RDMA target can't handle bidirectional xfer type, in debug build it throws an assert in nvmf_rdma_setup_wr function. NVMF controller performs checks od opcodes, but the failure happens before this check. Add similar validation in TCP transport. Change-Id: I14400b9c301295c0ae1d35a4330189d38aeee723 Signed-off-by: Alexey Marchuk <alexeymar@mellanox.com> Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/3436 Community-CI: Mellanox Build Bot Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com>
1313 lines
52 KiB
C
1313 lines
52 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation. All rights reserved.
|
|
* Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "spdk/stdinc.h"
|
|
#include "spdk_cunit.h"
|
|
#include "common/lib/test_env.c"
|
|
#include "common/lib/test_rdma.c"
|
|
#include "nvmf/rdma.c"
|
|
#include "nvmf/transport.c"
|
|
|
|
uint64_t g_mr_size;
|
|
uint64_t g_mr_next_size;
|
|
struct ibv_mr g_rdma_mr;
|
|
|
|
#define RDMA_UT_UNITS_IN_MAX_IO 16
|
|
|
|
struct spdk_nvmf_transport_opts g_rdma_ut_transport_opts = {
|
|
.max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH,
|
|
.max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR,
|
|
.in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE,
|
|
.max_io_size = (SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE * RDMA_UT_UNITS_IN_MAX_IO),
|
|
.io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE,
|
|
.max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH,
|
|
.num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS,
|
|
};
|
|
|
|
SPDK_LOG_REGISTER_COMPONENT("nvmf", SPDK_LOG_NVMF)
|
|
DEFINE_STUB(spdk_mem_map_set_translation, int, (struct spdk_mem_map *map, uint64_t vaddr,
|
|
uint64_t size, uint64_t translation), 0);
|
|
DEFINE_STUB(spdk_mem_map_clear_translation, int, (struct spdk_mem_map *map, uint64_t vaddr,
|
|
uint64_t size), 0);
|
|
DEFINE_STUB(spdk_mem_map_alloc, struct spdk_mem_map *, (uint64_t default_translation,
|
|
const struct spdk_mem_map_ops *ops, void *cb_ctx), NULL);
|
|
DEFINE_STUB(spdk_nvmf_qpair_disconnect, int, (struct spdk_nvmf_qpair *qpair,
|
|
nvmf_qpair_disconnect_cb cb_fn, void *ctx), 0);
|
|
DEFINE_STUB_V(spdk_mem_map_free, (struct spdk_mem_map **pmap));
|
|
|
|
struct spdk_trace_histories *g_trace_histories;
|
|
DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn));
|
|
DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix));
|
|
DEFINE_STUB_V(spdk_trace_register_description, (const char *name,
|
|
uint16_t tpoint_id, uint8_t owner_type, uint8_t object_type, uint8_t new_object,
|
|
uint8_t arg1_type, const char *arg1_name));
|
|
DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id,
|
|
uint32_t size, uint64_t object_id, uint64_t arg1));
|
|
|
|
DEFINE_STUB_V(spdk_nvmf_ctrlr_data_init, (struct spdk_nvmf_transport_opts *opts,
|
|
struct spdk_nvmf_ctrlr_data *cdata));
|
|
DEFINE_STUB_V(spdk_nvmf_request_exec, (struct spdk_nvmf_request *req));
|
|
DEFINE_STUB(spdk_nvmf_request_complete, int, (struct spdk_nvmf_request *req), 0);
|
|
DEFINE_STUB(spdk_nvme_transport_id_compare, int, (const struct spdk_nvme_transport_id *trid1,
|
|
const struct spdk_nvme_transport_id *trid2), 0);
|
|
DEFINE_STUB_V(nvmf_ctrlr_abort_aer, (struct spdk_nvmf_ctrlr *ctrlr));
|
|
DEFINE_STUB(spdk_nvmf_request_get_dif_ctx, bool, (struct spdk_nvmf_request *req,
|
|
struct spdk_dif_ctx *dif_ctx), false);
|
|
DEFINE_STUB_V(spdk_nvme_trid_populate_transport, (struct spdk_nvme_transport_id *trid,
|
|
enum spdk_nvme_transport_type trtype));
|
|
DEFINE_STUB_V(spdk_nvmf_tgt_new_qpair, (struct spdk_nvmf_tgt *tgt, struct spdk_nvmf_qpair *qpair));
|
|
DEFINE_STUB(nvmf_ctrlr_abort_request, int, (struct spdk_nvmf_request *req), 0);
|
|
|
|
