Spdk/test/unit/lib/bdev/bdev.c/bdev_ut.c
Shuhei Matsumoto 97a5ea5796 lib/bdev: spdk_bdev_abort supports I/O splitting
The last patch ensures that the parent I/O terminate with failure
before continuing splitting process if one of child I/O failed.
This simplifies abort operation for I/O splitting.

Then we can use bdev_abort() and bdev_abort_io() nestedly.

Add necessary unit test together.

Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Change-Id: I562bb6675f1fa380bc53dbe369138317ead66fe0
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/2235
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Community-CI: Mellanox Build Bot
Community-CI: Broadcom CI
Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Michael Haeuptle <michaelhaeuptle@gmail.com>
2020-06-08 09:28:27 +00:00

3416 lines
104 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation. All rights reserved.
* Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk_cunit.h"
#include "common/lib/ut_multithread.c"
#include "unit/lib/json_mock.c"
#include "spdk/config.h"
/* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
#undef SPDK_CONFIG_VTUNE
#include "bdev/bdev.c"
DEFINE_STUB(spdk_conf_find_section, struct spdk_conf_section *, (struct spdk_conf *cp,
const char *name), NULL);
DEFINE_STUB(spdk_conf_section_get_nmval, char *,
(struct spdk_conf_section *sp, const char *key, int idx1, int idx2), NULL);
DEFINE_STUB(spdk_conf_section_get_intval, int, (struct spdk_conf_section *sp, const char *key), -1);
struct spdk_trace_histories *g_trace_histories;
DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn));
DEFINE_STUB_V(spdk_trace_register_owner, (uint8_t type, char id_prefix));
DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix));
DEFINE_STUB_V(spdk_trace_register_description, (const char *name,
uint16_t tpoint_id, uint8_t owner_type,
uint8_t object_type, uint8_t new_object,
uint8_t arg1_type, const char *arg1_name));
DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id,
uint32_t size, uint64_t object_id, uint64_t arg1));
DEFINE_STUB(spdk_notify_send, uint64_t, (const char *type, const char *ctx), 0);
DEFINE_STUB(spdk_notify_type_register, struct spdk_notify_type *, (const char *type), NULL);
int g_status;
int g_count;
enum spdk_bdev_event_type g_event_type1;
enum spdk_bdev_event_type g_event_type2;
struct spdk_histogram_data *g_histogram;
void *g_unregister_arg;
int g_unregister_rc;
void
spdk_scsi_nvme_translate(const struct spdk_bdev_io *bdev_io,
int *sc, int *sk, int *asc, int *ascq)
{
}
static int
null_init(void)
{
return 0;
}
static int
null_clean(void)
{
return 0;
}
static int
stub_destruct(void *ctx)
{
return 0;
}
struct ut_expected_io {
uint8_t type;
uint64_t offset;
uint64_t length;
int iovcnt;
struct iovec iov[BDEV_IO_NUM_CHILD_IOV];
void *md_buf;
TAILQ_ENTRY(ut_expected_io) link;
};
struct bdev_ut_channel {
TAILQ_HEAD(, spdk_bdev_io) outstanding_io;
uint32_t outstanding_io_count;
TAILQ_HEAD(, ut_expected_io) expected_io;
};
static bool g_io_done;
static struct spdk_bdev_io *g_bdev_io;
static enum spdk_bdev_io_status g_io_status;
static enum spdk_bdev_io_status g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
static uint32_t g_bdev_ut_io_device;
static struct bdev_ut_channel *g_bdev_ut_channel;
static void *g_compare_read_buf;
static uint32_t g_compare_read_buf_len;
static void *g_compare_write_buf;
static uint32_t g_compare_write_buf_len;
static bool g_abort_done;
static enum spdk_bdev_io_status g_abort_status;
static struct ut_expected_io *
ut_alloc_expected_io(uint8_t type, uint64_t offset, uint64_t length, int iovcnt)
{
struct ut_expected_io *expected_io;
expected_io = calloc(1, sizeof(*expected_io));
SPDK_CU_ASSERT_FATAL(expected_io != NULL);
expected_io->type = type;
expected_io->offset = offset;
expected_io->length = length;
expected_io->iovcnt = iovcnt;
return expected_io;
}
static void
ut_expected_io_set_iov(struct ut_expected_io *expected_io, int pos, void *base, size_t len)
{
expected_io->iov[pos].iov_base = base;
expected_io->iov[pos].iov_len = len;
}
static void
stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
{
struct bdev_ut_channel *ch = spdk_io_channel_get_ctx(_ch);
struct ut_expected_io *expected_io;
struct iovec *iov, *expected_iov;
struct spdk_bdev_io *bio_to_abort;
int i;
g_bdev_io = bdev_io;
if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
CU_ASSERT(g_compare_read_buf_len == len);
memcpy(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len);
}
if (g_compare_write_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
CU_ASSERT(g_compare_write_buf_len == len);
memcpy(g_compare_write_buf, bdev_io->u.bdev.iovs[0].iov_base, len);
}
if (g_compare_read_buf && bdev_io->type == SPDK_BDEV_IO_TYPE_COMPARE) {
uint32_t len = bdev_io->u.bdev.iovs[0].iov_len;
CU_ASSERT(bdev_io->u.bdev.iovcnt == 1);
CU_ASSERT(g_compare_read_buf_len == len);
if (memcmp(bdev_io->u.bdev.iovs[0].iov_base, g_compare_read_buf, len)) {
g_io_exp_status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
}
}
if (bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) {
if (g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS) {
TAILQ_FOREACH(bio_to_abort, &ch->outstanding_io, module_link) {
if (bio_to_abort == bdev_io->u.abort.bio_to_abort) {
TAILQ_REMOVE(&ch->outstanding_io, bio_to_abort, module_link);
ch->outstanding_io_count--;
spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_FAILED);
break;
}
}
}
}
TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
ch->outstanding_io_count++;
expected_io = TAILQ_FIRST(&ch->expected_io);
if (expected_io == NULL) {
return;
}
TAILQ_REMOVE(&ch->expected_io, expected_io, link);
if (expected_io->type != SPDK_BDEV_IO_TYPE_INVALID) {
CU_ASSERT(bdev_io->type == expected_io->type);
}
if (expected_io->md_buf != NULL) {
CU_ASSERT(expected_io->md_buf == bdev_io->u.bdev.md_buf);
}
if (expected_io->length == 0) {
free(expected_io);
return;
}
CU_ASSERT(expected_io->offset == bdev_io->u.bdev.offset_blocks);
CU_ASSERT(expected_io->length = bdev_io->u.bdev.num_blocks);
if (expected_io->iovcnt == 0) {
free(expected_io);
/* UNMAP, WRITE_ZEROES and FLUSH don't have iovs, so we can just return now. */
return;
}
CU_ASSERT(expected_io->iovcnt == bdev_io->u.bdev.iovcnt);
for (i = 0; i < expected_io->iovcnt; i++) {
iov = &bdev_io->u.bdev.iovs[i];
expected_iov = &expected_io->iov[i];
CU_ASSERT(iov->iov_len == expected_iov->iov_len);
CU_ASSERT(iov->iov_base == expected_iov->iov_base);
}
free(expected_io);
}
static void
stub_submit_request_get_buf_cb(struct spdk_io_channel *_ch,
struct spdk_bdev_io *bdev_io, bool success)
{
CU_ASSERT(success == true);
stub_submit_request(_ch, bdev_io);
}
static void
stub_submit_request_get_buf(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
{
spdk_bdev_io_get_buf(bdev_io, stub_submit_request_get_buf_cb,
bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
}
static uint32_t
stub_complete_io(uint32_t num_to_complete)
{
struct bdev_ut_channel *ch = g_bdev_ut_channel;
struct spdk_bdev_io *bdev_io;
static enum spdk_bdev_io_status io_status;
uint32_t num_completed = 0;
while (num_completed < num_to_complete) {
if (TAILQ_EMPTY(&ch->outstanding_io)) {
break;
}
bdev_io = TAILQ_FIRST(&ch->outstanding_io);
TAILQ_REMOVE(&ch->outstanding_io, bdev_io, module_link);
ch->outstanding_io_count--;
io_status = g_io_exp_status == SPDK_BDEV_IO_STATUS_SUCCESS ? SPDK_BDEV_IO_STATUS_SUCCESS :
g_io_exp_status;
spdk_bdev_io_complete(bdev_io, io_status);
num_completed++;
}
return num_completed;
}
static struct spdk_io_channel *
bdev_ut_get_io_channel(void *ctx)
{
return spdk_get_io_channel(&g_bdev_ut_io_device);
}
static bool g_io_types_supported[SPDK_BDEV_NUM_IO_TYPES] = {
[SPDK_BDEV_IO_TYPE_READ] = true,
[SPDK_BDEV_IO_TYPE_WRITE] = true,
[SPDK_BDEV_IO_TYPE_COMPARE] = true,
[SPDK_BDEV_IO_TYPE_UNMAP] = true,
[SPDK_BDEV_IO_TYPE_FLUSH] = true,
[SPDK_BDEV_IO_TYPE_RESET] = true,
[SPDK_BDEV_IO_TYPE_NVME_ADMIN] = true,
[SPDK_BDEV_IO_TYPE_NVME_IO] = true,
[SPDK_BDEV_IO_TYPE_NVME_IO_MD] = true,
[SPDK_BDEV_IO_TYPE_WRITE_ZEROES] = true,
[SPDK_BDEV_IO_TYPE_ZCOPY] = true,
[SPDK_BDEV_IO_TYPE_ABORT] = true,
};
static void
ut_enable_io_type(enum spdk_bdev_io_type io_type, bool enable)
{
g_io_types_supported[io_type] = enable;
}
static bool
stub_io_type_supported(void *_bdev, enum spdk_bdev_io_type io_type)
{
return g_io_types_supported[io_type];
}
static struct spdk_bdev_fn_table fn_table = {
.destruct = stub_destruct,
.submit_request = stub_submit_request,
.get_io_channel = bdev_ut_get_io_channel,
.io_type_supported = stub_io_type_supported,
};
static int
bdev_ut_create_ch(void *io_device, void *ctx_buf)
{
struct bdev_ut_channel *ch = ctx_buf;
CU_ASSERT(g_bdev_ut_channel == NULL);
g_bdev_ut_channel = ch;
TAILQ_INIT(&ch->outstanding_io);
ch->outstanding_io_count = 0;
TAILQ_INIT(&ch->expected_io);
return 0;
}
static void
bdev_ut_destroy_ch(void *io_device, void *ctx_buf)
{
CU_ASSERT(g_bdev_ut_channel != NULL);
g_bdev_ut_channel = NULL;
}
struct spdk_bdev_module bdev_ut_if;
static int
bdev_ut_module_init(void)
{
spdk_io_device_register(&g_bdev_ut_io_device, bdev_ut_create_ch, bdev_ut_destroy_ch,
sizeof(struct bdev_ut_channel), NULL);
spdk_bdev_module_init_done(&bdev_ut_if);
return 0;
}
static void
bdev_ut_module_fini(void)
{
spdk_io_device_unregister(&g_bdev_ut_io_device, NULL);
}
struct spdk_bdev_module bdev_ut_if = {
.name = "bdev_ut",
.module_init = bdev_ut_module_init,
.module_fini = bdev_ut_module_fini,
.async_init = true,
};
static void vbdev_ut_examine(struct spdk_bdev *bdev);
static int
vbdev_ut_module_init(void)
{
return 0;
}
static void
vbdev_ut_module_fini(void)
