Spdk/test/bdev/bdevio/bdevio.c
Tomasz Zawadzki 84429e7bbb test/bdevio: add function to create target from single bdev
Adding ability to create targets from single bdev,
will allow to create set of targets (not all) to run tests.

Idea is for bdevio to no longer run tests on all bdevs and
shutdown right after. Rather await RPC for configuring bdevs
then start test suite on select targets via RPC.
This is first patch in that direction.

Change-Id: I8645a3c22150e8611ff8a59f740e2ebf4edb4c1f
Signed-off-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/454622
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
2019-05-16 20:33:49 +00:00

1122 lines
27 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/bdev.h"
#include "spdk/copy_engine.h"
#include "spdk/env.h"
#include "spdk/log.h"
#include "spdk/thread.h"
#include "spdk/event.h"
#include "CUnit/Basic.h"
#define BUFFER_IOVS 1024
#define BUFFER_SIZE 260 * 1024
#define BDEV_TASK_ARRAY_SIZE 2048
pthread_mutex_t g_test_mutex;
pthread_cond_t g_test_cond;
static uint32_t g_lcore_id_init;
static uint32_t g_lcore_id_ut;
static uint32_t g_lcore_id_io;
struct io_target {
struct spdk_bdev *bdev;
struct spdk_bdev_desc *bdev_desc;
struct spdk_io_channel *ch;
struct io_target *next;
};
struct bdevio_request {
char *buf;
int data_len;
uint64_t offset;
struct iovec iov[BUFFER_IOVS];
int iovcnt;
struct io_target *target;
};
struct io_target *g_io_targets = NULL;
static void
execute_spdk_function(spdk_event_fn fn, void *arg1, void *arg2)
{
struct spdk_event *event;
event = spdk_event_allocate(g_lcore_id_io, fn, arg1, arg2);
pthread_mutex_lock(&g_test_mutex);
spdk_event_call(event);
pthread_cond_wait(&g_test_cond, &g_test_mutex);
pthread_mutex_unlock(&g_test_mutex);
}
static void
wake_ut_thread(void)
{
pthread_mutex_lock(&g_test_mutex);
pthread_cond_signal(&g_test_cond);
pthread_mutex_unlock(&g_test_mutex);
}
static void
__get_io_channel(void *arg1, void *arg2)
{
struct io_target *target = arg1;
target->ch = spdk_bdev_get_io_channel(target->bdev_desc);
assert(target->ch);
wake_ut_thread();
}
static int
bdevio_construct_target(struct spdk_bdev *bdev)
{
struct io_target *target;
int rc;
uint64_t num_blocks = spdk_bdev_get_num_blocks(bdev);
uint32_t block_size = spdk_bdev_get_block_size(bdev);
target = malloc(sizeof(struct io_target));
if (target == NULL) {
return -ENOMEM;
}
rc = spdk_bdev_open(bdev, true, NULL, NULL, &target->bdev_desc);
if (rc != 0) {
free(target);
SPDK_ERRLOG("Could not open leaf bdev %s, error=%d\n", spdk_bdev_get_name(bdev), rc);
return rc;
}
printf(" %s: %" PRIu64 " blocks of %" PRIu32 " bytes (%" PRIu64 " MiB)\n",
spdk_bdev_get_name(bdev),
num_blocks, block_size,
(num_blocks * block_size + 1024 * 1024 - 1) / (1024 * 1024));
target->bdev = bdev;
target->next = g_io_targets;
execute_spdk_function(__get_io_channel, target, NULL);
g_io_targets = target;
return 0;
}
static int
bdevio_construct_targets(void)
{
struct spdk_bdev *bdev;
int rc;
printf("I/O targets:\n");
bdev = spdk_bdev_first_leaf();
while (bdev != NULL) {
rc = bdevio_construct_target(bdev);
if (rc < 0) {
SPDK_ERRLOG("Could not construct bdev %s, error=%d\n", spdk_bdev_get_name(bdev), rc);
return rc;
}
bdev = spdk_bdev_next_leaf(bdev);
}
if (g_io_targets == NULL) {
SPDK_ERRLOG("No bdevs to perform tests on\n");
return -1;
