The last patch ensures that the parent I/O terminate with failure before continuing splitting process if one of child I/O failed. This simplifies abort operation for I/O splitting. Then we can use bdev_abort() and bdev_abort_io() nestedly. Add necessary unit test together. Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Change-Id: I562bb6675f1fa380bc53dbe369138317ead66fe0 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/2235 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Community-CI: Mellanox Build Bot Community-CI: Broadcom CI Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Michael Haeuptle <michaelhaeuptle@gmail.com>
3416 lines
104 KiB
C
3416 lines
104 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation. All rights reserved.
|
|
* Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "spdk_cunit.h"
|
|
|
|
#include "common/lib/ut_multithread.c"
|
|
#include "unit/lib/json_mock.c"
|
|
|
|
#include "spdk/config.h"
|
|
/* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
|
|
#undef SPDK_CONFIG_VTUNE
|
|
|
|
#include "bdev/bdev.c"
|
|
|
|
DEFINE_STUB(spdk_conf_find_section, struct spdk_conf_section *, (struct spdk_conf *cp,
|
|
const char *name), NULL);
|
|
DEFINE_STUB(spdk_conf_section_get_nmval, char *,
|
|
(struct spdk_conf_section *sp, const char *key, int idx1, int idx2), NULL);
|
|
DEFINE_STUB(spdk_conf_section_get_intval, int, (struct spdk_conf_section *sp, const char *key), -1);
|
|
|
|
struct spdk_trace_histories *g_trace_histories;
|
|
DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn));
|
|
DEFINE_STUB_V(spdk_trace_register_owner, (uint8_t type, char id_prefix));
|
|
DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix));
|
|
DEFINE_STUB_V(spdk_trace_register_description, (const char *name,
|
|
uint16_t tpoint_id, uint8_t owner_type,
|
|
uint8_t object_type, uint8_t new_object,
|
|
uint8_t arg1_type, const char *arg1_name));
|
|
DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id,
|
|
uint32_t size, uint64_t object_id, uint64_t arg1));
|
|
DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
|
|
DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
|
|
|
|
|
|
int g_status;
|
|
int g_count;
|
|
enum spdk_bdev_event_type g_event_type1;
|
|
enum spdk_bdev_event_type g_event_type2;
|
|
struct spdk_histogram_data *g_histogram;
|
|
void *g_unregister_arg;
|
|
int g_unregister_rc;
|
|
|
|
void
|
|
spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
|
|
int *sc, int *sk, int *asc, int *ascq)
|
|
{
|
|
}
|
|
|
|
static int
|
|
null_init(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
null_clean(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
stub_destruct(void *ctx)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
struct ut_expected_io {
|
|
uint8_t type;
|
|
uint64_t offset;
|
|
uint64_t length;
|
|
int iovcnt;
|
|
struct iovec iov[BDEV_IO_NUM_CHILD_IOV];
|
|
void *md_buf;
|
|
TAILQ_ENTRY(ut_expected_io) link;
|
|
};
|
|
|
|
struct bdev_ut_channel {
|
|
TAILQ_HEAD(, spdk_bdev_io) outstanding_io;
|
|
uint32_t outstanding_io_count;
|
|
TAILQ_HEAD(, ut_expected_io) expected_io;
|
|
};
|
|
|
|
static bool g_io_done;
|
|
static struct spdk_bdev_io *g_bdev_io;
|
|
static enum spdk_bdev_io_status g_io_status;
|
|
static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
|
|
static uint32_t g_bdev_ut_io_device;
|
|
static struct bdev_ut_channel *g_bdev_ut_channel;
|
|
static void *g_compare_read_buf;
|
|
static uint32_t g_compare_read_buf_len;
|
|
static void *g_compare_write_buf;
|
|
static uint32_t g_compare_write_buf_len;
|
|
static bool g_abort_done;
|
|
static enum spdk_bdev_io_status g_abort_status;
|
|
|
|
static struct ut_expected_io *
|
|
ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
|
|
{
|
|
struct ut_expected_io *expected_io;
|
|
|
|
expected_io = calloc(1, sizeof(*expected_io));
|
|
SPDK_CU_ASSERT_FATAL(expected_io != NULL);
|
|
|
|
expected_io->type = type;
|
|
expected_io->offset = offset;
|
|
expected_io->length = length;
|
|
expected_io->iovcnt = iovcnt;
|
|
|
|
return expected_io;
|
|
}
|
|
|
|
static void
|
|
ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
|
|
{
|
|
expected_io->iov[pos].iov_base = base;
|
|
expected_io->iov[pos].iov_len = len;
|
|
}
|
|
|
|
static void
|
|
stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
|
|
{
|
|
struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
|
|
struct ut_expected_io *expected_io;
|
|
struct iovec *iov, *expected_iov;
|
|
struct spdk_bdev_io *bio_to_abort;
|
|
int i;
|
|
|
|
g_bdev_io = bdev_io;
|
|
|
|
if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
|
|
uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
|
|
|
|
CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
|
|
CU_ASSERT(g_compare_read_buf_len == len);
|
|
memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
|
|
}
|
|
|
|
if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
|
|
uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
|
|
|
|
CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
|
|
CU_ASSERT(g_compare_write_buf_len == len);
|
|
memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
|
|
}
|
|
|
|
if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
|
|
uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
|
|
|
|
CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
|
|
CU_ASSERT(g_compare_read_buf_len == len);
|
|
if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
|
|
g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
|
|
}
|
|
}
|
|
|
|
if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
|
|
if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
|
|
TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
|
|
if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
|
|
TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
|
|
ch->outstanding_io_count--;
|
|
spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
|
|
ch->outstanding_io_count++;
|
|
|
|
expected_io = TAILQ_FIRST(&ch->expected_io);
|
|
if (expected_io == NULL) {
|
|
return;
|
|
}
|
|
TAILQ_REMOVE(&ch->expected_io, expected_io, link);
|
|
|
|
if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
|
|
CU_ASSERT(bdev_io->type == expected_io->type);
|
|
}
|
|
|
|
if (expected_io->md_buf != NULL) {
|
|
CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
|
|
}
|
|
|
|
if (expected_io->length == 0) {
|
|
free(expected_io);
|
|
return;
|
|
}
|
|
|
|
CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
|
|
CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
|
|
|
|
if (expected_io->iovcnt == 0) {
|
|
free(expected_io);
|
|
/* UNMAP, WRITE_ZEROES and FLUSH don't have iovs, so we can just return now. */
|
|
return;
|
|
}
|
|
|
|
CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
|
|
for (i = 0; i < expected_io->iovcnt; i++) {
|
|
iov = &bdev_io->u.bdev.iovs[i];
|
|
expected_iov = &expected_io->iov[i];
|
|
CU_ASSERT(iov->iov_len == expected_iov->iov_len);
|
|
CU_ASSERT(iov->iov_base == expected_iov->iov_base);
|
|
}
|
|
|
|
free(expected_io);
|
|
}
|
|
|
|
static void
|
|
stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
|
|
struct spdk_bdev_io *bdev_io, bool success)
|
|
{
|
|
CU_ASSERT(success == true);
|
|
|
|
stub_submit_request(_ch, bdev_io);
|
|
}
|
|
|
|
static void
|
|
stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
|
|
{
|
|
spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
|
|
bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
|
|
}
|
|
|
|
static uint32_t
|
|
stub_complete_io(uint32_t num_to_complete)
|
|
{
|
|
struct bdev_ut_channel *ch = g_bdev_ut_channel;
|
|
struct spdk_bdev_io *bdev_io;
|
|
static enum spdk_bdev_io_status io_status;
|
|
uint32_t num_completed = 0;
|
|
|
|
while (num_completed < num_to_complete) {
|
|
if (TAILQ_EMPTY(&ch->outstanding_io)) {
|
|
break;
|
|
}
|
|
bdev_io = TAILQ_FIRST(&ch->outstanding_io);
|
|
TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
|
|
ch->outstanding_io_count--;
|
|
io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
|
|
g_io_exp_status;
|
|
spdk_bdev_io_complete(bdev_io, io_status);
|
|
num_completed++;
|
|
}
|
|
|
|
return num_completed;
|
|
}
|
|
|
|
static struct spdk_io_channel *
|
|
bdev_ut_get_io_channel(void *ctx)
|
|
{
|
|
return spdk_get_io_channel(&g_bdev_ut_io_device);
|
|
}
|
|
|
|
static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
|
|
[SPDK_BDEV_IO_TYPE_READ] = true,
|
|
[SPDK_BDEV_IO_TYPE_WRITE] = true,
|
|
[SPDK_BDEV_IO_TYPE_COMPARE] = true,
|
|
[SPDK_BDEV_IO_TYPE_UNMAP] = true,
|
|
[SPDK_BDEV_IO_TYPE_FLUSH] = true,
|
|
[SPDK_BDEV_IO_TYPE_RESET] = true,
|
|
[SPDK_BDEV_IO_TYPE_NVME_ADMIN] = true,
|
|
[SPDK_BDEV_IO_TYPE_NVME_IO] = true,
|
|
[SPDK_BDEV_IO_TYPE_NVME_IO_MD] = true,
|
|
[SPDK_BDEV_IO_TYPE_WRITE_ZEROES] = true,
|
|
[SPDK_BDEV_IO_TYPE_ZCOPY] = true,
|
|
[SPDK_BDEV_IO_TYPE_ABORT] = true,
|
|
};
|
|
|
|
static void
|
|
ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
|
|
{
|
|
g_io_types_supported[io_type] = enable;
|
|
}
|
|
|
|
static bool
|
|
stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
|
|
{
|
|
return g_io_types_supported[io_type];
|
|
}
|
|
|
|
static struct spdk_bdev_fn_table fn_table = {
|
|
.destruct = stub_destruct,
|
|
.submit_request = stub_submit_request,
|
|
.get_io_channel = bdev_ut_get_io_channel,
|
|
.io_type_supported = stub_io_type_supported,
|
|
};
|
|
|
|
static int
|
|
bdev_ut_create_ch(void *io_device, void *ctx_buf)
|
|
{
|
|
struct bdev_ut_channel *ch = ctx_buf;
|
|
|
|
CU_ASSERT(g_bdev_ut_channel == NULL);
|
|
g_bdev_ut_channel = ch;
|
|
|
|
TAILQ_INIT(&ch->outstanding_io);
|
|
ch->outstanding_io_count = 0;
|
|
TAILQ_INIT(&ch->expected_io);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
|
|
{
|
|
CU_ASSERT(g_bdev_ut_channel != NULL);
|
|
g_bdev_ut_channel = NULL;
|
|
}
|
|
|
|
struct spdk_bdev_module bdev_ut_if;
|
|
|
|
static int
|
|
bdev_ut_module_init(void)
|
|
{
|
|
spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
|
|
sizeof(struct bdev_ut_channel), NULL);
|
|
spdk_bdev_module_init_done(&bdev_ut_if);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bdev_ut_module_fini(void)
|
|
{
|
|
spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
|
|
}
|
|
|
|
struct spdk_bdev_module bdev_ut_if = {
|
|
.name = "bdev_ut",
|
|
.module_init = bdev_ut_module_init,
|
|
.module_fini = bdev_ut_module_fini,
|
|
.async_init = true,
|
|
};
|
|
|
|
static void vbdev_ut_examine(struct spdk_bdev *bdev);
|
|
|
|
static int
|
|
vbdev_ut_module_init(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
vbdev_ut_module_fini(void)
|
|
{
|
|
}
|
|
|
|
struct spdk_bdev_module vbdev_ut_if = {
|
|
.name = "vbdev_ut",
|
|
.module_init = vbdev_ut_module_init,
|
|
.module_fini = vbdev_ut_module_fini,
|
|
.examine_config = vbdev_ut_examine,
|
|
};
|
|
|
|
SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
|
|
SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
|
|
|
|
static void
|
|
vbdev_ut_examine(struct spdk_bdev *bdev)
|
|
{
|
|
spdk_bdev_module_examine_done(&vbdev_ut_if);
|
|
}
|
|
|
|
static struct spdk_bdev *
|
|
allocate_bdev(char *name)
|
|
{
|
|
struct spdk_bdev *bdev;
|
|
int rc;
|
|
|
|
bdev = calloc(1, sizeof(*bdev));
|
|
SPDK_CU_ASSERT_FATAL(bdev != NULL);
|
|
|
|
bdev->name = name;
|
|
bdev->fn_table = &fn_table;
|
|
bdev->module = &bdev_ut_if;
|
|
bdev->blockcnt = 1024;
|
|
bdev->blocklen = 512;
|
|
|
|
rc = spdk_bdev_register(bdev);
|
|
CU_ASSERT(rc == 0);
|
|
|
|
return bdev;
|
|
}
|
|
|
|
static struct spdk_bdev *
|
|
allocate_vbdev(char *name)
|
|
{
|
|
struct spdk_bdev *bdev;
|
|
int rc;
|
|
|
|
bdev = calloc(1, sizeof(*bdev));
|
|
SPDK_CU_ASSERT_FATAL(bdev != NULL);
|
|
|
|
bdev->name = name;
|
|
bdev->fn_table = &fn_table;
|
|
bdev->module = &vbdev_ut_if;
|
|
|
|
rc = spdk_bdev_register(bdev);
|
|
CU_ASSERT(rc == 0);
|
|
|
|
return bdev;
|
|
}
|
|
|
|
static void
|
|
free_bdev(struct spdk_bdev *bdev)
|
|
{
|
|
spdk_bdev_unregister(bdev, NULL, NULL);
|
|
poll_threads();
|
|
memset(bdev, 0xFF, sizeof(*bdev));
|
|
free(bdev);
|
|
}
|
|
|
|
static void
|
|
free_vbdev(struct spdk_bdev *bdev)
|
|
{
|
|
spdk_bdev_unregister(bdev, NULL, NULL);
|
|
poll_threads();
|
|
memset(bdev, 0xFF, sizeof(*bdev));
|
|
free(bdev);
|
|
}
|
|
|
|
static void
|
|
get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
|
|
{
|
|
const char *bdev_name;
|
|
|
|
CU_ASSERT(bdev != NULL);
|
|
CU_ASSERT(rc == 0);
|
|
bdev_name = spdk_bdev_get_name(bdev);
|
|
CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
|
|
|
|
free(stat);
|
|
free_bdev(bdev);
|
|
|
|
*(bool *)cb_arg = true;
|
|
}
|
|
|
|
static void
|
|
bdev_unregister_cb(void *cb_arg, int rc)
|
|
{
|
|
g_unregister_arg = cb_arg;
|
|
g_unregister_rc = rc;
|
|
}
|
|
|
|
static void
|
|
bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
|
|
{
|
|
struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
|
|
|
|
g_event_type1 = type;
|
|
if (SPDK_BDEV_EVENT_REMOVE == type) {
|
|
spdk_bdev_close(desc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
|
|
{
|
|
struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
|
|
|
|
g_event_type2 = type;
|
|
if (SPDK_BDEV_EVENT_REMOVE == type) {
|
|
spdk_bdev_close(desc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
get_device_stat_test(void)
|
|
{
|
|
struct spdk_bdev *bdev;
|
|
struct spdk_bdev_io_stat *stat;
|
|
bool done;
|
|
|
|
bdev = allocate_bdev("bdev0");
|
|
stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
|
|
if (stat == NULL) {
|
|
free_bdev(bdev);
|
|
return;
|
|
}
|
|
|
|
done = false;
|
|
spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
|
|
while (!done) { poll_threads(); }
|
|
|
|
|
|
}
|
|
|
|
static void
|
|
open_write_test(void)
|
|
{
|
|
struct spdk_bdev *bdev[9];
|
|
struct spdk_bdev_desc *desc[9] = {};
|
|
int rc;
|
|
|
|
/*
|
|
* Create a tree of bdevs to test various open w/ write cases.