{
}
struct spdk_bdev_module vbdev_ut_if = {
.name = "vbdev_ut",
.module_init = vbdev_ut_module_init,
.module_fini = vbdev_ut_module_fini,
.examine_config = vbdev_ut_examine,
};
SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
SPDK_BDEV_MODULE_REGISTER(vbdev_ut, &vbdev_ut_if)
static void
vbdev_ut_examine(struct spdk_bdev *bdev)
{
spdk_bdev_module_examine_done(&vbdev_ut_if);
}
static struct spdk_bdev *
allocate_bdev(char *name)
{
struct spdk_bdev *bdev;
int rc;
bdev = calloc(1, sizeof(*bdev));
SPDK_CU_ASSERT_FATAL(bdev != NULL);
bdev->name = name;
bdev->fn_table = &fn_table;
bdev->module = &bdev_ut_if;
bdev->blockcnt = 1024;
bdev->blocklen = 512;
rc = spdk_bdev_register(bdev);
CU_ASSERT(rc == 0);
return bdev;
}
static struct spdk_bdev *
allocate_vbdev(char *name)
{
struct spdk_bdev *bdev;
int rc;
bdev = calloc(1, sizeof(*bdev));
SPDK_CU_ASSERT_FATAL(bdev != NULL);
bdev->name = name;
bdev->fn_table = &fn_table;
bdev->module = &vbdev_ut_if;
rc = spdk_bdev_register(bdev);
CU_ASSERT(rc == 0);
return bdev;
}
static void
free_bdev(struct spdk_bdev *bdev)
{
spdk_bdev_unregister(bdev, NULL, NULL);
poll_threads();
memset(bdev, 0xFF, sizeof(*bdev));
free(bdev);
}
static void
free_vbdev(struct spdk_bdev *bdev)
{
spdk_bdev_unregister(bdev, NULL, NULL);
poll_threads();
memset(bdev, 0xFF, sizeof(*bdev));
free(bdev);
}
static void
get_device_stat_cb(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat, void *cb_arg, int rc)
{
const char *bdev_name;
CU_ASSERT(bdev != NULL);
CU_ASSERT(rc == 0);
bdev_name = spdk_bdev_get_name(bdev);
CU_ASSERT_STRING_EQUAL(bdev_name, "bdev0");
free(stat);
free_bdev(bdev);
*(bool *)cb_arg = true;
}
static void
bdev_unregister_cb(void *cb_arg, int rc)
{
g_unregister_arg = cb_arg;
g_unregister_rc = rc;
}
static void
bdev_open_cb1(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
{
struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
g_event_type1 = type;
if (SPDK_BDEV_EVENT_REMOVE == type) {
spdk_bdev_close(desc);
}
}
static void
bdev_open_cb2(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *event_ctx)
{
struct spdk_bdev_desc *desc = *(struct spdk_bdev_desc **)event_ctx;
g_event_type2 = type;
if (SPDK_BDEV_EVENT_REMOVE == type) {
spdk_bdev_close(desc);
}
}
static void
get_device_stat_test(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_io_stat *stat;
bool done;
bdev = allocate_bdev("bdev0");
stat = calloc(1, sizeof(struct spdk_bdev_io_stat));
if (stat == NULL) {
free_bdev(bdev);
return;
}
done = false;
spdk_bdev_get_device_stat(bdev, stat, get_device_stat_cb, &done);
while (!done) { poll_threads(); }
}
static void
open_write_test(void)
{
struct spdk_bdev *bdev[9];
struct spdk_bdev_desc *desc[9] = {};
int rc;
/*
* Create a tree of bdevs to test various open w/ write cases.
*
* bdev0 through bdev3 are physical block devices, such as NVMe
* namespaces or Ceph block devices.
*
* bdev4 is a virtual bdev with multiple base bdevs. This models
* caching or RAID use cases.
*
* bdev5 through bdev7 are all virtual bdevs with the same base
* bdev (except bdev7). This models partitioning or logical volume
* use cases.
*
* bdev7 is a virtual bdev with multiple base bdevs. One of base bdevs
* (bdev2) is shared with other virtual bdevs: bdev5 and bdev6. This
* models caching, RAID, partitioning or logical volumes use cases.
*
* bdev8 is a virtual bdev with multiple base bdevs, but these
* base bdevs are themselves virtual bdevs.
*
* bdev8
* |
* +----------+
* | |
* bdev4 bdev5 bdev6 bdev7
* | | | |
* +---+---+ +---+ + +---+---+
* | | \ | / \
* bdev0 bdev1 bdev2 bdev3
*/
bdev[0] = allocate_bdev("bdev0");
rc = spdk_bdev_module_claim_bdev(bdev[0], NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
bdev[1] = allocate_bdev("bdev1");
rc = spdk_bdev_module_claim_bdev(bdev[1], NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
bdev[2] = allocate_bdev("bdev2");
rc = spdk_bdev_module_claim_bdev(bdev[2], NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
bdev[3] = allocate_bdev("bdev3");
rc = spdk_bdev_module_claim_bdev(bdev[3], NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
bdev[4] = allocate_vbdev("bdev4");
rc = spdk_bdev_module_claim_bdev(bdev[4], NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
bdev[5] = allocate_vbdev("bdev5");
rc = spdk_bdev_module_claim_bdev(bdev[5], NULL, &bdev_ut_if);
CU_ASSERT(rc == 0);
bdev[6] = allocate_vbdev("bdev6");
bdev[7] = allocate_vbdev("bdev7");
bdev[8] = allocate_vbdev("bdev8");
/* Open bdev0 read-only. This should succeed. */
rc = spdk_bdev_open(bdev[0], false, NULL, NULL, &desc[0]);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
spdk_bdev_close(desc[0]);
/*
* Open bdev1 read/write. This should fail since bdev1 has been claimed
* by a vbdev module.
*/
rc = spdk_bdev_open(bdev[1], true, NULL, NULL, &desc[1]);
CU_ASSERT(rc == -EPERM);
/*
* Open bdev4 read/write. This should fail since bdev3 has been claimed
* by a vbdev module.
*/
rc = spdk_bdev_open(bdev[4], true, NULL, NULL, &desc[4]);
CU_ASSERT(rc == -EPERM);
/* Open bdev4 read-only. This should succeed. */
rc = spdk_bdev_open(bdev[4], false, NULL, NULL, &desc[4]);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc[4] != NULL);
spdk_bdev_close(desc[4]);
/*
* Open bdev8 read/write. This should succeed since it is a leaf
* bdev.
*/
rc = spdk_bdev_open(bdev[8], true, NULL, NULL, &desc[8]);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc[8] != NULL);
spdk_bdev_close(desc[8]);
/*
* Open bdev5 read/write. This should fail since bdev4 has been claimed
* by a vbdev module.
*/
rc = spdk_bdev_open(bdev[5], true, NULL, NULL, &desc[5]);
CU_ASSERT(rc == -EPERM);
/* Open bdev4 read-only. This should succeed. */
rc = spdk_bdev_open(bdev[5], false, NULL, NULL, &desc[5]);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc[5] != NULL);
spdk_bdev_close(desc[5]);
free_vbdev(bdev[8]);
free_vbdev(bdev[5]);
free_vbdev(bdev[6]);
free_vbdev(bdev[7]);
free_vbdev(bdev[4]);
free_bdev(bdev[0]);
free_bdev(bdev[1]);
free_bdev(bdev[2]);
free_bdev(bdev[3]);
}
static void
bytes_to_blocks_test(void)
{
struct spdk_bdev bdev;
uint64_t offset_blocks, num_blocks;
memset(&bdev, 0, sizeof(bdev));
bdev.blocklen = 512;
/* All parameters valid */
offset_blocks = 0;
num_blocks = 0;
CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 1024, &num_blocks) == 0);
CU_ASSERT(offset_blocks == 1);
CU_ASSERT(num_blocks == 2);
/* Offset not a block multiple */
CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 512, &num_blocks) != 0);
/* Length not a block multiple */
CU_ASSERT(bdev_bytes_to_blocks(&bdev, 512, &offset_blocks, 3, &num_blocks) != 0);
/* In case blocklen not the power of two */
bdev.blocklen = 100;
CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 200, &num_blocks) == 0);
CU_ASSERT(offset_blocks == 1);
CU_ASSERT(num_blocks == 2);
/* Offset not a block multiple */
CU_ASSERT(bdev_bytes_to_blocks(&bdev, 3, &offset_blocks, 100, &num_blocks) != 0);
/* Length not a block multiple */
CU_ASSERT(bdev_bytes_to_blocks(&bdev, 100, &offset_blocks, 3, &num_blocks) != 0);
}
static void
num_blocks_test(void)
{
struct spdk_bdev bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_bdev_desc *desc_ext = NULL;
int rc;
memset(&bdev, 0, sizeof(bdev));
bdev.name = "num_blocks";
bdev.fn_table = &fn_table;
bdev.module = &bdev_ut_if;
spdk_bdev_register(&bdev);
spdk_bdev_notify_blockcnt_change(&bdev, 50);
/* Growing block number */
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 70) == 0);
/* Shrinking block number */
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 30) == 0);
/* In case bdev opened */
rc = spdk_bdev_open(&bdev, false, NULL, NULL, &desc);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
/* Growing block number */
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 80) == 0);
/* Shrinking block number */
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 20) != 0);
/* In case bdev opened with ext API */
rc = spdk_bdev_open_ext("num_blocks", false, bdev_open_cb1, &desc_ext, &desc_ext);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc_ext != NULL);
g_event_type1 = 0xFF;
/* Growing block number */
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 90) == 0);
poll_threads();
CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_RESIZE);
g_event_type1 = 0xFF;
/* Growing block number and closing */
CU_ASSERT(spdk_bdev_notify_blockcnt_change(&bdev, 100) == 0);
spdk_bdev_close(desc);
spdk_bdev_close(desc_ext);
spdk_bdev_unregister(&bdev, NULL, NULL);
poll_threads();
/* Callback is not called for closed device */
CU_ASSERT_EQUAL(g_event_type1, 0xFF);
}
static void
io_valid_test(void)
{
struct spdk_bdev bdev;
memset(&bdev, 0, sizeof(bdev));
bdev.blocklen = 512;
spdk_bdev_notify_blockcnt_change(&bdev, 100);
/* All parameters valid */
CU_ASSERT(bdev_io_valid_blocks(&bdev, 1, 2) == true);
/* Last valid block */
CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 1) == true);
/* Offset past end of bdev */
CU_ASSERT(bdev_io_valid_blocks(&bdev, 100, 1) == false);
/* Offset + length past end of bdev */
CU_ASSERT(bdev_io_valid_blocks(&bdev, 99, 2) == false);
/* Offset near end of uint64_t range (2^64 - 1) */
CU_ASSERT(bdev_io_valid_blocks(&bdev, 18446744073709551615ULL, 1) == false);
}
static void
alias_add_del_test(void)
{
struct spdk_bdev *bdev[3];
int rc;
/* Creating and registering bdevs */
bdev[0] = allocate_bdev("bdev0");
SPDK_CU_ASSERT_FATAL(bdev[0] != 0);
bdev[1] = allocate_bdev("bdev1");
SPDK_CU_ASSERT_FATAL(bdev[1] != 0);
bdev[2] = allocate_bdev("bdev2");
SPDK_CU_ASSERT_FATAL(bdev[2] != 0);
poll_threads();
/*
* Trying adding an alias identical to name.