}
return 0;
}
static void
__put_io_channel(void *arg1, void *arg2)
{
struct io_target *target = arg1;
spdk_put_io_channel(target->ch);
wake_ut_thread();
}
static void
bdevio_cleanup_targets(void)
{
struct io_target *target;
target = g_io_targets;
while (target != NULL) {
execute_spdk_function(__put_io_channel, target, NULL);
spdk_bdev_close(target->bdev_desc);
g_io_targets = target->next;
free(target);
target = g_io_targets;
}
}
static bool g_completion_success;
static void
initialize_buffer(char **buf, int pattern, int size)
{
*buf = spdk_dma_zmalloc(size, 0x1000, NULL);
memset(*buf, pattern, size);
}
static void
quick_test_complete(struct spdk_bdev_io *bdev_io, bool success, void *arg)
{
g_completion_success = success;
spdk_bdev_free_io(bdev_io);
wake_ut_thread();
}
static void
__blockdev_write(void *arg1, void *arg2)
{
struct bdevio_request *req = arg1;
struct io_target *target = req->target;
int rc;
if (req->iovcnt) {
rc = spdk_bdev_writev(target->bdev_desc, target->ch, req->iov, req->iovcnt, req->offset,
req->data_len, quick_test_complete, NULL);
} else {
rc = spdk_bdev_write(target->bdev_desc, target->ch, req->buf, req->offset,
req->data_len, quick_test_complete, NULL);
}
if (rc) {
g_completion_success = false;
wake_ut_thread();
}
}
static void
__blockdev_write_zeroes(void *arg1, void *arg2)
{
struct bdevio_request *req = arg1;
struct io_target *target = req->target;
int rc;
rc = spdk_bdev_write_zeroes(target->bdev_desc, target->ch, req->offset,
req->data_len, quick_test_complete, NULL);
if (rc) {
g_completion_success = false;
wake_ut_thread();
}
}
static void
sgl_chop_buffer(struct bdevio_request *req, int iov_len)
{
int data_len = req->data_len;
char *buf = req->buf;
req->iovcnt = 0;
if (!iov_len) {
return;
}
for (; data_len > 0 && req->iovcnt < BUFFER_IOVS; req->iovcnt++) {
if (data_len < iov_len) {
iov_len = data_len;
}
req->iov[req->iovcnt].iov_base = buf;
req->iov[req->iovcnt].iov_len = iov_len;
buf += iov_len;
data_len -= iov_len;
}
CU_ASSERT_EQUAL_FATAL(data_len, 0);
}
static void
blockdev_write(struct io_target *target, char *tx_buf,
uint64_t offset, int data_len, int iov_len)
{
struct bdevio_request req;
req.target = target;
req.buf = tx_buf;
req.data_len = data_len;
req.offset = offset;
sgl_chop_buffer(&req, iov_len);
g_completion_success = false;
execute_spdk_function(__blockdev_write, &req, NULL);
}
static void
blockdev_write_zeroes(struct io_target *target, char *tx_buf,
uint64_t offset, int data_len)
{
struct bdevio_request req;
req.target = target;
req.buf = tx_buf;
req.data_len = data_len;
req.offset = offset;
g_completion_success = false;
execute_spdk_function(__blockdev_write_zeroes, &req, NULL);
}
static void
__blockdev_read(void *arg1, void *arg2)
{
struct bdevio_request *req = arg1;
struct io_target *target = req->target;
int rc;
if (req->iovcnt) {
rc = spdk_bdev_readv(target->bdev_desc, target->ch, req->iov, req->iovcnt, req->offset,
req->data_len, quick_test_complete, NULL);
} else {
rc = spdk_bdev_read(target->bdev_desc, target->ch, req->buf, req->offset,
req->data_len, quick_test_complete, NULL);
}
if (rc) {
g_completion_success = false;
wake_ut_thread();
}
}
static void
blockdev_read(struct io_target *target, char *rx_buf,
uint64_t offset, int data_len, int iov_len)
{
struct bdevio_request req;