const char *
|
|
spdk_nvme_transport_id_trtype_str(enum spdk_nvme_transport_type trtype)
|
|
{
|
|
switch (trtype) {
|
|
case SPDK_NVME_TRANSPORT_PCIE:
|
|
return "PCIe";
|
|
case SPDK_NVME_TRANSPORT_RDMA:
|
|
return "RDMA";
|
|
case SPDK_NVME_TRANSPORT_FC:
|
|
return "FC";
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
int
|
|
spdk_nvme_transport_id_populate_trstring(struct spdk_nvme_transport_id *trid, const char *trstring)
|
|
{
|
|
int len, i;
|
|
|
|
if (trstring == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
len = strnlen(trstring, SPDK_NVMF_TRSTRING_MAX_LEN);
|
|
if (len == SPDK_NVMF_TRSTRING_MAX_LEN) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* cast official trstring to uppercase version of input. */
|
|
for (i = 0; i < len; i++) {
|
|
trid->trstring[i] = toupper(trstring[i]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint64_t
|
|
spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr, uint64_t *size)
|
|
{
|
|
if (g_mr_size != 0) {
|
|
*(uint32_t *)size = g_mr_size;
|
|
if (g_mr_next_size != 0) {
|
|
g_mr_size = g_mr_next_size;
|
|
}
|
|
}
|
|
|
|
return (uint64_t)&g_rdma_mr;
|
|
}
|
|
|
|
static void reset_nvmf_rdma_request(struct spdk_nvmf_rdma_request *rdma_req)
|
|
{
|
|
int i;
|
|
|
|
rdma_req->req.length = 0;
|
|
rdma_req->req.data_from_pool = false;
|
|
rdma_req->req.data = NULL;
|
|
rdma_req->data.wr.num_sge = 0;
|
|
rdma_req->data.wr.wr.rdma.remote_addr = 0;
|
|
rdma_req->data.wr.wr.rdma.rkey = 0;
|
|
memset(&rdma_req->req.dif, 0, sizeof(rdma_req->req.dif));
|
|
|
|
for (i = 0; i < SPDK_NVMF_MAX_SGL_ENTRIES; i++) {
|
|
rdma_req->req.iov[i].iov_base = 0;
|
|
rdma_req->req.iov[i].iov_len = 0;
|
|
rdma_req->req.buffers[i] = 0;
|
|
rdma_req->data.wr.sg_list[i].addr = 0;
|
|
rdma_req->data.wr.sg_list[i].length = 0;
|
|
rdma_req->data.wr.sg_list[i].lkey = 0;
|
|
}
|
|
rdma_req->req.iovcnt = 0;
|
|
}
|
|
|
|
static void
|
|
test_spdk_nvmf_rdma_request_parse_sgl(void)
|
|
{
|
|
struct spdk_nvmf_rdma_transport rtransport;
|
|
struct spdk_nvmf_rdma_device device;
|
|
struct spdk_nvmf_rdma_request rdma_req = {};
|
|
struct spdk_nvmf_rdma_recv recv;
|
|
struct spdk_nvmf_rdma_poll_group group;
|
|
struct spdk_nvmf_rdma_qpair rqpair;
|
|
struct spdk_nvmf_rdma_poller poller;
|
|
union nvmf_c2h_msg cpl;
|
|
union nvmf_h2c_msg cmd;
|
|
struct spdk_nvme_sgl_descriptor *sgl;
|
|
struct spdk_nvmf_transport_pg_cache_buf bufs[4];
|
|
struct spdk_nvme_sgl_descriptor sgl_desc[SPDK_NVMF_MAX_SGL_ENTRIES] = {{0}};
|
|
struct spdk_nvmf_rdma_request_data data;
|
|
struct spdk_nvmf_transport_pg_cache_buf buffer;
|
|
struct spdk_nvmf_transport_pg_cache_buf *buffer_ptr;
|
|
int rc, i;
|
|
|
|
data.wr.sg_list = data.sgl;
|
|
STAILQ_INIT(&group.group.buf_cache);
|
|
group.group.buf_cache_size = 0;
|
|
group.group.buf_cache_count = 0;
|
|
group.group.transport = &rtransport.transport;
|
|
STAILQ_INIT(&group.retired_bufs);
|
|
poller.group = &group;
|
|
rqpair.poller = &poller;
|
|
rqpair.max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
|
|
|
|
sgl = &cmd.nvme_cmd.dptr.sgl1;
|
|
rdma_req.recv = &recv;
|
|
rdma_req.req.cmd = &cmd;
|
|
rdma_req.req.rsp = &cpl;
|
|
rdma_req.data.wr.sg_list = rdma_req.data.sgl;
|
|
rdma_req.req.qpair = &rqpair.qpair;
|
|
rdma_req.req.xfer = SPDK_NVME_DATA_CONTROLLER_TO_HOST;
|
|
|
|
rtransport.transport.opts = g_rdma_ut_transport_opts;
|
|
rtransport.data_wr_pool = NULL;
|
|
rtransport.transport.data_buf_pool = NULL;
|
|
|
|
device.attr.device_cap_flags = 0;
|
|
g_rdma_mr.lkey = 0xABCD;
|
|
sgl->keyed.key = 0xEEEE;
|
|
sgl->address = 0xFFFF;
|
|
rdma_req.recv->buf = (void *)0xDDDD;
|
|
|
|
/* Test 1: sgl type: keyed data block subtype: address */
|
|
sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
|
|
sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
|
|
|
|
/* Part 1: simple I/O, one SGL smaller than the transport io unit size */
|
|
MOCK_SET(spdk_mempool_get, (void *)0x2000);
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
sgl->keyed.length = rtransport.transport.opts.io_unit_size / 2;
|
|
|
|
device.map = (void *)0x0;
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(rdma_req.req.data_from_pool == true);
|
|
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size / 2);
|
|
CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
|
|
CU_ASSERT(rdma_req.data.wr.num_sge == 1);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
|
|
CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[0].length == rtransport.transport.opts.io_unit_size / 2);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == g_rdma_mr.lkey);
|
|
|
|
/* Part 2: simple I/O, one SGL larger than the transport io unit size (equal to the max io size) */
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
sgl->keyed.length = rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO;
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(rdma_req.req.data_from_pool == true);
|
|
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO);
|
|
CU_ASSERT(rdma_req.data.wr.num_sge == RDMA_UT_UNITS_IN_MAX_IO);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
|
|
for (i = 0; i < RDMA_UT_UNITS_IN_MAX_IO; i++) {
|
|
CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == 0x2000);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == g_rdma_mr.lkey);
|
|
}
|
|
|
|
/* Part 3: simple I/O one SGL larger than the transport max io size */
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
sgl->keyed.length = rtransport.transport.opts.max_io_size * 2;
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
|
|
CU_ASSERT(rc == -1);
|
|
|
|
/* Part 4: Pretend there are no buffer pools */
|
|
MOCK_SET(spdk_mempool_get, NULL);
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
sgl->keyed.length = rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO;
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(rdma_req.req.data_from_pool == false);
|
|
CU_ASSERT(rdma_req.req.data == NULL);
|
|
CU_ASSERT(rdma_req.data.wr.num_sge == 0);
|
|
CU_ASSERT(rdma_req.req.buffers[0] == NULL);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[0].length == 0);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == 0);
|
|
|
|
rdma_req.recv->buf = (void *)0xDDDD;
|
|
/* Test 2: sgl type: keyed data block subtype: offset (in capsule data) */
|
|
sgl->generic.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
|
|
sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
|
|
|
|
/* Part 1: Normal I/O smaller than in capsule data size no offset */
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
sgl->address = 0;
|
|
sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size;
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(rdma_req.req.data == (void *)0xDDDD);
|
|
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.in_capsule_data_size);
|
|
CU_ASSERT(rdma_req.req.data_from_pool == false);
|
|
|
|
/* Part 2: I/O offset + length too large */
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
sgl->address = rtransport.transport.opts.in_capsule_data_size;
|
|
sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size;
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
|
|
CU_ASSERT(rc == -1);
|
|
|
|
/* Part 3: I/O too large */
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
sgl->address = 0;
|
|
sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size * 2;
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
|
|