* Alias is identical to name, so it can not be added to aliases list
*/
rc = spdk_bdev_alias_add(bdev[0], bdev[0]->name);
CU_ASSERT(rc == -EEXIST);
/*
* Trying to add empty alias,
* this one should fail
*/
rc = spdk_bdev_alias_add(bdev[0], NULL);
CU_ASSERT(rc == -EINVAL);
/* Trying adding same alias to two different registered bdevs */
/* Alias is used first time, so this one should pass */
rc = spdk_bdev_alias_add(bdev[0], "proper alias 0");
CU_ASSERT(rc == 0);
/* Alias was added to another bdev, so this one should fail */
rc = spdk_bdev_alias_add(bdev[1], "proper alias 0");
CU_ASSERT(rc == -EEXIST);
/* Alias is used first time, so this one should pass */
rc = spdk_bdev_alias_add(bdev[1], "proper alias 1");
CU_ASSERT(rc == 0);
/* Trying removing an alias from registered bdevs */
/* Alias is not on a bdev aliases list, so this one should fail */
rc = spdk_bdev_alias_del(bdev[0], "not existing");
CU_ASSERT(rc == -ENOENT);
/* Alias is present on a bdev aliases list, so this one should pass */
rc = spdk_bdev_alias_del(bdev[0], "proper alias 0");
CU_ASSERT(rc == 0);
/* Alias is present on a bdev aliases list, so this one should pass */
rc = spdk_bdev_alias_del(bdev[1], "proper alias 1");
CU_ASSERT(rc == 0);
/* Trying to remove name instead of alias, so this one should fail, name cannot be changed or removed */
rc = spdk_bdev_alias_del(bdev[0], bdev[0]->name);
CU_ASSERT(rc != 0);
/* Trying to del all alias from empty alias list */
spdk_bdev_alias_del_all(bdev[2]);
SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev[2]->aliases));
/* Trying to del all alias from non-empty alias list */
rc = spdk_bdev_alias_add(bdev[2], "alias0");
CU_ASSERT(rc == 0);
rc = spdk_bdev_alias_add(bdev[2], "alias1");
CU_ASSERT(rc == 0);
spdk_bdev_alias_del_all(bdev[2]);
CU_ASSERT(TAILQ_EMPTY(&bdev[2]->aliases));
/* Unregister and free bdevs */
spdk_bdev_unregister(bdev[0], NULL, NULL);
spdk_bdev_unregister(bdev[1], NULL, NULL);
spdk_bdev_unregister(bdev[2], NULL, NULL);
poll_threads();
free(bdev[0]);
free(bdev[1]);
free(bdev[2]);
}
static void
io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
g_io_done = true;
g_io_status = bdev_io->internal.status;
spdk_bdev_free_io(bdev_io);
}
static void
bdev_init_cb(void *arg, int rc)
{
CU_ASSERT(rc == 0);
}
static void
bdev_fini_cb(void *arg)
{
}
struct bdev_ut_io_wait_entry {
struct spdk_bdev_io_wait_entry entry;
struct spdk_io_channel *io_ch;
struct spdk_bdev_desc *desc;
bool submitted;
};
static void
io_wait_cb(void *arg)
{
struct bdev_ut_io_wait_entry *entry = arg;
int rc;
rc = spdk_bdev_read_blocks(entry->desc, entry->io_ch, NULL, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
entry->submitted = true;
}
static void
bdev_io_types_test(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_opts bdev_opts = {
.bdev_io_pool_size = 4,
.bdev_io_cache_size = 2,
};
int rc;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
poll_threads();
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT(rc == 0);
poll_threads();
SPDK_CU_ASSERT_FATAL(desc != NULL);
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
/* WRITE and WRITE ZEROES are not supported */
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, false);
rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 0, 128, io_done, NULL);
CU_ASSERT(rc == -ENOTSUP);
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE, true);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_io_wait_test(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_opts bdev_opts = {
.bdev_io_pool_size = 4,
.bdev_io_cache_size = 2,
};
struct bdev_ut_io_wait_entry io_wait_entry;
struct bdev_ut_io_wait_entry io_wait_entry2;
int rc;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
poll_threads();
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT(rc == 0);
poll_threads();
SPDK_CU_ASSERT_FATAL(desc != NULL);
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
CU_ASSERT(rc == -ENOMEM);
io_wait_entry.entry.bdev = bdev;
io_wait_entry.entry.cb_fn = io_wait_cb;
io_wait_entry.entry.cb_arg = &io_wait_entry;
io_wait_entry.io_ch = io_ch;
io_wait_entry.desc = desc;
io_wait_entry.submitted = false;
/* Cannot use the same io_wait_entry for two different calls. */
memcpy(&io_wait_entry2, &io_wait_entry, sizeof(io_wait_entry));
io_wait_entry2.entry.cb_arg = &io_wait_entry2;
/* Queue two I/O waits. */
rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry.entry);
CU_ASSERT(rc == 0);
CU_ASSERT(io_wait_entry.submitted == false);
rc = spdk_bdev_queue_io_wait(bdev, io_ch, &io_wait_entry2.entry);
CU_ASSERT(rc == 0);
CU_ASSERT(io_wait_entry2.submitted == false);
stub_complete_io(1);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
CU_ASSERT(io_wait_entry.submitted == true);
CU_ASSERT(io_wait_entry2.submitted == false);
stub_complete_io(1);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
CU_ASSERT(io_wait_entry2.submitted == true);
stub_complete_io(4);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_io_spans_boundary_test(void)
{
struct spdk_bdev bdev;
struct spdk_bdev_io bdev_io;
memset(&bdev, 0, sizeof(bdev));
bdev.optimal_io_boundary = 0;
bdev_io.bdev = &bdev;
/* bdev has no optimal_io_boundary set - so this should return false. */
CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
bdev.optimal_io_boundary = 32;
bdev_io.type = SPDK_BDEV_IO_TYPE_RESET;
/* RESETs are not based on LBAs - so this should return false. */
CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
bdev_io.type = SPDK_BDEV_IO_TYPE_READ;
bdev_io.u.bdev.offset_blocks = 0;
bdev_io.u.bdev.num_blocks = 32;
/* This I/O run right up to, but does not cross, the boundary - so this should return false. */
CU_ASSERT(bdev_io_should_split(&bdev_io) == false);
bdev_io.u.bdev.num_blocks = 33;
/* This I/O spans a boundary. */
CU_ASSERT(bdev_io_should_split(&bdev_io) == true);
}
static void
bdev_io_split_test(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_opts bdev_opts = {
.bdev_io_pool_size = 512,
.bdev_io_cache_size = 64,
};
struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
struct ut_expected_io *expected_io;
uint64_t i;
int rc;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
bdev->optimal_io_boundary = 16;
bdev->split_on_optimal_io_boundary = false;
g_io_done = false;
/* First test that the I/O does not get split if split_on_optimal_io_boundary == false. */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 8, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 8 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
bdev->split_on_optimal_io_boundary = true;
/* Now test that a single-vector command is split correctly.
* Offset 14, length 8, payload 0xF000
* Child - Offset 14, length 2, payload 0xF000
* Child - Offset 16, length 6, payload 0xF000 + 2 * 512
*
* Set up the expected values before calling spdk_bdev_read_blocks
*/
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* spdk_bdev_read_blocks will submit the first child immediately. */
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Now set up a more complex, multi-vector command that needs to be split,
* including splitting iovecs.
*/
iov[0].iov_base = (void *)0x10000;
iov[0].iov_len = 512;
iov[1].iov_base = (void *)0x20000;
iov[1].iov_len = 20 * 512;
iov[2].iov_base = (void *)0x30000;
iov[2].iov_len = 11 * 512;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
stub_complete_io(3);
CU_ASSERT(g_io_done == true);
/* Test multi vector command that needs to be split by strip and then needs to be
* split further due to the capacity of child iovs.
*/
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 512;
}
bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
BDEV_IO_NUM_CHILD_IOV);
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
ut_expected_io_set_iov(expected_io, i, (void *)((i + 1) * 0x10000), 512);
}
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
BDEV_IO_NUM_CHILD_IOV, BDEV_IO_NUM_CHILD_IOV);
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV; i++) {
ut_expected_io_set_iov(expected_io, i,
(void *)((i + 1 + BDEV_IO_NUM_CHILD_IOV) * 0x10000), 512);
}
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
BDEV_IO_NUM_CHILD_IOV * 2, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Test multi vector command that needs to be split by strip and then needs to be
* split further due to the capacity of child iovs. In this case, the length of
* the rest of iovec array with an I/O boundary is the multiple of block size.
*/
/* Fill iovec array for exactly one boundary. The iovec cnt for this boundary
* is BDEV_IO_NUM_CHILD_IOV + 1, which exceeds the capacity of child iovs.
*/
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 512;
}
for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 256;
}
iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 512;
/* Add an extra iovec to trigger split */
iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV);
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
ut_expected_io_set_iov(expected_io, i,
(void *)((i + 1) * 0x10000), 512);
}
for (i = BDEV_IO_NUM_CHILD_IOV - 2; i < BDEV_IO_NUM_CHILD_IOV; i++) {
ut_expected_io_set_iov(expected_io, i,
(void *)((i + 1) * 0x10000), 256);
}
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1, 1);
ut_expected_io_set_iov(expected_io, 0,
(void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1, 1);
ut_expected_io_set_iov(expected_io, 0,
(void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 2, 0,
BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Test multi vector command that needs to be split by strip and then needs to be
* split further due to the capacity of child iovs, the child request offset should
* be rewind to last aligned offset and go success without error.
*/
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 512;
}
iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
g_io_done = false;
g_io_status = 0;
/* The first expected io should be start from offset 0 to BDEV_IO_NUM_CHILD_IOV - 1 */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0,
BDEV_IO_NUM_CHILD_IOV - 1, BDEV_IO_NUM_CHILD_IOV - 1);
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
ut_expected_io_set_iov(expected_io, i,
(void *)((i + 1) * 0x10000), 512);
}
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The second expected io should be start from offset BDEV_IO_NUM_CHILD_IOV - 1 to BDEV_IO_NUM_CHILD_IOV */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV - 1,
1, 2);
ut_expected_io_set_iov(expected_io, 0,
(void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000), 256);
ut_expected_io_set_iov(expected_io, 1,
(void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000), 256);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The third expected io should be start from offset BDEV_IO_NUM_CHILD_IOV to BDEV_IO_NUM_CHILD_IOV + 1 */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
1, 1);
ut_expected_io_set_iov(expected_io, 0,
(void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000), 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Test multi vector command that needs to be split due to the IO boundary and
* the capacity of child iovs. Especially test the case when the command is
* split due to the capacity of child iovs, the tail address is not aligned with
* block size and is rewinded to the aligned address.
