEBUGLOG(nvmf_vfio,
"%s: mapped shadow doorbell buffers [%p, %p) and [%p, %p)\n",
ctrlr_id(ctrlr),
sdbl->iovs[0].iov_base,
sdbl->iovs[0].iov_base + sdbl->iovs[0].iov_len,
sdbl->iovs[1].iov_base,
sdbl->iovs[1].iov_base + sdbl->iovs[1].iov_len);
/*
* Set all possible CQ head doorbells to polling mode now, such that we
* don't have to worry about it later if the host creates more queues.
*
* We only ever want interrupts for writes to the SQ tail doorbells
* (which are initialised in set_ctrlr_intr_mode() below).
*/
for (uint16_t i = 0; i < NVMF_VFIO_USER_DEFAULT_MAX_QPAIRS_PER_CTRLR; ++i) {
sdbl->eventidxs[queue_index(i, true)] = NVMF_VFIO_USER_EVENTIDX_POLL;
}
/* Update controller. */
SWAP(ctrlr->sdbl, sdbl);
/*
* Copy doorbells from either the previous shadow doorbell buffer or the
* BAR0 doorbells and make I/O queue doorbells point to the new buffer.
*
* This needs to account for older versions of the Linux NVMe driver,
* which don't clear out the buffer after a controller reset.
*/
copy_doorbells(ctrlr, sdbl != NULL ?
sdbl->shadow_doorbells : ctrlr->bar0_doorbells,
ctrlr->sdbl->shadow_doorbells);
vfio_user_ctrlr_switch_doorbells(ctrlr, true);
ctrlr_kick(ctrlr);
sc = SPDK_NVME_SC_SUCCESS;
out:
/*
* Unmap existing buffers, in case Doorbell Buffer Config was sent
* more than once (pointless, but not prohibited by the spec), or
* in case of an error.
*
* If this is the first time Doorbell Buffer Config was processed,
* then we've just swapped a NULL from ctrlr->sdbl into sdbl, so
* free_sdbl() becomes a noop.
*/
free_sdbl(ctrlr->endpoint->vfu_ctx, sdbl);
return post_completion(ctrlr, ctrlr->cqs[0], 0, 0, cmd->cid, sc, sct);
}
/* Returns 0 on success and -errno on error. */
static int
consume_admin_cmd(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvme_cmd *cmd)
{
assert(ctrlr != NULL);
assert(cmd != NULL);
if (cmd->fuse != 0) {
/* Fused admin commands are not supported. */
return post_completion(ctrlr, ctrlr->cqs[0], 0, 0, cmd->cid,
SPDK_NVME_SC_INVALID_FIELD,
SPDK_NVME_SCT_GENERIC);
}
switch (cmd->opc) {
case SPDK_NVME_OPC_CREATE_IO_CQ:
case SPDK_NVME_OPC_CREATE_IO_SQ:
return handle_create_io_q(ctrlr, cmd,
cmd->opc == SPDK_NVME_OPC_CREATE_IO_CQ);
case SPDK_NVME_OPC_DELETE_IO_SQ:
case SPDK_NVME_OPC_DELETE_IO_CQ:
return handle_del_io_q(ctrlr, cmd,
cmd->opc == SPDK_NVME_OPC_DELETE_IO_CQ);
case SPDK_NVME_OPC_DOORBELL_BUFFER_CONFIG:
if (!ctrlr->transport->transport_opts.disable_shadow_doorbells) {
return handle_doorbell_buffer_config(ctrlr, cmd);
}
/* FALLTHROUGH */
default:
return handle_cmd_req(ctrlr, cmd, ctrlr->sqs[0]);
}
}
static int
handle_cmd_rsp(struct nvmf_vfio_user_req *vu_req, void *cb_arg)
{
struct nvmf_vfio_user_sq *sq = cb_arg;
struct nvmf_vfio_user_ctrlr *vu_ctrlr = sq->ctrlr;
uint16_t sqid, cqid;
assert(sq != NULL);
assert(vu_req != NULL);
assert(vu_ctrlr != NULL);
if (spdk_likely(vu_req->iovcnt)) {
vfu_sgl_put(vu_ctrlr->endpoint->vfu_ctx,
index_to_sg_t(vu_req->sg, 0),
vu_req->iov, vu_req->iovcnt);
}
sqid = sq->qid;
cqid = sq->cqid;
return post_completion(vu_ctrlr, vu_ctrlr->cqs[cqid],
vu_req->req.rsp->nvme_cpl.cdw0,
sqid,
vu_req->req.cmd->nvme_cmd.cid,
vu_req->req.rsp->nvme_cpl.status.sc,
vu_req->req.rsp->nvme_cpl.status.sct);
}
static int
consume_cmd(struct nvmf_vfio_user_ctrlr *ctrlr, struct nvmf_vfio_user_sq *sq,
struct spdk_nvme_cmd *cmd)
{
assert(sq != NULL);
if (spdk_unlikely(nvmf_qpair_is_admin_queue(&sq->qpair))) {
return consume_admin_cmd(ctrlr, cmd);
}
return handle_cmd_req(ctrlr, cmd, sq);
}
/* Returns the number of commands processed, or a negative value on error. */
static int
handle_sq_tdbl_write(struct nvmf_vfio_user_ctrlr *ctrlr, const uint32_t new_tail,
struct nvmf_vfio_user_sq *sq)
{
struct spdk_nvme_cmd *queue;
int count = 0;
assert(ctrlr != NULL);
assert(sq != NULL);
if (ctrlr->sdbl != NULL && sq->qid != 0) {
/*
* Submission queue index has moved past the event index, so it
* needs to be re-armed before we go to sleep.
*/
sq->need_rearm = true;
}
queue = q_addr(&sq->mapping);
while (*sq_headp(sq) != new_tail) {
int err;
struct spdk_nvme_cmd *cmd = &queue[*sq_headp(sq)];
count++;
/*
* SQHD must contain the new head pointer, so we must increase
* it before we generate a completion.
*/
sq_head_advance(sq);
err = consume_cmd(ctrlr, sq, cmd);
if (spdk_unlikely(err != 0)) {
return err;
}
}
return count;
}
/* Checks whether endpoint is connected from the same process */
static bool
is_peer_same_process(struct nvmf_vfio_user_endpoint *endpoint)
{
struct ucred ucred;
socklen_t ucredlen = sizeof(ucred);
if (endpoint == NULL) {
return false;
}
if (getsockopt(vfu_get_poll_fd(endpoint->vfu_ctx), SOL_SOCKET, SO_PEERCRED, &ucred,
&ucredlen) < 0) {
SPDK_ERRLOG("getsockopt(SO_PEERCRED): %s\n", strerror(errno));
return false;
}
return ucred.pid == getpid();
}
static void
memory_region_add_cb(vfu_ctx_t *vfu_ctx, vfu_dma_info_t *info)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
struct nvmf_vfio_user_ctrlr *ctrlr;
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_cq *cq;
void *map_start, *map_end;
int ret;
/*
* We're not interested in any DMA regions that aren't mappable (we don't
* support clients that don't share their memory).
*/
if (!info->vaddr) {
return;
}
map_start = info->mapping.iov_base;
map_end = info->mapping.iov_base + info->mapping.iov_len;
if (((uintptr_t)info->mapping.iov_base & MASK_2MB) ||
(info->mapping.iov_len & MASK_2MB)) {
SPDK_DEBUGLOG(nvmf_vfio, "Invalid memory region vaddr %p, IOVA %p-%p\n",
info->vaddr, map_start, map_end);
return;
}
assert(endpoint != NULL);
if (endpoint->ctrlr == NULL) {
return;
}
ctrlr = endpoint->ctrlr;
SPDK_DEBUGLOG(nvmf_vfio, "%s: map IOVA %p-%p\n", endpoint_id(endpoint),
map_start, map_end);
/* VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE are enabled when registering to VFIO, here we also
* check the protection bits before registering. When vfio client and server are run in same process
* there is no need to register the same memory again.
*/
if (info->prot == (PROT_WRITE | PROT_READ) && !is_peer_same_process(endpoint)) {
ret = spdk_mem_register(info->mapping.iov_base, info->mapping.iov_len);
if (ret) {
SPDK_ERRLOG("Memory region register %p-%p failed, ret=%d\n",
map_start, map_end, ret);
}
}
pthread_mutex_lock(&endpoint->lock);
TAILQ_FOREACH(sq, &ctrlr->connected_sqs, tailq) {
if (sq->sq_state != VFIO_USER_SQ_INACTIVE) {
continue;
}
cq = ctrlr->cqs[sq->cqid];
/* For shared CQ case, we will use q_addr() to avoid mapping CQ multiple times */
if (cq->size && q_addr(&cq->mapping) == NULL) {
ret = map_q(ctrlr, &cq->mapping, cq->size, true, false);
if (ret) {
SPDK_DEBUGLOG(nvmf_vfio, "Memory isn't ready to remap cqid:%d %#lx-%#lx\n",
cq->qid, cq->mapping.prp1,
cq->mapping.prp1 + cq->size * sizeof(struct spdk_nvme_cpl));
continue;
}
}
if (sq->size) {
ret = map_q(ctrlr, &sq->mapping, sq->size, false, false);
if (ret) {
SPDK_DEBUGLOG(nvmf_vfio, "Memory isn't ready to remap sqid:%d %#lx-%#lx\n",
sq->qid, sq->mapping.prp1,
sq->mapping.prp1 + sq->size * sizeof(struct spdk_nvme_cmd));
continue;
}
}
sq->sq_state = VFIO_USER_SQ_ACTIVE;
SPDK_DEBUGLOG(nvmf_vfio, "Remap sqid:%u successfully\n", sq->qid);
}
pthread_mutex_unlock(&endpoint->lock);
}
static void
memory_region_remove_cb(vfu_ctx_t *vfu_ctx, vfu_dma_info_t *info)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_cq *cq;
void *map_start, *map_end;
int ret = 0;
if (!info->vaddr) {
return;
}
map_start = info->mapping.iov_base;
map_end = info->mapping.iov_base + info->mapping.iov_len;
if (((uintptr_t)info->mapping.iov_base & MASK_2MB) ||
(info->mapping.iov_len & MASK_2MB)) {
SPDK_DEBUGLOG(nvmf_vfio, "Invalid memory region vaddr %p, IOVA %p-%p\n",
info->vaddr, map_start, map_end);
return;
}
assert(endpoint != NULL);
SPDK_DEBUGLOG(nvmf_vfio, "%s: unmap IOVA %p-%p\n", endpoint_id(endpoint),
map_start, map_end);
if (endpoint->ctrlr != NULL) {
struct nvmf_vfio_user_ctrlr *ctrlr;
ctrlr = endpoint->ctrlr;
pthread_mutex_lock(&endpoint->lock);
TAILQ_FOREACH(sq, &ctrlr->connected_sqs, tailq) {
if (q_addr(&sq->mapping) >= map_start && q_addr(&sq->mapping) <= map_end) {
unmap_q(ctrlr, &sq->mapping);
sq->sq_state = VFIO_USER_SQ_INACTIVE;
}
cq = ctrlr->cqs[sq->cqid];
if (q_addr(&cq->mapping) >= map_start && q_addr(&cq->mapping) <= map_end) {
unmap_q(ctrlr, &cq->mapping);
}
}
if (ctrlr->sdbl != NULL) {
size_t i;
for (i = 0; i < NVMF_VFIO_USER_SHADOW_DOORBELLS_BUFFER_COUNT; i++) {
const void *const iov_base = ctrlr->sdbl->iovs[i].iov_base;
if (iov_base >= map_start && iov_base < map_end) {
copy_doorbells(ctrlr,
ctrlr->sdbl->shadow_doorbells,
ctrlr->bar0_doorbells);
vfio_user_ctrlr_switch_doorbells(ctrlr, false);
free_sdbl(endpoint->vfu_ctx, ctrlr->sdbl);
ctrlr->sdbl = NULL;
break;
}
}
}
pthread_mutex_unlock(&endpoint->lock);
}
if (info->prot == (PROT_WRITE | PROT_READ) && !is_peer_same_process(endpoint)) {
ret = spdk_mem_unregister(info->mapping.iov_base, info->mapping.iov_len);
if (ret) {
SPDK_ERRLOG("Memory region unregister %p-%p failed, ret=%d\n",
map_start, map_end, ret);
}
}
}
/* Used to initiate a controller-level reset or a controller shutdown. */
static void
disable_ctrlr(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
{
SPDK_DEBUGLOG(nvmf_vfio, "%s: disabling controller\n",
ctrlr_id(vu_ctrlr));
/* Unmap Admin queue. */
assert(vu_ctrlr->sqs[0] != NULL);
assert(vu_ctrlr->cqs[0] != NULL);
unmap_q(vu_ctrlr, &vu_ctrlr->sqs[0]->mapping);
unmap_q(vu_ctrlr, &vu_ctrlr->cqs[0]->mapping);
vu_ctrlr->sqs[0]->size = 0;
*sq_headp(vu_ctrlr->sqs[0]) = 0;
vu_ctrlr->sqs[0]->sq_state = VFIO_USER_SQ_INACTIVE;
vu_ctrlr->cqs[0]->size = 0;
*cq_tailp(vu_ctrlr->cqs[0]) = 0;
/*
* For PCIe controller reset or shutdown, we will drop all AER
* responses.
*/
nvmf_ctrlr_abort_aer(vu_ctrlr->ctrlr);
/* Free the shadow doorbell buffer. */
vfio_user_ctrlr_switch_doorbells(vu_ctrlr, false);
free_sdbl(vu_ctrlr->endpoint->vfu_ctx, vu_ctrlr->sdbl);
vu_ctrlr->sdbl = NULL;
}
/* Used to re-enable the controller after a controller-level reset. */
static int
enable_ctrlr(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
{
int err;
assert(vu_ctrlr != NULL);
SPDK_DEBUGLOG(nvmf_vfio, "%s: enabling controller\n",
ctrlr_id(vu_ctrlr));
err = acq_setup(vu_ctrlr);
if (err != 0) {
return err;
}
err = asq_setup(vu_ctrlr);
if (err != 0) {
return err;
}
vu_ctrlr->sqs[0]->sq_state = VFIO_USER_SQ_ACTIVE;
return 0;
}
static int
nvmf_vfio_user_prop_req_rsp_set(struct nvmf_vfio_user_req *req,
struct nvmf_vfio_user_sq *sq)
{
struct nvmf_vfio_user_ctrlr *vu_ctrlr;
union spdk_nvme_cc_register cc, diff;
assert(req->req.cmd->prop_set_cmd.fctype == SPDK_NVMF_FABRIC_COMMAND_PROPERTY_SET);
assert(sq->ctrlr != NULL);
vu_ctrlr = sq->ctrlr;
if (req->req.cmd->prop_set_cmd.ofst != offsetof(struct spdk_nvme_registers, cc)) {
return 0;
}
cc.raw = req->req.cmd->prop_set_cmd.value.u64;
diff.raw = cc.raw ^ req->cc.raw;
if (diff.bits.en) {
if (cc.bits.en) {
int ret = enable_ctrlr(vu_ctrlr);
if (ret) {
SPDK_ERRLOG("%s: failed to enable ctrlr\n", ctrlr_id(vu_ctrlr));
return ret;
}
vu_ctrlr->reset_shn = false;
} else {
vu_ctrlr->reset_shn = true;
}
}
if (diff.bits.shn) {
if (cc.bits.shn == SPDK_NVME_SHN_NORMAL || cc.bits.shn == SPDK_NVME_SHN_ABRUPT) {
vu_ctrlr->reset_shn = true;
}
}
if (vu_ctrlr->reset_shn) {
disable_ctrlr(vu_ctrlr);
}
return 0;
}
static int
nvmf_vfio_user_prop_req_rsp(struct nvmf_vfio_user_req *req, void *cb_arg)
{
struct nvmf_vfio_user_sq *sq = cb_arg;
assert(sq != NULL);
assert(req != NULL);
if (req->req.cmd->prop_get_cmd.fctype == SPDK_NVMF_FABRIC_COMMAND_PROPERTY_GET) {
assert(sq->ctrlr != NULL);
assert(req != NULL);
memcpy(req->req.data,
&req->req.rsp->prop_get_rsp.value.u64,
req->req.length);
return 0;
}
return nvmf_vfio_user_prop_req_rsp_set(req, sq);
}
/*
* Handles a write at offset 0x1000 or more; this is the non-mapped path when a
* doorbell is written via access_bar0_fn().