CU_ASSERT(rc == -1);
|
|
|
|
/* Test 3: Multi SGL */
|
|
sgl->generic.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
|
|
sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
|
|
sgl->address = 0;
|
|
rdma_req.recv->buf = (void *)&sgl_desc;
|
|
MOCK_SET(spdk_mempool_get, &data);
|
|
|
|
/* part 1: 2 segments each with 1 wr. */
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
|
|
for (i = 0; i < 2; i++) {
|
|
sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
|
|
sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
|
|
sgl_desc[i].keyed.length = rtransport.transport.opts.io_unit_size;
|
|
sgl_desc[i].address = 0x4000 + i * rtransport.transport.opts.io_unit_size;
|
|
sgl_desc[i].keyed.key = 0x44;
|
|
}
|
|
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(rdma_req.req.data_from_pool == true);
|
|
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 2);
|
|
CU_ASSERT(rdma_req.data.wr.num_sge == 1);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
|
|
CU_ASSERT(rdma_req.data.wr.next == &data.wr);
|
|
CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
|
|
CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size);
|
|
CU_ASSERT(data.wr.num_sge == 1);
|
|
CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
|
|
|
|
/* part 2: 2 segments, each with 1 wr containing 8 sge_elements */
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
|
|
for (i = 0; i < 2; i++) {
|
|
sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
|
|
sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
|
|
sgl_desc[i].keyed.length = rtransport.transport.opts.io_unit_size * 8;
|
|
sgl_desc[i].address = 0x4000 + i * 8 * rtransport.transport.opts.io_unit_size;
|
|
sgl_desc[i].keyed.key = 0x44;
|
|
}
|
|
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(rdma_req.req.data_from_pool == true);
|
|
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 16);
|
|
CU_ASSERT(rdma_req.req.iovcnt == 16);
|
|
CU_ASSERT(rdma_req.data.wr.num_sge == 8);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
|
|
CU_ASSERT(rdma_req.data.wr.next == &data.wr);
|
|
CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
|
|
CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size * 8);
|
|
CU_ASSERT(data.wr.num_sge == 8);
|
|
CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
|
|
|
|
/* part 3: 2 segments, one very large, one very small */
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
for (i = 0; i < 2; i++) {
|
|
sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
|
|
sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
|
|
sgl_desc[i].keyed.key = 0x44;
|
|
}
|
|
|
|
sgl_desc[0].keyed.length = rtransport.transport.opts.io_unit_size * 15 +
|
|
rtransport.transport.opts.io_unit_size / 2;
|
|
sgl_desc[0].address = 0x4000;
|
|
sgl_desc[1].keyed.length = rtransport.transport.opts.io_unit_size / 2;
|
|
sgl_desc[1].address = 0x4000 + rtransport.transport.opts.io_unit_size * 15 +
|
|
rtransport.transport.opts.io_unit_size / 2;
|
|
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(rdma_req.req.data_from_pool == true);
|
|
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 16);
|
|
CU_ASSERT(rdma_req.req.iovcnt == 17);
|
|
CU_ASSERT(rdma_req.data.wr.num_sge == 16);
|
|
for (i = 0; i < 15; i++) {
|
|
CU_ASSERT(rdma_req.data.sgl[i].length == rtransport.transport.opts.io_unit_size);
|
|
}
|
|
CU_ASSERT(rdma_req.data.sgl[15].length == rtransport.transport.opts.io_unit_size / 2);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
|
|
CU_ASSERT(rdma_req.data.wr.next == &data.wr);
|
|
CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
|
|
CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size * 15 +
|
|
rtransport.transport.opts.io_unit_size / 2);