*
* The iovecs used in read request is complex but is based on the data
* collected in the real issue. We change the base addresses but keep the lengths
* not to loose the credibility of the test.
*/
bdev->optimal_io_boundary = 128;
g_io_done = false;
g_io_status = 0;
for (i = 0; i < 31; i++) {
iov[i].iov_base = (void *)(0xFEED0000000 + (i << 20));
iov[i].iov_len = 1024;
}
iov[31].iov_base = (void *)0xFEED1F00000;
iov[31].iov_len = 32768;
iov[32].iov_base = (void *)0xFEED2000000;
iov[32].iov_len = 160;
iov[33].iov_base = (void *)0xFEED2100000;
iov[33].iov_len = 4096;
iov[34].iov_base = (void *)0xFEED2200000;
iov[34].iov_len = 4096;
iov[35].iov_base = (void *)0xFEED2300000;
iov[35].iov_len = 4096;
iov[36].iov_base = (void *)0xFEED2400000;
iov[36].iov_len = 4096;
iov[37].iov_base = (void *)0xFEED2500000;
iov[37].iov_len = 4096;
iov[38].iov_base = (void *)0xFEED2600000;
iov[38].iov_len = 4096;
iov[39].iov_base = (void *)0xFEED2700000;
iov[39].iov_len = 4096;
iov[40].iov_base = (void *)0xFEED2800000;
iov[40].iov_len = 4096;
iov[41].iov_base = (void *)0xFEED2900000;
iov[41].iov_len = 4096;
iov[42].iov_base = (void *)0xFEED2A00000;
iov[42].iov_len = 4096;
iov[43].iov_base = (void *)0xFEED2B00000;
iov[43].iov_len = 12288;
iov[44].iov_base = (void *)0xFEED2C00000;
iov[44].iov_len = 8192;
iov[45].iov_base = (void *)0xFEED2F00000;
iov[45].iov_len = 4096;
iov[46].iov_base = (void *)0xFEED3000000;
iov[46].iov_len = 4096;
iov[47].iov_base = (void *)0xFEED3100000;
iov[47].iov_len = 4096;
iov[48].iov_base = (void *)0xFEED3200000;
iov[48].iov_len = 24576;
iov[49].iov_base = (void *)0xFEED3300000;
iov[49].iov_len = 16384;
iov[50].iov_base = (void *)0xFEED3400000;
iov[50].iov_len = 12288;
iov[51].iov_base = (void *)0xFEED3500000;
iov[51].iov_len = 4096;
iov[52].iov_base = (void *)0xFEED3600000;
iov[52].iov_len = 4096;
iov[53].iov_base = (void *)0xFEED3700000;
iov[53].iov_len = 4096;
iov[54].iov_base = (void *)0xFEED3800000;
iov[54].iov_len = 28672;
iov[55].iov_base = (void *)0xFEED3900000;
iov[55].iov_len = 20480;
iov[56].iov_base = (void *)0xFEED3A00000;
iov[56].iov_len = 4096;
iov[57].iov_base = (void *)0xFEED3B00000;
iov[57].iov_len = 12288;
iov[58].iov_base = (void *)0xFEED3C00000;
iov[58].iov_len = 4096;
iov[59].iov_base = (void *)0xFEED3D00000;
iov[59].iov_len = 4096;
iov[60].iov_base = (void *)0xFEED3E00000;
iov[60].iov_len = 352;
/* The 1st child IO must be from iov[0] to iov[31] split by the capacity
* of child iovs,
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, 126, 32);
for (i = 0; i < 32; i++) {
ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
}
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The 2nd child IO must be from iov[32] to the first 864 bytes of iov[33]
* split by the IO boundary requirement.
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 126, 2, 2);
ut_expected_io_set_iov(expected_io, 0, iov[32].iov_base, iov[32].iov_len);
ut_expected_io_set_iov(expected_io, 1, iov[33].iov_base, 864);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The 3rd child IO must be from the remaining 3232 bytes of iov[33] to
* the first 864 bytes of iov[46] split by the IO boundary requirement.
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 128, 128, 14);
ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[33].iov_base + 864),
iov[33].iov_len - 864);
ut_expected_io_set_iov(expected_io, 1, iov[34].iov_base, iov[34].iov_len);
ut_expected_io_set_iov(expected_io, 2, iov[35].iov_base, iov[35].iov_len);
ut_expected_io_set_iov(expected_io, 3, iov[36].iov_base, iov[36].iov_len);
ut_expected_io_set_iov(expected_io, 4, iov[37].iov_base, iov[37].iov_len);
ut_expected_io_set_iov(expected_io, 5, iov[38].iov_base, iov[38].iov_len);
ut_expected_io_set_iov(expected_io, 6, iov[39].iov_base, iov[39].iov_len);
ut_expected_io_set_iov(expected_io, 7, iov[40].iov_base, iov[40].iov_len);
ut_expected_io_set_iov(expected_io, 8, iov[41].iov_base, iov[41].iov_len);
ut_expected_io_set_iov(expected_io, 9, iov[42].iov_base, iov[42].iov_len);
ut_expected_io_set_iov(expected_io, 10, iov[43].iov_base, iov[43].iov_len);
ut_expected_io_set_iov(expected_io, 11, iov[44].iov_base, iov[44].iov_len);
ut_expected_io_set_iov(expected_io, 12, iov[45].iov_base, iov[45].iov_len);
ut_expected_io_set_iov(expected_io, 13, iov[46].iov_base, 864);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The 4th child IO must be from the remaining 3232 bytes of iov[46] to the
* first 864 bytes of iov[52] split by the IO boundary requirement.
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 256, 128, 7);
ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[46].iov_base + 864),
iov[46].iov_len - 864);
ut_expected_io_set_iov(expected_io, 1, iov[47].iov_base, iov[47].iov_len);
ut_expected_io_set_iov(expected_io, 2, iov[48].iov_base, iov[48].iov_len);
ut_expected_io_set_iov(expected_io, 3, iov[49].iov_base, iov[49].iov_len);
ut_expected_io_set_iov(expected_io, 4, iov[50].iov_base, iov[50].iov_len);
ut_expected_io_set_iov(expected_io, 5, iov[51].iov_base, iov[51].iov_len);
ut_expected_io_set_iov(expected_io, 6, iov[52].iov_base, 864);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The 5th child IO must be from the remaining 3232 bytes of iov[52] to
* the first 4096 bytes of iov[57] split by the IO boundary requirement.
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 384, 128, 6);
ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[52].iov_base + 864),
iov[52].iov_len - 864);
ut_expected_io_set_iov(expected_io, 1, iov[53].iov_base, iov[53].iov_len);
ut_expected_io_set_iov(expected_io, 2, iov[54].iov_base, iov[54].iov_len);
ut_expected_io_set_iov(expected_io, 3, iov[55].iov_base, iov[55].iov_len);
ut_expected_io_set_iov(expected_io, 4, iov[56].iov_base, iov[56].iov_len);
ut_expected_io_set_iov(expected_io, 5, iov[57].iov_base, 4960);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The 6th child IO must be from the remaining 7328 bytes of iov[57]
* to the first 3936 bytes of iov[58] split by the capacity of child iovs.
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 512, 30, 3);
ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[57].iov_base + 4960),
iov[57].iov_len - 4960);
ut_expected_io_set_iov(expected_io, 1, iov[58].iov_base, iov[58].iov_len);
ut_expected_io_set_iov(expected_io, 2, iov[59].iov_base, 3936);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The 7th child IO is from the remaining 160 bytes of iov[59] and iov[60]. */
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 542, 1, 2);
ut_expected_io_set_iov(expected_io, 0, (void *)((uintptr_t)iov[59].iov_base + 3936),
iov[59].iov_len - 3936);
ut_expected_io_set_iov(expected_io, 1, iov[60].iov_base, iov[60].iov_len);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 61, 0, 543, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
stub_complete_io(5);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
/* Test a WRITE_ZEROES that would span an I/O boundary. WRITE_ZEROES should not be
* split, so test that.
*/
bdev->optimal_io_boundary = 15;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 9, 36, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_write_zeroes_blocks(desc, io_ch, 9, 36, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
/* Test an UNMAP. This should also not be split. */
bdev->optimal_io_boundary = 16;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_UNMAP, 15, 2, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_unmap_blocks(desc, io_ch, 15, 2, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
/* Test a FLUSH. This should also not be split. */
bdev->optimal_io_boundary = 16;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_FLUSH, 15, 2, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_flush_blocks(desc, io_ch, 15, 2, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
/* Children requests return an error status */
bdev->optimal_io_boundary = 16;
iov[0].iov_base = (void *)0x10000;
iov[0].iov_len = 512 * 64;
g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
g_io_done = false;
g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, 1, 1, 64, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 5);
stub_complete_io(4);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
/* Test if a multi vector command terminated with failure before continueing
* splitting process when one of child I/O failed.
* The multi vector command is as same as the above that needs to be split by strip
* and then needs to be split further due to the capacity of child iovs.
*/
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 1; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 512;
}
iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base = (void *)(BDEV_IO_NUM_CHILD_IOV * 0x10000);
iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_len = 256;
iov[BDEV_IO_NUM_CHILD_IOV].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 1) * 0x10000);
iov[BDEV_IO_NUM_CHILD_IOV].iov_len = 256;
iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_base = (void *)((BDEV_IO_NUM_CHILD_IOV + 2) * 0x10000);
iov[BDEV_IO_NUM_CHILD_IOV + 1].iov_len = 512;
bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
g_io_done = false;
g_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
/* for this test we will create the following conditions to hit the code path where
* we are trying to send and IO following a split that has no iovs because we had to
* trim them for alignment reasons.
*
* - 16K boundary, our IO will start at offset 0 with a length of 0x4200
* - Our IOVs are 0x212 in size so that we run into the 16K boundary at child IOV
* position 30 and overshoot by 0x2e.
* - That means we'll send the IO and loop back to pick up the remaining bytes at
* child IOV index 31. When we do, we find that we have to shorten index 31 by 0x2e
* which eliniates that vector so we just send the first split IO with 30 vectors
* and let the completion pick up the last 2 vectors.