|
|
*
|
|
* bdev0 through bdev3 are physical block devices, such as NVMe
|
|
* namespaces or Ceph block devices.
|
|
*
|
|
* bdev4 is a virtual bdev with multiple base bdevs. This models
|
|
* caching or RAID use cases.
|
|
*
|
|
* bdev5 through bdev7 are all virtual bdevs with the same base
|
|
* bdev (except bdev7). This models partitioning or logical volume
|
|
* use cases.
|
|
*
|
|
* bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
|
|
* (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
|
|
* models caching, RAID, partitioning or logical volumes use cases.
|
|
*
|
|
* bdev8 is a virtual bdev with multiple base bdevs, but these
|
|
* base bdevs are themselves virtual bdevs.
|
|
*
|
|
* bdev8
|
|
* |
|
|
* +----------+
|
|
* | |
|
|
* bdev4 bdev5 bdev6 bdev7
|
|
* | | | |
|
|
* +---+---+ +---+ + +---+---+
|
|
* | | \ | / \
|
|
* bdev0 bdev1 bdev2 bdev3
|
|
*/
|
|
|
|
bdev[0] = allocate_bdev("bdev0");
|
|
rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
|
|
CU_ASSERT(rc == 0);
|
|
|
|
bdev[1] = allocate_bdev("bdev1");
|
|
rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
|
|
CU_ASSERT(rc == 0);
|
|
|
|
bdev[2] = allocate_bdev("bdev2");
|
|
rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
|
|
CU_ASSERT(rc == 0);
|
|
|
|
bdev[3] = allocate_bdev("bdev3");
|
|
rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
|
|
CU_ASSERT(rc == 0);
|
|
|
|
bdev[4] = allocate_vbdev("bdev4");
|
|
rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
|
|
CU_ASSERT(rc == 0);
|
|
|
|
bdev[5] = allocate_vbdev("bdev5");
|
|
rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
|
|
CU_ASSERT(rc == 0);
|
|
|
|
bdev[6] = allocate_vbdev("bdev6");
|
|
|
|
bdev[7] = allocate_vbdev("bdev7");
|
|
|
|
bdev[8] = allocate_vbdev("bdev8");
|
|
|
|
/* Open bdev0 read-only. This should succeed. */
|
|
rc = spdk_bdev_open(bdev[0], false, NULL, NULL, &desc[0]);
|
|
CU_ASSERT(rc == 0);
|
|
SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
|
|
spdk_bdev_close(desc[0]);
|
|
|
|
/*
|
|
* Open bdev1 read/write. This should fail since bdev1 has been claimed
|
|
* by a vbdev module.
|
|
*/
|
|
rc = spdk_bdev_open(bdev[1], true, NULL, NULL, &desc[1]);
|
|
CU_ASSERT(rc == -EPERM);
|
|
|
|
/*
|
|
* Open bdev4 read/write. This should fail since bdev3 has been claimed
|
|
* by a vbdev module.
|
|
*/
|
|
rc = spdk_bdev_open(bdev[4], true, NULL, NULL, &desc[4]);
|
|
CU_ASSERT(rc == -EPERM);
|
|
|
|
/* Open bdev4 read-only. This should succeed. */
|
|
rc = spdk_bdev_open(bdev[4], false, NULL, NULL, &desc[4]);
|
|
CU_ASSERT(rc == 0);
|
|
SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
|
|
spdk_bdev_close(desc[4]);
|
|
|
|
/*
|
|
* Open bdev8 read/write. This should succeed since it is a leaf
|
|
* bdev.
|
|
*/
|
|
rc = spdk_bdev_open(bdev[8], true, NULL, NULL, &desc[8]);
|
|
CU_ASSERT(rc == 0);
|
|
SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
|
|
spdk_bdev_close(desc[8]);
|
|
|
|
/*
|
|
* Open bdev5 read/write. This should fail since bdev4 has been claimed
|
|
* by a vbdev module.
|
|
*/
|
|
rc = spdk_bdev_open(bdev[5], true, NULL, NULL, &desc[5]);
|
|
CU_ASSERT(rc == -EPERM);
|
|
|
|
/* Open bdev4 read-only. This should succeed. */
|
|
rc = spdk_bdev_open(bdev[5], false, NULL, NULL, &desc[5]);
|
|
CU_ASSERT(rc == 0);
|
|
SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
|
|
spdk_bdev_close(desc[5]);
|
|
|
|
free_vbdev(bdev[8]);
|
|
|
|
free_vbdev(bdev[5]);
|
|
free_vbdev(bdev[6]);
|
|
free_vbdev(bdev[7]);
|
|
|
|
free_vbdev(bdev[4]);
|
|
|
|
free_bdev(bdev[0]);
|
|
free_bdev(bdev[1]);
|
|
free_bdev(bdev[2]);
|
|
free_bdev(bdev[3]);
|
|
}
|
|
|
|
static void
|
|
bytes_to_blocks_test(void)
|
|
{
|
|
struct spdk_bdev bdev;
|
|
uint64_t offset_blocks, num_blocks;
|
|
|
|
memset(&bdev, 0, sizeof(bdev));
|
|
|
|
bdev.blocklen = 512;
|
|
|
|
/* All parameters valid */
|
|
offset_blocks = 0;
|
|
num_blocks = 0;
|
|
CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
|
|
CU_ASSERT(offset_blocks == 1);
|
|
CU_ASSERT(num_blocks == 2);
|
|
|
|
/* Offset not a block multiple */
|
|
CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
|
|
|
|
/* Length not a block multiple */
|
|
CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
|
|
|
|
/* In case blocklen not the power of two */
|
|
bdev.blocklen = 100;
|
|
CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
|
|
CU_ASSERT(offset_blocks == 1);
|
|
CU_ASSERT(num_blocks == 2);
|
|
|
|
/* Offset not a block multiple */
|
|
CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
|
|
|
|
/* Length not a block multiple */
|
|
CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
|
|
}
|
|
|
|
static void
|
|
num_blocks_test(void)
|
|
{
|
|
struct spdk_bdev bdev;
|
|
struct spdk_bdev_desc *desc = NULL;
|
|
struct spdk_bdev_desc *desc_ext = NULL;
|
|
int rc;
|
|
|
|
memset(&bdev, 0, sizeof(bdev));
|
|
bdev.name = "num_blocks";
|
|
bdev.fn_table = &fn_table;
|
|
bdev.module = &bdev_ut_if;
|
|
spdk_bdev_register(&bdev);
|
|
spdk_bdev_notify_blockcnt_change(&bdev, 50);
|
|
|
|
/* Growing block number */
|
|
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
|
|
/* Shrinking block number */
|
|
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
|
|
|
|
/* In case bdev opened */
|
|
rc = spdk_bdev_open(&bdev, false, NULL, NULL, &desc);
|
|
CU_ASSERT(rc == 0);
|
|
SPDK_CU_ASSERT_FATAL(desc != NULL);
|
|
|
|
/* Growing block number */
|
|
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
|
|
/* Shrinking block number */
|
|
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
|
|
|
|
/* In case bdev opened with ext API */
|
|
rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc_ext, &desc_ext);
|
|
CU_ASSERT(rc == 0);
|
|
SPDK_CU_ASSERT_FATAL(desc_ext != NULL);
|
|
|
|
g_event_type1 = 0xFF;
|
|
/* Growing block number */
|
|
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
|
|
|
|
poll_threads();
|
|
CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
|
|
|
|
g_event_type1 = 0xFF;
|
|
/* Growing block number and closing */
|
|
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
|
|
|
|
spdk_bdev_close(desc);
|
|
spdk_bdev_close(desc_ext);
|
|
spdk_bdev_unregister(&bdev, NULL, NULL);
|
|
|
|
poll_threads();
|
|
|
|
/* Callback is not called for closed device */
|
|
CU_ASSERT_EQUAL(g_event_type1, 0xFF);
|
|
}
|
|
|
|
static void
|
|
io_valid_test(void)
|
|
{
|
|
struct spdk_bdev bdev;
|
|
|
|
memset(&bdev, 0, sizeof(bdev));
|
|
|
|
bdev.blocklen = 512;
|
|
spdk_bdev_notify_blockcnt_change(&bdev, 100);
|
|
|
|
/* All parameters valid */
|
|
CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
|
|
|
|
/* Last valid block */
|
|
CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
|
|
|
|
/* Offset past end of bdev */
|
|
CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
|
|
|
|
/* Offset + length past end of bdev */
|
|
CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
|
|
|
|
/* Offset near end of uint64_t range (2^64 - 1) */
|
|
CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
|
|
}
|
|
|
|
static void
|
|
alias_add_del_test(void)
|
|
{
|
|
struct spdk_bdev *bdev[3];
|
|
int rc;
|
|
|
|
/* Creating and registering bdevs */
|
|
bdev[0] = allocate_bdev("bdev0");
|
|
SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
|
|
|
|
bdev[1] = allocate_bdev("bdev1");
|
|
SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
|
|
|
|
bdev[2] = allocate_bdev("bdev2");
|
|
SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
|
|
|
|
poll_threads();
|
|
|
|
/*
|
|
* Trying adding an alias identical to name.