|
|
CU_ASSERT(data.sgl[0].length == rtransport.transport.opts.io_unit_size / 2);
|
|
CU_ASSERT(data.wr.num_sge == 1);
|
|
CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
|
|
|
|
/* Test 4: use PG buffer cache */
|
|
sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
|
|
sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
|
|
sgl->address = 0xFFFF;
|
|
rdma_req.recv->buf = (void *)0xDDDD;
|
|
g_rdma_mr.lkey = 0xABCD;
|
|
sgl->keyed.key = 0xEEEE;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
STAILQ_INSERT_TAIL(&group.group.buf_cache, &bufs[i], link);
|
|
}
|
|
|
|
/* part 1: use the four buffers from the pg cache */
|
|
group.group.buf_cache_size = 4;
|
|
group.group.buf_cache_count = 4;
|
|
MOCK_SET(spdk_mempool_get, (void *)0x2000);
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
sgl->keyed.length = rtransport.transport.opts.io_unit_size * 4;
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
|
|
SPDK_CU_ASSERT_FATAL(rc == 0);
|
|
CU_ASSERT(rdma_req.req.data_from_pool == true);
|
|
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 4);
|
|
CU_ASSERT((uint64_t)rdma_req.req.data == (((uint64_t)&bufs[0] + NVMF_DATA_BUFFER_MASK) &
|
|
~NVMF_DATA_BUFFER_MASK));
|
|
CU_ASSERT(rdma_req.data.wr.num_sge == 4);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
|
|
CU_ASSERT(group.group.buf_cache_count == 0);
|
|
CU_ASSERT(STAILQ_EMPTY(&group.group.buf_cache));
|
|
for (i = 0; i < 4; i++) {
|
|
CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == (uint64_t)&bufs[i]);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (((uint64_t)&bufs[i] + NVMF_DATA_BUFFER_MASK) &
|
|
~NVMF_DATA_BUFFER_MASK));
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
|
|
}
|
|
|
|
/* part 2: now that we have used the buffers from the cache, try again. We should get mempool buffers. */
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
|
|
SPDK_CU_ASSERT_FATAL(rc == 0);
|
|
CU_ASSERT(rdma_req.req.data_from_pool == true);
|
|
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 4);
|
|
CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
|
|
CU_ASSERT(rdma_req.data.wr.num_sge == 4);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
|
|
CU_ASSERT(group.group.buf_cache_count == 0);
|
|
CU_ASSERT(STAILQ_EMPTY(&group.group.buf_cache));
|
|
for (i = 0; i < 4; i++) {
|
|
CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == 0x2000);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
|
|
CU_ASSERT(group.group.buf_cache_count == 0);
|
|
}
|
|
|
|
/* part 3: half and half */
|
|
group.group.buf_cache_count = 2;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
STAILQ_INSERT_TAIL(&group.group.buf_cache, &bufs[i], link);
|
|
}
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
|
|
SPDK_CU_ASSERT_FATAL(rc == 0);
|
|
CU_ASSERT(rdma_req.req.data_from_pool == true);
|
|
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 4);
|
|
CU_ASSERT((uint64_t)rdma_req.req.data == (((uint64_t)&bufs[0] + NVMF_DATA_BUFFER_MASK) &
|
|
~NVMF_DATA_BUFFER_MASK));
|
|
CU_ASSERT(rdma_req.data.wr.num_sge == 4);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
|
|
CU_ASSERT(group.group.buf_cache_count == 0);
|
|
for (i = 0; i < 2; i++) {
|
|
CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == (uint64_t)&bufs[i]);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (((uint64_t)&bufs[i] + NVMF_DATA_BUFFER_MASK) &
|
|
~NVMF_DATA_BUFFER_MASK));
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
|
|
}
|
|
for (i = 2; i < 4; i++) {
|
|
CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == 0x2000);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
|
|
}
|
|
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