*/
bdev->optimal_io_boundary = 32;
bdev->split_on_optimal_io_boundary = true;
g_io_done = false;
/* Init all parent IOVs to 0x212 */
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV + 2; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 0x212;
}
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 0, BDEV_IO_NUM_CHILD_IOV,
BDEV_IO_NUM_CHILD_IOV - 1);
/* expect 0-29 to be 1:1 with the parent iov */
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV - 2; i++) {
ut_expected_io_set_iov(expected_io, i, iov[i].iov_base, iov[i].iov_len);
}
/* expect index 30 to be shortened to 0x1e4 (0x212 - 0x1e) because of the alignment
* where 0x1e is the amount we overshot the 16K boundary
*/
ut_expected_io_set_iov(expected_io, BDEV_IO_NUM_CHILD_IOV - 2,
(void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base), 0x1e4);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* 2nd child IO will have 2 remaining vectors, one to pick up from the one that was
* shortened that take it to the next boundary and then a final one to get us to
* 0x4200 bytes for the IO.
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, BDEV_IO_NUM_CHILD_IOV,
BDEV_IO_NUM_CHILD_IOV, 2);
/* position 30 picked up the remaining bytes to the next boundary */
ut_expected_io_set_iov(expected_io, 0,
(void *)(iov[BDEV_IO_NUM_CHILD_IOV - 2].iov_base + 0x1e4), 0x2e);
/* position 31 picked the the rest of the trasnfer to get us to 0x4200 */
ut_expected_io_set_iov(expected_io, 1,
(void *)(iov[BDEV_IO_NUM_CHILD_IOV - 1].iov_base), 0x1d2);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV + 1, 0,
BDEV_IO_NUM_CHILD_IOV + 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_io_split_with_io_wait(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_channel *channel;
struct spdk_bdev_mgmt_channel *mgmt_ch;
struct spdk_bdev_opts bdev_opts = {
.bdev_io_pool_size = 2,
.bdev_io_cache_size = 1,
};
struct iovec iov[3];
struct ut_expected_io *expected_io;
int rc;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT(rc == 0);
CU_ASSERT(desc != NULL);
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
channel = spdk_io_channel_get_ctx(io_ch);
mgmt_ch = channel->shared_resource->mgmt_ch;
bdev->optimal_io_boundary = 16;
bdev->split_on_optimal_io_boundary = true;
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
/* Now test that a single-vector command is split correctly.
* Offset 14, length 8, payload 0xF000
* Child - Offset 14, length 2, payload 0xF000
* Child - Offset 16, length 6, payload 0xF000 + 2 * 512
*
* Set up the expected values before calling spdk_bdev_read_blocks
*/
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 14, 2, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)0xF000, 2 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, 16, 6, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)(0xF000 + 2 * 512), 6 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
/* The following children will be submitted sequentially due to the capacity of
* spdk_bdev_io.
*/
/* The first child I/O will be queued to wait until an spdk_bdev_io becomes available */
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
/* Completing the first read I/O will submit the first child */
stub_complete_io(1);
CU_ASSERT(TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
/* Completing the first child will submit the second child */
stub_complete_io(1);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
/* Complete the second child I/O. This should result in our callback getting
* invoked since the parent I/O is now complete.
*/
stub_complete_io(1);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
/* Now set up a more complex, multi-vector command that needs to be split,
* including splitting iovecs.
*/
iov[0].iov_base = (void *)0x10000;
iov[0].iov_len = 512;
iov[1].iov_base = (void *)0x20000;
iov[1].iov_len = 20 * 512;
iov[2].iov_base = (void *)0x30000;
iov[2].iov_len = 11 * 512;
g_io_done = false;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 14, 2, 2);
ut_expected_io_set_iov(expected_io, 0, (void *)0x10000, 512);
ut_expected_io_set_iov(expected_io, 1, (void *)0x20000, 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 16, 16, 1);
ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 512), 16 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, 32, 14, 2);
ut_expected_io_set_iov(expected_io, 0, (void *)(0x20000 + 17 * 512), 3 * 512);
ut_expected_io_set_iov(expected_io, 1, (void *)0x30000, 11 * 512);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_writev_blocks(desc, io_ch, iov, 3, 14, 32, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
/* The following children will be submitted sequentially due to the capacity of
* spdk_bdev_io.
*/
/* Completing the first child will submit the second child */
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == false);
/* Completing the second child will submit the third child */
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == false);
/* Completing the third child will result in our callback getting invoked
* since the parent I/O is now complete.
*/
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(TAILQ_EMPTY(&g_bdev_ut_channel->expected_io));
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_io_alignment(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_opts bdev_opts = {
.bdev_io_pool_size = 20,
.bdev_io_cache_size = 2,
};
int rc;
void *buf;
struct iovec iovs[2];
int iovcnt;
uint64_t alignment;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
fn_table.submit_request = stub_submit_request_get_buf;
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT(rc == 0);
CU_ASSERT(desc != NULL);
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
/* Create aligned buffer */
rc = posix_memalign(&buf, 4096, 8192);
SPDK_CU_ASSERT_FATAL(rc == 0);
/* Pass aligned single buffer with no alignment required */
alignment = 1;
bdev->required_alignment = spdk_u32log2(alignment);
rc = spdk_bdev_write_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
stub_complete_io(1);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
rc = spdk_bdev_read_blocks(desc, io_ch, buf, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
stub_complete_io(1);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
/* Pass unaligned single buffer with no alignment required */
alignment = 1;
bdev->required_alignment = spdk_u32log2(alignment);
rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
stub_complete_io(1);
rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == buf + 4);
stub_complete_io(1);
/* Pass unaligned single buffer with 512 alignment required */
alignment = 512;
bdev->required_alignment = spdk_u32log2(alignment);
rc = spdk_bdev_write_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
rc = spdk_bdev_read_blocks(desc, io_ch, buf + 4, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
/* Pass unaligned single buffer with 4096 alignment required */
alignment = 4096;
bdev->required_alignment = spdk_u32log2(alignment);
rc = spdk_bdev_write_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
rc = spdk_bdev_read_blocks(desc, io_ch, buf + 8, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 1);
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
/* Pass aligned iovs with no alignment required */
alignment = 1;
bdev->required_alignment = spdk_u32log2(alignment);
iovcnt = 1;
iovs[0].iov_base = buf;
iovs[0].iov_len = 512;
rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
stub_complete_io(1);
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
stub_complete_io(1);
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
/* Pass unaligned iovs with no alignment required */
alignment = 1;
bdev->required_alignment = spdk_u32log2(alignment);
iovcnt = 2;
iovs[0].iov_base = buf + 16;
iovs[0].iov_len = 256;
iovs[1].iov_base = buf + 16 + 256 + 32;
iovs[1].iov_len = 256;
rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
stub_complete_io(1);
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
stub_complete_io(1);
CU_ASSERT(g_bdev_io->u.bdev.iovs[0].iov_base == iovs[0].iov_base);
/* Pass unaligned iov with 2048 alignment required */
alignment = 2048;
bdev->required_alignment = spdk_u32log2(alignment);
iovcnt = 2;
iovs[0].iov_base = buf + 16;
iovs[0].iov_len = 256;
iovs[1].iov_base = buf + 16 + 256 + 32;
iovs[1].iov_len = 256;
rc = spdk_bdev_writev(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == iovcnt);
CU_ASSERT(g_bdev_io->u.bdev.iovs == &g_bdev_io->internal.bounce_iov);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
/* Pass iov without allocated buffer without alignment required */
alignment = 1;
bdev->required_alignment = spdk_u32log2(alignment);
iovcnt = 1;
iovs[0].iov_base = NULL;
iovs[0].iov_len = 0;
rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
/* Pass iov without allocated buffer with 1024 alignment required */
alignment = 1024;
bdev->required_alignment = spdk_u32log2(alignment);
iovcnt = 1;
iovs[0].iov_base = NULL;
iovs[0].iov_len = 0;
rc = spdk_bdev_readv(desc, io_ch, iovs, iovcnt, 0, 512, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_io->internal.orig_iovcnt == 0);
CU_ASSERT(_are_iovs_aligned(g_bdev_io->u.bdev.iovs, g_bdev_io->u.bdev.iovcnt,
alignment));
stub_complete_io(1);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
fn_table.submit_request = stub_submit_request;
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
free(buf);
}
static void
bdev_io_alignment_with_boundary(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_opts bdev_opts = {
.bdev_io_pool_size = 20,
.bdev_io_cache_size = 2,
};
int rc;
void *buf;
struct iovec iovs[2];
int iovcnt;
uint64_t alignment;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
fn_table.submit_request = stub_submit_request_get_buf;
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT(rc == 0);
CU_ASSERT(desc != NULL);
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
/* Create aligned buffer */
rc = posix_memalign(&buf, 4096, 131072);
SPDK_CU_ASSERT_FATAL(rc == 0);
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
/* 512 * 3 with 2 IO boundary, allocate small data buffer from bdev layer */
alignment = 512;
bdev->required_alignment = spdk_u32log2(alignment);
bdev->optimal_io_boundary = 2;
bdev->split_on_optimal_io_boundary = true;
iovcnt = 1;
iovs[0].iov_base = NULL;
iovs[0].iov_len = 512 * 3;
rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
/* 8KiB with 16 IO boundary, allocate large data buffer from bdev layer */
alignment = 512;
bdev->required_alignment = spdk_u32log2(alignment);
bdev->optimal_io_boundary = 16;
bdev->split_on_optimal_io_boundary = true;
iovcnt = 1;
iovs[0].iov_base = NULL;
iovs[0].iov_len = 512 * 16;
rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 16, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
/* 512 * 160 with 128 IO boundary, 63.5KiB + 16.5KiB for the two children requests */
alignment = 512;
bdev->required_alignment = spdk_u32log2(alignment);
bdev->optimal_io_boundary = 128;
bdev->split_on_optimal_io_boundary = true;
iovcnt = 1;
iovs[0].iov_base = buf + 16;
iovs[0].iov_len = 512 * 160;
rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
/* 512 * 3 with 2 IO boundary */
alignment = 512;
bdev->required_alignment = spdk_u32log2(alignment);
bdev->optimal_io_boundary = 2;
bdev->split_on_optimal_io_boundary = true;
iovcnt = 2;
iovs[0].iov_base = buf + 16;
iovs[0].iov_len = 512;
iovs[1].iov_base = buf + 16 + 512 + 32;
iovs[1].iov_len = 1024;
rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 3, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
stub_complete_io(2);
/* 512 * 64 with 32 IO boundary */
bdev->optimal_io_boundary = 32;
iovcnt = 2;
iovs[0].iov_base = buf + 16;
iovs[0].iov_len = 16384;
iovs[1].iov_base = buf + 16 + 16384 + 32;
iovs[1].iov_len = 16384;
rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
stub_complete_io(3);
rc = spdk_bdev_readv_blocks(desc, io_ch, iovs, iovcnt, 1, 64, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 3);
stub_complete_io(3);
/* 512 * 160 with 32 IO boundary */
iovcnt = 1;
iovs[0].iov_base = buf + 16;
iovs[0].iov_len = 16384 + 65536;
rc = spdk_bdev_writev_blocks(desc, io_ch, iovs, iovcnt, 1, 160, io_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 6);
stub_complete_io(6);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
fn_table.submit_request = stub_submit_request;
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
free(buf);
}
static void
histogram_status_cb(void *cb_arg, int status)
{
g_status = status;
}
static void
histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
{
g_status = status;
g_histogram = histogram;
}
static void
histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
uint64_t total, uint64_t so_far)
{
g_count += count;
}
static void
bdev_histograms(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *ch;
struct spdk_histogram_data *histogram;
uint8_t buf[4096];
int rc;
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT(rc == 0);