*
* DSTRD is set to fixed value 0 for NVMf.
*
*/
static int
handle_dbl_access(struct nvmf_vfio_user_ctrlr *ctrlr, uint32_t *buf,
const size_t count, loff_t pos, const bool is_write)
{
struct nvmf_vfio_user_poll_group *group;
assert(ctrlr != NULL);
assert(buf != NULL);
if (spdk_unlikely(!is_write)) {
SPDK_WARNLOG("%s: host tried to read BAR0 doorbell %#lx\n",
ctrlr_id(ctrlr), pos);
errno = EPERM;
return -1;
}
if (spdk_unlikely(count != sizeof(uint32_t))) {
SPDK_ERRLOG("%s: bad doorbell buffer size %ld\n",
ctrlr_id(ctrlr), count);
errno = EINVAL;
return -1;
}
pos -= NVME_DOORBELLS_OFFSET;
/* pos must be dword aligned */
if (spdk_unlikely((pos & 0x3) != 0)) {
SPDK_ERRLOG("%s: bad doorbell offset %#lx\n", ctrlr_id(ctrlr), pos);
errno = EINVAL;
return -1;
}
/* convert byte offset to array index */
pos >>= 2;
if (spdk_unlikely(pos >= NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR * 2)) {
SPDK_ERRLOG("%s: bad doorbell index %#lx\n", ctrlr_id(ctrlr), pos);
errno = EINVAL;
return -1;
}
ctrlr->bar0_doorbells[pos] = *buf;
spdk_wmb();
group = ctrlr_to_poll_group(ctrlr);
if (pos == 1) {
group->stats.cqh_admin_writes++;
} else if (pos & 1) {
group->stats.cqh_io_writes++;
}
SPDK_DEBUGLOG(vfio_user_db, "%s: updating BAR0 doorbell %s:%ld to %u\n",
ctrlr_id(ctrlr), (pos & 1) ? "cqid" : "sqid",
pos / 2, *buf);
return 0;
}
static size_t
vfio_user_property_access(struct nvmf_vfio_user_ctrlr *vu_ctrlr,
char *buf, size_t count, loff_t pos,
bool is_write)
{
struct nvmf_vfio_user_req *req;
const struct spdk_nvmf_registers *regs;
if ((count != 4) && (count != 8)) {
errno = EINVAL;
return -1;
}
/* Construct a Fabric Property Get/Set command and send it */
req = get_nvmf_vfio_user_req(vu_ctrlr->sqs[0]);
if (req == NULL) {
errno = ENOBUFS;
return -1;
}
regs = spdk_nvmf_ctrlr_get_regs(vu_ctrlr->ctrlr);
req->cc.raw = regs->cc.raw;
req->cb_fn = nvmf_vfio_user_prop_req_rsp;
req->cb_arg = vu_ctrlr->sqs[0];
req->req.cmd->prop_set_cmd.opcode = SPDK_NVME_OPC_FABRIC;
req->req.cmd->prop_set_cmd.cid = 0;
if (count == 4) {
req->req.cmd->prop_set_cmd.attrib.size = 0;
} else {
req->req.cmd->prop_set_cmd.attrib.size = 1;
}
req->req.cmd->prop_set_cmd.ofst = pos;
if (is_write) {
req->req.cmd->prop_set_cmd.fctype = SPDK_NVMF_FABRIC_COMMAND_PROPERTY_SET;
if (req->req.cmd->prop_set_cmd.attrib.size) {
req->req.cmd->prop_set_cmd.value.u64 = *(uint64_t *)buf;
} else {
req->req.cmd->prop_set_cmd.value.u32.high = 0;
req->req.cmd->prop_set_cmd.value.u32.low = *(uint32_t *)buf;
}
} else {
req->req.cmd->prop_get_cmd.fctype = SPDK_NVMF_FABRIC_COMMAND_PROPERTY_GET;
}
req->req.length = count;
req->req.data = buf;
spdk_nvmf_request_exec_fabrics(&req->req);
return count;
}
static ssize_t
access_bar0_fn(vfu_ctx_t *vfu_ctx, char *buf, size_t count, loff_t pos,
bool is_write)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
struct nvmf_vfio_user_ctrlr *ctrlr;
int ret;
ctrlr = endpoint->ctrlr;
if (spdk_unlikely(endpoint->need_async_destroy || !ctrlr)) {
errno = EIO;
return -1;
}
if (pos >= NVME_DOORBELLS_OFFSET) {
/*
* The fact that the doorbells can be memory mapped doesn't mean
* that the client (VFIO in QEMU) is obliged to memory map them,
* it might still elect to access them via regular read/write;
* we might also have had disable_mappable_bar0 set.
*/
ret = handle_dbl_access(ctrlr, (uint32_t *)buf, count,
pos, is_write);
if (ret == 0) {
return count;
}
return ret;
}
return vfio_user_property_access(ctrlr, buf, count, pos, is_write);
}
static ssize_t
access_pci_config(vfu_ctx_t *vfu_ctx, char *buf, size_t count, loff_t offset,
bool is_write)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
if (is_write) {
SPDK_ERRLOG("%s: write %#lx-%#lx not supported\n",
endpoint_id(endpoint), offset, offset + count);
errno = EINVAL;
return -1;
}
if (offset + count > NVME_REG_CFG_SIZE) {
SPDK_ERRLOG("%s: access past end of extended PCI configuration space, want=%ld+%ld, max=%d\n",
endpoint_id(endpoint), offset, count,
NVME_REG_CFG_SIZE);
errno = ERANGE;
return -1;
}
memcpy(buf, ((unsigned char *)endpoint->pci_config_space) + offset, count);
return count;
}
static void
vfio_user_log(vfu_ctx_t *vfu_ctx, int level, char const *msg)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
if (level >= LOG_DEBUG) {
SPDK_DEBUGLOG(nvmf_vfio, "%s: %s\n", endpoint_id(endpoint), msg);
} else if (level >= LOG_INFO) {
SPDK_INFOLOG(nvmf_vfio, "%s: %s\n", endpoint_id(endpoint), msg);
} else if (level >= LOG_NOTICE) {
SPDK_NOTICELOG("%s: %s\n", endpoint_id(endpoint), msg);
} else if (level >= LOG_WARNING) {
SPDK_WARNLOG("%s: %s\n", endpoint_id(endpoint), msg);
} else {
SPDK_ERRLOG("%s: %s\n", endpoint_id(endpoint), msg);
}
}
static int
vfio_user_get_log_level(void)
{
int level;
if (SPDK_DEBUGLOG_FLAG_ENABLED("nvmf_vfio")) {
return LOG_DEBUG;
}
level = spdk_log_to_syslog_level(spdk_log_get_level());
if (level < 0) {
return LOG_ERR;
}
return level;
}
static void
init_pci_config_space(vfu_pci_config_space_t *p)
{
/* MLBAR */
p->hdr.bars[0].raw = 0x0;
/* MUBAR */
p->hdr.bars[1].raw = 0x0;
/* vendor specific, let's set them to zero for now */
p->hdr.bars[3].raw = 0x0;
p->hdr.bars[4].raw = 0x0;
p->hdr.bars[5].raw = 0x0;
/* enable INTx */
p->hdr.intr.ipin = 0x1;
}
struct ctrlr_quiesce_ctx {
struct nvmf_vfio_user_endpoint *endpoint;
struct nvmf_vfio_user_poll_group *group;
int status;
};
static void ctrlr_quiesce(struct nvmf_vfio_user_ctrlr *vu_ctrlr);
static void
_vfio_user_endpoint_resume_done_msg(void *ctx)
{
struct nvmf_vfio_user_endpoint *endpoint = ctx;
struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
endpoint->need_resume = false;
if (!vu_ctrlr) {
return;
}
if (!vu_ctrlr->queued_quiesce) {
vu_ctrlr->state = VFIO_USER_CTRLR_RUNNING;
/*
* We might have ignored new SQ entries while we were quiesced:
* kick ourselves so we'll definitely check again while in
* VFIO_USER_CTRLR_RUNNING state.
*/
if (in_interrupt_mode(endpoint->transport)) {
ctrlr_kick(vu_ctrlr);
}
return;
}
/*
* Basically, once we call `vfu_device_quiesced` the device is
* unquiesced from libvfio-user's perspective so from the moment
* `vfio_user_quiesce_done` returns libvfio-user might quiesce the device
* again. However, because the NVMf subsytem is an asynchronous
* operation, this quiesce might come _before_ the NVMf subsystem has
* been resumed, so in the callback of `spdk_nvmf_subsystem_resume` we
* need to check whether a quiesce was requested.
*/
SPDK_DEBUGLOG(nvmf_vfio, "%s has queued quiesce event, quiesce again\n",
ctrlr_id(vu_ctrlr));
ctrlr_quiesce(vu_ctrlr);
}
static void
vfio_user_endpoint_resume_done(struct spdk_nvmf_subsystem *subsystem,
void *cb_arg, int status)
{
struct nvmf_vfio_user_endpoint *endpoint = cb_arg;
struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
SPDK_DEBUGLOG(nvmf_vfio, "%s resumed done with status %d\n", endpoint_id(endpoint), status);
if (!vu_ctrlr) {
return;
}
spdk_thread_send_msg(vu_ctrlr->thread, _vfio_user_endpoint_resume_done_msg, endpoint);
}
static void
vfio_user_quiesce_done(void *ctx)
{
struct ctrlr_quiesce_ctx *quiesce_ctx = ctx;
struct nvmf_vfio_user_endpoint *endpoint = quiesce_ctx->endpoint;
struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
int ret;
if (!vu_ctrlr) {
free(quiesce_ctx);
return;
}
SPDK_DEBUGLOG(nvmf_vfio, "%s device quiesced\n", ctrlr_id(vu_ctrlr));
assert(vu_ctrlr->state == VFIO_USER_CTRLR_PAUSING);
vu_ctrlr->state = VFIO_USER_CTRLR_PAUSED;
vfu_device_quiesced(endpoint->vfu_ctx, quiesce_ctx->status);
vu_ctrlr->queued_quiesce = false;
free(quiesce_ctx);
/* `vfu_device_quiesced` can change the migration state,
* so we need to re-check `vu_ctrlr->state`.
*/
if (vu_ctrlr->state == VFIO_USER_CTRLR_MIGRATING) {
SPDK_DEBUGLOG(nvmf_vfio, "%s is in MIGRATION state\n", ctrlr_id(vu_ctrlr));
return;
}
SPDK_DEBUGLOG(nvmf_vfio, "%s start to resume\n", ctrlr_id(vu_ctrlr));
vu_ctrlr->state = VFIO_USER_CTRLR_RESUMING;
ret = spdk_nvmf_subsystem_resume((struct spdk_nvmf_subsystem *)endpoint->subsystem,
vfio_user_endpoint_resume_done, endpoint);
if (ret < 0) {
vu_ctrlr->state = VFIO_USER_CTRLR_PAUSED;
SPDK_ERRLOG("%s: failed to resume, ret=%d\n", endpoint_id(endpoint), ret);
}
}
static void
vfio_user_pause_done(struct spdk_nvmf_subsystem *subsystem,
void *ctx, int status)
{
struct ctrlr_quiesce_ctx *quiesce_ctx = ctx;
struct nvmf_vfio_user_endpoint *endpoint = quiesce_ctx->endpoint;
struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
if (!vu_ctrlr) {
free(quiesce_ctx);
return;
}
quiesce_ctx->status = status;
SPDK_DEBUGLOG(nvmf_vfio, "%s pause done with status %d\n",
ctrlr_id(vu_ctrlr), status);
spdk_thread_send_msg(vu_ctrlr->thread,
vfio_user_quiesce_done, ctx);
}
/*
* Ensure that, for this PG, we've stopped running in nvmf_vfio_user_sq_poll();
* we've already set ctrlr->state, so we won't process new entries, but we need
* to ensure that this PG is quiesced. This only works because there's no
* callback context set up between polling the SQ and spdk_nvmf_request_exec().
*
* Once we've walked all PGs, we need to pause any submitted I/O via
* spdk_nvmf_subsystem_pause(SPDK_NVME_GLOBAL_NS_TAG).
*/
static void
vfio_user_quiesce_pg(void *ctx)
{
struct ctrlr_quiesce_ctx *quiesce_ctx = ctx;
struct nvmf_vfio_user_endpoint *endpoint = quiesce_ctx->endpoint;
struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
struct nvmf_vfio_user_poll_group *vu_group = quiesce_ctx->group;
struct spdk_nvmf_subsystem *subsystem = endpoint->subsystem;
int ret;
SPDK_DEBUGLOG(nvmf_vfio, "quiesced pg:%p\n", vu_group);
if (!vu_ctrlr) {
free(quiesce_ctx);
return;
}
quiesce_ctx->group = TAILQ_NEXT(vu_group, link);
if (quiesce_ctx->group != NULL) {
spdk_thread_send_msg(poll_group_to_thread(quiesce_ctx->group),
vfio_user_quiesce_pg, quiesce_ctx);
return;
}
ret = spdk_nvmf_subsystem_pause(subsystem, SPDK_NVME_GLOBAL_NS_TAG,
vfio_user_pause_done, quiesce_ctx);
if (ret < 0) {
SPDK_ERRLOG("%s: failed to pause, ret=%d\n",
endpoint_id(endpoint), ret);
vu_ctrlr->state = VFIO_USER_CTRLR_RUNNING;
fail_ctrlr(vu_ctrlr);
free(quiesce_ctx);
}
}
static void
ctrlr_quiesce(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
{
struct ctrlr_quiesce_ctx *quiesce_ctx;
vu_ctrlr->state = VFIO_USER_CTRLR_PAUSING;
quiesce_ctx = calloc(1, sizeof(*quiesce_ctx));
if (!quiesce_ctx) {
SPDK_ERRLOG("Failed to allocate subsystem pause context\n");
assert(false);
return;
}
quiesce_ctx->endpoint = vu_ctrlr->endpoint;
quiesce_ctx->status = 0;
quiesce_ctx->group = TAILQ_FIRST(&vu_ctrlr->transport->poll_groups);
spdk_thread_send_msg(poll_group_to_thread(quiesce_ctx->group),
vfio_user_quiesce_pg, quiesce_ctx);
}
static int
vfio_user_dev_quiesce_cb(vfu_ctx_t *vfu_ctx)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
struct spdk_nvmf_subsystem *subsystem = endpoint->subsystem;
struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
if (!vu_ctrlr) {
return 0;
}
/* NVMf library will destruct controller when no
* connected queue pairs.