|
|
* Alias is identical to name, so it can not be added to aliases list
|
|
*/
|
|
rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
|
|
CU_ASSERT(rc == -EEXIST);
|
|
|
|
/*
|
|
* Trying to add empty alias,
|
|
* this one should fail
|
|
*/
|
|
rc = spdk_bdev_alias_add(bdev[0], NULL);
|
|
CU_ASSERT(rc == -EINVAL);
|
|
|
|
/* Trying adding same alias to two different registered bdevs */
|
|
|
|
/* Alias is used first time, so this one should pass */
|
|
rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
|
|
CU_ASSERT(rc == 0);
|
|
|
|
/* Alias was added to another bdev, so this one should fail */
|
|
rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
|
|
CU_ASSERT(rc == -EEXIST);
|
|
|
|
/* Alias is used first time, so this one should pass */
|
|
rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
|
|
CU_ASSERT(rc == 0);
|
|
|
|
/* Trying removing an alias from registered bdevs */
|
|
|
|
/* Alias is not on a bdev aliases list, so this one should fail */
|
|
rc = spdk_bdev_alias_del(bdev[0], "not existing");
|
|
CU_ASSERT(rc == -ENOENT);
|
|
|
|
/* Alias is present on a bdev aliases list, so this one should pass */
|
|
rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
|
|
CU_ASSERT(rc == 0);
|
|
|
|
/* Alias is present on a bdev aliases list, so this one should pass */
|
|
rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
|
|
CU_ASSERT(rc == 0);
|
|
|
|
/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
|
|
rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
|
|
CU_ASSERT(rc != 0);
|
|
|
|
/* Trying to del all alias from empty alias list */
|
|
spdk_bdev_alias_del_all(bdev[2]);
|
|
SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
|
|
|
|
/* Trying to del all alias from non-empty alias list */
|
|
rc = spdk_bdev_alias_add(bdev[2], "alias0");
|
|
CU_ASSERT(rc == 0);
|
|
rc = spdk_bdev_alias_add(bdev[2], "alias1");
|
|
CU_ASSERT(rc == 0);
|
|
spdk_bdev_alias_del_all(bdev[2]);
|
|
CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
|
|
|
|
/* Unregister and free bdevs */
|
|
spdk_bdev_unregister(bdev[0], NULL, NULL);
|
|
spdk_bdev_unregister(bdev[1], NULL, NULL);
|
|
spdk_bdev_unregister(bdev[2], NULL, NULL);
|
|
|
|
poll_threads();
|
|
|
|
free(bdev[0]);
|
|
free(bdev[1]);
|
|
free(bdev[2]);
|
|
}
|
|
|
|
static void
|
|
io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
|
|
{
|
|
g_io_done = true;
|
|
g_io_status = bdev_io->internal.status;
|
|
spdk_bdev_free_io(bdev_io);
|
|
}
|
|
|
|
static void
|
|
bdev_init_cb(void *arg, int rc)
|
|
{
|
|
CU_ASSERT(rc == 0);
|
|
}
|
|
|
|
static void
|
|
bdev_fini_cb(void *arg)
|
|
{
|
|
}
|
|
|
|
struct bdev_ut_io_wait_entry {
|
|
struct spdk_bdev_io_wait_entry entry;
|
|
struct spdk_io_channel *io_ch;
|
|
struct spdk_bdev_desc *desc;
|
|
bool submitted;
|
|
};
|
|
|
|
static void
|
|
io_wait_cb(void *arg)
|
|
{
|
|
struct bdev_ut_io_wait_entry *entry = arg;
|
|
int rc;
|
|
|
|
rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
entry->submitted = true;
|
|
}
|
|
|
|
static void
|
|
bdev_io_types_test(void)
|
|
{
|
|
struct spdk_bdev *bdev;
|
|
struct spdk_bdev_desc *desc = NULL;
|
|
struct spdk_io_channel *io_ch;
|
|
struct spdk_bdev_opts bdev_opts = {
|
|
.bdev_io_pool_size = 4,
|
|
.bdev_io_cache_size = 2,
|
|
};
|
|
int rc;
|
|
|
|
rc = spdk_bdev_set_opts(&bdev_opts);
|
|
CU_ASSERT(rc == 0);
|
|
spdk_bdev_initialize(bdev_init_cb, NULL);
|
|
poll_threads();
|
|
|
|
bdev = allocate_bdev("bdev0");
|
|
|
|
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
|
|
CU_ASSERT(rc == 0);
|
|
poll_threads();
|
|
SPDK_CU_ASSERT_FATAL(desc != NULL);
|
|
io_ch = spdk_bdev_get_io_channel(desc);
|
|
CU_ASSERT(io_ch != NULL);
|
|
|
|
/* WRITE and WRITE ZEROES are not supported */
|
|
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
|
|
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
|
|
rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
|
|
CU_ASSERT(rc == -ENOTSUP);
|
|
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
|
|
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
|
|
|
|
spdk_put_io_channel(io_ch);
|
|
spdk_bdev_close(desc);
|
|
free_bdev(bdev);
|
|
spdk_bdev_finish(bdev_fini_cb, NULL);
|
|
poll_threads();
|
|
}
|
|
|
|
static void
|
|
bdev_io_wait_test(void)
|
|
{
|
|
struct spdk_bdev *bdev;
|
|
struct spdk_bdev_desc *desc = NULL;
|
|
struct spdk_io_channel *io_ch;
|
|
struct spdk_bdev_opts bdev_opts = {
|
|
.bdev_io_pool_size = 4,
|
|
.bdev_io_cache_size = 2,
|
|
};
|
|
struct bdev_ut_io_wait_entry io_wait_entry;
|
|
struct bdev_ut_io_wait_entry io_wait_entry2;
|
|
int rc;
|
|
|
|
rc = spdk_bdev_set_opts(&bdev_opts);
|
|
CU_ASSERT(rc == 0);
|
|
spdk_bdev_initialize(bdev_init_cb, NULL);
|
|
poll_threads();
|
|
|
|
bdev = allocate_bdev("bdev0");
|
|
|
|
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
|
|
CU_ASSERT(rc == 0);
|
|
poll_threads();
|
|
SPDK_CU_ASSERT_FATAL(desc != NULL);
|
|
io_ch = spdk_bdev_get_io_channel(desc);
|
|
CU_ASSERT(io_ch != NULL);
|
|
|
|
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
|
|
|
|
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
|
|
CU_ASSERT(rc == -ENOMEM);
|
|
|
|
io_wait_entry.entry.bdev = bdev;
|
|
io_wait_entry.entry.cb_fn = io_wait_cb;
|
|
io_wait_entry.entry.cb_arg = &io_wait_entry;
|
|
io_wait_entry.io_ch = io_ch;
|
|
io_wait_entry.desc = desc;
|
|
io_wait_entry.submitted = false;
|
|
/* Cannot use the same io_wait_entry for two different calls. */
|
|
memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
|
|
io_wait_entry2.entry.cb_arg = &io_wait_entry2;
|
|
|
|
/* Queue two I/O waits. */
|
|
rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(io_wait_entry.submitted == false);
|
|
rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(io_wait_entry2.submitted == false);
|
|
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
|
|
CU_ASSERT(io_wait_entry.submitted == true);
|
|
CU_ASSERT(io_wait_entry2.submitted == false);
|
|
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
|
|
CU_ASSERT(io_wait_entry2.submitted == true);
|
|
|
|
stub_complete_io(4);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
|
|
|
|
spdk_put_io_channel(io_ch);
|
|
spdk_bdev_close(desc);
|
|
free_bdev(bdev);
|
|
spdk_bdev_finish(bdev_fini_cb, NULL);
|
|
poll_threads();
|
|
}
|
|
|
|
static void
|
|
bdev_io_spans_boundary_test(void)
|
|
{
|
|
struct spdk_bdev bdev;
|
|
struct spdk_bdev_io bdev_io;
|
|
|
|
memset(&bdev, 0, sizeof(bdev));
|
|
|
|
bdev.optimal_io_boundary = 0;
|
|
bdev_io.bdev = &bdev;
|
|
|
|
/* bdev has no optimal_io_boundary set - so this should return false. */
|
|
CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
|
|
|
|
bdev.optimal_io_boundary = 32;
|
|
bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
|
|
|
|
/* RESETs are not based on LBAs - so this should return false. */
|
|
CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
|
|
|
|
bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
|
|
bdev_io.u.bdev.offset_blocks = 0;
|
|
bdev_io.u.bdev.num_blocks = 32;
|
|
|
|
/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
|
|
CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
|
|
|
|
bdev_io.u.bdev.num_blocks = 33;
|
|
|
|
/* This I/O spans a boundary. */
|
|
CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
|
|
}
|
|
|
|
static void
|
|
bdev_io_split_test(void)
|
|
{
|
|
struct spdk_bdev *bdev;
|
|
struct spdk_bdev_desc *desc = NULL;
|
|
struct spdk_io_channel *io_ch;
|
|
struct spdk_bdev_opts bdev_opts = {
|
|
.bdev_io_pool_size = 512,
|
|
.bdev_io_cache_size = 64,
|
|
};
|
|
struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
|
|
struct ut_expected_io *expected_io;
|
|
uint64_t i;
|
|
int rc;
|
|
|
|
rc = spdk_bdev_set_opts(&bdev_opts);
|
|
CU_ASSERT(rc == 0);
|
|
spdk_bdev_initialize(bdev_init_cb, NULL);
|
|
|
|
bdev = allocate_bdev("bdev0");
|
|
|
|
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
|
|
CU_ASSERT(rc == 0);
|
|
SPDK_CU_ASSERT_FATAL(desc != NULL);
|
|
io_ch = spdk_bdev_get_io_channel(desc);
|
|
CU_ASSERT(io_ch != NULL);
|
|
|
|
bdev->optimal_io_boundary = 16;
|
|
bdev->split_on_optimal_io_boundary = false;
|
|
|
|
g_io_done = false;
|
|
|
|
/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
|
|
ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_io_done == true);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
|
|
|
|
bdev->split_on_optimal_io_boundary = true;
|
|
|
|
/* Now test that a single-vector command is split correctly.
|
|
* Offset 14, length 8, payload 0xF000
|
|
* Child - Offset 14, length 2, payload 0xF000
|
|
* Child - Offset 16, length 6, payload 0xF000 + 2 * 512
|
|
*
|
|
* Set up the expected values before calling spdk_bdev_read_blocks
|
|
*/
|
|
g_io_done = false;
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
|
|
ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
|
|
ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
/* spdk_bdev_read_blocks will submit the first child immediately. */
|
|
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
|
|
stub_complete_io(2);
|
|
CU_ASSERT(g_io_done == true);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
|
|
|
|
/* Now set up a more complex, multi-vector command that needs to be split,
|
|
* including splitting iovecs.
|
|
*/
|
|
iov[0].iov_base = (void *)0x10000;
|
|
iov[0].iov_len = 512;
|
|
iov[1].iov_base = (void *)0x20000;
|
|
iov[1].iov_len = 20 * 512;
|
|
iov[2].iov_base = (void *)0x30000;
|
|
iov[2].iov_len = 11 * 512;
|
|
|
|
g_io_done = false;
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
|
|
ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
|
|
ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
|
|
ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
|
|
ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
|
|
ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
|
|
stub_complete_io(3);
|
|
CU_ASSERT(g_io_done == true);
|
|
|
|
/* Test multi vector command that needs to be split by strip and then needs to be
|
|
* split further due to the capacity of child iovs.
|
|
*/
|
|
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
|
|
iov[i].iov_base = (void *)((i + 1) * 0x10000);
|
|
iov[i].iov_len = 512;
|
|
}
|
|
|
|
bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
|
|
g_io_done = false;
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
|
|
BDEV_IO_NUM_CHILD_IOV);
|
|
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
|
|
ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
|
|
}
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
|
|
BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
|
|
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
|
|
ut_expected_io_set_iov(expected_io, i,
|
|
(void *)((i + 1 + BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
|
|
}
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
|
|
BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_io_done == true);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
|
|
|
|
/* Test multi vector command that needs to be split by strip and then needs to be
|
|
* split further due to the capacity of child iovs. In this case, the length of
|
|
* the rest of iovec array with an I/O boundary is the multiple of block size.
|
|
*/
|
|
|
|
/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
|
|
* is BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
|
|
*/
|
|
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
|
|
iov[i].iov_base = (void *)((i + 1) * 0x10000);
|
|
iov[i].iov_len = 512;
|
|
}
|
|
for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
|
|
iov[i].iov_base = (void *)((i + 1) * 0x10000);
|
|
iov[i].iov_len = 256;
|
|
}
|
|
iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
|
|
iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
|
|
|
|
/* Add an extra iovec to trigger split */
|
|
iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
|
|
iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
|
|
|
|
bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
|
|
g_io_done = false;
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
|
|
BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV);
|
|
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
|
|
ut_expected_io_set_iov(expected_io, i,
|
|
(void *)((i + 1) * 0x10000), 512);
|
|
}
|
|
for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
|
|
ut_expected_io_set_iov(expected_io, i,
|
|
(void *)((i + 1) * 0x10000), 256);
|
|
}
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
|
|
1, 1);
|
|
ut_expected_io_set_iov(expected_io, 0,
|
|
(void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
|
|
1, 1);
|
|
ut_expected_io_set_iov(expected_io, 0,
|
|
(void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
|
|
BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
|
|
stub_complete_io(2);
|
|
CU_ASSERT(g_io_done == true);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
|
|
|
|
/* Test multi vector command that needs to be split by strip and then needs to be
|
|
* split further due to the capacity of child iovs, the child request offset should
|
|
* be rewind to last aligned offset and go success without error.
|
|
*/
|
|
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
|
|
iov[i].iov_base = (void *)((i + 1) * 0x10000);
|
|
iov[i].iov_len = 512;
|
|
}
|
|
iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
|
|
iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
|
|
|
|
iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
|
|
iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
|
|
|
|
iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
|
|
iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
|
|
|
|
bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
|
|
g_io_done = false;
|
|
g_io_status = 0;
|
|
/* The first expected io should be start from offset 0 to BDEV_IO_NUM_CHILD_IOV - 1 */
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
|
|
BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV - 1);
|
|
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
|
|
ut_expected_io_set_iov(expected_io, i,
|
|
(void *)((i + 1) * 0x10000), 512);
|
|
}
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
/* The second expected io should be start from offset BDEV_IO_NUM_CHILD_IOV - 1 to BDEV_IO_NUM_CHILD_IOV */
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
|
|
1, 2);
|
|
ut_expected_io_set_iov(expected_io, 0,
|
|
(void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
|
|
ut_expected_io_set_iov(expected_io, 1,
|
|
(void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
/* The third expected io should be start from offset BDEV_IO_NUM_CHILD_IOV to BDEV_IO_NUM_CHILD_IOV + 1 */
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
|
|
1, 1);
|
|
ut_expected_io_set_iov(expected_io, 0,
|
|
(void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
|
|
BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
|
|
stub_complete_io(2);
|
|
CU_ASSERT(g_io_done == true);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
|
|
|
|
/* Test multi vector command that needs to be split due to the IO boundary and
|
|
* the capacity of child iovs. Especially test the case when the command is
|
|
* split due to the capacity of child iovs, the tail address is not aligned with
|
|
* block size and is rewinded to the aligned address.