CU_ASSERT(desc != NULL);
ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(ch != NULL);
/* Enable histogram */
g_status = -1;
spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, true);
poll_threads();
CU_ASSERT(g_status == 0);
CU_ASSERT(bdev->internal.histogram_enabled == true);
/* Allocate histogram */
histogram = spdk_histogram_data_alloc();
SPDK_CU_ASSERT_FATAL(histogram != NULL);
/* Check if histogram is zeroed */
spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
poll_threads();
CU_ASSERT(g_status == 0);
SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
g_count = 0;
spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
CU_ASSERT(g_count == 0);
rc = spdk_bdev_write_blocks(desc, ch, buf, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
spdk_delay_us(10);
stub_complete_io(1);
poll_threads();
rc = spdk_bdev_read_blocks(desc, ch, buf, 0, 1, io_done, NULL);
CU_ASSERT(rc == 0);
spdk_delay_us(10);
stub_complete_io(1);
poll_threads();
/* Check if histogram gathered data from all I/O channels */
g_histogram = NULL;
spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
poll_threads();
CU_ASSERT(g_status == 0);
CU_ASSERT(bdev->internal.histogram_enabled == true);
SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
g_count = 0;
spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
CU_ASSERT(g_count == 2);
/* Disable histogram */
spdk_bdev_histogram_enable(bdev, histogram_status_cb, NULL, false);
poll_threads();
CU_ASSERT(g_status == 0);
CU_ASSERT(bdev->internal.histogram_enabled == false);
/* Try to run histogram commands on disabled bdev */
spdk_bdev_histogram_get(bdev, histogram, histogram_data_cb, NULL);
poll_threads();
CU_ASSERT(g_status == -EFAULT);
spdk_histogram_data_free(histogram);
spdk_put_io_channel(ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
_bdev_compare(bool emulated)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *ioch;
struct ut_expected_io *expected_io;
uint64_t offset, num_blocks;
uint32_t num_completed;
char aa_buf[512];
char bb_buf[512];
struct iovec compare_iov;
uint8_t io_type;
int rc;
if (emulated) {
io_type = SPDK_BDEV_IO_TYPE_READ;
} else {
io_type = SPDK_BDEV_IO_TYPE_COMPARE;
}
memset(aa_buf, 0xaa, sizeof(aa_buf));
memset(bb_buf, 0xbb, sizeof(bb_buf));
g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = !emulated;
spdk_bdev_initialize(bdev_init_cb, NULL);
fn_table.submit_request = stub_submit_request_get_buf;
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT_EQUAL(rc, 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
ioch = spdk_bdev_get_io_channel(desc);
SPDK_CU_ASSERT_FATAL(ioch != NULL);
fn_table.submit_request = stub_submit_request_get_buf;
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
offset = 50;
num_blocks = 1;
compare_iov.iov_base = aa_buf;
compare_iov.iov_len = sizeof(aa_buf);
expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
g_io_done = false;
g_compare_read_buf = aa_buf;
g_compare_read_buf_len = sizeof(aa_buf);
rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(1);
CU_ASSERT_EQUAL(num_completed, 1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
expected_io = ut_alloc_expected_io(io_type, offset, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
g_io_done = false;
g_compare_read_buf = bb_buf;
g_compare_read_buf_len = sizeof(bb_buf);
rc = spdk_bdev_comparev_blocks(desc, ioch, &compare_iov, 1, offset, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(1);
CU_ASSERT_EQUAL(num_completed, 1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
spdk_put_io_channel(ioch);
spdk_bdev_close(desc);
free_bdev(bdev);
fn_table.submit_request = stub_submit_request;
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
g_compare_read_buf = NULL;
}
static void
bdev_compare(void)
{
_bdev_compare(true);
_bdev_compare(false);
}
static void
bdev_compare_and_write(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *ioch;
struct ut_expected_io *expected_io;
uint64_t offset, num_blocks;
uint32_t num_completed;
char aa_buf[512];
char bb_buf[512];
char cc_buf[512];
char write_buf[512];
struct iovec compare_iov;
struct iovec write_iov;
int rc;
memset(aa_buf, 0xaa, sizeof(aa_buf));
memset(bb_buf, 0xbb, sizeof(bb_buf));
memset(cc_buf, 0xcc, sizeof(cc_buf));
g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = false;
spdk_bdev_initialize(bdev_init_cb, NULL);
fn_table.submit_request = stub_submit_request_get_buf;
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT_EQUAL(rc, 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
ioch = spdk_bdev_get_io_channel(desc);
SPDK_CU_ASSERT_FATAL(ioch != NULL);
fn_table.submit_request = stub_submit_request_get_buf;
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
offset = 50;
num_blocks = 1;
compare_iov.iov_base = aa_buf;
compare_iov.iov_len = sizeof(aa_buf);
write_iov.iov_base = bb_buf;
write_iov.iov_len = sizeof(bb_buf);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE, offset, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
g_io_done = false;
g_compare_read_buf = aa_buf;
g_compare_read_buf_len = sizeof(aa_buf);
memset(write_buf, 0, sizeof(write_buf));
g_compare_write_buf = write_buf;
g_compare_write_buf_len = sizeof(write_buf);
rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
offset, num_blocks, io_done, NULL);
/* Trigger range locking */
poll_threads();
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(1);
CU_ASSERT_EQUAL(num_completed, 1);
CU_ASSERT(g_io_done == false);
num_completed = stub_complete_io(1);
/* Trigger range unlocking */
poll_threads();
CU_ASSERT_EQUAL(num_completed, 1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
CU_ASSERT(memcmp(write_buf, bb_buf, sizeof(write_buf)) == 0);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_READ, offset, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
g_io_done = false;
g_compare_read_buf = cc_buf;
g_compare_read_buf_len = sizeof(cc_buf);
memset(write_buf, 0, sizeof(write_buf));
g_compare_write_buf = write_buf;
g_compare_write_buf_len = sizeof(write_buf);
rc = spdk_bdev_comparev_and_writev_blocks(desc, ioch, &compare_iov, 1, &write_iov, 1,
offset, num_blocks, io_done, NULL);
/* Trigger range locking */
poll_threads();
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(1);
/* Trigger range unlocking earlier because we expect error here */
poll_threads();
CU_ASSERT_EQUAL(num_completed, 1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_MISCOMPARE);
num_completed = stub_complete_io(1);
CU_ASSERT_EQUAL(num_completed, 0);
spdk_put_io_channel(ioch);
spdk_bdev_close(desc);
free_bdev(bdev);
fn_table.submit_request = stub_submit_request;
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
g_io_types_supported[SPDK_BDEV_IO_TYPE_COMPARE] = true;
g_compare_read_buf = NULL;
g_compare_write_buf = NULL;
}
static void
bdev_write_zeroes(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *ioch;
struct ut_expected_io *expected_io;
uint64_t offset, num_io_blocks, num_blocks;
uint32_t num_completed, num_requests;
int rc;
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT_EQUAL(rc, 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
ioch = spdk_bdev_get_io_channel(desc);
SPDK_CU_ASSERT_FATAL(ioch != NULL);
fn_table.submit_request = stub_submit_request;
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
/* First test that if the bdev supports write_zeroes, the request won't be split */
bdev->md_len = 0;
bdev->blocklen = 4096;
num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, 0, num_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(1);
CU_ASSERT_EQUAL(num_completed, 1);
/* Check that if write zeroes is not supported it'll be replaced by regular writes */
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, false);
num_io_blocks = ZERO_BUFFER_SIZE / bdev->blocklen;
num_requests = 2;
num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * num_requests;
for (offset = 0; offset < num_requests; ++offset) {
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
offset * num_io_blocks, num_io_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
}
rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(num_requests);
CU_ASSERT_EQUAL(num_completed, num_requests);
/* Check that the splitting is correct if bdev has interleaved metadata */
bdev->md_interleave = true;
bdev->md_len = 64;
bdev->blocklen = 4096 + 64;
num_blocks = (ZERO_BUFFER_SIZE / bdev->blocklen) * 2;
num_requests = offset = 0;
while (offset < num_blocks) {
num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / bdev->blocklen, num_blocks - offset);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
offset, num_io_blocks, 0);
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
offset += num_io_blocks;
num_requests++;
}
rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(num_requests);
CU_ASSERT_EQUAL(num_completed, num_requests);
num_completed = stub_complete_io(num_requests);
assert(num_completed == 0);
/* Check the the same for separate metadata buffer */
bdev->md_interleave = false;
bdev->md_len = 64;
bdev->blocklen = 4096;
num_requests = offset = 0;
while (offset < num_blocks) {
num_io_blocks = spdk_min(ZERO_BUFFER_SIZE / (bdev->blocklen + bdev->md_len), num_blocks);
expected_io = ut_alloc_expected_io(SPDK_BDEV_IO_TYPE_WRITE,
offset, num_io_blocks, 0);
expected_io->md_buf = (char *)g_bdev_mgr.zero_buffer + num_io_blocks * bdev->blocklen;
TAILQ_INSERT_TAIL(&g_bdev_ut_channel->expected_io, expected_io, link);
offset += num_io_blocks;
num_requests++;
}
rc = spdk_bdev_write_zeroes_blocks(desc, ioch, 0, num_blocks, io_done, NULL);
CU_ASSERT_EQUAL(rc, 0);
num_completed = stub_complete_io(num_requests);
CU_ASSERT_EQUAL(num_completed, num_requests);
ut_enable_io_type(SPDK_BDEV_IO_TYPE_WRITE_ZEROES, true);
spdk_put_io_channel(ioch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
bdev_open_while_hotremove(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc[2] = {};
int rc;
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open(bdev, false, NULL, NULL, &desc[0]);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(desc[0] != NULL);
spdk_bdev_unregister(bdev, NULL, NULL);
rc = spdk_bdev_open(bdev, false, NULL, NULL, &desc[1]);
CU_ASSERT(rc == -ENODEV);
SPDK_CU_ASSERT_FATAL(desc[1] == NULL);
spdk_bdev_close(desc[0]);
free_bdev(bdev);
}
static void
bdev_close_while_hotremove(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
int rc = 0;
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc, &desc);
CU_ASSERT_EQUAL(rc, 0);
/* Simulate hot-unplug by unregistering bdev */
g_event_type1 = 0xFF;
g_unregister_arg = NULL;
g_unregister_rc = -1;
spdk_bdev_unregister(bdev, bdev_unregister_cb, (void *)0x12345678);
/* Close device while remove event is in flight */
spdk_bdev_close(desc);
/* Ensure that unregister callback is delayed */
CU_ASSERT_EQUAL(g_unregister_arg, NULL);
CU_ASSERT_EQUAL(g_unregister_rc, -1);
poll_threads();
/* Event callback shall not be issued because device was closed */
CU_ASSERT_EQUAL(g_event_type1, 0xFF);
/* Unregister callback is issued */
CU_ASSERT_EQUAL(g_unregister_arg, (void *)0x12345678);
CU_ASSERT_EQUAL(g_unregister_rc, 0);
free_bdev(bdev);
}
static void
bdev_open_ext(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc1 = NULL;
struct spdk_bdev_desc *desc2 = NULL;
int rc = 0;
bdev = allocate_bdev("bdev");
rc = spdk_bdev_open_ext("bdev", true, NULL, NULL, &desc1);
CU_ASSERT_EQUAL(rc, -EINVAL);
rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb1, &desc1, &desc1);
CU_ASSERT_EQUAL(rc, 0);
rc = spdk_bdev_open_ext("bdev", true, bdev_open_cb2, &desc2, &desc2);
CU_ASSERT_EQUAL(rc, 0);
g_event_type1 = 0xFF;
g_event_type2 = 0xFF;
/* Simulate hot-unplug by unregistering bdev */
spdk_bdev_unregister(bdev, NULL, NULL);
poll_threads();
/* Check if correct events have been triggered in event callback fn */
CU_ASSERT_EQUAL(g_event_type1, SPDK_BDEV_EVENT_REMOVE);
CU_ASSERT_EQUAL(g_event_type2, SPDK_BDEV_EVENT_REMOVE);
free_bdev(bdev);
poll_threads();
}
struct timeout_io_cb_arg {
struct iovec iov;
uint8_t type;
};
static int
bdev_channel_count_submitted_io(struct spdk_bdev_channel *ch)
{
struct spdk_bdev_io *bdev_io;
int n = 0;
if (!ch) {
return -1;
}
TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
n++;
}
return n;
}
static void
bdev_channel_io_timeout_cb(void *cb_arg, struct spdk_bdev_io *bdev_io)
{
struct timeout_io_cb_arg *ctx = cb_arg;
ctx->type = bdev_io->type;
ctx->iov.iov_base = bdev_io->iov.iov_base;
ctx->iov.iov_len = bdev_io->iov.iov_len;
}
static void
bdev_set_io_timeout(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch = NULL;
struct spdk_bdev_channel *bdev_ch = NULL;
struct timeout_io_cb_arg cb_arg;
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev");
CU_ASSERT(spdk_bdev_open(bdev, true, NULL, NULL, &desc) == 0);
SPDK_CU_ASSERT_FATAL(desc != NULL);
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
bdev_ch = spdk_io_channel_get_ctx(io_ch);
CU_ASSERT(TAILQ_EMPTY(&bdev_ch->io_submitted));
/* This is the part1.