*/
if (!nvmf_subsystem_get_ctrlr(subsystem, vu_ctrlr->cntlid)) {
return 0;
}
SPDK_DEBUGLOG(nvmf_vfio, "%s starts to quiesce\n", ctrlr_id(vu_ctrlr));
/* There is no race condition here as device quiesce callback
* and nvmf_prop_set_cc() are running in the same thread context.
*/
if (!vu_ctrlr->ctrlr->vcprop.cc.bits.en) {
return 0;
} else if (!vu_ctrlr->ctrlr->vcprop.csts.bits.rdy) {
return 0;
} else if (vu_ctrlr->ctrlr->vcprop.csts.bits.shst == SPDK_NVME_SHST_COMPLETE) {
return 0;
}
switch (vu_ctrlr->state) {
case VFIO_USER_CTRLR_PAUSED:
case VFIO_USER_CTRLR_MIGRATING:
return 0;
case VFIO_USER_CTRLR_RUNNING:
ctrlr_quiesce(vu_ctrlr);
break;
case VFIO_USER_CTRLR_RESUMING:
vu_ctrlr->queued_quiesce = true;
SPDK_DEBUGLOG(nvmf_vfio, "%s is busy to quiesce, current state %u\n", ctrlr_id(vu_ctrlr),
vu_ctrlr->state);
break;
default:
assert(vu_ctrlr->state != VFIO_USER_CTRLR_PAUSING);
break;
}
errno = EBUSY;
return -1;
}
static void
vfio_user_ctrlr_dump_migr_data(const char *name,
struct vfio_user_nvme_migr_state *migr_data,
struct nvmf_vfio_user_shadow_doorbells *sdbl)
{
struct spdk_nvmf_registers *regs;
struct nvme_migr_sq_state *sq;
struct nvme_migr_cq_state *cq;
uint32_t *doorbell_base;
uint32_t i;
SPDK_NOTICELOG("Dump %s\n", name);
regs = &migr_data->nvmf_data.regs;
doorbell_base = (uint32_t *)&migr_data->doorbells;
SPDK_NOTICELOG("Registers\n");
SPDK_NOTICELOG("CSTS 0x%x\n", regs->csts.raw);
SPDK_NOTICELOG("CAP 0x%"PRIx64"\n", regs->cap.raw);
SPDK_NOTICELOG("VS 0x%x\n", regs->vs.raw);
SPDK_NOTICELOG("CC 0x%x\n", regs->cc.raw);
SPDK_NOTICELOG("AQA 0x%x\n", regs->aqa.raw);
SPDK_NOTICELOG("ASQ 0x%"PRIx64"\n", regs->asq);
SPDK_NOTICELOG("ACQ 0x%"PRIx64"\n", regs->acq);
SPDK_NOTICELOG("Number of IO Queues %u\n", migr_data->ctrlr_header.num_io_queues);
if (sdbl != NULL) {
SPDK_NOTICELOG("shadow doorbell buffer=%#lx\n",
migr_data->ctrlr_header.shadow_doorbell_buffer);
SPDK_NOTICELOG("eventidx buffer=%#lx\n",
migr_data->ctrlr_header.eventidx_buffer);
}
for (i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
sq = &migr_data->qps[i].sq;
cq = &migr_data->qps[i].cq;
if (sq->size) {
SPDK_NOTICELOG("sqid:%u, bar0_doorbell:%u\n", sq->sqid, doorbell_base[i * 2]);
if (i > 0 && sdbl != NULL) {
SPDK_NOTICELOG("sqid:%u, shadow_doorbell:%u, eventidx:%u\n",
sq->sqid,
sdbl->shadow_doorbells[queue_index(i, false)],
sdbl->eventidxs[queue_index(i, false)]);
}
SPDK_NOTICELOG("SQ sqid:%u, cqid:%u, sqhead:%u, size:%u, dma_addr:0x%"PRIx64"\n",
sq->sqid, sq->cqid, sq->head, sq->size, sq->dma_addr);
}
if (cq->size) {
SPDK_NOTICELOG("cqid:%u, bar0_doorbell:%u\n", cq->cqid, doorbell_base[i * 2 + 1]);
if (i > 0 && sdbl != NULL) {
SPDK_NOTICELOG("cqid:%u, shadow_doorbell:%u, eventidx:%u\n",
cq->cqid,
sdbl->shadow_doorbells[queue_index(i, true)],
sdbl->eventidxs[queue_index(i, true)]);
}
SPDK_NOTICELOG("CQ cqid:%u, phase:%u, cqtail:%u, size:%u, iv:%u, ien:%u, dma_addr:0x%"PRIx64"\n",
cq->cqid, cq->phase, cq->tail, cq->size, cq->iv, cq->ien, cq->dma_addr);
}
}
SPDK_NOTICELOG("%s Dump Done\n", name);
}
/* Read region 9 content and restore it to migration data structures */
static int
vfio_user_migr_stream_to_data(struct nvmf_vfio_user_endpoint *endpoint,
struct vfio_user_nvme_migr_state *migr_state)
{
void *data_ptr = endpoint->migr_data;
/* Load vfio_user_nvme_migr_header first */
memcpy(&migr_state->ctrlr_header, data_ptr, sizeof(struct vfio_user_nvme_migr_header));
/* TODO: version check */
if (migr_state->ctrlr_header.magic != VFIO_USER_NVME_MIGR_MAGIC) {
SPDK_ERRLOG("%s: bad magic number %x\n", endpoint_id(endpoint), migr_state->ctrlr_header.magic);
return -EINVAL;
}
/* Load nvmf controller data */
data_ptr = endpoint->migr_data + migr_state->ctrlr_header.nvmf_data_offset;
memcpy(&migr_state->nvmf_data, data_ptr, migr_state->ctrlr_header.nvmf_data_len);
/* Load queue pairs */
data_ptr = endpoint->migr_data + migr_state->ctrlr_header.qp_offset;
memcpy(&migr_state->qps, data_ptr, migr_state->ctrlr_header.qp_len);
/* Load doorbells */
data_ptr = endpoint->migr_data + migr_state->ctrlr_header.bar_offset[VFU_PCI_DEV_BAR0_REGION_IDX];
memcpy(&migr_state->doorbells, data_ptr,
migr_state->ctrlr_header.bar_len[VFU_PCI_DEV_BAR0_REGION_IDX]);
/* Load CFG */
data_ptr = endpoint->migr_data + migr_state->ctrlr_header.bar_offset[VFU_PCI_DEV_CFG_REGION_IDX];
memcpy(&migr_state->cfg, data_ptr, migr_state->ctrlr_header.bar_len[VFU_PCI_DEV_CFG_REGION_IDX]);
return 0;
}
static void
vfio_user_migr_ctrlr_save_data(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
{
struct spdk_nvmf_ctrlr *ctrlr = vu_ctrlr->ctrlr;
struct nvmf_vfio_user_endpoint *endpoint = vu_ctrlr->endpoint;
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_cq *cq;
uint64_t data_offset;
void *data_ptr;
uint32_t *doorbell_base;
uint32_t i = 0;
uint16_t sqid, cqid;
struct vfio_user_nvme_migr_state migr_state = {
.nvmf_data = {
.data_size = offsetof(struct spdk_nvmf_ctrlr_migr_data, unused),
.regs_size = sizeof(struct spdk_nvmf_registers),
.feat_size = sizeof(struct spdk_nvmf_ctrlr_feat)
}
};
/* Save all data to vfio_user_nvme_migr_state first, then we will
* copy it to device migration region at last.
*/
/* save magic number */
migr_state.ctrlr_header.magic = VFIO_USER_NVME_MIGR_MAGIC;
/* save controller data */
spdk_nvmf_ctrlr_save_migr_data(ctrlr, &migr_state.nvmf_data);
/* save connected queue pairs */
TAILQ_FOREACH(sq, &vu_ctrlr->connected_sqs, tailq) {
/* save sq */
sqid = sq->qid;
migr_state.qps[sqid].sq.sqid = sq->qid;
migr_state.qps[sqid].sq.cqid = sq->cqid;
migr_state.qps[sqid].sq.head = *sq_headp(sq);
migr_state.qps[sqid].sq.size = sq->size;
migr_state.qps[sqid].sq.dma_addr = sq->mapping.prp1;
/* save cq, for shared cq case, cq may be saved multiple times */
cqid = sq->cqid;
cq = vu_ctrlr->cqs[cqid];
migr_state.qps[cqid].cq.cqid = cqid;
migr_state.qps[cqid].cq.tail = *cq_tailp(cq);
migr_state.qps[cqid].cq.ien = cq->ien;
migr_state.qps[cqid].cq.iv = cq->iv;
migr_state.qps[cqid].cq.size = cq->size;
migr_state.qps[cqid].cq.phase = cq->phase;
migr_state.qps[cqid].cq.dma_addr = cq->mapping.prp1;
i++;
}
assert(i > 0);
migr_state.ctrlr_header.num_io_queues = i - 1;
/* Save doorbells */
doorbell_base = (uint32_t *)&migr_state.doorbells;
memcpy(doorbell_base, (void *)vu_ctrlr->bar0_doorbells, NVMF_VFIO_USER_DOORBELLS_SIZE);
/* Save PCI configuration space */
memcpy(&migr_state.cfg, (void *)endpoint->pci_config_space, NVME_REG_CFG_SIZE);
/* Save all data to device migration region */
data_ptr = endpoint->migr_data;
/* Copy nvmf controller data */
data_offset = sizeof(struct vfio_user_nvme_migr_header);
data_ptr += data_offset;
migr_state.ctrlr_header.nvmf_data_offset = data_offset;
migr_state.ctrlr_header.nvmf_data_len = sizeof(struct spdk_nvmf_ctrlr_migr_data);
memcpy(data_ptr, &migr_state.nvmf_data, sizeof(struct spdk_nvmf_ctrlr_migr_data));
/* Copy queue pairs */
data_offset += sizeof(struct spdk_nvmf_ctrlr_migr_data);
data_ptr += sizeof(struct spdk_nvmf_ctrlr_migr_data);
migr_state.ctrlr_header.qp_offset = data_offset;
migr_state.ctrlr_header.qp_len = i * (sizeof(struct nvme_migr_sq_state) + sizeof(
struct nvme_migr_cq_state));
memcpy(data_ptr, &migr_state.qps, migr_state.ctrlr_header.qp_len);
/* Copy doorbells */
data_offset += migr_state.ctrlr_header.qp_len;
data_ptr += migr_state.ctrlr_header.qp_len;
migr_state.ctrlr_header.bar_offset[VFU_PCI_DEV_BAR0_REGION_IDX] = data_offset;
migr_state.ctrlr_header.bar_len[VFU_PCI_DEV_BAR0_REGION_IDX] = NVMF_VFIO_USER_DOORBELLS_SIZE;
memcpy(data_ptr, &migr_state.doorbells, NVMF_VFIO_USER_DOORBELLS_SIZE);
/* Copy CFG */
data_offset += NVMF_VFIO_USER_DOORBELLS_SIZE;
data_ptr += NVMF_VFIO_USER_DOORBELLS_SIZE;
migr_state.ctrlr_header.bar_offset[VFU_PCI_DEV_CFG_REGION_IDX] = data_offset;
migr_state.ctrlr_header.bar_len[VFU_PCI_DEV_CFG_REGION_IDX] = NVME_REG_CFG_SIZE;
memcpy(data_ptr, &migr_state.cfg, NVME_REG_CFG_SIZE);
/* copy shadow doorbells */
if (vu_ctrlr->sdbl != NULL) {
migr_state.ctrlr_header.sdbl = true;
migr_state.ctrlr_header.shadow_doorbell_buffer = vu_ctrlr->shadow_doorbell_buffer;
migr_state.ctrlr_header.eventidx_buffer = vu_ctrlr->eventidx_buffer;
}
/* Copy nvme migration header finally */
memcpy(endpoint->migr_data, &migr_state.ctrlr_header, sizeof(struct vfio_user_nvme_migr_header));
if (SPDK_DEBUGLOG_FLAG_ENABLED("nvmf_vfio")) {
vfio_user_ctrlr_dump_migr_data("SAVE", &migr_state, vu_ctrlr->sdbl);
}
}
/*
* If we are about to close the connection, we need to unregister the interrupt,
* as the library will subsequently close the file descriptor we registered.