|
|
*
|
|
* The iovecs used in read request is complex but is based on the data
|
|
* collected in the real issue. We change the base addresses but keep the lengths
|
|
* not to loose the credibility of the test.
|
|
*/
|
|
bdev->optimal_io_boundary = 128;
|
|
g_io_done = false;
|
|
g_io_status = 0;
|
|
|
|
for (i = 0; i < 31; i++) {
|
|
iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
|
|
iov[i].iov_len = 1024;
|
|
}
|
|
iov[31].iov_base = (void *)0xFEED1F00000;
|
|
iov[31].iov_len = 32768;
|
|
iov[32].iov_base = (void *)0xFEED2000000;
|
|
iov[32].iov_len = 160;
|
|
iov[33].iov_base = (void *)0xFEED2100000;
|
|
iov[33].iov_len = 4096;
|
|
iov[34].iov_base = (void *)0xFEED2200000;
|
|
iov[34].iov_len = 4096;
|
|
iov[35].iov_base = (void *)0xFEED2300000;
|
|
iov[35].iov_len = 4096;
|
|
iov[36].iov_base = (void *)0xFEED2400000;
|
|
iov[36].iov_len = 4096;
|
|
iov[37].iov_base = (void *)0xFEED2500000;
|
|
iov[37].iov_len = 4096;
|
|
iov[38].iov_base = (void *)0xFEED2600000;
|
|
iov[38].iov_len = 4096;
|
|
iov[39].iov_base = (void *)0xFEED2700000;
|
|
iov[39].iov_len = 4096;
|
|
iov[40].iov_base = (void *)0xFEED2800000;
|
|
iov[40].iov_len = 4096;
|
|
iov[41].iov_base = (void *)0xFEED2900000;
|
|
iov[41].iov_len = 4096;
|
|
iov[42].iov_base = (void *)0xFEED2A00000;
|
|
iov[42].iov_len = 4096;
|
|
iov[43].iov_base = (void *)0xFEED2B00000;
|
|
iov[43].iov_len = 12288;
|
|
iov[44].iov_base = (void *)0xFEED2C00000;
|
|
iov[44].iov_len = 8192;
|
|
iov[45].iov_base = (void *)0xFEED2F00000;
|
|
iov[45].iov_len = 4096;
|
|
iov[46].iov_base = (void *)0xFEED3000000;
|
|
iov[46].iov_len = 4096;
|
|
iov[47].iov_base = (void *)0xFEED3100000;
|
|
iov[47].iov_len = 4096;
|
|
iov[48].iov_base = (void *)0xFEED3200000;
|
|
iov[48].iov_len = 24576;
|
|
iov[49].iov_base = (void *)0xFEED3300000;
|
|
iov[49].iov_len = 16384;
|
|
iov[50].iov_base = (void *)0xFEED3400000;
|
|
iov[50].iov_len = 12288;
|
|
iov[51].iov_base = (void *)0xFEED3500000;
|
|
iov[51].iov_len = 4096;
|
|
iov[52].iov_base = (void *)0xFEED3600000;
|
|
iov[52].iov_len = 4096;
|
|
iov[53].iov_base = (void *)0xFEED3700000;
|
|
iov[53].iov_len = 4096;
|
|
iov[54].iov_base = (void *)0xFEED3800000;
|
|
iov[54].iov_len = 28672;
|
|
iov[55].iov_base = (void *)0xFEED3900000;
|
|
iov[55].iov_len = 20480;
|
|
iov[56].iov_base = (void *)0xFEED3A00000;
|
|
iov[56].iov_len = 4096;
|
|
iov[57].iov_base = (void *)0xFEED3B00000;
|
|
iov[57].iov_len = 12288;
|
|
iov[58].iov_base = (void *)0xFEED3C00000;
|
|
iov[58].iov_len = 4096;
|
|
iov[59].iov_base = (void *)0xFEED3D00000;
|
|
iov[59].iov_len = 4096;
|
|
iov[60].iov_base = (void *)0xFEED3E00000;
|
|
iov[60].iov_len = 352;
|
|
|
|
/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
|
|
* of child iovs,
|
|
*/
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
|
|
for (i = 0; i < 32; i++) {
|
|
ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
|
|
}
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
|
|
* split by the IO boundary requirement.
|
|
*/
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
|
|
ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
|
|
* the first 864 bytes of iov[46] split by the IO boundary requirement.
|
|
*/
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
|
|
ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
|
|
iov[33].iov_len - 864);
|
|
ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
|
|
* first 864 bytes of iov[52] split by the IO boundary requirement.
|
|
*/
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
|
|
ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
|
|
iov[46].iov_len - 864);
|
|
ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
|
|
* the first 4096 bytes of iov[57] split by the IO boundary requirement.
|
|
*/
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
|
|
ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
|
|
iov[52].iov_len - 864);
|
|
ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
|
|
* to the first 3936 bytes of iov[58] split by the capacity of child iovs.
|
|
*/
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
|
|
ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
|
|
iov[57].iov_len - 4960);
|
|
ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
|
|
ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
|
|
ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
|
|
iov[59].iov_len - 3936);
|
|
ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 61, 0, 543, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
|
|
stub_complete_io(5);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_io_done == true);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
|
|
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
|
|
|
|
/* Test a WRITE_ZEROES that would span an I/O boundary. WRITE_ZEROES should not be
|
|
* split, so test that.
|
|
*/
|
|
bdev->optimal_io_boundary = 15;
|
|
g_io_done = false;
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == false);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_io_done == true);
|
|
|
|
/* Test an UNMAP. This should also not be split. */
|
|
bdev->optimal_io_boundary = 16;
|
|
g_io_done = false;
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == false);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_io_done == true);
|
|
|
|
/* Test a FLUSH. This should also not be split. */
|
|
bdev->optimal_io_boundary = 16;
|
|
g_io_done = false;
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == false);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_io_done == true);
|
|
|
|
CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
|
|
|
|
/* Children requests return an error status */
|
|
bdev->optimal_io_boundary = 16;
|
|
iov[0].iov_base = (void *)0x10000;
|
|
iov[0].iov_len = 512 * 64;
|
|
g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
|
|
g_io_done = false;
|
|
g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
|
|
|
|
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
|
|
stub_complete_io(4);
|
|
CU_ASSERT(g_io_done == false);
|
|
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_io_done == true);
|
|
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
|
|
|
|
/* Test if a multi vector command terminated with failure before continueing
|
|
* splitting process when one of child I/O failed.
|
|
* The multi vector command is as same as the above that needs to be split by strip
|
|
* and then needs to be split further due to the capacity of child iovs.
|
|
*/
|
|
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
|
|
iov[i].iov_base = (void *)((i + 1) * 0x10000);
|
|
iov[i].iov_len = 512;
|
|
}
|
|
iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
|
|
iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
|
|
|
|
iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
|
|
iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
|
|
|
|
iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
|
|
iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
|
|
|
|
bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
|
|
|
|
g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
|
|
g_io_done = false;
|
|
g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
|
|
|
|
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
|
|
BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_io_done == true);
|
|
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
|
|
|
|
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
|
|
|
|
/* for this test we will create the following conditions to hit the code path where
|
|
* we are trying to send and IO following a split that has no iovs because we had to
|
|
* trim them for alignment reasons.
|
|
*
|
|
* - 16K boundary, our IO will start at offset 0 with a length of 0x4200
|
|
* - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
|
|
* position 30 and overshoot by 0x2e.
|
|
* - That means we'll send the IO and loop back to pick up the remaining bytes at
|
|
* child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
|
|
* which eliniates that vector so we just send the first split IO with 30 vectors
|
|
* and let the completion pick up the last 2 vectors.
|
|
*/
|
|
bdev->optimal_io_boundary = 32;
|
|
bdev->split_on_optimal_io_boundary = true;
|
|
g_io_done = false;
|
|
|
|
/* Init all parent IOVs to 0x212 */
|
|
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
|
|
iov[i].iov_base = (void *)((i + 1) * 0x10000);
|
|
iov[i].iov_len = 0x212;
|
|
}
|
|
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
|
|
BDEV_IO_NUM_CHILD_IOV - 1);
|
|
/* expect 0-29 to be 1:1 with the parent iov */
|
|
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
|
|
ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
|
|
}
|
|
|
|
/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
|
|
* where 0x1e is the amount we overshot the 16K boundary
|
|
*/
|
|
ut_expected_io_set_iov(expected_io, BDEV_IO_NUM_CHILD_IOV - 2,
|
|
(void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
|
|
* shortened that take it to the next boundary and then a final one to get us to
|
|
* 0x4200 bytes for the IO.
|
|
*/
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
|
|
BDEV_IO_NUM_CHILD_IOV, 2);
|
|
/* position 30 picked up the remaining bytes to the next boundary */
|
|
ut_expected_io_set_iov(expected_io, 0,
|
|
(void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
|
|
|
|
/* position 31 picked the the rest of the trasnfer to get us to 0x4200 */
|
|
ut_expected_io_set_iov(expected_io, 1,
|
|
(void *)(iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 1, 0,
|
|
BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_io_done == true);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
|
|
|
|
spdk_put_io_channel(io_ch);
|
|
spdk_bdev_close(desc);
|
|
free_bdev(bdev);
|
|
spdk_bdev_finish(bdev_fini_cb, NULL);
|
|
poll_threads();
|
|
}
|
|
|
|
static void
|
|
bdev_io_split_with_io_wait(void)
|
|
{
|
|
struct spdk_bdev *bdev;
|
|
struct spdk_bdev_desc *desc = NULL;
|
|
struct spdk_io_channel *io_ch;
|
|
struct spdk_bdev_channel *channel;
|
|
struct spdk_bdev_mgmt_channel *mgmt_ch;
|
|
struct spdk_bdev_opts bdev_opts = {
|
|
.bdev_io_pool_size = 2,
|
|
.bdev_io_cache_size = 1,
|
|
};
|
|
struct iovec iov[3];
|
|
struct ut_expected_io *expected_io;
|
|
int rc;
|
|
|
|
rc = spdk_bdev_set_opts(&bdev_opts);
|
|
CU_ASSERT(rc == 0);
|
|
spdk_bdev_initialize(bdev_init_cb, NULL);
|
|
|
|
bdev = allocate_bdev("bdev0");
|
|
|
|
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(desc != NULL);
|
|
io_ch = spdk_bdev_get_io_channel(desc);
|
|
CU_ASSERT(io_ch != NULL);
|
|
channel = spdk_io_channel_get_ctx(io_ch);
|
|
mgmt_ch = channel->shared_resource->mgmt_ch;
|
|
|
|
bdev->optimal_io_boundary = 16;
|
|
bdev->split_on_optimal_io_boundary = true;
|
|
|
|
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
|
|
/* Now test that a single-vector command is split correctly.
|
|
* Offset 14, length 8, payload 0xF000
|
|
* Child - Offset 14, length 2, payload 0xF000
|
|
* Child - Offset 16, length 6, payload 0xF000 + 2 * 512
|
|
*
|
|
* Set up the expected values before calling spdk_bdev_read_blocks
|
|
*/
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
|
|
ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
|
|
ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
/* The following children will be submitted sequentially due to the capacity of
|
|
* spdk_bdev_io.
|
|
*/
|
|
|
|
/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
|
|
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
|
|
|
|
/* Completing the first read I/O will submit the first child */
|
|
stub_complete_io(1);
|
|
CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
|
|
|
|
/* Completing the first child will submit the second child */
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
|
|
|
|
/* Complete the second child I/O. This should result in our callback getting
|
|
* invoked since the parent I/O is now complete.
|
|
*/
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
|
|
|
|
/* Now set up a more complex, multi-vector command that needs to be split,
|
|
* including splitting iovecs.
|
|
*/
|
|
iov[0].iov_base = (void *)0x10000;
|
|
iov[0].iov_len = 512;
|
|
iov[1].iov_base = (void *)0x20000;
|
|
iov[1].iov_len = 20 * 512;
|
|
iov[2].iov_base = (void *)0x30000;
|
|
iov[2].iov_len = 11 * 512;
|
|
|
|
g_io_done = false;
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
|
|
ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
|
|
ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
|
|
ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
|
|
ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
|
|
ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
/* The following children will be submitted sequentially due to the capacity of
|
|
* spdk_bdev_io.
|
|
*/
|
|
|
|
/* Completing the first child will submit the second child */
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
/* Completing the second child will submit the third child */
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
/* Completing the third child will result in our callback getting invoked
|
|
* since the parent I/O is now complete.