* We will check the bdev_ch->io_submitted list
* TO make sure that it can link IOs and only the user submitted IOs
*/
CU_ASSERT(spdk_bdev_read(desc, io_ch, (void *)0x1000, 0, 4096, io_done, NULL) == 0);
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
CU_ASSERT(spdk_bdev_write(desc, io_ch, (void *)0x2000, 0, 4096, io_done, NULL) == 0);
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
stub_complete_io(1);
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
stub_complete_io(1);
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
/* Split IO */
bdev->optimal_io_boundary = 16;
bdev->split_on_optimal_io_boundary = true;
/* Now test that a single-vector command is split correctly.
* Offset 14, length 8, payload 0xF000
* Child - Offset 14, length 2, payload 0xF000
* Child - Offset 16, length 6, payload 0xF000 + 2 * 512
*
* Set up the expected values before calling spdk_bdev_read_blocks
*/
CU_ASSERT(spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
/* We count all submitted IOs including IO that are generated by splitting. */
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 3);
stub_complete_io(1);
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 2);
stub_complete_io(1);
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
/* Also include the reset IO */
CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 1);
poll_threads();
stub_complete_io(1);
poll_threads();
CU_ASSERT(bdev_channel_count_submitted_io(bdev_ch) == 0);
/* This is part2
* Test the desc timeout poller register
*/
/* Successfully set the timeout */
CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
CU_ASSERT(desc->io_timeout_poller != NULL);
CU_ASSERT(desc->timeout_in_sec == 30);
CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
CU_ASSERT(desc->cb_arg == &cb_arg);
/* Change the timeout limit */
CU_ASSERT(spdk_bdev_set_timeout(desc, 20, bdev_channel_io_timeout_cb, &cb_arg) == 0);
CU_ASSERT(desc->io_timeout_poller != NULL);
CU_ASSERT(desc->timeout_in_sec == 20);
CU_ASSERT(desc->cb_fn == bdev_channel_io_timeout_cb);
CU_ASSERT(desc->cb_arg == &cb_arg);
/* Disable the timeout */
CU_ASSERT(spdk_bdev_set_timeout(desc, 0, NULL, NULL) == 0);
CU_ASSERT(desc->io_timeout_poller == NULL);
/* This the part3
* We will test to catch timeout IO and check whether the IO is
* the submitted one.
*/
memset(&cb_arg, 0, sizeof(cb_arg));
CU_ASSERT(spdk_bdev_set_timeout(desc, 30, bdev_channel_io_timeout_cb, &cb_arg) == 0);
CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0x1000, 0, 1, io_done, NULL) == 0);
/* Don't reach the limit */
spdk_delay_us(15 * spdk_get_ticks_hz());
poll_threads();
CU_ASSERT(cb_arg.type == 0);
CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
CU_ASSERT(cb_arg.iov.iov_len == 0);
/* 15 + 15 = 30 reach the limit */
spdk_delay_us(15 * spdk_get_ticks_hz());
poll_threads();
CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
CU_ASSERT(cb_arg.iov.iov_base == (void *)0x1000);
CU_ASSERT(cb_arg.iov.iov_len == 1 * bdev->blocklen);
stub_complete_io(1);
/* Use the same split IO above and check the IO */
memset(&cb_arg, 0, sizeof(cb_arg));
CU_ASSERT(spdk_bdev_write_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, NULL) == 0);
/* The first child complete in time */
spdk_delay_us(15 * spdk_get_ticks_hz());
poll_threads();
stub_complete_io(1);
CU_ASSERT(cb_arg.type == 0);
CU_ASSERT(cb_arg.iov.iov_base == (void *)0x0);
CU_ASSERT(cb_arg.iov.iov_len == 0);
/* The second child reach the limit */
spdk_delay_us(15 * spdk_get_ticks_hz());
poll_threads();
CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_WRITE);
CU_ASSERT(cb_arg.iov.iov_base == (void *)0xF000);
CU_ASSERT(cb_arg.iov.iov_len == 8 * bdev->blocklen);
stub_complete_io(1);
/* Also include the reset IO */
memset(&cb_arg, 0, sizeof(cb_arg));
CU_ASSERT(spdk_bdev_reset(desc, io_ch, io_done, NULL) == 0);
spdk_delay_us(30 * spdk_get_ticks_hz());
poll_threads();
CU_ASSERT(cb_arg.type == SPDK_BDEV_IO_TYPE_RESET);
stub_complete_io(1);
poll_threads();
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
lba_range_overlap(void)
{
struct lba_range r1, r2;
r1.offset = 100;
r1.length = 50;
r2.offset = 0;
r2.length = 1;
CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
r2.offset = 0;
r2.length = 100;
CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
r2.offset = 0;
r2.length = 110;
CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
r2.offset = 100;
r2.length = 10;
CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
r2.offset = 110;
r2.length = 20;
CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
r2.offset = 140;
r2.length = 150;
CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
r2.offset = 130;
r2.length = 200;
CU_ASSERT(bdev_lba_range_overlapped(&r1, &r2));
r2.offset = 150;
r2.length = 100;
CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
r2.offset = 110;
r2.length = 0;
CU_ASSERT(!bdev_lba_range_overlapped(&r1, &r2));
}
static bool g_lock_lba_range_done;
static bool g_unlock_lba_range_done;
static void
lock_lba_range_done(void *ctx, int status)
{
g_lock_lba_range_done = true;
}
static void
unlock_lba_range_done(void *ctx, int status)
{
g_unlock_lba_range_done = true;
}
static void
lock_lba_range_check_ranges(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_channel *channel;
struct lba_range *range;
int ctx1;
int rc;
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT(rc == 0);
CU_ASSERT(desc != NULL);
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
channel = spdk_io_channel_get_ctx(io_ch);
g_lock_lba_range_done = false;
rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(g_lock_lba_range_done == true);
range = TAILQ_FIRST(&channel->locked_ranges);
SPDK_CU_ASSERT_FATAL(range != NULL);
CU_ASSERT(range->offset == 20);
CU_ASSERT(range->length == 10);
CU_ASSERT(range->owner_ch == channel);
/* Unlocks must exactly match a lock. */
g_unlock_lba_range_done = false;
rc = bdev_unlock_lba_range(desc, io_ch, 20, 1, unlock_lba_range_done, &ctx1);
CU_ASSERT(rc == -EINVAL);
CU_ASSERT(g_unlock_lba_range_done == false);
rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
spdk_delay_us(100);
poll_threads();
CU_ASSERT(g_unlock_lba_range_done == true);
CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
lock_lba_range_with_io_outstanding(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_channel *channel;
struct lba_range *range;
char buf[4096];
int ctx1;
int rc;
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT(rc == 0);
CU_ASSERT(desc != NULL);
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
channel = spdk_io_channel_get_ctx(io_ch);
g_io_done = false;
rc = spdk_bdev_read_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
CU_ASSERT(rc == 0);
g_lock_lba_range_done = false;
rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
/* The lock should immediately become valid, since there are no outstanding
* write I/O.
*/
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_lock_lba_range_done == true);
range = TAILQ_FIRST(&channel->locked_ranges);
SPDK_CU_ASSERT_FATAL(range != NULL);
CU_ASSERT(range->offset == 20);
CU_ASSERT(range->length == 10);
CU_ASSERT(range->owner_ch == channel);
CU_ASSERT(range->locked_ctx == &ctx1);
rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
stub_complete_io(1);
spdk_delay_us(100);
poll_threads();
CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
/* Now try again, but with a write I/O. */
g_io_done = false;
rc = spdk_bdev_write_blocks(desc, io_ch, buf, 20, 1, io_done, &ctx1);
CU_ASSERT(rc == 0);
g_lock_lba_range_done = false;
rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
/* The lock should not be fully valid yet, since a write I/O is outstanding.
* But note that the range should be on the channel's locked_list, to make sure no
* new write I/O are started.
*/
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_lock_lba_range_done == false);
range = TAILQ_FIRST(&channel->locked_ranges);
SPDK_CU_ASSERT_FATAL(range != NULL);
CU_ASSERT(range->offset == 20);
CU_ASSERT(range->length == 10);
/* Complete the write I/O. This should make the lock valid (checked by confirming
* our callback was invoked).