*/
static int
vfio_user_device_reset(vfu_ctx_t *vfu_ctx, vfu_reset_type_t type)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
struct nvmf_vfio_user_ctrlr *ctrlr = endpoint->ctrlr;
SPDK_DEBUGLOG(nvmf_vfio, "Device reset type %u\n", type);
if (type == VFU_RESET_LOST_CONN) {
if (ctrlr != NULL) {
spdk_interrupt_unregister(&ctrlr->intr);
ctrlr->intr_fd = -1;
}
return 0;
}
/* FIXME: LOST_CONN case ? */
if (ctrlr->sdbl != NULL) {
vfio_user_ctrlr_switch_doorbells(ctrlr, false);
free_sdbl(vfu_ctx, ctrlr->sdbl);
ctrlr->sdbl = NULL;
}
/* FIXME: much more needed here. */
return 0;
}
static int
vfio_user_migr_ctrlr_construct_qps(struct nvmf_vfio_user_ctrlr *vu_ctrlr,
struct vfio_user_nvme_migr_state *migr_state)
{
uint32_t i, qsize = 0;
uint16_t sqid, cqid;
struct vfio_user_nvme_migr_qp migr_qp;
void *addr;
uint32_t cqs_ref[NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR] = {};
int ret;
if (SPDK_DEBUGLOG_FLAG_ENABLED("nvmf_vfio")) {
vfio_user_ctrlr_dump_migr_data("RESUME", migr_state, vu_ctrlr->sdbl);
}
/* restore submission queues */
for (i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
migr_qp = migr_state->qps[i];
qsize = migr_qp.sq.size;
if (qsize) {
struct nvmf_vfio_user_sq *sq;
sqid = migr_qp.sq.sqid;
if (sqid != i) {
SPDK_ERRLOG("Expected sqid %u while got %u", i, sqid);
return -EINVAL;
}
/* allocate sq if necessary */
if (vu_ctrlr->sqs[sqid] == NULL) {
ret = init_sq(vu_ctrlr, &vu_ctrlr->transport->transport, sqid);
if (ret) {
SPDK_ERRLOG("Construct qpair with qid %u failed\n", sqid);
return -EFAULT;
}
}
sq = vu_ctrlr->sqs[sqid];
sq->size = qsize;
ret = alloc_sq_reqs(vu_ctrlr, sq);
if (ret) {
SPDK_ERRLOG("Construct sq with qid %u failed\n", sqid);
return -EFAULT;
}
/* restore sq */
sq->sq_state = VFIO_USER_SQ_CREATED;
sq->cqid = migr_qp.sq.cqid;
*sq_headp(sq) = migr_qp.sq.head;
sq->mapping.prp1 = migr_qp.sq.dma_addr;
addr = map_one(vu_ctrlr->endpoint->vfu_ctx,
sq->mapping.prp1, sq->size * 64,
sq->mapping.sg, &sq->mapping.iov,
PROT_READ);
if (addr == NULL) {
SPDK_ERRLOG("Restore sq with qid %u PRP1 0x%"PRIx64" with size %u failed\n",
sqid, sq->mapping.prp1, sq->size);
return -EFAULT;
}
cqs_ref[sq->cqid]++;
}
}
/* restore completion queues */
for (i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
migr_qp = migr_state->qps[i];
qsize = migr_qp.cq.size;
if (qsize) {
struct nvmf_vfio_user_cq *cq;
/* restore cq */
cqid = migr_qp.sq.cqid;
assert(cqid == i);
/* allocate cq if necessary */
if (vu_ctrlr->cqs[cqid] == NULL) {
ret = init_cq(vu_ctrlr, cqid);
if (ret) {
SPDK_ERRLOG("Construct qpair with qid %u failed\n", cqid);
return -EFAULT;
}
}
cq = vu_ctrlr->cqs[cqid];
cq->size = qsize;
cq->cq_state = VFIO_USER_CQ_CREATED;
cq->cq_ref = cqs_ref[cqid];
*cq_tailp(cq) = migr_qp.cq.tail;
cq->mapping.prp1 = migr_qp.cq.dma_addr;
cq->ien = migr_qp.cq.ien;
cq->iv = migr_qp.cq.iv;
cq->phase = migr_qp.cq.phase;
addr = map_one(vu_ctrlr->endpoint->vfu_ctx,
cq->mapping.prp1, cq->size * 16,
cq->mapping.sg, &cq->mapping.iov,
PROT_READ | PROT_WRITE);
if (addr == NULL) {
SPDK_ERRLOG("Restore cq with qid %u PRP1 0x%"PRIx64" with size %u failed\n",
cqid, cq->mapping.prp1, cq->size);
return -EFAULT;
}
}
}
return 0;
}
static int
vfio_user_migr_ctrlr_restore(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
{
struct nvmf_vfio_user_endpoint *endpoint = vu_ctrlr->endpoint;
struct spdk_nvmf_ctrlr *ctrlr = vu_ctrlr->ctrlr;
uint32_t *doorbell_base;
struct spdk_nvme_cmd cmd;
uint16_t i;
int rc = 0;
struct vfio_user_nvme_migr_state migr_state = {
.nvmf_data = {
.data_size = offsetof(struct spdk_nvmf_ctrlr_migr_data, unused),
.regs_size = sizeof(struct spdk_nvmf_registers),
.feat_size = sizeof(struct spdk_nvmf_ctrlr_feat)
}
};
assert(endpoint->migr_data != NULL);
assert(ctrlr != NULL);
rc = vfio_user_migr_stream_to_data(endpoint, &migr_state);
if (rc) {
return rc;
}
/* restore shadow doorbells */
if (migr_state.ctrlr_header.sdbl) {
struct nvmf_vfio_user_shadow_doorbells *sdbl;
sdbl = map_sdbl(vu_ctrlr->endpoint->vfu_ctx,
migr_state.ctrlr_header.shadow_doorbell_buffer,
migr_state.ctrlr_header.eventidx_buffer,
memory_page_size(vu_ctrlr));
if (sdbl == NULL) {
SPDK_ERRLOG("%s: failed to re-map shadow doorbell buffers\n",
ctrlr_id(vu_ctrlr));
return -1;
}
vu_ctrlr->shadow_doorbell_buffer = migr_state.ctrlr_header.shadow_doorbell_buffer;
vu_ctrlr->eventidx_buffer = migr_state.ctrlr_header.eventidx_buffer;
SWAP(vu_ctrlr->sdbl, sdbl);
}
rc = vfio_user_migr_ctrlr_construct_qps(vu_ctrlr, &migr_state);
if (rc) {
return rc;
}
/* restore PCI configuration space */
memcpy((void *)endpoint->pci_config_space, &migr_state.cfg, NVME_REG_CFG_SIZE);
doorbell_base = (uint32_t *)&migr_state.doorbells;
/* restore doorbells from saved registers */
memcpy((void *)vu_ctrlr->bar0_doorbells, doorbell_base, NVMF_VFIO_USER_DOORBELLS_SIZE);
/* restore nvmf controller data */
rc = spdk_nvmf_ctrlr_restore_migr_data(ctrlr, &migr_state.nvmf_data);
if (rc) {
return rc;
}
/* resubmit pending AERs */
for (i = 0; i < migr_state.nvmf_data.num_aer_cids; i++) {
SPDK_DEBUGLOG(nvmf_vfio, "%s AER resubmit, CID %u\n", ctrlr_id(vu_ctrlr),
migr_state.nvmf_data.aer_cids[i]);
memset(&cmd, 0, sizeof(cmd));
cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
cmd.cid = migr_state.nvmf_data.aer_cids[i];
rc = handle_cmd_req(vu_ctrlr, &cmd, vu_ctrlr->sqs[0]);
if (spdk_unlikely(rc)) {
break;
}
}
return rc;
}
static void
vfio_user_migr_ctrlr_enable_sqs(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
{
uint32_t i;
struct nvmf_vfio_user_sq *sq;
/* The Admin queue (qid: 0) does not ever use shadow doorbells. */
if (vu_ctrlr->sqs[0] != NULL) {
vu_ctrlr->sqs[0]->dbl_tailp = vu_ctrlr->bar0_doorbells +
queue_index(0, false);
}
if (vu_ctrlr->cqs[0] != NULL) {
vu_ctrlr->cqs[0]->dbl_headp = vu_ctrlr->bar0_doorbells +
queue_index(0, true);
}
vfio_user_ctrlr_switch_doorbells(vu_ctrlr, vu_ctrlr->sdbl != NULL);
for (i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
sq = vu_ctrlr->sqs[i];
if (!sq || !sq->size) {
continue;
}
if (nvmf_qpair_is_admin_queue(&sq->qpair)) {
/* ADMIN queue pair is always in the poll group, just enable it */
sq->sq_state = VFIO_USER_SQ_ACTIVE;
} else {
spdk_nvmf_tgt_new_qpair(vu_ctrlr->transport->transport.tgt, &sq->qpair);
}
}
}
/*
* We are in stop-and-copy state, but still potentially have some current dirty
* sgls: while we're quiesced and thus should have no active requests, we still
* have potentially dirty maps of the shadow doorbells and the CQs (SQs are
* mapped read only).
*
* Since we won't be calling vfu_sgl_put() for them, we need to explicitly
* mark them dirty now.
*/
static void
vfio_user_migr_ctrlr_mark_dirty(struct nvmf_vfio_user_ctrlr *vu_ctrlr)
{
struct nvmf_vfio_user_endpoint *endpoint = vu_ctrlr->endpoint;
assert(vu_ctrlr->state == VFIO_USER_CTRLR_MIGRATING);
for (size_t i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
struct nvmf_vfio_user_cq *cq = vu_ctrlr->cqs[i];
if (cq == NULL || q_addr(&cq->mapping) == NULL) {
continue;
}
vfu_sgl_mark_dirty(endpoint->vfu_ctx, cq->mapping.sg, 1);
}
if (vu_ctrlr->sdbl != NULL) {
dma_sg_t *sg;
size_t i;
for (i = 0; i < NVMF_VFIO_USER_SHADOW_DOORBELLS_BUFFER_COUNT;
++i) {
if (!vu_ctrlr->sdbl->iovs[i].iov_len) {
continue;
}
sg = index_to_sg_t(vu_ctrlr->sdbl->sgs, i);
vfu_sgl_mark_dirty(endpoint->vfu_ctx, sg, 1);
}
}
}
static int
vfio_user_migration_device_state_transition(vfu_ctx_t *vfu_ctx, vfu_migr_state_t state)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
struct nvmf_vfio_user_ctrlr *vu_ctrlr = endpoint->ctrlr;
struct nvmf_vfio_user_sq *sq;
int ret = 0;
SPDK_DEBUGLOG(nvmf_vfio, "%s controller state %u, migration state %u\n", endpoint_id(endpoint),
vu_ctrlr->state, state);
switch (state) {
case VFU_MIGR_STATE_STOP_AND_COPY:
vu_ctrlr->in_source_vm = true;
vu_ctrlr->state = VFIO_USER_CTRLR_MIGRATING;
vfio_user_migr_ctrlr_mark_dirty(vu_ctrlr);
vfio_user_migr_ctrlr_save_data(vu_ctrlr);
break;
case VFU_MIGR_STATE_STOP:
vu_ctrlr->state = VFIO_USER_CTRLR_MIGRATING;
/* The controller associates with source VM is dead now, we will resume
* the subsystem after destroying the controller data structure, then the
* subsystem can be re-used for another new client.
*/
if (vu_ctrlr->in_source_vm) {
endpoint->need_resume = true;
}
break;
case VFU_MIGR_STATE_PRE_COPY:
assert(vu_ctrlr->state == VFIO_USER_CTRLR_PAUSED);
break;
case VFU_MIGR_STATE_RESUME:
/*
* Destination ADMIN queue pair is connected when starting the VM,
* but the ADMIN queue pair isn't enabled in destination VM, the poll
* group will do nothing to ADMIN queue pair for now.
*/
if (vu_ctrlr->state != VFIO_USER_CTRLR_RUNNING) {
break;
}
assert(!vu_ctrlr->in_source_vm);
vu_ctrlr->state = VFIO_USER_CTRLR_MIGRATING;
sq = TAILQ_FIRST(&vu_ctrlr->connected_sqs);
assert(sq != NULL);
assert(sq->qpair.qid == 0);
sq->sq_state = VFIO_USER_SQ_INACTIVE;
/* Free ADMIN SQ resources first, SQ resources will be
* allocated based on queue size from source VM.
*/
free_sq_reqs(sq);
sq->size = 0;
break;
case VFU_MIGR_STATE_RUNNING:
if (vu_ctrlr->state != VFIO_USER_CTRLR_MIGRATING) {
break;
}
if (!vu_ctrlr->in_source_vm) {
/* Restore destination VM from BAR9 */
ret = vfio_user_migr_ctrlr_restore(vu_ctrlr);
if (ret) {
break;
}
vfio_user_ctrlr_switch_doorbells(vu_ctrlr, false);
vfio_user_migr_ctrlr_enable_sqs(vu_ctrlr);
vu_ctrlr->state = VFIO_USER_CTRLR_RUNNING;
/* FIXME where do we resume nvmf? */
} else {
/* Rollback source VM */
vu_ctrlr->state = VFIO_USER_CTRLR_RESUMING;
ret = spdk_nvmf_subsystem_resume((struct spdk_nvmf_subsystem *)endpoint->subsystem,
vfio_user_endpoint_resume_done, endpoint);
if (ret < 0) {
/* TODO: fail controller with CFS bit set */
vu_ctrlr->state = VFIO_USER_CTRLR_PAUSED;
SPDK_ERRLOG("%s: failed to resume, ret=%d\n", endpoint_id(endpoint), ret);
}
}
vu_ctrlr->migr_data_prepared = false;
vu_ctrlr->in_source_vm = false;
break;
default:
return -EINVAL;
}
return ret;
}
static uint64_t
vfio_user_migration_get_pending_bytes(vfu_ctx_t *vfu_ctx)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
struct nvmf_vfio_user_ctrlr *ctrlr = endpoint->ctrlr;
uint64_t pending_bytes;
if (ctrlr->migr_data_prepared) {
assert(ctrlr->state == VFIO_USER_CTRLR_MIGRATING);
pending_bytes = 0;
} else {
pending_bytes = vfio_user_migr_data_len();
}
SPDK_DEBUGLOG(nvmf_vfio,
"%s current state %u, pending bytes 0x%"PRIx64"\n",
endpoint_id(endpoint), ctrlr->state, pending_bytes);
return pending_bytes;
}
static int
vfio_user_migration_prepare_data(vfu_ctx_t *vfu_ctx, uint64_t *offset, uint64_t *size)
{
struct nvmf_vfio_user_endpoint *endpoint = vfu_get_private(vfu_ctx);
struct nvmf_vfio_user_ctrlr *ctrlr = endpoint->ctrlr;
/*
* When transitioning to pre-copy state we set pending_bytes to 0,
* so the vfio-user client shouldn't attempt to read any migration
* data. This is not yet guaranteed by libvfio-user.