/* Test 5 dealing with a buffer split over two Memory Regions */
|
|
MOCK_SET(spdk_mempool_get, (void *)&buffer);
|
|
sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
|
|
sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
|
|
sgl->keyed.length = rtransport.transport.opts.io_unit_size / 2;
|
|
g_mr_size = rtransport.transport.opts.io_unit_size / 4;
|
|
g_mr_next_size = rtransport.transport.opts.io_unit_size / 2;
|
|
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
SPDK_CU_ASSERT_FATAL(rc == 0);
|
|
CU_ASSERT(rdma_req.req.data_from_pool == true);
|
|
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size / 2);
|
|
CU_ASSERT((uint64_t)rdma_req.req.data == (((uint64_t)&buffer + NVMF_DATA_BUFFER_MASK) &
|
|
~NVMF_DATA_BUFFER_MASK));
|
|
CU_ASSERT(rdma_req.data.wr.num_sge == 1);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
|
|
CU_ASSERT(rdma_req.req.buffers[0] == &buffer);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == (((uint64_t)&buffer + NVMF_DATA_BUFFER_MASK) &
|
|
~NVMF_DATA_BUFFER_MASK));
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[0].length == rtransport.transport.opts.io_unit_size / 2);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == g_rdma_mr.lkey);
|
|
buffer_ptr = STAILQ_FIRST(&group.retired_bufs);
|
|
CU_ASSERT(buffer_ptr == &buffer);
|
|
STAILQ_REMOVE(&group.retired_bufs, buffer_ptr, spdk_nvmf_transport_pg_cache_buf, link);
|
|
CU_ASSERT(STAILQ_EMPTY(&group.retired_bufs));
|
|
g_mr_size = 0;
|
|
g_mr_next_size = 0;
|
|
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
}
|
|
|
|
static struct spdk_nvmf_rdma_recv *
|
|
create_recv(struct spdk_nvmf_rdma_qpair *rqpair, enum spdk_nvme_nvm_opcode opc)
|
|
{
|
|
struct spdk_nvmf_rdma_recv *rdma_recv;
|
|
union nvmf_h2c_msg *cmd;
|
|
struct spdk_nvme_sgl_descriptor *sgl;
|
|
|
|
rdma_recv = calloc(1, sizeof(*rdma_recv));
|
|
rdma_recv->qpair = rqpair;
|
|
cmd = calloc(1, sizeof(*cmd));
|
|
rdma_recv->sgl[0].addr = (uintptr_t)cmd;
|
|
cmd->nvme_cmd.opc = opc;
|
|
sgl = &cmd->nvme_cmd.dptr.sgl1;
|
|
sgl->keyed.key = 0xEEEE;
|
|
sgl->address = 0xFFFF;
|
|
sgl->keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
|
|
sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
|
|
sgl->keyed.length = 1;
|
|
|
|
return rdma_recv;
|
|
}
|
|
|
|
static void
|
|
free_recv(struct spdk_nvmf_rdma_recv *rdma_recv)
|
|
{
|
|
free((void *)rdma_recv->sgl[0].addr);
|
|
free(rdma_recv);
|
|
}
|
|
|
|
static struct spdk_nvmf_rdma_request *
|
|
create_req(struct spdk_nvmf_rdma_qpair *rqpair,
|
|
struct spdk_nvmf_rdma_recv *rdma_recv)
|
|
{
|
|
struct spdk_nvmf_rdma_request *rdma_req;
|
|
union nvmf_c2h_msg *cpl;
|
|
|
|
rdma_req = calloc(1, sizeof(*rdma_req));
|
|
rdma_req->recv = rdma_recv;
|
|
rdma_req->req.qpair = &rqpair->qpair;
|
|
rdma_req->state = RDMA_REQUEST_STATE_NEW;
|
|
rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr;
|
|
rdma_req->data.wr.sg_list = rdma_req->data.sgl;
|
|
cpl = calloc(1, sizeof(*cpl));
|
|
rdma_req->rsp.sgl[0].addr = (uintptr_t)cpl;
|
|
rdma_req->req.rsp = cpl;
|
|
|
|
return rdma_req;
|
|
}
|
|
|
|
static void
|
|
free_req(struct spdk_nvmf_rdma_request *rdma_req)
|
|
{
|
|
free((void *)rdma_req->rsp.sgl[0].addr);
|
|
free(rdma_req);
|
|
}
|
|
|
|
static void
|
|
qpair_reset(struct spdk_nvmf_rdma_qpair *rqpair,
|
|
struct spdk_nvmf_rdma_poller *poller,
|
|
struct spdk_nvmf_rdma_device *device,
|
|
struct spdk_nvmf_rdma_resources *resources)
|
|
{
|
|
memset(rqpair, 0, sizeof(*rqpair));
|
|
STAILQ_INIT(&rqpair->pending_rdma_write_queue);
|
|
STAILQ_INIT(&rqpair->pending_rdma_read_queue);
|
|
rqpair->poller = poller;
|
|
rqpair->device = device;
|
|
rqpair->resources = resources;
|
|
rqpair->qpair.qid = 1;
|
|