*/
stub_complete_io(1);
spdk_delay_us(100);
poll_threads();
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_lock_lba_range_done == true);
rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(TAILQ_EMPTY(&channel->locked_ranges));
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
lock_lba_range_overlapped(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_channel *channel;
struct lba_range *range;
int ctx1;
int rc;
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT(rc == 0);
CU_ASSERT(desc != NULL);
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
channel = spdk_io_channel_get_ctx(io_ch);
/* Lock range 20-29. */
g_lock_lba_range_done = false;
rc = bdev_lock_lba_range(desc, io_ch, 20, 10, lock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(g_lock_lba_range_done == true);
range = TAILQ_FIRST(&channel->locked_ranges);
SPDK_CU_ASSERT_FATAL(range != NULL);
CU_ASSERT(range->offset == 20);
CU_ASSERT(range->length == 10);
/* Try to lock range 25-39. It should not lock immediately, since it overlaps with
* 20-29.
*/
g_lock_lba_range_done = false;
rc = bdev_lock_lba_range(desc, io_ch, 25, 15, lock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(g_lock_lba_range_done == false);
range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
SPDK_CU_ASSERT_FATAL(range != NULL);
CU_ASSERT(range->offset == 25);
CU_ASSERT(range->length == 15);
/* Unlock 20-29. This should result in range 25-39 now getting locked since it
* no longer overlaps with an active lock.
*/
g_unlock_lba_range_done = false;
rc = bdev_unlock_lba_range(desc, io_ch, 20, 10, unlock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(g_unlock_lba_range_done == true);
CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
range = TAILQ_FIRST(&channel->locked_ranges);
SPDK_CU_ASSERT_FATAL(range != NULL);
CU_ASSERT(range->offset == 25);
CU_ASSERT(range->length == 15);
/* Lock 40-59. This should immediately lock since it does not overlap with the
* currently active 25-39 lock.
*/
g_lock_lba_range_done = false;
rc = bdev_lock_lba_range(desc, io_ch, 40, 20, lock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(g_lock_lba_range_done == true);
range = TAILQ_FIRST(&bdev->internal.locked_ranges);
SPDK_CU_ASSERT_FATAL(range != NULL);
range = TAILQ_NEXT(range, tailq);
SPDK_CU_ASSERT_FATAL(range != NULL);
CU_ASSERT(range->offset == 40);
CU_ASSERT(range->length == 20);
/* Try to lock 35-44. Note that this overlaps with both 25-39 and 40-59. */
g_lock_lba_range_done = false;
rc = bdev_lock_lba_range(desc, io_ch, 35, 10, lock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(g_lock_lba_range_done == false);
range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
SPDK_CU_ASSERT_FATAL(range != NULL);
CU_ASSERT(range->offset == 35);
CU_ASSERT(range->length == 10);
/* Unlock 25-39. Make sure that 35-44 is still in the pending list, since
* the 40-59 lock is still active.
*/
g_unlock_lba_range_done = false;
rc = bdev_unlock_lba_range(desc, io_ch, 25, 15, unlock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(g_unlock_lba_range_done == true);
CU_ASSERT(g_lock_lba_range_done == false);
range = TAILQ_FIRST(&bdev->internal.pending_locked_ranges);
SPDK_CU_ASSERT_FATAL(range != NULL);
CU_ASSERT(range->offset == 35);
CU_ASSERT(range->length == 10);
/* Unlock 40-59. This should result in 35-44 now getting locked, since there are
* no longer any active overlapping locks.
*/
g_unlock_lba_range_done = false;
rc = bdev_unlock_lba_range(desc, io_ch, 40, 20, unlock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(g_unlock_lba_range_done == true);
CU_ASSERT(g_lock_lba_range_done == true);
CU_ASSERT(TAILQ_EMPTY(&bdev->internal.pending_locked_ranges));
range = TAILQ_FIRST(&bdev->internal.locked_ranges);
SPDK_CU_ASSERT_FATAL(range != NULL);
CU_ASSERT(range->offset == 35);
CU_ASSERT(range->length == 10);
/* Finally, unlock 35-44. */
g_unlock_lba_range_done = false;
rc = bdev_unlock_lba_range(desc, io_ch, 35, 10, unlock_lba_range_done, &ctx1);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(g_unlock_lba_range_done == true);
CU_ASSERT(TAILQ_EMPTY(&bdev->internal.locked_ranges));
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
static void
abort_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
g_abort_done = true;
g_abort_status = bdev_io->internal.status;
spdk_bdev_free_io(bdev_io);
}
static void
bdev_io_abort(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev_desc *desc = NULL;
struct spdk_io_channel *io_ch;
struct spdk_bdev_channel *channel;
struct spdk_bdev_mgmt_channel *mgmt_ch;
struct spdk_bdev_opts bdev_opts = {
.bdev_io_pool_size = 7,
.bdev_io_cache_size = 2,
};
struct iovec iov[BDEV_IO_NUM_CHILD_IOV * 2];
uint64_t io_ctx1 = 0, io_ctx2 = 0, i;
int rc;
rc = spdk_bdev_set_opts(&bdev_opts);
CU_ASSERT(rc == 0);
spdk_bdev_initialize(bdev_init_cb, NULL);
bdev = allocate_bdev("bdev0");
rc = spdk_bdev_open(bdev, true, NULL, NULL, &desc);
CU_ASSERT(rc == 0);
CU_ASSERT(desc != NULL);
io_ch = spdk_bdev_get_io_channel(desc);
CU_ASSERT(io_ch != NULL);
channel = spdk_io_channel_get_ctx(io_ch);
mgmt_ch = channel->shared_resource->mgmt_ch;
g_abort_done = false;
ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, false);
rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
CU_ASSERT(rc == -ENOTSUP);
ut_enable_io_type(SPDK_BDEV_IO_TYPE_ABORT, true);
rc = spdk_bdev_abort(desc, io_ch, &io_ctx2, abort_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_abort_done == true);
CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_FAILED);
/* Test the case that the target I/O was successfully aborted. */
g_io_done = false;
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
g_abort_done = false;
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
stub_complete_io(1);
CU_ASSERT(g_abort_done == true);
CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
/* Test the case that the target I/O was not aborted because it completed
* in the middle of execution of the abort.
*/
g_io_done = false;
rc = spdk_bdev_read_blocks(desc, io_ch, NULL, 0, 1, io_done, &io_ctx1);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
g_abort_done = false;
g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_SUCCESS);
g_io_exp_status = SPDK_BDEV_IO_STATUS_FAILED;
stub_complete_io(1);
CU_ASSERT(g_abort_done == true);
CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
bdev->optimal_io_boundary = 16;
bdev->split_on_optimal_io_boundary = true;
/* Test that a single-vector command which is split is aborted correctly.
* Offset 14, length 8, payload 0xF000
* Child - Offset 14, length 2, payload 0xF000
* Child - Offset 16, length 6, payload 0xF000 + 2 * 512
*/
g_io_done = false;
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 8, io_done, &io_ctx1);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 2);
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
stub_complete_io(2);
CU_ASSERT(g_abort_done == true);
CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
/* Test that a multi-vector command that needs to be split by strip and then
* needs to be split is aborted correctly. Abort is requested before the second
* child I/O was submitted. The parent I/O should complete with failure without
* submitting the second child I/O.
*/
for (i = 0; i < BDEV_IO_NUM_CHILD_IOV * 2; i++) {
iov[i].iov_base = (void *)((i + 1) * 0x10000);
iov[i].iov_len = 512;
}
bdev->optimal_io_boundary = BDEV_IO_NUM_CHILD_IOV;
g_io_done = false;
rc = spdk_bdev_readv_blocks(desc, io_ch, iov, BDEV_IO_NUM_CHILD_IOV * 2, 0,
BDEV_IO_NUM_CHILD_IOV * 2, io_done, &io_ctx1);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 1);
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
stub_complete_io(1);
CU_ASSERT(g_abort_done == true);
CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
bdev->optimal_io_boundary = 16;
g_io_done = false;
/* Test that a ingle-vector command which is split is aborted correctly.
* Differently from the above, the child abort request will be submitted
* sequentially due to the capacity of spdk_bdev_io.
*/
rc = spdk_bdev_read_blocks(desc, io_ch, (void *)0xF000, 14, 50, io_done, &io_ctx1);
CU_ASSERT(rc == 0);
CU_ASSERT(g_io_done == false);
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
g_abort_done = false;
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
rc = spdk_bdev_abort(desc, io_ch, &io_ctx1, abort_done, NULL);
CU_ASSERT(rc == 0);
CU_ASSERT(!TAILQ_EMPTY(&mgmt_ch->io_wait_queue));
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 4);
stub_complete_io(1);
CU_ASSERT(g_io_done == true);
CU_ASSERT(g_io_status == SPDK_BDEV_IO_STATUS_FAILED);
stub_complete_io(3);
CU_ASSERT(g_abort_done == true);
CU_ASSERT(g_abort_status == SPDK_BDEV_IO_STATUS_SUCCESS);
g_io_exp_status = SPDK_BDEV_IO_STATUS_SUCCESS;
CU_ASSERT(g_bdev_ut_channel->outstanding_io_count == 0);
spdk_put_io_channel(io_ch);
spdk_bdev_close(desc);
free_bdev(bdev);
spdk_bdev_finish(bdev_fini_cb, NULL);
poll_threads();
}
int
main(int argc, char **argv)
{
CU_pSuite suite = NULL;
unsigned int num_failures;
CU_set_error_action(CUEA_ABORT);
CU_initialize_registry();
suite = CU_add_suite("bdev", null_init, null_clean);
CU_ADD_TEST(suite, bytes_to_blocks_test);
CU_ADD_TEST(suite, num_blocks_test);
CU_ADD_TEST(suite, io_valid_test);
CU_ADD_TEST(suite, open_write_test);
CU_ADD_TEST(suite, alias_add_del_test);
CU_ADD_TEST(suite, get_device_stat_test);
CU_ADD_TEST(suite, bdev_io_types_test);
CU_ADD_TEST(suite, bdev_io_wait_test);
CU_ADD_TEST(suite, bdev_io_spans_boundary_test);
CU_ADD_TEST(suite, bdev_io_split_test);
CU_ADD_TEST(suite, bdev_io_split_with_io_wait);
CU_ADD_TEST(suite, bdev_io_alignment_with_boundary);
CU_ADD_TEST(suite, bdev_io_alignment);
CU_ADD_TEST(suite, bdev_histograms);
CU_ADD_TEST(suite, bdev_write_zeroes);
CU_ADD_TEST(suite, bdev_compare_and_write);
CU_ADD_TEST(suite, bdev_compare);
CU_ADD_TEST(suite, bdev_open_while_hotremove);
CU_ADD_TEST(suite, bdev_close_while_hotremove);
CU_ADD_TEST(suite, bdev_open_ext);
CU_ADD_TEST(suite, bdev_set_io_timeout);
CU_ADD_TEST(suite, lba_range_overlap);
CU_ADD_TEST(suite, lock_lba_range_check_ranges);
CU_ADD_TEST(suite, lock_lba_range_with_io_outstanding);
CU_ADD_TEST(suite, lock_lba_range_overlapped);
CU_ADD_TEST(suite, bdev_io_abort);
allocate_threads(1);
set_thread(0);
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
free_threads();
return num_failures;
}