*/
if (ctrlr->state != VFIO_USER_CTRLR_MIGRATING) {
assert(size != NULL);
*offset = 0;
*size = 0;
return 0;
}
if (ctrlr->in_source_vm) { /* migration source */
assert(size != NULL);
*size = vfio_user_migr_data_len();
vfio_user_migr_ctrlr_save_data(ctrlr);
} else { /* migration destination */
assert(size == NULL);
assert(!ctrlr->migr_data_prepared);
}
*offset = 0;
ctrlr->migr_data_prepared = true;
SPDK_DEBUGLOG(nvmf_vfio, "%s current state %u\n", endpoint_id(endpoint), ctrlr->state);
return 0;
}
static ssize_t
vfio_user_migration_read_data(vfu_ctx_t *vfu_ctx __attribute__((unused)),
void *buf __attribute__((unused)),
uint64_t count __attribute__((unused)),
uint64_t offset __attribute__((unused)))
{
SPDK_DEBUGLOG(nvmf_vfio, "%s: migration read data not supported\n",
endpoint_id(vfu_get_private(vfu_ctx)));
errno = ENOTSUP;
return -1;
}
static ssize_t
vfio_user_migration_write_data(vfu_ctx_t *vfu_ctx __attribute__((unused)),
void *buf __attribute__((unused)),
uint64_t count __attribute__((unused)),
uint64_t offset __attribute__((unused)))
{
SPDK_DEBUGLOG(nvmf_vfio, "%s: migration write data not supported\n",
endpoint_id(vfu_get_private(vfu_ctx)));
errno = ENOTSUP;
return -1;
}
static int
vfio_user_migration_data_written(vfu_ctx_t *vfu_ctx __attribute__((unused)),
uint64_t count)
{
SPDK_DEBUGLOG(nvmf_vfio, "write 0x%"PRIx64"\n", (uint64_t)count);
if (count != vfio_user_migr_data_len()) {
SPDK_DEBUGLOG(nvmf_vfio, "%s bad count %#lx\n",
endpoint_id(vfu_get_private(vfu_ctx)), count);
errno = EINVAL;
return -1;
}
return 0;
}
static int
vfio_user_dev_info_fill(struct nvmf_vfio_user_transport *vu_transport,
struct nvmf_vfio_user_endpoint *endpoint)
{
int ret;
ssize_t cap_offset;
vfu_ctx_t *vfu_ctx = endpoint->vfu_ctx;
struct iovec migr_sparse_mmap = {};
struct pmcap pmcap = { .hdr.id = PCI_CAP_ID_PM, .pmcs.nsfrst = 0x1 };
struct pxcap pxcap = {
.hdr.id = PCI_CAP_ID_EXP,
.pxcaps.ver = 0x2,
.pxdcap = {.rer = 0x1, .flrc = 0x1},
.pxdcap2.ctds = 0x1
};
struct msixcap msixcap = {
.hdr.id = PCI_CAP_ID_MSIX,
.mxc.ts = NVME_IRQ_MSIX_NUM - 1,
.mtab = {.tbir = 0x4, .to = 0x0},
.mpba = {.pbir = 0x5, .pbao = 0x0}
};
struct iovec sparse_mmap[] = {
{
.iov_base = (void *)NVME_DOORBELLS_OFFSET,
.iov_len = NVMF_VFIO_USER_DOORBELLS_SIZE,
},
};
const vfu_migration_callbacks_t migr_callbacks = {
.version = VFU_MIGR_CALLBACKS_VERS,
.transition = &vfio_user_migration_device_state_transition,
.get_pending_bytes = &vfio_user_migration_get_pending_bytes,
.prepare_data = &vfio_user_migration_prepare_data,
.read_data = &vfio_user_migration_read_data,
.data_written = &vfio_user_migration_data_written,
.write_data = &vfio_user_migration_write_data
};
ret = vfu_pci_init(vfu_ctx, VFU_PCI_TYPE_EXPRESS, PCI_HEADER_TYPE_NORMAL, 0);
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to initialize PCI\n", vfu_ctx);
return ret;
}
vfu_pci_set_id(vfu_ctx, SPDK_PCI_VID_NUTANIX, 0x0001, SPDK_PCI_VID_NUTANIX, 0);
/*
* 0x02, controller uses the NVM Express programming interface
* 0x08, non-volatile memory controller
* 0x01, mass storage controller
*/
vfu_pci_set_class(vfu_ctx, 0x01, 0x08, 0x02);
cap_offset = vfu_pci_add_capability(vfu_ctx, 0, 0, &pmcap);
if (cap_offset < 0) {
SPDK_ERRLOG("vfu_ctx %p failed add pmcap\n", vfu_ctx);
return ret;
}
cap_offset = vfu_pci_add_capability(vfu_ctx, 0, 0, &pxcap);
if (cap_offset < 0) {
SPDK_ERRLOG("vfu_ctx %p failed add pxcap\n", vfu_ctx);
return ret;
}
cap_offset = vfu_pci_add_capability(vfu_ctx, 0, 0, &msixcap);
if (cap_offset < 0) {
SPDK_ERRLOG("vfu_ctx %p failed add msixcap\n", vfu_ctx);
return ret;
}
ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_CFG_REGION_IDX, NVME_REG_CFG_SIZE,
access_pci_config, VFU_REGION_FLAG_RW, NULL, 0, -1, 0);
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to setup cfg\n", vfu_ctx);
return ret;
}
if (vu_transport->transport_opts.disable_mappable_bar0) {
ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_BAR0_REGION_IDX, NVME_REG_BAR0_SIZE,
access_bar0_fn, VFU_REGION_FLAG_RW | VFU_REGION_FLAG_MEM,
NULL, 0, -1, 0);
} else {
ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_BAR0_REGION_IDX, NVME_REG_BAR0_SIZE,
access_bar0_fn, VFU_REGION_FLAG_RW | VFU_REGION_FLAG_MEM,
sparse_mmap, 1, endpoint->devmem_fd, 0);
}
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to setup bar 0\n", vfu_ctx);
return ret;
}
ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_BAR4_REGION_IDX, NVME_BAR4_SIZE,
NULL, VFU_REGION_FLAG_RW, NULL, 0, -1, 0);
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to setup bar 4\n", vfu_ctx);
return ret;
}
ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_BAR5_REGION_IDX, NVME_BAR5_SIZE,
NULL, VFU_REGION_FLAG_RW, NULL, 0, -1, 0);
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to setup bar 5\n", vfu_ctx);
return ret;
}
ret = vfu_setup_device_dma(vfu_ctx, memory_region_add_cb, memory_region_remove_cb);
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to setup dma callback\n", vfu_ctx);
return ret;
}
ret = vfu_setup_device_reset_cb(vfu_ctx, vfio_user_device_reset);
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to setup reset callback\n", vfu_ctx);
return ret;
}
ret = vfu_setup_device_nr_irqs(vfu_ctx, VFU_DEV_INTX_IRQ, 1);
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to setup INTX\n", vfu_ctx);
return ret;
}
ret = vfu_setup_device_nr_irqs(vfu_ctx, VFU_DEV_MSIX_IRQ, NVME_IRQ_MSIX_NUM);
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to setup MSIX\n", vfu_ctx);
return ret;
}
vfu_setup_device_quiesce_cb(vfu_ctx, vfio_user_dev_quiesce_cb);
migr_sparse_mmap.iov_base = (void *)4096;
migr_sparse_mmap.iov_len = vfio_user_migr_data_len();
ret = vfu_setup_region(vfu_ctx, VFU_PCI_DEV_MIGR_REGION_IDX,
vfu_get_migr_register_area_size() + vfio_user_migr_data_len(),
NULL, VFU_REGION_FLAG_RW | VFU_REGION_FLAG_MEM, &migr_sparse_mmap,
1, endpoint->migr_fd, 0);
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to setup migration region\n", vfu_ctx);
return ret;
}
ret = vfu_setup_device_migration_callbacks(vfu_ctx, &migr_callbacks,
vfu_get_migr_register_area_size());
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to setup migration callbacks\n", vfu_ctx);
return ret;
}
ret = vfu_realize_ctx(vfu_ctx);
if (ret < 0) {
SPDK_ERRLOG("vfu_ctx %p failed to realize\n", vfu_ctx);
return ret;
}
endpoint->pci_config_space = vfu_pci_get_config_space(endpoint->vfu_ctx);
assert(endpoint->pci_config_space != NULL);
init_pci_config_space(endpoint->pci_config_space);
assert(cap_offset != 0);
endpoint->msix = (struct msixcap *)((uint8_t *)endpoint->pci_config_space + cap_offset);
return 0;
}
static int nvmf_vfio_user_accept(void *ctx);
static void
set_intr_mode_noop(struct spdk_poller *poller, void *arg, bool interrupt_mode)
{
/* Nothing for us to do here. */
}
/*
* Register an "accept" poller: this is polling for incoming vfio-user socket
* connections (on the listening socket).
*
* We need to do this on first listening, and also after destroying a
* controller, so we can accept another connection.
*/
static int
vfio_user_register_accept_poller(struct nvmf_vfio_user_endpoint *endpoint)
{
uint64_t poll_rate_us = endpoint->transport->transport.opts.acceptor_poll_rate;
SPDK_DEBUGLOG(nvmf_vfio, "registering accept poller\n");
endpoint->accept_poller = SPDK_POLLER_REGISTER(nvmf_vfio_user_accept,
endpoint, poll_rate_us);
if (!endpoint->accept_poller) {
return -1;
}
endpoint->accept_thread = spdk_get_thread();
endpoint->need_relisten = false;
if (!spdk_interrupt_mode_is_enabled()) {
return 0;
}
endpoint->accept_intr_fd = vfu_get_poll_fd(endpoint->vfu_ctx);
assert(endpoint->accept_intr_fd != -1);
endpoint->accept_intr = SPDK_INTERRUPT_REGISTER(endpoint->accept_intr_fd,
nvmf_vfio_user_accept, endpoint);
assert(endpoint->accept_intr != NULL);
spdk_poller_register_interrupt(endpoint->accept_poller,
set_intr_mode_noop, NULL);
return 0;
}
static void
_vfio_user_relisten(void *ctx)
{
struct nvmf_vfio_user_endpoint *endpoint = ctx;
vfio_user_register_accept_poller(endpoint);
}
static void
_free_ctrlr(void *ctx)
{
struct nvmf_vfio_user_ctrlr *ctrlr = ctx;
struct nvmf_vfio_user_endpoint *endpoint = ctrlr->endpoint;
free_sdbl(endpoint->vfu_ctx, ctrlr->sdbl);
spdk_interrupt_unregister(&ctrlr->intr);
ctrlr->intr_fd = -1;
spdk_poller_unregister(&ctrlr->vfu_ctx_poller);
free(ctrlr);
if (endpoint->need_async_destroy) {
nvmf_vfio_user_destroy_endpoint(endpoint);
} else if (endpoint->need_relisten) {
spdk_thread_send_msg(endpoint->accept_thread,
_vfio_user_relisten, endpoint);
}
}
static void
free_ctrlr(struct nvmf_vfio_user_ctrlr *ctrlr)
{
int i;
assert(ctrlr != NULL);
SPDK_DEBUGLOG(nvmf_vfio, "free %s\n", ctrlr_id(ctrlr));
for (i = 0; i < NVMF_VFIO_USER_MAX_QPAIRS_PER_CTRLR; i++) {
free_qp(ctrlr, i);
}
spdk_thread_exec_msg(ctrlr->thread, _free_ctrlr, ctrlr);
}
static int
nvmf_vfio_user_create_ctrlr(struct nvmf_vfio_user_transport *transport,
struct nvmf_vfio_user_endpoint *endpoint)
{
struct nvmf_vfio_user_ctrlr *ctrlr;
int err = 0;
SPDK_DEBUGLOG(nvmf_vfio, "%s\n", endpoint_id(endpoint));
/* First, construct a vfio-user CUSTOM transport controller */
ctrlr = calloc(1, sizeof(*ctrlr));
if (ctrlr == NULL) {
err = -ENOMEM;
goto out;
}
/* We can only support one connection for now */
ctrlr->cntlid = 0x1;
ctrlr->intr_fd = -1;
ctrlr->transport = transport;
ctrlr->endpoint = endpoint;
ctrlr->bar0_doorbells = endpoint->bar0_doorbells;
TAILQ_INIT(&ctrlr->connected_sqs);
ctrlr->adaptive_irqs_enabled =
!transport->transport_opts.disable_adaptive_irq;
/* Then, construct an admin queue pair */
err = init_sq(ctrlr, &transport->transport, 0);
if (err != 0) {
free(ctrlr);
goto out;
}
err = init_cq(ctrlr, 0);
if (err != 0) {
free(ctrlr);
goto out;
}
ctrlr->sqs[0]->size = NVMF_VFIO_USER_DEFAULT_AQ_DEPTH;
err = alloc_sq_reqs(ctrlr, ctrlr->sqs[0]);
if (err != 0) {
free(ctrlr);
goto out;
}
endpoint->ctrlr = ctrlr;
/* Notify the generic layer about the new admin queue pair */
spdk_nvmf_tgt_new_qpair(transport->transport.tgt, &ctrlr->sqs[0]->qpair);
out:
if (err != 0) {
SPDK_ERRLOG("%s: failed to create vfio-user controller: %s\n",
endpoint_id(endpoint), strerror(-err));
}
return err;
}
static int
nvmf_vfio_user_listen(struct spdk_nvmf_transport *transport,
const struct spdk_nvme_transport_id *trid,
struct spdk_nvmf_listen_opts *listen_opts)
{
struct nvmf_vfio_user_transport *vu_transport;
struct nvmf_vfio_user_endpoint *endpoint, *tmp;
char path[PATH_MAX] = {};
char uuid[PATH_MAX] = {};
int ret;
vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport,
transport);
pthread_mutex_lock(&vu_transport->lock);
TAILQ_FOREACH_SAFE(endpoint, &vu_transport->endpoints, link, tmp) {
/* Only compare traddr */
if (strncmp(endpoint->trid.traddr, trid->traddr, sizeof(endpoint->trid.traddr)) == 0) {
pthread_mutex_unlock(&vu_transport->lock);
return -EEXIST;
}
}
pthread_mutex_unlock(&vu_transport->lock);
endpoint = calloc(1, sizeof(*endpoint));
if (!endpoint) {
return -ENOMEM;
}
pthread_mutex_init(&endpoint->lock, NULL);
endpoint->devmem_fd = -1;
memcpy(&endpoint->trid, trid, sizeof(endpoint->trid));
endpoint->transport = vu_transport;
ret = snprintf(path, PATH_MAX, "%s/bar0", endpoint_id(endpoint));
if (ret < 0 || ret >= PATH_MAX) {
SPDK_ERRLOG("%s: error to get socket path: %s.\n", endpoint_id(endpoint), spdk_strerror(errno));
ret = -1;
goto out;
}
ret = open(path, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
if (ret == -1) {
SPDK_ERRLOG("%s: failed to open device memory at %s: %s.\n",
endpoint_id(endpoint), path, spdk_strerror(errno));
goto out;
}
unlink(path);
endpoint->devmem_fd = ret;
ret = ftruncate(endpoint->devmem_fd,
NVME_DOORBELLS_OFFSET + NVMF_VFIO_USER_DOORBELLS_SIZE);
if (ret != 0) {
SPDK_ERRLOG("%s: error to ftruncate file %s: %s.\n", endpoint_id(endpoint), path,
spdk_strerror(errno));
goto out;
}
endpoint->bar0_doorbells = mmap(NULL, NVMF_VFIO_USER_DOORBELLS_SIZE,
PROT_READ | PROT_WRITE, MAP_SHARED, endpoint->devmem_fd, NVME_DOORBELLS_OFFSET);
if (endpoint->bar0_doorbells == MAP_FAILED) {
SPDK_ERRLOG("%s: error to mmap file %s: %s.\n", endpoint_id(endpoint), path, spdk_strerror(errno));
endpoint->bar0_doorbells = NULL;
ret = -1;
goto out;
}
ret = snprintf(path, PATH_MAX, "%s/migr", endpoint_id(endpoint));
if (ret < 0 || ret >= PATH_MAX) {
SPDK_ERRLOG("%s: error to get migration file path: %s.\n", endpoint_id(endpoint),
spdk_strerror(errno));
ret = -1;
goto out;
}
ret = open(path, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
if (ret == -1) {
SPDK_ERRLOG("%s: failed to open device memory at %s: %s.\n",
endpoint_id(endpoint), path, spdk_strerror(errno));
goto out;
}
unlink(path);
endpoint->migr_fd = ret;
ret = ftruncate(endpoint->migr_fd,
vfu_get_migr_register_area_size() + vfio_user_migr_data_len());
if (ret != 0) {
SPDK_ERRLOG("%s: error to ftruncate migration file %s: %s.\n", endpoint_id(endpoint), path,
spdk_strerror(errno));
goto out;
}
endpoint->migr_data = mmap(NULL, vfio_user_migr_data_len(),
PROT_READ | PROT_WRITE, MAP_SHARED, endpoint->migr_fd, vfu_get_migr_register_area_size());
if (endpoint->migr_data == MAP_FAILED) {
SPDK_ERRLOG("%s: error to mmap file %s: %s.\n", endpoint_id(endpoint), path, spdk_strerror(errno));
endpoint->migr_data = NULL;
ret = -1;
goto out;
}
ret = snprintf(uuid, PATH_MAX, "%s/cntrl", endpoint_id(endpoint));
if (ret < 0 || ret >= PATH_MAX) {
SPDK_ERRLOG("%s: error to get ctrlr file path: %s\n", endpoint_id(endpoint), spdk_strerror(errno));
ret = -1;
goto out;
}
endpoint->vfu_ctx = vfu_create_ctx(VFU_TRANS_SOCK, uuid, LIBVFIO_USER_FLAG_ATTACH_NB,
endpoint, VFU_DEV_TYPE_PCI);
if (endpoint->vfu_ctx == NULL) {
SPDK_ERRLOG("%s: error creating libmuser context: %m\n",
endpoint_id(endpoint));
ret = -1;
goto out;
}
ret = vfu_setup_log(endpoint->vfu_ctx, vfio_user_log,
vfio_user_get_log_level());
if (ret < 0) {
goto out;
}
ret = vfio_user_dev_info_fill(vu_transport, endpoint);
if (ret < 0) {
goto out;
}
ret = vfio_user_register_accept_poller(endpoint);
if (ret != 0) {
goto out;
}
pthread_mutex_lock(&vu_transport->lock);
TAILQ_INSERT_TAIL(&vu_transport->endpoints, endpoint, link);
pthread_mutex_unlock(&vu_transport->lock);
out:
if (ret != 0) {
nvmf_vfio_user_destroy_endpoint(endpoint);
}
return ret;
}
static void
nvmf_vfio_user_stop_listen(struct spdk_nvmf_transport *transport,
const struct spdk_nvme_transport_id *trid)
{
struct nvmf_vfio_user_transport *vu_transport;
struct nvmf_vfio_user_endpoint *endpoint, *tmp;
assert(trid != NULL);
assert(trid->traddr != NULL);
SPDK_DEBUGLOG(nvmf_vfio, "%s: stop listen\n", trid->traddr);
vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport,
transport);
pthread_mutex_lock(&vu_transport->lock);
TAILQ_FOREACH_SAFE(endpoint, &vu_transport->endpoints, link, tmp) {
if (strcmp(trid->traddr, endpoint->trid.traddr) == 0) {
TAILQ_REMOVE(&vu_transport->endpoints, endpoint, link);
/* Defer to free endpoint resources until the controller
* is freed. There are two cases when running here:
* 1. kill nvmf target while VM is connected
* 2. remove listener via RPC call
* nvmf library will disconnect all queue paris.