req.target = target;
req.buf = rx_buf;
req.data_len = data_len;
req.offset = offset;
req.iovcnt = 0;
sgl_chop_buffer(&req, iov_len);
g_completion_success = false;
execute_spdk_function(__blockdev_read, &req, NULL);
}
static int
blockdev_write_read_data_match(char *rx_buf, char *tx_buf, int data_length)
{
int rc;
rc = memcmp(rx_buf, tx_buf, data_length);
spdk_dma_free(rx_buf);
spdk_dma_free(tx_buf);
return rc;
}
static void
blockdev_write_read(uint32_t data_length, uint32_t iov_len, int pattern, uint64_t offset,
int expected_rc, bool write_zeroes)
{
struct io_target *target;
char *tx_buf = NULL;
char *rx_buf = NULL;
int rc;
target = g_io_targets;
while (target != NULL) {
if (data_length < spdk_bdev_get_block_size(target->bdev) ||
data_length / spdk_bdev_get_block_size(target->bdev) > spdk_bdev_get_num_blocks(target->bdev)) {
target = target->next;
continue;
}
if (!write_zeroes) {
initialize_buffer(&tx_buf, pattern, data_length);
initialize_buffer(&rx_buf, 0, data_length);
blockdev_write(target, tx_buf, offset, data_length, iov_len);
} else {
initialize_buffer(&tx_buf, 0, data_length);
initialize_buffer(&rx_buf, pattern, data_length);
blockdev_write_zeroes(target, tx_buf, offset, data_length);
}
if (expected_rc == 0) {
CU_ASSERT_EQUAL(g_completion_success, true);
} else {
CU_ASSERT_EQUAL(g_completion_success, false);
}
blockdev_read(target, rx_buf, offset, data_length, iov_len);
if (expected_rc == 0) {
CU_ASSERT_EQUAL(g_completion_success, true);
} else {
CU_ASSERT_EQUAL(g_completion_success, false);
}
if (g_completion_success) {
rc = blockdev_write_read_data_match(rx_buf, tx_buf, data_length);
/* Assert the write by comparing it with values read
* from each blockdev */
CU_ASSERT_EQUAL(rc, 0);
}
target = target->next;
}
}
static void
blockdev_write_read_4k(void)
{
uint32_t data_length;
uint64_t offset;
int pattern;
int expected_rc;
/* Data size = 4K */
data_length = 4096;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
offset = 0;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 0);
}
static void
blockdev_write_zeroes_read_4k(void)
{
uint32_t data_length;
uint64_t offset;
int pattern;
int expected_rc;
/* Data size = 4K */
data_length = 4096;
offset = 0;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write_zeroes and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 1);
}
/*
* This i/o will not have to split at the bdev layer.
*/
static void
blockdev_write_zeroes_read_1m(void)
{
uint32_t data_length;
uint64_t offset;
int pattern;
int expected_rc;
/* Data size = 1M */
data_length = 1048576;
offset = 0;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write_zeroes and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 1);
}
/*
* This i/o will have to split at the bdev layer if
* write-zeroes is not supported by the bdev.
*/
static void
blockdev_write_zeroes_read_3m(void)
{
uint32_t data_length;
uint64_t offset;
int pattern;
int expected_rc;
/* Data size = 3M */
data_length = 3145728;
offset = 0;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write_zeroes and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 1);
}
/*
* This i/o will have to split at the bdev layer if
* write-zeroes is not supported by the bdev. It also
* tests a write size that is not an even multiple of
* the bdev layer zero buffer size.