rqpair->ibv_state = IBV_QPS_RTS;
|
|
rqpair->qpair.state = SPDK_NVMF_QPAIR_ACTIVE;
|
|
rqpair->max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
|
|
rqpair->max_send_depth = 16;
|
|
rqpair->max_read_depth = 16;
|
|
resources->recvs_to_post.first = resources->recvs_to_post.last = NULL;
|
|
}
|
|
|
|
static void
|
|
poller_reset(struct spdk_nvmf_rdma_poller *poller,
|
|
struct spdk_nvmf_rdma_poll_group *group)
|
|
{
|
|
memset(poller, 0, sizeof(*poller));
|
|
STAILQ_INIT(&poller->qpairs_pending_recv);
|
|
STAILQ_INIT(&poller->qpairs_pending_send);
|
|
poller->group = group;
|
|
}
|
|
|
|
static void
|
|
test_spdk_nvmf_rdma_request_process(void)
|
|
{
|
|
struct spdk_nvmf_rdma_transport rtransport = {};
|
|
struct spdk_nvmf_rdma_poll_group group = {};
|
|
struct spdk_nvmf_rdma_poller poller = {};
|
|
struct spdk_nvmf_rdma_device device = {};
|
|
struct spdk_nvmf_rdma_resources resources = {};
|
|
struct spdk_nvmf_rdma_qpair rqpair = {};
|
|
struct spdk_nvmf_rdma_recv *rdma_recv;
|
|
struct spdk_nvmf_rdma_request *rdma_req;
|
|
bool progress;
|
|
|
|
STAILQ_INIT(&group.group.buf_cache);
|
|
STAILQ_INIT(&group.group.pending_buf_queue);
|
|
group.group.buf_cache_size = 0;
|
|
group.group.buf_cache_count = 0;
|
|
poller_reset(&poller, &group);
|
|
qpair_reset(&rqpair, &poller, &device, &resources);
|
|
|
|
rtransport.transport.opts = g_rdma_ut_transport_opts;
|
|
rtransport.transport.data_buf_pool = spdk_mempool_create("test_data_pool", 16, 128, 0, 0);
|
|
rtransport.data_wr_pool = spdk_mempool_create("test_wr_pool", 128,
|
|
sizeof(struct spdk_nvmf_rdma_request_data),
|
|
0, 0);
|
|
MOCK_CLEAR(spdk_mempool_get);
|
|
|
|
device.attr.device_cap_flags = 0;
|
|
device.map = (void *)0x0;
|
|
g_rdma_mr.lkey = 0xABCD;
|
|
|
|
/* Test 1: single SGL READ request */
|
|
rdma_recv = create_recv(&rqpair, SPDK_NVME_OPC_READ);
|
|
rdma_req = create_req(&rqpair, rdma_recv);
|
|
rqpair.current_recv_depth = 1;
|
|
/* NEW -> EXECUTING */
|
|
progress = nvmf_rdma_request_process(&rtransport, rdma_req);
|
|
CU_ASSERT(progress == true);
|
|
CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_EXECUTING);
|
|
CU_ASSERT(rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST);
|
|
/* EXECUTED -> TRANSFERRING_C2H */
|
|
rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
|
|
progress = nvmf_rdma_request_process(&rtransport, rdma_req);
|
|
CU_ASSERT(progress == true);
|
|
CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
|
|
CU_ASSERT(rdma_req->recv == NULL);
|
|
CU_ASSERT(resources.recvs_to_post.first == &rdma_recv->wr);
|
|
CU_ASSERT(resources.recvs_to_post.last == &rdma_recv->wr);
|
|
/* COMPLETED -> FREE */
|
|
rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
|
|
progress = nvmf_rdma_request_process(&rtransport, rdma_req);
|
|
CU_ASSERT(progress == true);
|
|
CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_FREE);
|
|
|
|
free_recv(rdma_recv);
|
|
free_req(rdma_req);
|
|
poller_reset(&poller, &group);
|
|
qpair_reset(&rqpair, &poller, &device, &resources);
|
|
|
|
/* Test 2: single SGL WRITE request */
|
|
rdma_recv = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
|
|
rdma_req = create_req(&rqpair, rdma_recv);
|
|
rqpair.current_recv_depth = 1;
|
|
/* NEW -> TRANSFERRING_H2C */
|
|
progress = nvmf_rdma_request_process(&rtransport, rdma_req);
|
|
CU_ASSERT(progress == true);
|
|
CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
|
|
CU_ASSERT(rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
|
|
STAILQ_INIT(&poller.qpairs_pending_send);
|
|
/* READY_TO_EXECUTE -> EXECUTING */
|
|
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
|
|
progress = nvmf_rdma_request_process(&rtransport, rdma_req);
|
|
CU_ASSERT(progress == true);