*/
if (endpoint->ctrlr) {
assert(!endpoint->need_async_destroy);
endpoint->need_async_destroy = true;
pthread_mutex_unlock(&vu_transport->lock);
return;
}
nvmf_vfio_user_destroy_endpoint(endpoint);
pthread_mutex_unlock(&vu_transport->lock);
return;
}
}
pthread_mutex_unlock(&vu_transport->lock);
SPDK_DEBUGLOG(nvmf_vfio, "%s: not found\n", trid->traddr);
}
static void
nvmf_vfio_user_cdata_init(struct spdk_nvmf_transport *transport,
struct spdk_nvmf_subsystem *subsystem,
struct spdk_nvmf_ctrlr_data *cdata)
{
struct nvmf_vfio_user_transport *vu_transport;
vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport, transport);
cdata->vid = SPDK_PCI_VID_NUTANIX;
cdata->ssvid = SPDK_PCI_VID_NUTANIX;
cdata->ieee[0] = 0x8d;
cdata->ieee[1] = 0x6b;
cdata->ieee[2] = 0x50;
memset(&cdata->sgls, 0, sizeof(struct spdk_nvme_cdata_sgls));
cdata->sgls.supported = SPDK_NVME_SGLS_SUPPORTED_DWORD_ALIGNED;
cdata->oncs.compare = !vu_transport->transport_opts.disable_compare;
/* libvfio-user can only support 1 connection for now */
cdata->oncs.reservations = 0;
cdata->oacs.doorbell_buffer_config = !vu_transport->transport_opts.disable_shadow_doorbells;
cdata->fuses.compare_and_write = !vu_transport->transport_opts.disable_compare;
}
static int
nvmf_vfio_user_listen_associate(struct spdk_nvmf_transport *transport,
const struct spdk_nvmf_subsystem *subsystem,
const struct spdk_nvme_transport_id *trid)
{
struct nvmf_vfio_user_transport *vu_transport;
struct nvmf_vfio_user_endpoint *endpoint;
vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport, transport);
pthread_mutex_lock(&vu_transport->lock);
TAILQ_FOREACH(endpoint, &vu_transport->endpoints, link) {
if (strncmp(endpoint->trid.traddr, trid->traddr, sizeof(endpoint->trid.traddr)) == 0) {
break;
}
}
pthread_mutex_unlock(&vu_transport->lock);
if (endpoint == NULL) {
return -ENOENT;
}
/* Drop const - we will later need to pause/unpause. */
endpoint->subsystem = (struct spdk_nvmf_subsystem *)subsystem;
return 0;
}
/*
* Executed periodically at a default SPDK_NVMF_DEFAULT_ACCEPT_POLL_RATE_US
* frequency.
*
* For this endpoint (which at the libvfio-user level corresponds to a socket),
* if we don't currently have a controller set up, peek to see if the socket is
* able to accept a new connection.
*/
static int
nvmf_vfio_user_accept(void *ctx)
{
struct nvmf_vfio_user_endpoint *endpoint = ctx;
struct nvmf_vfio_user_transport *vu_transport;
int err;
vu_transport = endpoint->transport;
if (endpoint->ctrlr != NULL) {
return SPDK_POLLER_IDLE;
}
/* While we're here, the controller is already destroyed,
* subsystem may still be in RESUMING state, we will wait
* until the subsystem is in RUNNING state.
*/
if (endpoint->need_resume) {
return SPDK_POLLER_IDLE;
}
err = vfu_attach_ctx(endpoint->vfu_ctx);
if (err == 0) {
SPDK_DEBUGLOG(nvmf_vfio, "attach succeeded\n");
err = nvmf_vfio_user_create_ctrlr(vu_transport, endpoint);
if (err == 0) {
/*
* Unregister ourselves: now we've accepted a
* connection, there is nothing for us to poll for, and
* we will poll the connection via vfu_run_ctx()
* instead.
*/
spdk_interrupt_unregister(&endpoint->accept_intr);
spdk_poller_unregister(&endpoint->accept_poller);
}
return SPDK_POLLER_BUSY;
}
if (errno == EAGAIN || errno == EWOULDBLOCK) {
return SPDK_POLLER_IDLE;
}
return SPDK_POLLER_BUSY;
}
static void
nvmf_vfio_user_discover(struct spdk_nvmf_transport *transport,
struct spdk_nvme_transport_id *trid,
struct spdk_nvmf_discovery_log_page_entry *entry)
{ }
static int vfio_user_poll_group_intr(void *ctx);
static void
vfio_user_poll_group_add_intr(struct nvmf_vfio_user_poll_group *vu_group,
struct spdk_nvmf_poll_group *group)
{
vu_group->intr_fd = eventfd(0, EFD_NONBLOCK);
assert(vu_group->intr_fd != -1);
vu_group->intr = SPDK_INTERRUPT_REGISTER(vu_group->intr_fd,
vfio_user_poll_group_intr, vu_group);
assert(vu_group->intr != NULL);
spdk_poller_register_interrupt(group->poller, set_intr_mode_noop,
vu_group);
}
static struct spdk_nvmf_transport_poll_group *
nvmf_vfio_user_poll_group_create(struct spdk_nvmf_transport *transport,
struct spdk_nvmf_poll_group *group)
{
struct nvmf_vfio_user_transport *vu_transport;
struct nvmf_vfio_user_poll_group *vu_group;
vu_transport = SPDK_CONTAINEROF(transport, struct nvmf_vfio_user_transport,
transport);
SPDK_DEBUGLOG(nvmf_vfio, "create poll group\n");
vu_group = calloc(1, sizeof(*vu_group));
if (vu_group == NULL) {
SPDK_ERRLOG("Error allocating poll group: %m");
return NULL;
}
if (in_interrupt_mode(vu_transport)) {
vfio_user_poll_group_add_intr(vu_group, group);
}
TAILQ_INIT(&vu_group->sqs);
pthread_mutex_lock(&vu_transport->pg_lock);
TAILQ_INSERT_TAIL(&vu_transport->poll_groups, vu_group, link);
if (vu_transport->next_pg == NULL) {
vu_transport->next_pg = vu_group;
}
pthread_mutex_unlock(&vu_transport->pg_lock);
return &vu_group->group;
}
static struct spdk_nvmf_transport_poll_group *
nvmf_vfio_user_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
{
struct nvmf_vfio_user_transport *vu_transport;
struct nvmf_vfio_user_poll_group **vu_group;
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_cq *cq;
struct spdk_nvmf_transport_poll_group *result = NULL;
sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
cq = sq->ctrlr->cqs[sq->cqid];
assert(cq != NULL);
vu_transport = SPDK_CONTAINEROF(qpair->transport, struct nvmf_vfio_user_transport, transport);
pthread_mutex_lock(&vu_transport->pg_lock);
if (TAILQ_EMPTY(&vu_transport->poll_groups)) {
goto out;
}
if (!nvmf_qpair_is_admin_queue(qpair)) {
/*
* If this is shared IO CQ case, just return the used CQ's poll
* group, so I/O completions don't have to use
* spdk_thread_send_msg().
*/
if (cq->group != NULL) {
result = cq->group;
goto out;
}
/*
* If we're in interrupt mode, align all qpairs for a controller
* on the same poll group by default, unless requested. This can
* be lower in performance than running on a single poll group,
* so we disable spreading by default.
*/
if (in_interrupt_mode(vu_transport) &&
!vu_transport->transport_opts.enable_intr_mode_sq_spreading) {
result = sq->ctrlr->sqs[0]->group;
goto out;
}
}
vu_group = &vu_transport->next_pg;
assert(*vu_group != NULL);
result = &(*vu_group)->group;
*vu_group = TAILQ_NEXT(*vu_group, link);
if (*vu_group == NULL) {
*vu_group = TAILQ_FIRST(&vu_transport->poll_groups);
}
out:
if (cq->group == NULL) {
cq->group = result;
}
pthread_mutex_unlock(&vu_transport->pg_lock);
return result;
}
static void
vfio_user_poll_group_del_intr(struct nvmf_vfio_user_poll_group *vu_group)
{
assert(vu_group->intr_fd != -1);
spdk_interrupt_unregister(&vu_group->intr);
close(vu_group->intr_fd);
vu_group->intr_fd = -1;
}
/* called when process exits */
static void
nvmf_vfio_user_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
{
struct nvmf_vfio_user_poll_group *vu_group, *next_tgroup;
struct nvmf_vfio_user_transport *vu_transport;
SPDK_DEBUGLOG(nvmf_vfio, "destroy poll group\n");
vu_group = SPDK_CONTAINEROF(group, struct nvmf_vfio_user_poll_group, group);
vu_transport = SPDK_CONTAINEROF(vu_group->group.transport, struct nvmf_vfio_user_transport,
transport);
if (in_interrupt_mode(vu_transport)) {
vfio_user_poll_group_del_intr(vu_group);
}
pthread_mutex_lock(&vu_transport->pg_lock);
next_tgroup = TAILQ_NEXT(vu_group, link);
TAILQ_REMOVE(&vu_transport->poll_groups, vu_group, link);
if (next_tgroup == NULL) {
next_tgroup = TAILQ_FIRST(&vu_transport->poll_groups);
}
if (vu_transport->next_pg == vu_group) {
vu_transport->next_pg = next_tgroup;
}
pthread_mutex_unlock(&vu_transport->pg_lock);
free(vu_group);
}
static void
_vfio_user_qpair_disconnect(void *ctx)
{
struct nvmf_vfio_user_sq *sq = ctx;
spdk_nvmf_qpair_disconnect(&sq->qpair, NULL, NULL);
}
/* The function is used when socket connection is destroyed */
static int
vfio_user_destroy_ctrlr(struct nvmf_vfio_user_ctrlr *ctrlr)
{
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_endpoint *endpoint;
SPDK_DEBUGLOG(nvmf_vfio, "%s stop processing\n", ctrlr_id(ctrlr));
endpoint = ctrlr->endpoint;
assert(endpoint != NULL);
pthread_mutex_lock(&endpoint->lock);
endpoint->need_relisten = true;
ctrlr->disconnect = true;
if (TAILQ_EMPTY(&ctrlr->connected_sqs)) {
endpoint->ctrlr = NULL;
free_ctrlr(ctrlr);
pthread_mutex_unlock(&endpoint->lock);
return 0;
}
TAILQ_FOREACH(sq, &ctrlr->connected_sqs, tailq) {
/* add another round thread poll to avoid recursive endpoint lock */
spdk_thread_send_msg(ctrlr->thread, _vfio_user_qpair_disconnect, sq);
}
pthread_mutex_unlock(&endpoint->lock);
return 0;
}
/*
* Poll for and process any incoming vfio-user messages.
*/
static int
vfio_user_poll_vfu_ctx(void *ctx)
{
struct nvmf_vfio_user_ctrlr *ctrlr = ctx;
int ret;
assert(ctrlr != NULL);
/* This will call access_bar0_fn() if there are any writes
* to the portion of the BAR that is not mmap'd */
ret = vfu_run_ctx(ctrlr->endpoint->vfu_ctx);
if (spdk_unlikely(ret == -1)) {
if (errno == EBUSY) {
return SPDK_POLLER_IDLE;
}
spdk_poller_unregister(&ctrlr->vfu_ctx_poller);
/*
* We lost the client; the reset callback will already have
* unregistered the interrupt.
*/
if (errno == ENOTCONN) {
vfio_user_destroy_ctrlr(ctrlr);
return SPDK_POLLER_BUSY;
}
/*
* We might not have got a reset callback in this case, so
* explicitly unregister the interrupt here.
*/
spdk_interrupt_unregister(&ctrlr->intr);
ctrlr->intr_fd = -1;
fail_ctrlr(ctrlr);
}
return ret != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
}
struct vfio_user_post_cpl_ctx {
struct nvmf_vfio_user_ctrlr *ctrlr;
struct nvmf_vfio_user_cq *cq;
struct spdk_nvme_cpl cpl;
};
static void
_post_completion_msg(void *ctx)
{
struct vfio_user_post_cpl_ctx *cpl_ctx = ctx;
post_completion(cpl_ctx->ctrlr, cpl_ctx->cq, cpl_ctx->cpl.cdw0, cpl_ctx->cpl.sqid,
cpl_ctx->cpl.cid, cpl_ctx->cpl.status.sc, cpl_ctx->cpl.status.sct);
free(cpl_ctx);
}
static int nvmf_vfio_user_poll_group_poll(struct spdk_nvmf_transport_poll_group *group);
static int
vfio_user_poll_group_process(void *ctx)
{
struct nvmf_vfio_user_poll_group *vu_group = ctx;
int ret = 0;
SPDK_DEBUGLOG(vfio_user_db, "pg:%p got intr\n", vu_group);
ret |= nvmf_vfio_user_poll_group_poll(&vu_group->group);
/*
* Re-arm the event indexes. NB: this also could rearm other
* controller's SQs.
*/
ret |= vfio_user_poll_group_rearm(vu_group);
vu_group->stats.pg_process_count++;
return ret != 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
}
static int
vfio_user_poll_group_intr(void *ctx)
{
struct nvmf_vfio_user_poll_group *vu_group = ctx;
eventfd_t val;
eventfd_read(vu_group->intr_fd, &val);
vu_group->stats.intr++;
return vfio_user_poll_group_process(ctx);
}
/*
* Handle an interrupt for the given controller: we must poll the vfu_ctx, and
* the SQs assigned to our own poll group. Other poll groups are handled via
* vfio_user_poll_group_intr().
*/
static int
vfio_user_ctrlr_intr(void *ctx)
{
struct nvmf_vfio_user_poll_group *vu_ctrlr_group;
struct nvmf_vfio_user_ctrlr *vu_ctrlr = ctx;
struct nvmf_vfio_user_poll_group *vu_group;
int ret = SPDK_POLLER_IDLE;
vu_ctrlr_group = ctrlr_to_poll_group(vu_ctrlr);
SPDK_DEBUGLOG(vfio_user_db, "ctrlr pg:%p got intr\n", vu_ctrlr_group);
vu_ctrlr_group->stats.ctrlr_intr++;
/*
* Poll vfio-user for this controller. We need to do this before polling
* any SQs, as this is where doorbell writes may be handled.
*/
ret = vfio_user_poll_vfu_ctx(vu_ctrlr);
/*
* `sqs[0]` could be set to NULL in vfio_user_poll_vfu_ctx() context,
* just return for this case.
*/
if (vu_ctrlr->sqs[0] == NULL) {
return ret;
}
if (vu_ctrlr->transport->transport_opts.enable_intr_mode_sq_spreading) {
/*
* We may have just written to a doorbell owned by another
* reactor: we need to prod them to make sure its SQs are polled
* *after* the doorbell value is updated.