*/
static void
blockdev_write_zeroes_read_3m_500k(void)
{
uint32_t data_length;
uint64_t offset;
int pattern;
int expected_rc;
/* Data size = 3.5M */
data_length = 3670016;
offset = 0;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write_zeroes and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 1);
}
static void
blockdev_writev_readv_4k(void)
{
uint32_t data_length, iov_len;
uint64_t offset;
int pattern;
int expected_rc;
/* Data size = 4K */
data_length = 4096;
iov_len = 4096;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
offset = 0;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, iov_len, pattern, offset, expected_rc, 0);
}
static void
blockdev_writev_readv_30x4k(void)
{
uint32_t data_length, iov_len;
uint64_t offset;
int pattern;
int expected_rc;
/* Data size = 4K */
data_length = 4096 * 30;
iov_len = 4096;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
offset = 0;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, iov_len, pattern, offset, expected_rc, 0);
}
static void
blockdev_write_read_512Bytes(void)
{
uint32_t data_length;
uint64_t offset;
int pattern;
int expected_rc;
/* Data size = 512 */
data_length = 512;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
offset = 8192;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 0);
}
static void
blockdev_writev_readv_512Bytes(void)
{
uint32_t data_length, iov_len;
uint64_t offset;
int pattern;
int expected_rc;
/* Data size = 512 */
data_length = 512;
iov_len = 512;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
offset = 8192;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, iov_len, pattern, offset, expected_rc, 0);
}
static void
blockdev_write_read_size_gt_128k(void)
{
uint32_t data_length;
uint64_t offset;
int pattern;
int expected_rc;
/* Data size = 132K */
data_length = 135168;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
offset = 8192;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 0);
}
static void
blockdev_writev_readv_size_gt_128k(void)
{
uint32_t data_length, iov_len;
uint64_t offset;
int pattern;
int expected_rc;
/* Data size = 132K */
data_length = 135168;
iov_len = 135168;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
offset = 8192;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, iov_len, pattern, offset, expected_rc, 0);
}
static void
blockdev_writev_readv_size_gt_128k_two_iov(void)
{
uint32_t data_length, iov_len;
uint64_t offset;
int pattern;
int expected_rc;
/* Data size = 132K */
data_length = 135168;
iov_len = 128 * 1024;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
offset = 8192;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write and read for all blockdevs is 0. */
expected_rc = 0;
blockdev_write_read(data_length, iov_len, pattern, offset, expected_rc, 0);
}
static void
blockdev_write_read_invalid_size(void)
{
uint32_t data_length;
uint64_t offset;
int pattern;
int expected_rc;
/* Data size is not a multiple of the block size */
data_length = 0x1015;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
offset = 8192;
pattern = 0xA3;
/* Params are invalid, hence the expected return value
* of write and read for all blockdevs is < 0 */
expected_rc = -1;
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 0);
}
static void
blockdev_write_read_offset_plus_nbytes_equals_bdev_size(void)
{
struct io_target *target;
struct spdk_bdev *bdev;
char *tx_buf = NULL;
char *rx_buf = NULL;
uint64_t offset;
uint32_t block_size;
int rc;
target = g_io_targets;
while (target != NULL) {
bdev = target->bdev;
block_size = spdk_bdev_get_block_size(bdev);
/* The start offset has been set to a marginal value
* such that offset + nbytes == Total size of