|
|
*/
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_io_done == true);
|
|
|
|
CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
|
|
|
|
spdk_put_io_channel(io_ch);
|
|
spdk_bdev_close(desc);
|
|
free_bdev(bdev);
|
|
spdk_bdev_finish(bdev_fini_cb, NULL);
|
|
poll_threads();
|
|
}
|
|
|
|
static void
|
|
bdev_io_alignment(void)
|
|
{
|
|
struct spdk_bdev *bdev;
|
|
struct spdk_bdev_desc *desc = NULL;
|
|
struct spdk_io_channel *io_ch;
|
|
struct spdk_bdev_opts bdev_opts = {
|
|
.bdev_io_pool_size = 20,
|
|
.bdev_io_cache_size = 2,
|
|
};
|
|
int rc;
|
|
void *buf;
|
|
struct iovec iovs[2];
|
|
int iovcnt;
|
|
uint64_t alignment;
|
|
|
|
rc = spdk_bdev_set_opts(&bdev_opts);
|
|
CU_ASSERT(rc == 0);
|
|
spdk_bdev_initialize(bdev_init_cb, NULL);
|
|
|
|
fn_table.submit_request = stub_submit_request_get_buf;
|
|
bdev = allocate_bdev("bdev0");
|
|
|
|
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(desc != NULL);
|
|
io_ch = spdk_bdev_get_io_channel(desc);
|
|
CU_ASSERT(io_ch != NULL);
|
|
|
|
/* Create aligned buffer */
|
|
rc = posix_memalign(&buf, 4096, 8192);
|
|
SPDK_CU_ASSERT_FATAL(rc == 0);
|
|
|
|
/* Pass aligned single buffer with no alignment required */
|
|
alignment = 1;
|
|
bdev->required_alignment = spdk_u32log2(alignment);
|
|
|
|
rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
|
|
alignment));
|
|
|
|
rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
|
|
alignment));
|
|
|
|
/* Pass unaligned single buffer with no alignment required */
|
|
alignment = 1;
|
|
bdev->required_alignment = spdk_u32log2(alignment);
|
|
|
|
rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
|
|
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
|
|
stub_complete_io(1);
|
|
|
|
rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
|
|
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
|
|
stub_complete_io(1);
|
|
|
|
/* Pass unaligned single buffer with 512 alignment required */
|
|
alignment = 512;
|
|
bdev->required_alignment = spdk_u32log2(alignment);
|
|
|
|
rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
|
|
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
|
|
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
|
|
alignment));
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
|
|
|
|
rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
|
|
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
|
|
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
|
|
alignment));
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
|
|
|
|
/* Pass unaligned single buffer with 4096 alignment required */
|
|
alignment = 4096;
|
|
bdev->required_alignment = spdk_u32log2(alignment);
|
|
|
|
rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
|
|
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
|
|
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
|
|
alignment));
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
|
|
|
|
rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
|
|
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
|
|
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
|
|
alignment));
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
|
|
|
|
/* Pass aligned iovs with no alignment required */
|
|
alignment = 1;
|
|
bdev->required_alignment = spdk_u32log2(alignment);
|
|
|
|
iovcnt = 1;
|
|
iovs[0].iov_base = buf;
|
|
iovs[0].iov_len = 512;
|
|
|
|
rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
|
|
|
|
rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
|
|
|
|
/* Pass unaligned iovs with no alignment required */
|
|
alignment = 1;
|
|
bdev->required_alignment = spdk_u32log2(alignment);
|
|
|
|
iovcnt = 2;
|
|
iovs[0].iov_base = buf + 16;
|
|
iovs[0].iov_len = 256;
|
|
iovs[1].iov_base = buf + 16 + 256 + 32;
|
|
iovs[1].iov_len = 256;
|
|
|
|
rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
|
|
|
|
rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
|
|
|
|
/* Pass unaligned iov with 2048 alignment required */
|
|
alignment = 2048;
|
|
bdev->required_alignment = spdk_u32log2(alignment);
|
|
|
|
iovcnt = 2;
|
|
iovs[0].iov_base = buf + 16;
|
|
iovs[0].iov_len = 256;
|
|
iovs[1].iov_base = buf + 16 + 256 + 32;
|
|
iovs[1].iov_len = 256;
|
|
|
|
rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
|
|
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
|
|
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
|
|
alignment));
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
|
|
|
|
rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
|
|
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
|
|
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
|
|
alignment));
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
|
|
|
|
/* Pass iov without allocated buffer without alignment required */
|
|
alignment = 1;
|
|
bdev->required_alignment = spdk_u32log2(alignment);
|
|
|
|
iovcnt = 1;
|
|
iovs[0].iov_base = NULL;
|
|
iovs[0].iov_len = 0;
|
|
|
|
rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
|
|
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
|
|
alignment));
|
|
stub_complete_io(1);
|
|
|
|
/* Pass iov without allocated buffer with 1024 alignment required */
|
|
alignment = 1024;
|
|
bdev->required_alignment = spdk_u32log2(alignment);
|
|
|
|
iovcnt = 1;
|
|
iovs[0].iov_base = NULL;
|
|
iovs[0].iov_len = 0;
|
|
|
|
rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
|
|
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
|
|
alignment));
|
|
stub_complete_io(1);
|
|
|
|
spdk_put_io_channel(io_ch);
|
|
spdk_bdev_close(desc);
|
|
free_bdev(bdev);
|
|
fn_table.submit_request = stub_submit_request;
|
|
spdk_bdev_finish(bdev_fini_cb, NULL);
|
|
poll_threads();
|
|
|
|
free(buf);
|
|
}
|
|
|
|
static void
|
|
bdev_io_alignment_with_boundary(void)
|
|
{
|
|
struct spdk_bdev *bdev;
|
|
struct spdk_bdev_desc *desc = NULL;
|
|
struct spdk_io_channel *io_ch;
|
|
struct spdk_bdev_opts bdev_opts = {
|
|
.bdev_io_pool_size = 20,
|
|
.bdev_io_cache_size = 2,
|
|
};
|
|
int rc;
|
|
void *buf;
|
|
struct iovec iovs[2];
|
|
int iovcnt;
|
|
uint64_t alignment;
|
|
|
|
rc = spdk_bdev_set_opts(&bdev_opts);
|
|
CU_ASSERT(rc == 0);
|
|
spdk_bdev_initialize(bdev_init_cb, NULL);
|
|
|
|
fn_table.submit_request = stub_submit_request_get_buf;
|
|
bdev = allocate_bdev("bdev0");
|
|
|
|
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(desc != NULL);
|
|
io_ch = spdk_bdev_get_io_channel(desc);
|
|
CU_ASSERT(io_ch != NULL);
|
|
|
|
/* Create aligned buffer */
|
|
rc = posix_memalign(&buf, 4096, 131072);
|
|
SPDK_CU_ASSERT_FATAL(rc == 0);
|
|
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
|
|
|
|
/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
|
|
alignment = 512;
|
|
bdev->required_alignment = spdk_u32log2(alignment);
|
|
bdev->optimal_io_boundary = 2;
|
|
bdev->split_on_optimal_io_boundary = true;
|
|
|
|
iovcnt = 1;
|
|
iovs[0].iov_base = NULL;
|
|
iovs[0].iov_len = 512 * 3;
|
|
|
|
rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
|
|
stub_complete_io(2);
|
|
|
|
/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
|
|
alignment = 512;
|
|
bdev->required_alignment = spdk_u32log2(alignment);
|
|
bdev->optimal_io_boundary = 16;
|
|
bdev->split_on_optimal_io_boundary = true;
|
|
|
|
iovcnt = 1;
|
|
iovs[0].iov_base = NULL;
|
|
iovs[0].iov_len = 512 * 16;
|
|
|
|
rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
|
|
stub_complete_io(2);
|
|
|
|
/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
|
|
alignment = 512;
|
|
bdev->required_alignment = spdk_u32log2(alignment);
|
|
bdev->optimal_io_boundary = 128;
|
|
bdev->split_on_optimal_io_boundary = true;
|
|
|
|
iovcnt = 1;
|
|
iovs[0].iov_base = buf + 16;
|
|
iovs[0].iov_len = 512 * 160;
|
|
rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
|
|
stub_complete_io(2);
|
|
|
|
/* 512 * 3 with 2 IO boundary */
|
|
alignment = 512;
|
|
bdev->required_alignment = spdk_u32log2(alignment);
|
|
bdev->optimal_io_boundary = 2;
|
|
bdev->split_on_optimal_io_boundary = true;
|
|
|
|
iovcnt = 2;
|
|
iovs[0].iov_base = buf + 16;
|
|
iovs[0].iov_len = 512;
|
|
iovs[1].iov_base = buf + 16 + 512 + 32;
|
|
iovs[1].iov_len = 1024;
|
|
|
|
rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
|
|
stub_complete_io(2);
|
|
|
|
rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
|
|
stub_complete_io(2);
|
|
|
|
/* 512 * 64 with 32 IO boundary */
|
|
bdev->optimal_io_boundary = 32;
|
|
iovcnt = 2;
|
|
iovs[0].iov_base = buf + 16;
|
|
iovs[0].iov_len = 16384;
|
|
iovs[1].iov_base = buf + 16 + 16384 + 32;
|
|
iovs[1].iov_len = 16384;
|
|
|
|
rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
|
|
stub_complete_io(3);
|
|
|
|
rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
|
|
stub_complete_io(3);
|
|
|
|
/* 512 * 160 with 32 IO boundary */
|
|
iovcnt = 1;
|
|
iovs[0].iov_base = buf + 16;
|
|
iovs[0].iov_len = 16384 + 65536;
|
|
|
|
rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
|
|
stub_complete_io(6);
|
|
|
|
spdk_put_io_channel(io_ch);
|
|
spdk_bdev_close(desc);
|
|
free_bdev(bdev);
|
|
fn_table.submit_request = stub_submit_request;
|
|
spdk_bdev_finish(bdev_fini_cb, NULL);
|
|
poll_threads();
|
|
|
|
free(buf);
|
|
}
|
|
|
|
static void
|
|
histogram_status_cb(void *cb_arg, int status)
|
|
{
|
|
g_status = status;
|
|
}
|
|
|
|
static void
|
|
histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
|
|
{
|
|
g_status = status;
|
|
g_histogram = histogram;
|
|
}
|
|
|
|
static void
|
|
histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
|
|
uint64_t total, uint64_t so_far)
|
|
{
|
|
g_count += count;
|
|
}
|
|
|
|
static void
|
|
bdev_histograms(void)
|
|
{
|
|
struct spdk_bdev *bdev;
|
|
struct spdk_bdev_desc *desc = NULL;
|
|
struct spdk_io_channel *ch;
|
|
struct spdk_histogram_data *histogram;
|
|
uint8_t buf[4096];
|
|
int rc;
|
|
|
|
spdk_bdev_initialize(bdev_init_cb, NULL);
|
|
|
|
bdev = allocate_bdev("bdev");
|
|
|
|
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(desc != NULL);
|
|
|
|
ch = spdk_bdev_get_io_channel(desc);
|
|
CU_ASSERT(ch != NULL);
|
|
|
|
/* Enable histogram */
|
|
g_status = -1;
|
|
spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
|
|
poll_threads();
|
|
CU_ASSERT(g_status == 0);
|
|
CU_ASSERT(bdev->internal.histogram_enabled == true);
|
|
|
|
/* Allocate histogram */
|
|
histogram = spdk_histogram_data_alloc();
|
|
SPDK_CU_ASSERT_FATAL(histogram != NULL);
|
|
|
|
/* Check if histogram is zeroed */
|
|
spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
|
|
poll_threads();
|
|
CU_ASSERT(g_status == 0);
|
|
SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
|
|
|
|
g_count = 0;
|
|
spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
|
|
|
|
CU_ASSERT(g_count == 0);
|
|
|
|
rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
|
|
spdk_delay_us(10);
|
|
stub_complete_io(1);
|
|
poll_threads();
|
|
|
|
rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
|
|
spdk_delay_us(10);
|
|
stub_complete_io(1);
|
|
poll_threads();
|
|
|
|
/* Check if histogram gathered data from all I/O channels */
|
|
g_histogram = NULL;
|
|
spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
|
|
poll_threads();
|
|
CU_ASSERT(g_status == 0);
|
|
CU_ASSERT(bdev->internal.histogram_enabled == true);
|
|
SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
|
|
|
|
g_count = 0;
|
|
spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
|
|
CU_ASSERT(g_count == 2);
|
|
|
|
/* Disable histogram */
|
|
spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
|
|
poll_threads();
|
|
CU_ASSERT(g_status == 0);
|
|
CU_ASSERT(bdev->internal.histogram_enabled == false);
|
|
|
|
/* Try to run histogram commands on disabled bdev */
|
|
spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
|
|
poll_threads();
|
|
CU_ASSERT(g_status == -EFAULT);
|
|
|
|
spdk_histogram_data_free(histogram);
|
|
spdk_put_io_channel(ch);
|
|
spdk_bdev_close(desc);
|
|
free_bdev(bdev);
|
|
spdk_bdev_finish(bdev_fini_cb, NULL);
|
|
poll_threads();
|
|
}
|
|
|
|
static void
|
|
_bdev_compare(bool emulated)
|
|
{
|
|
struct spdk_bdev *bdev;
|
|
struct spdk_bdev_desc *desc = NULL;
|
|
struct spdk_io_channel *ioch;
|
|
struct ut_expected_io *expected_io;
|
|
uint64_t offset, num_blocks;
|
|
uint32_t num_completed;
|
|
char aa_buf[512];
|
|
char bb_buf[512];
|
|
struct iovec compare_iov;
|
|
uint8_t io_type;
|
|
int rc;
|
|
|
|
if (emulated) {
|
|
io_type = SPDK_BDEV_IO_TYPE_READ;
|
|
} else {
|
|
io_type = SPDK_BDEV_IO_TYPE_COMPARE;
|
|
}
|
|
|
|
memset(aa_buf, 0xaa, sizeof(aa_buf));
|
|
memset(bb_buf, 0xbb, sizeof(bb_buf));