*/
TAILQ_FOREACH(vu_group, &vu_ctrlr->transport->poll_groups, link) {
if (vu_group != vu_ctrlr_group) {
SPDK_DEBUGLOG(vfio_user_db, "prodding pg:%p\n", vu_group);
eventfd_write(vu_group->intr_fd, 1);
}
}
}
ret |= vfio_user_poll_group_process(vu_ctrlr_group);
return ret;
}
static void
vfio_user_ctrlr_set_intr_mode(struct spdk_poller *poller, void *ctx,
bool interrupt_mode)
{
struct nvmf_vfio_user_ctrlr *ctrlr = ctx;
assert(ctrlr != NULL);
assert(ctrlr->endpoint != NULL);
SPDK_DEBUGLOG(nvmf_vfio, "%s: setting interrupt mode to %d\n",
ctrlr_id(ctrlr), interrupt_mode);
/*
* interrupt_mode needs to persist across controller resets, so store
* it in the endpoint instead.
*/
ctrlr->endpoint->interrupt_mode = interrupt_mode;
vfio_user_poll_group_rearm(ctrlr_to_poll_group(ctrlr));
}
/*
* In response to the nvmf_vfio_user_create_ctrlr() path, the admin queue is now
* set up and we can start operating on this controller.
*/
static void
start_ctrlr(struct nvmf_vfio_user_ctrlr *vu_ctrlr,
struct spdk_nvmf_ctrlr *ctrlr)
{
struct nvmf_vfio_user_endpoint *endpoint = vu_ctrlr->endpoint;
vu_ctrlr->ctrlr = ctrlr;
vu_ctrlr->cntlid = ctrlr->cntlid;
vu_ctrlr->thread = spdk_get_thread();
vu_ctrlr->state = VFIO_USER_CTRLR_RUNNING;
if (!in_interrupt_mode(endpoint->transport)) {
vu_ctrlr->vfu_ctx_poller = SPDK_POLLER_REGISTER(vfio_user_poll_vfu_ctx,
vu_ctrlr, 1000);
return;
}
vu_ctrlr->vfu_ctx_poller = SPDK_POLLER_REGISTER(vfio_user_poll_vfu_ctx,
vu_ctrlr, 0);
vu_ctrlr->intr_fd = vfu_get_poll_fd(vu_ctrlr->endpoint->vfu_ctx);
assert(vu_ctrlr->intr_fd != -1);
vu_ctrlr->intr = SPDK_INTERRUPT_REGISTER(vu_ctrlr->intr_fd,
vfio_user_ctrlr_intr, vu_ctrlr);
assert(vu_ctrlr->intr != NULL);
spdk_poller_register_interrupt(vu_ctrlr->vfu_ctx_poller,
vfio_user_ctrlr_set_intr_mode,
vu_ctrlr);
}
static int
handle_queue_connect_rsp(struct nvmf_vfio_user_req *req, void *cb_arg)
{
struct nvmf_vfio_user_poll_group *vu_group;
struct nvmf_vfio_user_sq *sq = cb_arg;
struct nvmf_vfio_user_cq *admin_cq;
struct nvmf_vfio_user_ctrlr *vu_ctrlr;
struct nvmf_vfio_user_endpoint *endpoint;
assert(sq != NULL);
assert(req != NULL);
vu_ctrlr = sq->ctrlr;
assert(vu_ctrlr != NULL);
endpoint = vu_ctrlr->endpoint;
assert(endpoint != NULL);
if (spdk_nvme_cpl_is_error(&req->req.rsp->nvme_cpl)) {
SPDK_ERRLOG("SC %u, SCT %u\n", req->req.rsp->nvme_cpl.status.sc, req->req.rsp->nvme_cpl.status.sct);
endpoint->ctrlr = NULL;
free_ctrlr(vu_ctrlr);
return -1;
}
vu_group = SPDK_CONTAINEROF(sq->group, struct nvmf_vfio_user_poll_group, group);
TAILQ_INSERT_TAIL(&vu_group->sqs, sq, link);
admin_cq = vu_ctrlr->cqs[0];
assert(admin_cq != NULL);
assert(admin_cq->group != NULL);
assert(admin_cq->group->group->thread != NULL);
pthread_mutex_lock(&endpoint->lock);
if (nvmf_qpair_is_admin_queue(&sq->qpair)) {
assert(admin_cq->group->group->thread == spdk_get_thread());
/*
* The admin queue is special as SQ0 and CQ0 are created
* together.
*/
admin_cq->cq_ref = 1;
start_ctrlr(vu_ctrlr, sq->qpair.ctrlr);
} else {
/* For I/O queues this command was generated in response to an
* ADMIN I/O CREATE SUBMISSION QUEUE command which has not yet
* been completed. Complete it now.
*/
if (sq->post_create_io_sq_completion) {
if (admin_cq->group->group->thread != spdk_get_thread()) {
struct vfio_user_post_cpl_ctx *cpl_ctx;
cpl_ctx = calloc(1, sizeof(*cpl_ctx));
if (!cpl_ctx) {
return -ENOMEM;
}
cpl_ctx->ctrlr = vu_ctrlr;
cpl_ctx->cq = admin_cq;
cpl_ctx->cpl.sqid = 0;
cpl_ctx->cpl.cdw0 = 0;
cpl_ctx->cpl.cid = sq->create_io_sq_cmd.cid;
cpl_ctx->cpl.status.sc = SPDK_NVME_SC_SUCCESS;
cpl_ctx->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
spdk_thread_send_msg(admin_cq->group->group->thread,
_post_completion_msg,
cpl_ctx);
} else {
post_completion(vu_ctrlr, admin_cq, 0, 0,
sq->create_io_sq_cmd.cid, SPDK_NVME_SC_SUCCESS, SPDK_NVME_SCT_GENERIC);
}
sq->post_create_io_sq_completion = false;
} else if (in_interrupt_mode(endpoint->transport)) {
/*
* If we're live migrating a guest, there is a window
* where the I/O queues haven't been set up but the
* device is in running state, during which the guest
* might write to a doorbell. This doorbell write will
* go unnoticed, so let's poll the whole controller to
* pick that up.
*/
ctrlr_kick(vu_ctrlr);
}
sq->sq_state = VFIO_USER_SQ_ACTIVE;
}
TAILQ_INSERT_TAIL(&vu_ctrlr->connected_sqs, sq, tailq);
pthread_mutex_unlock(&endpoint->lock);
free(req->req.data);
req->req.data = NULL;
return 0;
}
/*
* Add the given qpair to the given poll group. New qpairs are added via
* spdk_nvmf_tgt_new_qpair(), which picks a poll group via
* nvmf_vfio_user_get_optimal_poll_group(), then calls back here via
* nvmf_transport_poll_group_add().
*/
static int
nvmf_vfio_user_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
struct spdk_nvmf_qpair *qpair)
{
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_req *vu_req;
struct nvmf_vfio_user_ctrlr *ctrlr;
struct spdk_nvmf_request *req;
struct spdk_nvmf_fabric_connect_data *data;
bool admin;
sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
sq->group = group;
ctrlr = sq->ctrlr;
SPDK_DEBUGLOG(nvmf_vfio, "%s: add QP%d=%p(%p) to poll_group=%p\n",
ctrlr_id(ctrlr), sq->qpair.qid,
sq, qpair, group);
admin = nvmf_qpair_is_admin_queue(&sq->qpair);
vu_req = get_nvmf_vfio_user_req(sq);
if (vu_req == NULL) {
return -1;
}
req = &vu_req->req;
req->cmd->connect_cmd.opcode = SPDK_NVME_OPC_FABRIC;
req->cmd->connect_cmd.cid = 0;
req->cmd->connect_cmd.fctype = SPDK_NVMF_FABRIC_COMMAND_CONNECT;
req->cmd->connect_cmd.recfmt = 0;
req->cmd->connect_cmd.sqsize = sq->size - 1;
req->cmd->connect_cmd.qid = admin ? 0 : qpair->qid;
req->length = sizeof(struct spdk_nvmf_fabric_connect_data);
req->data = calloc(1, req->length);
if (req->data == NULL) {
nvmf_vfio_user_req_free(req);
return -ENOMEM;
}
data = (struct spdk_nvmf_fabric_connect_data *)req->data;
data->cntlid = ctrlr->cntlid;
snprintf(data->subnqn, sizeof(data->subnqn), "%s",
spdk_nvmf_subsystem_get_nqn(ctrlr->endpoint->subsystem));
vu_req->cb_fn = handle_queue_connect_rsp;
vu_req->cb_arg = sq;
SPDK_DEBUGLOG(nvmf_vfio,
"%s: sending connect fabrics command for qid:%#x cntlid=%#x\n",
ctrlr_id(ctrlr), qpair->qid, data->cntlid);
spdk_nvmf_request_exec_fabrics(req);
return 0;
}
static int
nvmf_vfio_user_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
struct spdk_nvmf_qpair *qpair)
{
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_poll_group *vu_group;
sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
SPDK_DEBUGLOG(nvmf_vfio,
"%s: remove NVMf QP%d=%p from NVMf poll_group=%p\n",
ctrlr_id(sq->ctrlr), qpair->qid, qpair, group);
vu_group = SPDK_CONTAINEROF(group, struct nvmf_vfio_user_poll_group, group);
TAILQ_REMOVE(&vu_group->sqs, sq, link);
return 0;
}
static void
_nvmf_vfio_user_req_free(struct nvmf_vfio_user_sq *sq, struct nvmf_vfio_user_req *vu_req)
{
memset(&vu_req->cmd, 0, sizeof(vu_req->cmd));
memset(&vu_req->rsp, 0, sizeof(vu_req->rsp));
vu_req->iovcnt = 0;
vu_req->state = VFIO_USER_REQUEST_STATE_FREE;
TAILQ_INSERT_TAIL(&sq->free_reqs, vu_req, link);
}
static int
nvmf_vfio_user_req_free(struct spdk_nvmf_request *req)
{
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_req *vu_req;
assert(req != NULL);
vu_req = SPDK_CONTAINEROF(req, struct nvmf_vfio_user_req, req);
sq = SPDK_CONTAINEROF(req->qpair, struct nvmf_vfio_user_sq, qpair);
_nvmf_vfio_user_req_free(sq, vu_req);
return 0;
}
static int
nvmf_vfio_user_req_complete(struct spdk_nvmf_request *req)
{
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_req *vu_req;
assert(req != NULL);
vu_req = SPDK_CONTAINEROF(req, struct nvmf_vfio_user_req, req);
sq = SPDK_CONTAINEROF(req->qpair, struct nvmf_vfio_user_sq, qpair);
if (vu_req->cb_fn != NULL) {
if (vu_req->cb_fn(vu_req, vu_req->cb_arg) != 0) {
fail_ctrlr(sq->ctrlr);
}
}
_nvmf_vfio_user_req_free(sq, vu_req);
return 0;
}
static void
nvmf_vfio_user_close_qpair(struct spdk_nvmf_qpair *qpair,
spdk_nvmf_transport_qpair_fini_cb cb_fn, void *cb_arg)
{
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_ctrlr *vu_ctrlr;
struct nvmf_vfio_user_endpoint *endpoint;
assert(qpair != NULL);
sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
vu_ctrlr = sq->ctrlr;
endpoint = vu_ctrlr->endpoint;
pthread_mutex_lock(&endpoint->lock);
TAILQ_REMOVE(&vu_ctrlr->connected_sqs, sq, tailq);
delete_sq_done(vu_ctrlr, sq);
if (TAILQ_EMPTY(&vu_ctrlr->connected_sqs)) {
endpoint->ctrlr = NULL;
if (vu_ctrlr->in_source_vm && endpoint->need_resume) {
/* The controller will be freed, we can resume the subsystem
* now so that the endpoint can be ready to accept another
* new connection.
*/
spdk_nvmf_subsystem_resume((struct spdk_nvmf_subsystem *)endpoint->subsystem,
vfio_user_endpoint_resume_done, endpoint);
}
free_ctrlr(vu_ctrlr);
}
pthread_mutex_unlock(&endpoint->lock);
if (cb_fn) {
cb_fn(cb_arg);
}
}
/**
* Returns a preallocated request, or NULL if there isn't one available.
*/
static struct nvmf_vfio_user_req *
get_nvmf_vfio_user_req(struct nvmf_vfio_user_sq *sq)
{
struct nvmf_vfio_user_req *req;
if (sq == NULL) {
return NULL;
}
req = TAILQ_FIRST(&sq->free_reqs);
if (req == NULL) {
return NULL;
}
TAILQ_REMOVE(&sq->free_reqs, req, link);
return req;
}
static int
get_nvmf_io_req_length(struct spdk_nvmf_request *req)
{
uint16_t nr;
uint32_t nlb, nsid;
struct spdk_nvme_cmd *cmd = &req->cmd->nvme_cmd;
struct spdk_nvmf_ctrlr *ctrlr = req->qpair->ctrlr;
struct spdk_nvmf_ns *ns;
nsid = cmd->nsid;
ns = _nvmf_subsystem_get_ns(ctrlr->subsys, nsid);
if (ns == NULL || ns->bdev == NULL) {
SPDK_ERRLOG("unsuccessful query for nsid %u\n", cmd->nsid);
return -EINVAL;
}
if (cmd->opc == SPDK_NVME_OPC_DATASET_MANAGEMENT) {
nr = cmd->cdw10_bits.dsm.nr + 1;
return nr * sizeof(struct spdk_nvme_dsm_range);
}
nlb = (cmd->cdw12 & 0x0000ffffu) + 1;
return nlb * spdk_bdev_get_block_size(ns->bdev);
}
static int
map_admin_cmd_req(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvmf_request *req)
{
struct spdk_nvme_cmd *cmd = &req->cmd->nvme_cmd;
uint32_t len = 0;
uint8_t fid;
int iovcnt;
req->xfer = spdk_nvme_opc_get_data_transfer(cmd->opc);
req->length = 0;
req->data = NULL;
if (req->xfer == SPDK_NVME_DATA_NONE) {
return 0;
}
switch (cmd->opc) {
case SPDK_NVME_OPC_IDENTIFY:
len = 4096;
break;
case SPDK_NVME_OPC_GET_LOG_PAGE:
len = (((cmd->cdw11_bits.get_log_page.numdu << 16) | cmd->cdw10_bits.get_log_page.numdl) + 1) * 4;
break;
case SPDK_NVME_OPC_GET_FEATURES:
case SPDK_NVME_OPC_SET_FEATURES:
fid = cmd->cdw10_bits.set_features.fid;
switch (fid) {
case SPDK_NVME_FEAT_LBA_RANGE_TYPE:
len = 4096;
break;
case SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION:
len = 256;
break;
case SPDK_NVME_FEAT_TIMESTAMP:
len = 8;
break;
case SPDK_NVME_FEAT_HOST_BEHAVIOR_SUPPORT:
len = 512;
break;
case SPDK_NVME_FEAT_HOST_IDENTIFIER:
if (cmd->cdw11_bits.feat_host_identifier.bits.exhid) {
len = 16;
} else {
len = 8;
}
break;
default:
return 0;
}
break;
default:
return 0;
}
/* ADMIN command will not use SGL */
if (cmd->psdt != 0) {
return -EINVAL;
}
iovcnt = vfio_user_map_cmd(ctrlr, req, req->iov, len);
if (iovcnt < 0) {
SPDK_ERRLOG("%s: map Admin Opc %x failed\n",
ctrlr_id(ctrlr), cmd->opc);
return -1;
}
req->length = len;
req->data = req->iov[0].iov_base;
req->iovcnt = iovcnt;
return 0;
}
/*
* Map an I/O command's buffers.
*
* Returns 0 on success and -errno on failure.