* blockdev. */
offset = ((spdk_bdev_get_num_blocks(bdev) - 1) * block_size);
initialize_buffer(&tx_buf, 0xA3, block_size);
initialize_buffer(&rx_buf, 0, block_size);
blockdev_write(target, tx_buf, offset, block_size, 0);
CU_ASSERT_EQUAL(g_completion_success, true);
blockdev_read(target, rx_buf, offset, block_size, 0);
CU_ASSERT_EQUAL(g_completion_success, true);
rc = blockdev_write_read_data_match(rx_buf, tx_buf, block_size);
/* Assert the write by comparing it with values read
* from each blockdev */
CU_ASSERT_EQUAL(rc, 0);
target = target->next;
}
}
static void
blockdev_write_read_offset_plus_nbytes_gt_bdev_size(void)
{
struct io_target *target;
struct spdk_bdev *bdev;
char *tx_buf = NULL;
char *rx_buf = NULL;
int data_length;
uint64_t offset;
int pattern;
/* Tests the overflow condition of the blockdevs. */
data_length = 4096;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
pattern = 0xA3;
target = g_io_targets;
while (target != NULL) {
bdev = target->bdev;
/* The start offset has been set to a valid value
* but offset + nbytes is greater than the Total size
* of the blockdev. The test should fail. */
offset = ((spdk_bdev_get_num_blocks(bdev) * spdk_bdev_get_block_size(bdev)) - 1024);
initialize_buffer(&tx_buf, pattern, data_length);
initialize_buffer(&rx_buf, 0, data_length);
blockdev_write(target, tx_buf, offset, data_length, 0);
CU_ASSERT_EQUAL(g_completion_success, false);
blockdev_read(target, rx_buf, offset, data_length, 0);
CU_ASSERT_EQUAL(g_completion_success, false);
target = target->next;
}
}
static void
blockdev_write_read_max_offset(void)
{
int data_length;
uint64_t offset;
int pattern;
int expected_rc;
data_length = 4096;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
/* The start offset has been set to UINT64_MAX such that
* adding nbytes wraps around and points to an invalid address. */
offset = UINT64_MAX;
pattern = 0xA3;
/* Params are invalid, hence the expected return value
* of write and read for all blockdevs is < 0 */
expected_rc = -1;
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 0);
}
static void
blockdev_overlapped_write_read_8k(void)
{
int data_length;
uint64_t offset;
int pattern;
int expected_rc;
/* Data size = 8K */
data_length = 8192;
CU_ASSERT_TRUE(data_length < BUFFER_SIZE);
offset = 0;
pattern = 0xA3;
/* Params are valid, hence the expected return value
* of write and read for all blockdevs is 0. */
expected_rc = 0;
/* Assert the write by comparing it with values read
* from the same offset for each blockdev */
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 0);
/* Overwrite the pattern 0xbb of size 8K on an address offset overlapping
* with the address written above and assert the new value in
* the overlapped address range */
/* Populate 8k with value 0xBB */
pattern = 0xBB;
/* Offset = 6144; Overlap offset addresses and write value 0xbb */
offset = 4096;
/* Assert the write by comparing it with values read
* from the overlapped offset for each blockdev */
blockdev_write_read(data_length, 0, pattern, offset, expected_rc, 0);
}
static void
__blockdev_reset(void *arg1, void *arg2)
{
struct bdevio_request *req = arg1;
struct io_target *target = req->target;
int rc;
rc = spdk_bdev_reset(target->bdev_desc, target->ch, quick_test_complete, NULL);
if (rc < 0) {
g_completion_success = false;
wake_ut_thread();
}
}
static void
blockdev_reset(struct io_target *target)
{
struct bdevio_request req;
req.target = target;
g_completion_success = false;
execute_spdk_function(__blockdev_reset, &req, NULL);
}
static void
blockdev_test_reset(void)
{
struct io_target *target;
target = g_io_targets;
while (target != NULL) {
blockdev_reset(target);