|
|
|
|
g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
|
|
|
|
spdk_bdev_initialize(bdev_init_cb, NULL);
|
|
fn_table.submit_request = stub_submit_request_get_buf;
|
|
bdev = allocate_bdev("bdev");
|
|
|
|
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
|
|
CU_ASSERT_EQUAL(rc, 0);
|
|
SPDK_CU_ASSERT_FATAL(desc != NULL);
|
|
ioch = spdk_bdev_get_io_channel(desc);
|
|
SPDK_CU_ASSERT_FATAL(ioch != NULL);
|
|
|
|
fn_table.submit_request = stub_submit_request_get_buf;
|
|
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
|
|
|
|
offset = 50;
|
|
num_blocks = 1;
|
|
compare_iov.iov_base = aa_buf;
|
|
compare_iov.iov_len = sizeof(aa_buf);
|
|
|
|
expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
g_io_done = false;
|
|
g_compare_read_buf = aa_buf;
|
|
g_compare_read_buf_len = sizeof(aa_buf);
|
|
rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
|
|
CU_ASSERT_EQUAL(rc, 0);
|
|
num_completed = stub_complete_io(1);
|
|
CU_ASSERT_EQUAL(num_completed, 1);
|
|
CU_ASSERT(g_io_done == true);
|
|
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
|
|
|
|
expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
g_io_done = false;
|
|
g_compare_read_buf = bb_buf;
|
|
g_compare_read_buf_len = sizeof(bb_buf);
|
|
rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
|
|
CU_ASSERT_EQUAL(rc, 0);
|
|
num_completed = stub_complete_io(1);
|
|
CU_ASSERT_EQUAL(num_completed, 1);
|
|
CU_ASSERT(g_io_done == true);
|
|
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
|
|
|
|
spdk_put_io_channel(ioch);
|
|
spdk_bdev_close(desc);
|
|
free_bdev(bdev);
|
|
fn_table.submit_request = stub_submit_request;
|
|
spdk_bdev_finish(bdev_fini_cb, NULL);
|
|
poll_threads();
|
|
|
|
g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
|
|
|
|
g_compare_read_buf = NULL;
|
|
}
|
|
|
|
static void
|
|
bdev_compare(void)
|
|
{
|
|
_bdev_compare(true);
|
|
_bdev_compare(false);
|
|
}
|
|
|
|
static void
|
|
bdev_compare_and_write(void)
|
|
{
|
|
struct spdk_bdev *bdev;
|
|
struct spdk_bdev_desc *desc = NULL;
|
|
struct spdk_io_channel *ioch;
|
|
struct ut_expected_io *expected_io;
|
|
uint64_t offset, num_blocks;
|
|
uint32_t num_completed;
|
|
char aa_buf[512];
|
|
char bb_buf[512];
|
|
char cc_buf[512];
|
|
char write_buf[512];
|
|
struct iovec compare_iov;
|
|
struct iovec write_iov;
|
|
int rc;
|
|
|
|
memset(aa_buf, 0xaa, sizeof(aa_buf));
|
|
memset(bb_buf, 0xbb, sizeof(bb_buf));
|
|
memset(cc_buf, 0xcc, sizeof(cc_buf));
|
|
|
|
g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
|
|
|
|
spdk_bdev_initialize(bdev_init_cb, NULL);
|
|
fn_table.submit_request = stub_submit_request_get_buf;
|
|
bdev = allocate_bdev("bdev");
|
|
|
|
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
|
|
CU_ASSERT_EQUAL(rc, 0);
|
|
SPDK_CU_ASSERT_FATAL(desc != NULL);
|
|
ioch = spdk_bdev_get_io_channel(desc);
|
|
SPDK_CU_ASSERT_FATAL(ioch != NULL);
|
|
|
|
fn_table.submit_request = stub_submit_request_get_buf;
|
|
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
|
|
|
|
offset = 50;
|
|
num_blocks = 1;
|
|
compare_iov.iov_base = aa_buf;
|
|
compare_iov.iov_len = sizeof(aa_buf);
|
|
write_iov.iov_base = bb_buf;
|
|
write_iov.iov_len = sizeof(bb_buf);
|
|
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
g_io_done = false;
|
|
g_compare_read_buf = aa_buf;
|
|
g_compare_read_buf_len = sizeof(aa_buf);
|
|
memset(write_buf, 0, sizeof(write_buf));
|
|
g_compare_write_buf = write_buf;
|
|
g_compare_write_buf_len = sizeof(write_buf);
|
|
rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
|
|
offset, num_blocks, io_done, NULL);
|
|
/* Trigger range locking */
|
|
poll_threads();
|
|
CU_ASSERT_EQUAL(rc, 0);
|
|
num_completed = stub_complete_io(1);
|
|
CU_ASSERT_EQUAL(num_completed, 1);
|
|
CU_ASSERT(g_io_done == false);
|
|
num_completed = stub_complete_io(1);
|
|
/* Trigger range unlocking */
|
|
poll_threads();
|
|
CU_ASSERT_EQUAL(num_completed, 1);
|
|
CU_ASSERT(g_io_done == true);
|
|
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
|
|
CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
|
|
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
|
|
g_io_done = false;
|
|
g_compare_read_buf = cc_buf;
|
|
g_compare_read_buf_len = sizeof(cc_buf);
|
|
memset(write_buf, 0, sizeof(write_buf));
|
|
g_compare_write_buf = write_buf;
|
|
g_compare_write_buf_len = sizeof(write_buf);
|
|
rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
|
|
offset, num_blocks, io_done, NULL);
|
|
/* Trigger range locking */
|
|
poll_threads();
|
|
CU_ASSERT_EQUAL(rc, 0);
|
|
num_completed = stub_complete_io(1);
|
|
/* Trigger range unlocking earlier because we expect error here */
|
|
poll_threads();
|
|
CU_ASSERT_EQUAL(num_completed, 1);
|
|
CU_ASSERT(g_io_done == true);
|
|
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
|
|
num_completed = stub_complete_io(1);
|
|
CU_ASSERT_EQUAL(num_completed, 0);
|
|
|
|
spdk_put_io_channel(ioch);
|
|
spdk_bdev_close(desc);
|
|
free_bdev(bdev);
|
|
fn_table.submit_request = stub_submit_request;
|
|
spdk_bdev_finish(bdev_fini_cb, NULL);
|
|
poll_threads();
|
|
|
|
g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
|
|
|
|
g_compare_read_buf = NULL;
|
|
g_compare_write_buf = NULL;
|
|
}
|
|
|
|
static void
|
|
bdev_write_zeroes(void)
|
|
{
|
|
struct spdk_bdev *bdev;
|
|
struct spdk_bdev_desc *desc = NULL;
|
|
struct spdk_io_channel *ioch;
|
|
struct ut_expected_io *expected_io;
|
|
uint64_t offset, num_io_blocks, num_blocks;
|
|
uint32_t num_completed, num_requests;
|
|
int rc;
|
|
|
|
spdk_bdev_initialize(bdev_init_cb, NULL);
|
|
bdev = allocate_bdev("bdev");
|
|
|
|
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
|
|
CU_ASSERT_EQUAL(rc, 0);
|
|
SPDK_CU_ASSERT_FATAL(desc != NULL);
|
|
ioch = spdk_bdev_get_io_channel(desc);
|
|
SPDK_CU_ASSERT_FATAL(ioch != NULL);
|
|
|
|
fn_table.submit_request = stub_submit_request;
|
|
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
|
|
|
|
/* First test that if the bdev supports write_zeroes, the request won't be split */
|
|
bdev->md_len = 0;
|
|
bdev->blocklen = 4096;
|
|
num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
|
|
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
|
|
CU_ASSERT_EQUAL(rc, 0);
|
|
num_completed = stub_complete_io(1);
|
|
CU_ASSERT_EQUAL(num_completed, 1);
|
|
|
|
/* Check that if write zeroes is not supported it'll be replaced by regular writes */
|
|
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
|
|
num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
|
|
num_requests = 2;
|
|
num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
|
|
|
|
for (offset = 0; offset < num_requests; ++offset) {
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
|
|
offset * num_io_blocks, num_io_blocks, 0);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
}
|
|
|
|
rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
|
|
CU_ASSERT_EQUAL(rc, 0);
|
|
num_completed = stub_complete_io(num_requests);
|
|
CU_ASSERT_EQUAL(num_completed, num_requests);
|
|
|
|
/* Check that the splitting is correct if bdev has interleaved metadata */
|
|
bdev->md_interleave = true;
|
|
bdev->md_len = 64;
|
|
bdev->blocklen = 4096 + 64;
|
|
num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
|
|
|
|
num_requests = offset = 0;
|
|
while (offset < num_blocks) {
|
|
num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
|
|
offset, num_io_blocks, 0);
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
offset += num_io_blocks;
|
|
num_requests++;
|
|
}
|
|
|
|
rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
|
|
CU_ASSERT_EQUAL(rc, 0);
|
|
num_completed = stub_complete_io(num_requests);
|
|
CU_ASSERT_EQUAL(num_completed, num_requests);
|
|
num_completed = stub_complete_io(num_requests);
|
|
assert(num_completed == 0);
|
|
|
|
/* Check the the same for separate metadata buffer */
|
|
bdev->md_interleave = false;
|
|
bdev->md_len = 64;
|
|
bdev->blocklen = 4096;
|
|
|
|
num_requests = offset = 0;
|
|
while (offset < num_blocks) {
|
|
num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
|
|
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
|
|
offset, num_io_blocks, 0);
|
|
expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
|
|
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
|
|
offset += num_io_blocks;
|
|
num_requests++;
|
|
}
|
|
|
|
rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
|
|
CU_ASSERT_EQUAL(rc, 0);
|
|
num_completed = stub_complete_io(num_requests);
|
|
CU_ASSERT_EQUAL(num_completed, num_requests);
|
|
|
|
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
|
|
spdk_put_io_channel(ioch);
|
|
spdk_bdev_close(desc);
|
|
free_bdev(bdev);
|
|
spdk_bdev_finish(bdev_fini_cb, NULL);
|
|
poll_threads();
|
|
}
|
|
|
|
static void
|
|
bdev_open_while_hotremove(void)
|
|
{
|
|
struct spdk_bdev *bdev;
|
|
struct spdk_bdev_desc *desc[2] = {};
|
|
int rc;
|
|
|
|
bdev = allocate_bdev("bdev");
|
|
|
|
rc = spdk_bdev_open(bdev, false, NULL, NULL, &desc[0]);
|
|
CU_ASSERT(rc == 0);
|
|
SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
|
|
|
|
spdk_bdev_unregister(bdev, NULL, NULL);
|
|
|
|
rc = spdk_bdev_open(bdev, false, NULL, NULL, &desc[1]);
|
|
CU_ASSERT(rc == -ENODEV);
|
|
SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
|
|
|
|
spdk_bdev_close(desc[0]);
|
|
free_bdev(bdev);
|
|
}
|
|
|
|
static void
|
|
bdev_close_while_hotremove(void)
|
|
{
|
|
struct spdk_bdev *bdev;
|
|
struct spdk_bdev_desc *desc = NULL;
|
|
int rc = 0;
|
|
|
|
bdev = allocate_bdev("bdev");
|
|
|
|
rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
|
|
CU_ASSERT_EQUAL(rc, 0);
|
|
|
|
/* Simulate hot-unplug by unregistering bdev */
|
|
g_event_type1 = 0xFF;
|
|
g_unregister_arg = NULL;
|
|
g_unregister_rc = -1;
|
|
spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
|
|
/* Close device while remove event is in flight */
|
|
spdk_bdev_close(desc);
|
|
|
|
/* Ensure that unregister callback is delayed */
|
|
CU_ASSERT_EQUAL(g_unregister_arg, NULL);
|
|
CU_ASSERT_EQUAL(g_unregister_rc, -1);
|
|
|
|
poll_threads();
|
|
|
|
/* Event callback shall not be issued because device was closed */
|
|
CU_ASSERT_EQUAL(g_event_type1, 0xFF);
|
|
/* Unregister callback is issued */
|
|
CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
|
|
CU_ASSERT_EQUAL(g_unregister_rc, 0);
|
|
|
|
free_bdev(bdev);
|
|
}
|
|
|
|
static void
|
|
bdev_open_ext(void)
|
|
{
|
|
struct spdk_bdev *bdev;
|
|
struct spdk_bdev_desc *desc1 = NULL;
|
|
struct spdk_bdev_desc *desc2 = NULL;
|
|
int rc = 0;
|
|
|
|
bdev = allocate_bdev("bdev");
|
|
|
|
rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
|
|
CU_ASSERT_EQUAL(rc, -EINVAL);
|
|
|
|
rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
|
|
CU_ASSERT_EQUAL(rc, 0);
|
|
|
|
rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
|
|
CU_ASSERT_EQUAL(rc, 0);
|
|
|
|
g_event_type1 = 0xFF;
|
|
g_event_type2 = 0xFF;
|
|
|
|
/* Simulate hot-unplug by unregistering bdev */
|
|
spdk_bdev_unregister(bdev, NULL, NULL);
|
|
poll_threads();
|
|
|
|
/* Check if correct events have been triggered in event callback fn */
|
|
CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
|
|
CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
|
|
|
|
free_bdev(bdev);
|
|
poll_threads();
|
|
}
|
|
|
|
struct timeout_io_cb_arg {
|
|
struct iovec iov;
|
|
uint8_t type;
|
|
};
|
|
|
|
static int
|
|
bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
|
|
{
|
|
struct spdk_bdev_io *bdev_io;
|
|
int n = 0;
|
|
|
|
if (!ch) {
|
|
return -1;
|
|
}
|
|
|
|
TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
|
|
n++;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
static void
|
|
bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
|
|
{
|
|
struct timeout_io_cb_arg *ctx = cb_arg;
|
|
|
|
ctx->type = bdev_io->type;
|
|
ctx->iov.iov_base = bdev_io->iov.iov_base;
|
|
ctx->iov.iov_len = bdev_io->iov.iov_len;
|
|
}
|
|
|
|
static void
|
|
bdev_set_io_timeout(void)
|
|
{
|
|
struct spdk_bdev *bdev;
|
|
struct spdk_bdev_desc *desc = NULL;
|
|
struct spdk_io_channel *io_ch = NULL;
|
|
struct spdk_bdev_channel *bdev_ch = NULL;
|
|
struct timeout_io_cb_arg cb_arg;
|
|
|
|
spdk_bdev_initialize(bdev_init_cb, NULL);
|
|
|
|
bdev = allocate_bdev("bdev");
|
|
|
|
CU_ASSERT(spdk_bdev_open(bdev, true, NULL, NULL, &desc) == 0);
|
|
SPDK_CU_ASSERT_FATAL(desc != NULL);
|
|
io_ch = spdk_bdev_get_io_channel(desc);
|
|
CU_ASSERT(io_ch != NULL);
|
|
|
|
bdev_ch = spdk_io_channel_get_ctx(io_ch);
|
|
CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
|
|
|
|
/* This is the part1.