*/
static int
map_io_cmd_req(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvmf_request *req)
{
int len, iovcnt;
struct spdk_nvme_cmd *cmd;
assert(ctrlr != NULL);
assert(req != NULL);
cmd = &req->cmd->nvme_cmd;
req->xfer = spdk_nvme_opc_get_data_transfer(cmd->opc);
req->length = 0;
req->data = NULL;
if (spdk_unlikely(req->xfer == SPDK_NVME_DATA_NONE)) {
return 0;
}
len = get_nvmf_io_req_length(req);
if (len < 0) {
return -EINVAL;
}
req->length = len;
iovcnt = vfio_user_map_cmd(ctrlr, req, req->iov, req->length);
if (iovcnt < 0) {
SPDK_ERRLOG("%s: failed to map IO OPC %u\n", ctrlr_id(ctrlr), cmd->opc);
return -EFAULT;
}
req->data = req->iov[0].iov_base;
req->iovcnt = iovcnt;
return 0;
}
static int
handle_cmd_req(struct nvmf_vfio_user_ctrlr *ctrlr, struct spdk_nvme_cmd *cmd,
struct nvmf_vfio_user_sq *sq)
{
int err;
struct nvmf_vfio_user_req *vu_req;
struct spdk_nvmf_request *req;
assert(ctrlr != NULL);
assert(cmd != NULL);
vu_req = get_nvmf_vfio_user_req(sq);
if (spdk_unlikely(vu_req == NULL)) {
SPDK_ERRLOG("%s: no request for NVMe command opc 0x%x\n", ctrlr_id(ctrlr), cmd->opc);
return post_completion(ctrlr, ctrlr->cqs[sq->cqid], 0, 0, cmd->cid,
SPDK_NVME_SC_INTERNAL_DEVICE_ERROR, SPDK_NVME_SCT_GENERIC);
}
req = &vu_req->req;
assert(req->qpair != NULL);
SPDK_DEBUGLOG(nvmf_vfio, "%s: handle sqid:%u, req opc=%#x cid=%d\n",
ctrlr_id(ctrlr), req->qpair->qid, cmd->opc, cmd->cid);
vu_req->cb_fn = handle_cmd_rsp;
vu_req->cb_arg = SPDK_CONTAINEROF(req->qpair, struct nvmf_vfio_user_sq, qpair);
req->cmd->nvme_cmd = *cmd;
if (nvmf_qpair_is_admin_queue(req->qpair)) {
err = map_admin_cmd_req(ctrlr, req);
} else {
switch (cmd->opc) {
case SPDK_NVME_OPC_RESERVATION_REGISTER:
case SPDK_NVME_OPC_RESERVATION_REPORT:
case SPDK_NVME_OPC_RESERVATION_ACQUIRE:
case SPDK_NVME_OPC_RESERVATION_RELEASE:
err = -ENOTSUP;
break;
default:
err = map_io_cmd_req(ctrlr, req);
break;
}
}
if (spdk_unlikely(err < 0)) {
SPDK_ERRLOG("%s: process NVMe command opc 0x%x failed\n",
ctrlr_id(ctrlr), cmd->opc);
req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
req->rsp->nvme_cpl.status.sct = SPDK_NVME_SCT_GENERIC;
err = handle_cmd_rsp(vu_req, vu_req->cb_arg);
_nvmf_vfio_user_req_free(sq, vu_req);
return err;
}
vu_req->state = VFIO_USER_REQUEST_STATE_EXECUTING;
spdk_nvmf_request_exec(req);
return 0;
}
/*
* If we suppressed an IRQ in post_completion(), check if it needs to be fired
* here: if the host isn't up to date, and is apparently not actively processing
* the queue (i.e. ->last_head isn't changing), we need an IRQ.
*/
static void
handle_suppressed_irq(struct nvmf_vfio_user_ctrlr *ctrlr,
struct nvmf_vfio_user_sq *sq)
{
struct nvmf_vfio_user_cq *cq = ctrlr->cqs[sq->cqid];
uint32_t cq_head;
uint32_t cq_tail;
if (!cq->ien || cq->qid == 0 || !ctrlr_interrupt_enabled(ctrlr)) {
return;
}
cq_tail = *cq_tailp(cq);
/* Already sent? */
if (cq_tail == cq->last_trigger_irq_tail) {
return;
}
spdk_ivdt_dcache(cq_dbl_headp(cq));
cq_head = *cq_dbl_headp(cq);
if (cq_head != cq_tail && cq_head == cq->last_head) {
int err = vfu_irq_trigger(ctrlr->endpoint->vfu_ctx, cq->iv);
if (err != 0) {
SPDK_ERRLOG("%s: failed to trigger interrupt: %m\n",
ctrlr_id(ctrlr));
} else {
cq->last_trigger_irq_tail = cq_tail;
}
}
cq->last_head = cq_head;
}
/* Returns the number of commands processed, or a negative value on error. */
static int
nvmf_vfio_user_sq_poll(struct nvmf_vfio_user_sq *sq)
{
struct nvmf_vfio_user_ctrlr *ctrlr;
uint32_t new_tail;
int count = 0;
assert(sq != NULL);
ctrlr = sq->ctrlr;
/*
* A quiesced, or migrating, controller should never process new
* commands.
*/
if (ctrlr->state != VFIO_USER_CTRLR_RUNNING) {
return SPDK_POLLER_IDLE;
}
if (ctrlr->adaptive_irqs_enabled) {
handle_suppressed_irq(ctrlr, sq);
}
/* On aarch64 platforms, doorbells update from guest VM may not be seen
* on SPDK target side. This is because there is memory type mismatch
* situation here. That is on guest VM side, the doorbells are treated as
* device memory while on SPDK target side, it is treated as normal
* memory. And this situation cause problem on ARM platform.
* Refer to "https://developer.arm.com/documentation/102376/0100/
* Memory-aliasing-and-mismatched-memory-types". Only using spdk_mb()
* cannot fix this. Use "dc civac" to invalidate cache may solve
* this.
*/
spdk_ivdt_dcache(sq_dbl_tailp(sq));
/* Load-Acquire. */
new_tail = *sq_dbl_tailp(sq);
new_tail = new_tail & 0xffffu;
if (spdk_unlikely(new_tail >= sq->size)) {
union spdk_nvme_async_event_completion event = {};
SPDK_DEBUGLOG(nvmf_vfio, "%s: invalid sqid:%u doorbell value %u\n", ctrlr_id(ctrlr), sq->qid,
new_tail);
event.bits.async_event_type = SPDK_NVME_ASYNC_EVENT_TYPE_ERROR;
event.bits.async_event_info = SPDK_NVME_ASYNC_EVENT_INVALID_DB_WRITE;
nvmf_ctrlr_async_event_error_event(ctrlr->ctrlr, event);
return -1;
}
if (*sq_headp(sq) == new_tail) {
return 0;
}
SPDK_DEBUGLOG(nvmf_vfio, "%s: sqid:%u doorbell old=%u new=%u\n",
ctrlr_id(ctrlr), sq->qid, *sq_headp(sq), new_tail);
if (ctrlr->sdbl != NULL) {
SPDK_DEBUGLOG(nvmf_vfio,
"%s: sqid:%u bar0_doorbell=%u shadow_doorbell=%u eventidx=%u\n",
ctrlr_id(ctrlr), sq->qid,
ctrlr->bar0_doorbells[queue_index(sq->qid, false)],
ctrlr->sdbl->shadow_doorbells[queue_index(sq->qid, false)],
ctrlr->sdbl->eventidxs[queue_index(sq->qid, false)]);
}
/*
* Ensure that changes to the queue are visible to us.
* The host driver should write the queue first, do a wmb(), and then
* update the SQ tail doorbell (their Store-Release).
*/
spdk_rmb();
count = handle_sq_tdbl_write(ctrlr, new_tail, sq);
if (spdk_unlikely(count < 0)) {
fail_ctrlr(ctrlr);
}
return count;
}
/*
* vfio-user transport poll handler. Note that the library context is polled in
* a separate poller (->vfu_ctx_poller), so this poller only needs to poll the
* active SQs.
*
* Returns the number of commands processed, or a negative value on error.
*/
static int
nvmf_vfio_user_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
{
struct nvmf_vfio_user_poll_group *vu_group;
struct nvmf_vfio_user_sq *sq, *tmp;
int count = 0;
assert(group != NULL);
vu_group = SPDK_CONTAINEROF(group, struct nvmf_vfio_user_poll_group, group);
SPDK_DEBUGLOG(vfio_user_db, "polling all SQs\n");
TAILQ_FOREACH_SAFE(sq, &vu_group->sqs, link, tmp) {
int ret;
if (spdk_unlikely(sq->sq_state != VFIO_USER_SQ_ACTIVE || !sq->size)) {
continue;
}
ret = nvmf_vfio_user_sq_poll(sq);
if (spdk_unlikely(ret < 0)) {
return ret;
}
count += ret;
}
vu_group->stats.polls++;
vu_group->stats.poll_reqs += count;
vu_group->stats.poll_reqs_squared += count * count;
if (count == 0) {
vu_group->stats.polls_spurious++;
}
return count;
}
static int
nvmf_vfio_user_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
struct spdk_nvme_transport_id *trid)
{
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_ctrlr *ctrlr;
sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
ctrlr = sq->ctrlr;
memcpy(trid, &ctrlr->endpoint->trid, sizeof(*trid));
return 0;
}
static int
nvmf_vfio_user_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
struct spdk_nvme_transport_id *trid)
{
return 0;
}
static int
nvmf_vfio_user_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
struct spdk_nvme_transport_id *trid)
{
struct nvmf_vfio_user_sq *sq;
struct nvmf_vfio_user_ctrlr *ctrlr;
sq = SPDK_CONTAINEROF(qpair, struct nvmf_vfio_user_sq, qpair);
ctrlr = sq->ctrlr;
memcpy(trid, &ctrlr->endpoint->trid, sizeof(*trid));
return 0;
}
static void
nvmf_vfio_user_qpair_abort_request(struct spdk_nvmf_qpair *qpair,
struct spdk_nvmf_request *req)
{
struct spdk_nvmf_request *req_to_abort = NULL;
struct spdk_nvmf_request *temp_req = NULL;
uint16_t cid;
cid = req->cmd->nvme_cmd.cdw10_bits.abort.cid;
TAILQ_FOREACH(temp_req, &qpair->outstanding, link) {
struct nvmf_vfio_user_req *vu_req;
vu_req = SPDK_CONTAINEROF(temp_req, struct nvmf_vfio_user_req, req);
if (vu_req->state == VFIO_USER_REQUEST_STATE_EXECUTING && vu_req->cmd.cid == cid) {
req_to_abort = temp_req;
break;
}
}
if (req_to_abort == NULL) {
spdk_nvmf_request_complete(req);
return;
}
req->req_to_abort = req_to_abort;
nvmf_ctrlr_abort_request(req);
}
static void
nvmf_vfio_user_poll_group_dump_stat(struct spdk_nvmf_transport_poll_group *group,
struct spdk_json_write_ctx *w)
{
struct nvmf_vfio_user_poll_group *vu_group = SPDK_CONTAINEROF(group,
struct nvmf_vfio_user_poll_group, group);
uint64_t polls_denom;
spdk_json_write_named_uint64(w, "ctrlr_intr", vu_group->stats.ctrlr_intr);
spdk_json_write_named_uint64(w, "ctrlr_kicks", vu_group->stats.ctrlr_kicks);
spdk_json_write_named_uint64(w, "won", vu_group->stats.won);
spdk_json_write_named_uint64(w, "lost", vu_group->stats.lost);
spdk_json_write_named_uint64(w, "lost_count", vu_group->stats.lost_count);
spdk_json_write_named_uint64(w, "rearms", vu_group->stats.rearms);
spdk_json_write_named_uint64(w, "pg_process_count", vu_group->stats.pg_process_count);
spdk_json_write_named_uint64(w, "intr", vu_group->stats.intr);
spdk_json_write_named_uint64(w, "polls", vu_group->stats.polls);
spdk_json_write_named_uint64(w, "polls_spurious", vu_group->stats.polls_spurious);
spdk_json_write_named_uint64(w, "poll_reqs", vu_group->stats.poll_reqs);
polls_denom = vu_group->stats.polls * (vu_group->stats.polls - 1);
if (polls_denom) {
uint64_t n = vu_group->stats.polls * vu_group->stats.poll_reqs_squared - vu_group->stats.poll_reqs *
vu_group->stats.poll_reqs;
spdk_json_write_named_double(w, "poll_reqs_variance", sqrt(n / polls_denom));
}
spdk_json_write_named_uint64(w, "cqh_admin_writes", vu_group->stats.cqh_admin_writes);
spdk_json_write_named_uint64(w, "cqh_io_writes", vu_group->stats.cqh_io_writes);
}
static void
nvmf_vfio_user_opts_init(struct spdk_nvmf_transport_opts *opts)
{
opts->max_queue_depth = NVMF_VFIO_USER_DEFAULT_MAX_QUEUE_DEPTH;
opts->max_qpairs_per_ctrlr = NVMF_VFIO_USER_DEFAULT_MAX_QPAIRS_PER_CTRLR;
opts->in_capsule_data_size = 0;
opts->max_io_size = NVMF_VFIO_USER_DEFAULT_MAX_IO_SIZE;
opts->io_unit_size = NVMF_VFIO_USER_DEFAULT_IO_UNIT_SIZE;
opts->max_aq_depth = NVMF_VFIO_USER_DEFAULT_AQ_DEPTH;
opts->num_shared_buffers = 0;
opts->buf_cache_size = 0;
opts->association_timeout = 0;
opts->transport_specific = NULL;
}
const struct spdk_nvmf_transport_ops spdk_nvmf_transport_vfio_user = {
.name = "VFIOUSER",
.type = SPDK_NVME_TRANSPORT_VFIOUSER,
.opts_init = nvmf_vfio_user_opts_init,
.create = nvmf_vfio_user_create,
.destroy = nvmf_vfio_user_destroy,
.listen = nvmf_vfio_user_listen,
.stop_listen = nvmf_vfio_user_stop_listen,
.cdata_init = nvmf_vfio_user_cdata_init,
.listen_associate = nvmf_vfio_user_listen_associate,
.listener_discover = nvmf_vfio_user_discover,
.poll_group_create = nvmf_vfio_user_poll_group_create,
.get_optimal_poll_group = nvmf_vfio_user_get_optimal_poll_group,
.poll_group_destroy = nvmf_vfio_user_poll_group_destroy,
.poll_group_add = nvmf_vfio_user_poll_group_add,
.poll_group_remove = nvmf_vfio_user_poll_group_remove,
.poll_group_poll = nvmf_vfio_user_poll_group_poll,
.req_free = nvmf_vfio_user_req_free,
.req_complete = nvmf_vfio_user_req_complete,
.qpair_fini = nvmf_vfio_user_close_qpair,
.qpair_get_local_trid = nvmf_vfio_user_qpair_get_local_trid,
.qpair_get_peer_trid = nvmf_vfio_user_qpair_get_peer_trid,
.qpair_get_listen_trid = nvmf_vfio_user_qpair_get_listen_trid,
.qpair_abort_request = nvmf_vfio_user_qpair_abort_request,
.poll_group_dump_stat = nvmf_vfio_user_poll_group_dump_stat,
};
SPDK_NVMF_TRANSPORT_REGISTER(muser, &spdk_nvmf_transport_vfio_user);
SPDK_LOG_REGISTER_COMPONENT(nvmf_vfio)
SPDK_LOG_REGISTER_COMPONENT(vfio_user_db)