/* Workaround: NVMe-oF target doesn't support reset yet - so for now
* don't fail the test if it's an NVMe bdev.
*/
if (!spdk_bdev_io_type_supported(target->bdev, SPDK_BDEV_IO_TYPE_NVME_IO)) {
CU_ASSERT_EQUAL(g_completion_success, true);
}
target = target->next;
}
}
struct bdevio_passthrough_request {
struct spdk_nvme_cmd cmd;
void *buf;
uint32_t len;
struct io_target *target;
int sct;
int sc;
};
static void
nvme_pt_test_complete(struct spdk_bdev_io *bdev_io, bool success, void *arg)
{
struct bdevio_passthrough_request *pt_req = arg;
spdk_bdev_io_get_nvme_status(bdev_io, &pt_req->sct, &pt_req->sc);
spdk_bdev_free_io(bdev_io);
wake_ut_thread();
}
static void
__blockdev_nvme_passthru(void *arg1, void *arg2)
{
struct bdevio_passthrough_request *pt_req = arg1;
struct io_target *target = pt_req->target;
int rc;
rc = spdk_bdev_nvme_io_passthru(target->bdev_desc, target->ch,
&pt_req->cmd, pt_req->buf, pt_req->len,
nvme_pt_test_complete, pt_req);
if (rc) {
wake_ut_thread();
}
}
static void
blockdev_nvme_passthru_rw(struct io_target *target)
{
struct bdevio_passthrough_request pt_req;
void *write_buf, *read_buf;
if (!spdk_bdev_io_type_supported(target->bdev, SPDK_BDEV_IO_TYPE_NVME_IO)) {
return;
}
memset(&pt_req, 0, sizeof(pt_req));
pt_req.target = target;
pt_req.cmd.opc = SPDK_NVME_OPC_WRITE;
pt_req.cmd.nsid = 1;
*(uint64_t *)&pt_req.cmd.cdw10 = 4;
pt_req.cmd.cdw12 = 0;
pt_req.len = spdk_bdev_get_block_size(target->bdev);
write_buf = spdk_dma_malloc(pt_req.len, 0, NULL);
memset(write_buf, 0xA5, pt_req.len);
pt_req.buf = write_buf;
pt_req.sct = SPDK_NVME_SCT_VENDOR_SPECIFIC;
pt_req.sc = SPDK_NVME_SC_INVALID_FIELD;
execute_spdk_function(__blockdev_nvme_passthru, &pt_req, NULL);
CU_ASSERT(pt_req.sct == SPDK_NVME_SCT_GENERIC);
CU_ASSERT(pt_req.sc == SPDK_NVME_SC_SUCCESS);
pt_req.cmd.opc = SPDK_NVME_OPC_READ;
read_buf = spdk_dma_zmalloc(pt_req.len, 0, NULL);
pt_req.buf = read_buf;
pt_req.sct = SPDK_NVME_SCT_VENDOR_SPECIFIC;
pt_req.sc = SPDK_NVME_SC_INVALID_FIELD;
execute_spdk_function(__blockdev_nvme_passthru, &pt_req, NULL);
CU_ASSERT(pt_req.sct == SPDK_NVME_SCT_GENERIC);
CU_ASSERT(pt_req.sc == SPDK_NVME_SC_SUCCESS);
CU_ASSERT(!memcmp(read_buf, write_buf, pt_req.len));
spdk_dma_free(read_buf);
spdk_dma_free(write_buf);
}
static void
blockdev_test_nvme_passthru_rw(void)
{
struct io_target *target;
target = g_io_targets;
while (target != NULL) {
blockdev_nvme_passthru_rw(target);
target = target->next;
}
}
static void
blockdev_nvme_passthru_vendor_specific(struct io_target *target)
{
struct bdevio_passthrough_request pt_req;
if (!spdk_bdev_io_type_supported(target->bdev, SPDK_BDEV_IO_TYPE_NVME_IO)) {
return;
}
memset(&pt_req, 0, sizeof(pt_req));
pt_req.target = target;
pt_req.cmd.opc = 0x7F; /* choose known invalid opcode */
pt_req.cmd.nsid = 1;
pt_req.sct = SPDK_NVME_SCT_VENDOR_SPECIFIC;
pt_req.sc = SPDK_NVME_SC_SUCCESS;
execute_spdk_function(__blockdev_nvme_passthru, &pt_req, NULL);
CU_ASSERT(pt_req.sct == SPDK_NVME_SCT_GENERIC);
CU_ASSERT(pt_req.sc == SPDK_NVME_SC_INVALID_OPCODE);
}
static void
blockdev_test_nvme_passthru_vendor_specific(void)
{
struct io_target *target;
target = g_io_targets;
while (target != NULL) {
blockdev_nvme_passthru_vendor_specific(target);
target = target->next;
}
}
static void
__stop_init_thread(void *arg1, void *arg2)
{
unsigned num_failures = (unsigned)(uintptr_t)arg1;
bdevio_cleanup_targets();
spdk_app_stop(num_failures);
}
static void
stop_init_thread(unsigned num_failures)
{
struct spdk_event *event;
event = spdk_event_allocate(g_lcore_id_init, __stop_init_thread,
(void *)(uintptr_t)num_failures, NULL);
spdk_event_call(event);
}
static void