|
|
* We will check the bdev_ch->io_submitted list
|
|
* TO make sure that it can link IOs and only the user submitted IOs
|
|
*/
|
|
CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
|
|
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
|
|
CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
|
|
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
|
|
|
|
/* Split IO */
|
|
bdev->optimal_io_boundary = 16;
|
|
bdev->split_on_optimal_io_boundary = true;
|
|
|
|
/* Now test that a single-vector command is split correctly.
|
|
* Offset 14, length 8, payload 0xF000
|
|
* Child - Offset 14, length 2, payload 0xF000
|
|
* Child - Offset 16, length 6, payload 0xF000 + 2 * 512
|
|
*
|
|
* Set up the expected values before calling spdk_bdev_read_blocks
|
|
*/
|
|
CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
|
|
/* We count all submitted IOs including IO that are generated by splitting. */
|
|
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
|
|
|
|
/* Also include the reset IO */
|
|
CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
|
|
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
|
|
poll_threads();
|
|
stub_complete_io(1);
|
|
poll_threads();
|
|
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
|
|
|
|
/* This is part2
|
|
* Test the desc timeout poller register
|
|
*/
|
|
|
|
/* Successfully set the timeout */
|
|
CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
|
|
CU_ASSERT(desc->io_timeout_poller != NULL);
|
|
CU_ASSERT(desc->timeout_in_sec == 30);
|
|
CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
|
|
CU_ASSERT(desc->cb_arg == &cb_arg);
|
|
|
|
/* Change the timeout limit */
|
|
CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
|
|
CU_ASSERT(desc->io_timeout_poller != NULL);
|
|
CU_ASSERT(desc->timeout_in_sec == 20);
|
|
CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
|
|
CU_ASSERT(desc->cb_arg == &cb_arg);
|
|
|
|
/* Disable the timeout */
|
|
CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
|
|
CU_ASSERT(desc->io_timeout_poller == NULL);
|
|
|
|
/* This the part3
|
|
* We will test to catch timeout IO and check whether the IO is
|
|
* the submitted one.
|
|
*/
|
|
memset(&cb_arg, 0, sizeof(cb_arg));
|
|
CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
|
|
CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
|
|
|
|
/* Don't reach the limit */
|
|
spdk_delay_us(15 * spdk_get_ticks_hz());
|
|
poll_threads();
|
|
CU_ASSERT(cb_arg.type == 0);
|
|
CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
|
|
CU_ASSERT(cb_arg.iov.iov_len == 0);
|
|
|
|
/* 15 + 15 = 30 reach the limit */
|
|
spdk_delay_us(15 * spdk_get_ticks_hz());
|
|
poll_threads();
|
|
CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
|
|
CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
|
|
CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
|
|
stub_complete_io(1);
|
|
|
|
/* Use the same split IO above and check the IO */
|
|
memset(&cb_arg, 0, sizeof(cb_arg));
|
|
CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
|
|
|
|
/* The first child complete in time */
|
|
spdk_delay_us(15 * spdk_get_ticks_hz());
|
|
poll_threads();
|
|
stub_complete_io(1);
|
|
CU_ASSERT(cb_arg.type == 0);
|
|
CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
|
|
CU_ASSERT(cb_arg.iov.iov_len == 0);
|
|
|
|
/* The second child reach the limit */
|
|
spdk_delay_us(15 * spdk_get_ticks_hz());
|
|
poll_threads();
|
|
CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
|
|
CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
|
|
CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
|
|
stub_complete_io(1);
|
|
|
|
/* Also include the reset IO */
|
|
memset(&cb_arg, 0, sizeof(cb_arg));
|
|
CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
|
|
spdk_delay_us(30 * spdk_get_ticks_hz());
|
|
poll_threads();
|
|
CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
|
|
stub_complete_io(1);
|
|
poll_threads();
|
|
|
|
spdk_put_io_channel(io_ch);
|
|
spdk_bdev_close(desc);
|
|
free_bdev(bdev);
|
|
spdk_bdev_finish(bdev_fini_cb, NULL);
|
|
poll_threads();
|
|
}
|
|
|
|
static void
|
|
lba_range_overlap(void)
|
|
{
|
|
struct lba_range r1, r2;
|
|
|
|
r1.offset = 100;
|
|
r1.length = 50;
|
|
|
|
r2.offset = 0;
|
|
r2.length = 1;
|
|
CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
|
|
|
|
r2.offset = 0;
|
|
r2.length = 100;
|
|
CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
|
|
|
|
r2.offset = 0;
|
|
r2.length = 110;
|
|
CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
|
|
|
|
r2.offset = 100;
|
|
r2.length = 10;
|
|
CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
|
|
|
|
r2.offset = 110;
|
|
r2.length = 20;
|
|
CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
|
|
|
|
r2.offset = 140;
|
|
r2.length = 150;
|
|
CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
|
|
|
|
r2.offset = 130;
|
|
r2.length = 200;
|
|
CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
|
|
|
|
r2.offset = 150;
|
|
r2.length = 100;
|
|
CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
|
|
|
|
r2.offset = 110;
|
|
r2.length = 0;
|
|
CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
|
|
}
|
|
|
|
static bool g_lock_lba_range_done;
|
|
static bool g_unlock_lba_range_done;
|
|
|
|
static void
|
|
lock_lba_range_done(void *ctx, int status)
|
|
{
|
|
g_lock_lba_range_done = true;
|
|
}
|
|
|
|
static void
|
|
unlock_lba_range_done(void *ctx, int status)
|
|
{
|
|
g_unlock_lba_range_done = true;
|
|
}
|
|
|
|
static void
|
|
lock_lba_range_check_ranges(void)
|
|
{
|
|
struct spdk_bdev *bdev;
|
|
struct spdk_bdev_desc *desc = NULL;
|
|
struct spdk_io_channel *io_ch;
|
|
struct spdk_bdev_channel *channel;
|
|
struct lba_range *range;
|
|
int ctx1;
|
|
int rc;
|
|
|
|
spdk_bdev_initialize(bdev_init_cb, NULL);
|
|
|
|
bdev = allocate_bdev("bdev0");
|
|
|
|
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(desc != NULL);
|
|
io_ch = spdk_bdev_get_io_channel(desc);
|
|
CU_ASSERT(io_ch != NULL);
|
|
channel = spdk_io_channel_get_ctx(io_ch);
|
|
|
|
g_lock_lba_range_done = false;
|
|
rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
|
|
CU_ASSERT(rc == 0);
|
|
poll_threads();
|
|
|
|
CU_ASSERT(g_lock_lba_range_done == true);
|
|
range = TAILQ_FIRST(&channel->locked_ranges);
|
|
SPDK_CU_ASSERT_FATAL(range != NULL);
|
|
CU_ASSERT(range->offset == 20);
|
|
CU_ASSERT(range->length == 10);
|
|
CU_ASSERT(range->owner_ch == channel);
|
|
|
|
/* Unlocks must exactly match a lock. */
|
|
g_unlock_lba_range_done = false;
|
|
rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
|
|
CU_ASSERT(rc == -EINVAL);
|
|
CU_ASSERT(g_unlock_lba_range_done == false);
|
|
|
|
rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
|
|
CU_ASSERT(rc == 0);
|
|
spdk_delay_us(100);
|
|
poll_threads();
|
|
|
|
CU_ASSERT(g_unlock_lba_range_done == true);
|
|
CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
|
|
|
|
spdk_put_io_channel(io_ch);
|
|
spdk_bdev_close(desc);
|
|
free_bdev(bdev);
|
|
spdk_bdev_finish(bdev_fini_cb, NULL);
|
|
poll_threads();
|
|
}
|
|
|
|
static void
|
|
lock_lba_range_with_io_outstanding(void)
|
|
{
|
|
struct spdk_bdev *bdev;
|
|
struct spdk_bdev_desc *desc = NULL;
|
|
struct spdk_io_channel *io_ch;
|
|
struct spdk_bdev_channel *channel;
|
|
struct lba_range *range;
|
|
char buf[4096];
|
|
int ctx1;
|
|
int rc;
|
|
|
|
spdk_bdev_initialize(bdev_init_cb, NULL);
|
|
|
|
bdev = allocate_bdev("bdev0");
|
|
|
|
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(desc != NULL);
|
|
io_ch = spdk_bdev_get_io_channel(desc);
|
|
CU_ASSERT(io_ch != NULL);
|
|
channel = spdk_io_channel_get_ctx(io_ch);
|
|
|
|
g_io_done = false;
|
|
rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
|
|
CU_ASSERT(rc == 0);
|
|
|
|
g_lock_lba_range_done = false;
|
|
rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
|
|
CU_ASSERT(rc == 0);
|
|
poll_threads();
|
|
|
|
/* The lock should immediately become valid, since there are no outstanding
|
|
* write I/O.
|
|
*/
|
|
CU_ASSERT(g_io_done == false);
|
|
CU_ASSERT(g_lock_lba_range_done == true);
|
|
range = TAILQ_FIRST(&channel->locked_ranges);
|
|
SPDK_CU_ASSERT_FATAL(range != NULL);
|
|
CU_ASSERT(range->offset == 20);
|
|
CU_ASSERT(range->length == 10);
|
|
CU_ASSERT(range->owner_ch == channel);
|
|
CU_ASSERT(range->locked_ctx == &ctx1);
|
|
|
|
rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
|
|
CU_ASSERT(rc == 0);
|
|
stub_complete_io(1);
|
|
spdk_delay_us(100);
|
|
poll_threads();
|
|
|
|
CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
|
|
|
|
/* Now try again, but with a write I/O. */
|
|
g_io_done = false;
|
|
rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
|
|
CU_ASSERT(rc == 0);
|
|
|
|
g_lock_lba_range_done = false;
|
|
rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
|
|
CU_ASSERT(rc == 0);
|
|
poll_threads();
|
|
|
|
/* The lock should not be fully valid yet, since a write I/O is outstanding.
|
|
* But note that the range should be on the channel's locked_list, to make sure no
|
|
* new write I/O are started.
|
|
*/
|
|
CU_ASSERT(g_io_done == false);
|
|
CU_ASSERT(g_lock_lba_range_done == false);
|
|
range = TAILQ_FIRST(&channel->locked_ranges);
|
|
SPDK_CU_ASSERT_FATAL(range != NULL);
|
|
CU_ASSERT(range->offset == 20);
|
|
CU_ASSERT(range->length == 10);
|
|
|
|
/* Complete the write I/O. This should make the lock valid (checked by confirming
|
|
* our callback was invoked).