__run_ut_thread(void *arg1, void *arg2)
{
CU_pSuite suite = NULL;
unsigned num_failures;
if (CU_initialize_registry() != CUE_SUCCESS) {
stop_init_thread(CU_get_error());
return;
}
suite = CU_add_suite("components_suite", NULL, NULL);
if (suite == NULL) {
CU_cleanup_registry();
stop_init_thread(CU_get_error());
return;
}
if (
CU_add_test(suite, "blockdev write read 4k", blockdev_write_read_4k) == NULL
|| CU_add_test(suite, "blockdev write zeroes read 4k", blockdev_write_zeroes_read_4k) == NULL
|| CU_add_test(suite, "blockdev write zeroes read 1m", blockdev_write_zeroes_read_1m) == NULL
|| CU_add_test(suite, "blockdev write zeroes read 3m", blockdev_write_zeroes_read_3m) == NULL
|| CU_add_test(suite, "blockdev write zeroes read 3.5m", blockdev_write_zeroes_read_3m_500k) == NULL
|| CU_add_test(suite, "blockdev reset",
blockdev_test_reset) == NULL
|| CU_add_test(suite, "blockdev write read 512 bytes",
blockdev_write_read_512Bytes) == NULL
|| CU_add_test(suite, "blockdev write read size > 128k",
blockdev_write_read_size_gt_128k) == NULL
|| CU_add_test(suite, "blockdev write read invalid size",
blockdev_write_read_invalid_size) == NULL
|| CU_add_test(suite, "blockdev write read offset + nbytes == size of blockdev",
blockdev_write_read_offset_plus_nbytes_equals_bdev_size) == NULL
|| CU_add_test(suite, "blockdev write read offset + nbytes > size of blockdev",
blockdev_write_read_offset_plus_nbytes_gt_bdev_size) == NULL
|| CU_add_test(suite, "blockdev write read max offset",
blockdev_write_read_max_offset) == NULL
|| CU_add_test(suite, "blockdev write read 8k on overlapped address offset",
blockdev_overlapped_write_read_8k) == NULL
|| CU_add_test(suite, "blockdev writev readv 4k", blockdev_writev_readv_4k) == NULL
|| CU_add_test(suite, "blockdev writev readv 30 x 4k",
blockdev_writev_readv_30x4k) == NULL
|| CU_add_test(suite, "blockdev writev readv 512 bytes",
blockdev_writev_readv_512Bytes) == NULL
|| CU_add_test(suite, "blockdev writev readv size > 128k",
blockdev_writev_readv_size_gt_128k) == NULL
|| CU_add_test(suite, "blockdev writev readv size > 128k in two iovs",
blockdev_writev_readv_size_gt_128k_two_iov) == NULL
|| CU_add_test(suite, "blockdev nvme passthru rw",
blockdev_test_nvme_passthru_rw) == NULL
|| CU_add_test(suite, "blockdev nvme passthru vendor specific",
blockdev_test_nvme_passthru_vendor_specific) == NULL
) {
CU_cleanup_registry();
stop_init_thread(CU_get_error());
return;
}
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
stop_init_thread(num_failures);
}
static void
test_main(void *arg1)
{
struct spdk_event *event;
pthread_mutex_init(&g_test_mutex, NULL);
pthread_cond_init(&g_test_cond, NULL);
g_lcore_id_init = spdk_env_get_first_core();
g_lcore_id_ut = spdk_env_get_next_core(g_lcore_id_init);
g_lcore_id_io = spdk_env_get_next_core(g_lcore_id_ut);
if (g_lcore_id_init == SPDK_ENV_LCORE_ID_ANY ||
g_lcore_id_ut == SPDK_ENV_LCORE_ID_ANY ||
g_lcore_id_io == SPDK_ENV_LCORE_ID_ANY) {
SPDK_ERRLOG("Could not reserve 3 separate threads.\n");
spdk_app_stop(-1);
}
if (bdevio_construct_targets() < 0) {
spdk_app_stop(-1);
return;
}
event = spdk_event_allocate(g_lcore_id_ut, __run_ut_thread, NULL, NULL);
spdk_event_call(event);
}
static void
bdevio_usage(void)
{
}
static int
bdevio_parse_arg(int ch, char *arg)
{
return 0;
}
int
main(int argc, char **argv)
{
int rc;
struct spdk_app_opts opts = {};
spdk_app_opts_init(&opts);
opts.name = "bdevio";
opts.rpc_addr = NULL;
opts.reactor_mask = "0x7";
if ((rc = spdk_app_parse_args(argc, argv, &opts, "", NULL,
bdevio_parse_arg, bdevio_usage)) !=
SPDK_APP_PARSE_ARGS_SUCCESS) {
return rc;
}
rc = spdk_app_start(&opts, test_main, NULL);
spdk_app_fini();
return rc;
}