|
|
*/
|
|
stub_complete_io(1);
|
|
spdk_delay_us(100);
|
|
poll_threads();
|
|
CU_ASSERT(g_io_done == true);
|
|
CU_ASSERT(g_lock_lba_range_done == true);
|
|
|
|
rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
|
|
CU_ASSERT(rc == 0);
|
|
poll_threads();
|
|
|
|
CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
|
|
|
|
spdk_put_io_channel(io_ch);
|
|
spdk_bdev_close(desc);
|
|
free_bdev(bdev);
|
|
spdk_bdev_finish(bdev_fini_cb, NULL);
|
|
poll_threads();
|
|
}
|
|
|
|
static void
|
|
lock_lba_range_overlapped(void)
|
|
{
|
|
struct spdk_bdev *bdev;
|
|
struct spdk_bdev_desc *desc = NULL;
|
|
struct spdk_io_channel *io_ch;
|
|
struct spdk_bdev_channel *channel;
|
|
struct lba_range *range;
|
|
int ctx1;
|
|
int rc;
|
|
|
|
spdk_bdev_initialize(bdev_init_cb, NULL);
|
|
|
|
bdev = allocate_bdev("bdev0");
|
|
|
|
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(desc != NULL);
|
|
io_ch = spdk_bdev_get_io_channel(desc);
|
|
CU_ASSERT(io_ch != NULL);
|
|
channel = spdk_io_channel_get_ctx(io_ch);
|
|
|
|
/* Lock range 20-29. */
|
|
g_lock_lba_range_done = false;
|
|
rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
|
|
CU_ASSERT(rc == 0);
|
|
poll_threads();
|
|
|
|
CU_ASSERT(g_lock_lba_range_done == true);
|
|
range = TAILQ_FIRST(&channel->locked_ranges);
|
|
SPDK_CU_ASSERT_FATAL(range != NULL);
|
|
CU_ASSERT(range->offset == 20);
|
|
CU_ASSERT(range->length == 10);
|
|
|
|
/* Try to lock range 25-39. It should not lock immediately, since it overlaps with
|
|
* 20-29.
|
|
*/
|
|
g_lock_lba_range_done = false;
|
|
rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
|
|
CU_ASSERT(rc == 0);
|
|
poll_threads();
|
|
|
|
CU_ASSERT(g_lock_lba_range_done == false);
|
|
range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
|
|
SPDK_CU_ASSERT_FATAL(range != NULL);
|
|
CU_ASSERT(range->offset == 25);
|
|
CU_ASSERT(range->length == 15);
|
|
|
|
/* Unlock 20-29. This should result in range 25-39 now getting locked since it
|
|
* no longer overlaps with an active lock.
|
|
*/
|
|
g_unlock_lba_range_done = false;
|
|
rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
|
|
CU_ASSERT(rc == 0);
|
|
poll_threads();
|
|
|
|
CU_ASSERT(g_unlock_lba_range_done == true);
|
|
CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
|
|
range = TAILQ_FIRST(&channel->locked_ranges);
|
|
SPDK_CU_ASSERT_FATAL(range != NULL);
|
|
CU_ASSERT(range->offset == 25);
|
|
CU_ASSERT(range->length == 15);
|
|
|
|
/* Lock 40-59. This should immediately lock since it does not overlap with the
|
|
* currently active 25-39 lock.
|
|
*/
|
|
g_lock_lba_range_done = false;
|
|
rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
|
|
CU_ASSERT(rc == 0);
|
|
poll_threads();
|
|
|
|
CU_ASSERT(g_lock_lba_range_done == true);
|
|
range = TAILQ_FIRST(&bdev->internal.locked_ranges);
|
|
SPDK_CU_ASSERT_FATAL(range != NULL);
|
|
range = TAILQ_NEXT(range, tailq);
|
|
SPDK_CU_ASSERT_FATAL(range != NULL);
|
|
CU_ASSERT(range->offset == 40);
|
|
CU_ASSERT(range->length == 20);
|
|
|
|
/* Try to lock 35-44. Note that this overlaps with both 25-39 and 40-59. */
|
|
g_lock_lba_range_done = false;
|
|
rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
|
|
CU_ASSERT(rc == 0);
|
|
poll_threads();
|
|
|
|
CU_ASSERT(g_lock_lba_range_done == false);
|
|
range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
|
|
SPDK_CU_ASSERT_FATAL(range != NULL);
|
|
CU_ASSERT(range->offset == 35);
|
|
CU_ASSERT(range->length == 10);
|
|
|
|
/* Unlock 25-39. Make sure that 35-44 is still in the pending list, since
|
|
* the 40-59 lock is still active.
|
|
*/
|
|
g_unlock_lba_range_done = false;
|
|
rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
|
|
CU_ASSERT(rc == 0);
|
|
poll_threads();
|
|
|
|
CU_ASSERT(g_unlock_lba_range_done == true);
|
|
CU_ASSERT(g_lock_lba_range_done == false);
|
|
range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
|
|
SPDK_CU_ASSERT_FATAL(range != NULL);
|
|
CU_ASSERT(range->offset == 35);
|
|
CU_ASSERT(range->length == 10);
|
|
|
|
/* Unlock 40-59. This should result in 35-44 now getting locked, since there are
|
|
* no longer any active overlapping locks.
|
|
*/
|
|
g_unlock_lba_range_done = false;
|
|
rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
|
|
CU_ASSERT(rc == 0);
|
|
poll_threads();
|
|
|
|
CU_ASSERT(g_unlock_lba_range_done == true);
|
|
CU_ASSERT(g_lock_lba_range_done == true);
|
|
CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
|
|
range = TAILQ_FIRST(&bdev->internal.locked_ranges);
|
|
SPDK_CU_ASSERT_FATAL(range != NULL);
|
|
CU_ASSERT(range->offset == 35);
|
|
CU_ASSERT(range->length == 10);
|
|
|
|
/* Finally, unlock 35-44. */
|
|
g_unlock_lba_range_done = false;
|
|
rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
|
|
CU_ASSERT(rc == 0);
|
|
poll_threads();
|
|
|
|
CU_ASSERT(g_unlock_lba_range_done == true);
|
|
CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
|
|
|
|
spdk_put_io_channel(io_ch);
|
|
spdk_bdev_close(desc);
|
|
free_bdev(bdev);
|
|
spdk_bdev_finish(bdev_fini_cb, NULL);
|
|
poll_threads();
|
|
}
|
|
|
|
static void
|
|
abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
|
|
{
|
|
g_abort_done = true;
|
|
g_abort_status = bdev_io->internal.status;
|
|
spdk_bdev_free_io(bdev_io);
|
|
}
|
|
|
|
static void
|
|
bdev_io_abort(void)
|
|
{
|
|
struct spdk_bdev *bdev;
|
|
struct spdk_bdev_desc *desc = NULL;
|
|
struct spdk_io_channel *io_ch;
|
|
struct spdk_bdev_channel *channel;
|
|
struct spdk_bdev_mgmt_channel *mgmt_ch;
|
|
struct spdk_bdev_opts bdev_opts = {
|
|
.bdev_io_pool_size = 7,
|
|
.bdev_io_cache_size = 2,
|
|
};
|
|
struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
|
|
uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
|
|
int rc;
|
|
|
|
rc = spdk_bdev_set_opts(&bdev_opts);
|
|
CU_ASSERT(rc == 0);
|
|
spdk_bdev_initialize(bdev_init_cb, NULL);
|
|
|
|
bdev = allocate_bdev("bdev0");
|
|
|
|
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(desc != NULL);
|
|
io_ch = spdk_bdev_get_io_channel(desc);
|
|
CU_ASSERT(io_ch != NULL);
|
|
channel = spdk_io_channel_get_ctx(io_ch);
|
|
mgmt_ch = channel->shared_resource->mgmt_ch;
|
|
|
|
g_abort_done = false;
|
|
|
|
ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
|
|
|
|
rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
|
|
CU_ASSERT(rc == -ENOTSUP);
|
|
|
|
ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
|
|
|
|
rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_abort_done == true);
|
|
CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
|
|
|
|
/* Test the case that the target I/O was successfully aborted. */
|
|
g_io_done = false;
|
|
|
|
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
g_abort_done = false;
|
|
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
|
|
|
|
rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == true);
|
|
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_abort_done == true);
|
|
CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
|
|
|
|
/* Test the case that the target I/O was not aborted because it completed
|
|
* in the middle of execution of the abort.
|
|
*/
|
|
g_io_done = false;
|
|
|
|
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
g_abort_done = false;
|
|
g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
|
|
|
|
rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_io_done == true);
|
|
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
|
|
|
|
g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_abort_done == true);
|
|
CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
|
|
|
|
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
|
|
|
|
bdev->optimal_io_boundary = 16;
|
|
bdev->split_on_optimal_io_boundary = true;
|
|
|
|
/* Test that a single-vector command which is split is aborted correctly.
|
|
* Offset 14, length 8, payload 0xF000
|
|
* Child - Offset 14, length 2, payload 0xF000
|
|
* Child - Offset 16, length 6, payload 0xF000 + 2 * 512
|
|
*/
|
|
g_io_done = false;
|
|
|
|
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
|
|
|
|
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
|
|
|
|
rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == true);
|
|
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
|
|
stub_complete_io(2);
|
|
CU_ASSERT(g_abort_done == true);
|
|
CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
|
|
|
|
/* Test that a multi-vector command that needs to be split by strip and then
|
|
* needs to be split is aborted correctly. Abort is requested before the second
|
|
* child I/O was submitted. The parent I/O should complete with failure without
|
|
* submitting the second child I/O.
|
|
*/
|
|
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
|
|
iov[i].iov_base = (void *)((i + 1) * 0x10000);
|
|
iov[i].iov_len = 512;
|
|
}
|
|
|
|
bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
|
|
g_io_done = false;
|
|
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
|
|
BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
|
|
|
|
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
|
|
|
|
rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == true);
|
|
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_abort_done == true);
|
|
CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
|
|
|
|
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
|
|
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
|
|
|
|
bdev->optimal_io_boundary = 16;
|
|
g_io_done = false;
|
|
|
|
/* Test that a ingle-vector command which is split is aborted correctly.
|
|
* Differently from the above, the child abort request will be submitted
|
|
* sequentially due to the capacity of spdk_bdev_io.
|
|
*/
|
|
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(g_io_done == false);
|
|
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
|
|
|
|
g_abort_done = false;
|
|
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
|
|
|
|
rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
|
|
|
|
stub_complete_io(1);
|
|
CU_ASSERT(g_io_done == true);
|
|
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
|
|
stub_complete_io(3);
|
|
CU_ASSERT(g_abort_done == true);
|
|
CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
|
|
|
|
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
|
|
|
|
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
|
|
|
|
spdk_put_io_channel(io_ch);
|
|
spdk_bdev_close(desc);
|
|
free_bdev(bdev);
|
|
spdk_bdev_finish(bdev_fini_cb, NULL);
|
|
poll_threads();
|
|
}
|
|
|
|
int
|
|
main(int argc, char **argv)
|
|
{
|
|
CU_pSuite suite = NULL;
|
|
unsigned int num_failures;
|
|
|
|
CU_set_error_action(CUEA_ABORT);
|
|
CU_initialize_registry();
|
|
|
|
suite = CU_add_suite("bdev", null_init, null_clean);
|
|
|
|
CU_ADD_TEST(suite, bytes_to_blocks_test);
|
|
CU_ADD_TEST(suite, num_blocks_test);
|
|
CU_ADD_TEST(suite, io_valid_test);
|
|
CU_ADD_TEST(suite, open_write_test);
|
|
CU_ADD_TEST(suite, alias_add_del_test);
|
|
CU_ADD_TEST(suite, get_device_stat_test);
|
|
CU_ADD_TEST(suite, bdev_io_types_test);
|
|
CU_ADD_TEST(suite, bdev_io_wait_test);
|
|
CU_ADD_TEST(suite, bdev_io_spans_boundary_test);
|
|
CU_ADD_TEST(suite, bdev_io_split_test);
|
|
CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
|
|
CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
|
|
CU_ADD_TEST(suite, bdev_io_alignment);
|
|
CU_ADD_TEST(suite, bdev_histograms);
|
|
CU_ADD_TEST(suite, bdev_write_zeroes);
|
|
CU_ADD_TEST(suite, bdev_compare_and_write);
|
|
CU_ADD_TEST(suite, bdev_compare);
|
|
CU_ADD_TEST(suite, bdev_open_while_hotremove);
|
|
CU_ADD_TEST(suite, bdev_close_while_hotremove);
|
|
CU_ADD_TEST(suite, bdev_open_ext);
|
|
CU_ADD_TEST(suite, bdev_set_io_timeout);
|
|
CU_ADD_TEST(suite, lba_range_overlap);
|
|
CU_ADD_TEST(suite, lock_lba_range_check_ranges);
|
|
CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
|
|
CU_ADD_TEST(suite, lock_lba_range_overlapped);
|
|
CU_ADD_TEST(suite, bdev_io_abort);
|
|
|
|
allocate_threads(1);
|
|
set_thread(0);
|
|
|
|
CU_basic_set_mode(CU_BRM_VERBOSE);
|
|
CU_basic_run_tests();
|
|
num_failures = CU_get_number_of_failures();
|
|
CU_cleanup_registry();
|
|
|
|
free_threads();
|
|
|
|
return num_failures;
|
|
}
|