|
|
CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_EXECUTING);
|
|
/* EXECUTED -> COMPLETING */
|
|
rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
|
|
progress = nvmf_rdma_request_process(&rtransport, rdma_req);
|
|
CU_ASSERT(progress == true);
|
|
CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_COMPLETING);
|
|
CU_ASSERT(rdma_req->recv == NULL);
|
|
CU_ASSERT(resources.recvs_to_post.first == &rdma_recv->wr);
|
|
CU_ASSERT(resources.recvs_to_post.last == &rdma_recv->wr);
|
|
/* COMPLETED -> FREE */
|
|
rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
|
|
progress = nvmf_rdma_request_process(&rtransport, rdma_req);
|
|
CU_ASSERT(progress == true);
|
|
CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_FREE);
|
|
|
|
free_recv(rdma_recv);
|
|
free_req(rdma_req);
|
|
poller_reset(&poller, &group);
|
|
qpair_reset(&rqpair, &poller, &device, &resources);
|
|
|
|
/* Test 3: WRITE+WRITE ibv_send batching */
|
|
{
|
|
struct spdk_nvmf_rdma_recv *recv1, *recv2;
|
|
struct spdk_nvmf_rdma_request *req1, *req2;
|
|
recv1 = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
|
|
req1 = create_req(&rqpair, recv1);
|
|
recv2 = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
|
|
req2 = create_req(&rqpair, recv2);
|
|
|
|
/* WRITE 1: NEW -> TRANSFERRING_H2C */
|
|
rqpair.current_recv_depth = 1;
|
|
nvmf_rdma_request_process(&rtransport, req1);
|
|
CU_ASSERT(req1->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
|
|
|
|
/* WRITE 2: NEW -> TRANSFERRING_H2C */
|
|
rqpair.current_recv_depth = 2;
|
|
nvmf_rdma_request_process(&rtransport, req2);
|
|
CU_ASSERT(req2->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
|
|
|
|
STAILQ_INIT(&poller.qpairs_pending_send);
|
|
|
|
/* WRITE 1 completes before WRITE 2 has finished RDMA reading */
|
|
/* WRITE 1: READY_TO_EXECUTE -> EXECUTING */
|
|
req1->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
|
|
nvmf_rdma_request_process(&rtransport, req1);
|
|
CU_ASSERT(req1->state == RDMA_REQUEST_STATE_EXECUTING);
|
|
/* WRITE 1: EXECUTED -> COMPLETING */
|
|
req1->state = RDMA_REQUEST_STATE_EXECUTED;
|
|
nvmf_rdma_request_process(&rtransport, req1);
|
|
CU_ASSERT(req1->state == RDMA_REQUEST_STATE_COMPLETING);
|
|
STAILQ_INIT(&poller.qpairs_pending_send);
|
|
/* WRITE 1: COMPLETED -> FREE */
|
|
req1->state = RDMA_REQUEST_STATE_COMPLETED;
|
|
nvmf_rdma_request_process(&rtransport, req1);
|
|
CU_ASSERT(req1->state == RDMA_REQUEST_STATE_FREE);
|
|
|
|
/* Now WRITE 2 has finished reading and completes */
|
|
/* WRITE 2: COMPLETED -> FREE */
|
|
/* WRITE 2: READY_TO_EXECUTE -> EXECUTING */
|
|
req2->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
|
|
nvmf_rdma_request_process(&rtransport, req2);
|
|
CU_ASSERT(req2->state == RDMA_REQUEST_STATE_EXECUTING);
|
|
/* WRITE 1: EXECUTED -> COMPLETING */
|
|
req2->state = RDMA_REQUEST_STATE_EXECUTED;
|
|
nvmf_rdma_request_process(&rtransport, req2);
|
|
CU_ASSERT(req2->state == RDMA_REQUEST_STATE_COMPLETING);
|
|
STAILQ_INIT(&poller.qpairs_pending_send);
|
|
/* WRITE 1: COMPLETED -> FREE */
|
|
req2->state = RDMA_REQUEST_STATE_COMPLETED;
|
|
nvmf_rdma_request_process(&rtransport, req2);
|
|
CU_ASSERT(req2->state == RDMA_REQUEST_STATE_FREE);
|
|
|
|
free_recv(recv1);
|
|
free_req(req1);
|
|
free_recv(recv2);
|
|
free_req(req2);
|
|
poller_reset(&poller, &group);
|
|
qpair_reset(&rqpair, &poller, &device, &resources);
|
|
}
|
|
|
|
/* Test 4, invalid command, check xfer type */
|
|
{
|
|
struct spdk_nvmf_rdma_recv *rdma_recv_inv;
|
|
struct spdk_nvmf_rdma_request *rdma_req_inv;
|
|
/* construct an opcode that specifies BIDIRECTIONAL transfer */
|
|
uint8_t opc = 0x10 | SPDK_NVME_DATA_BIDIRECTIONAL;
|
|
|
|
rdma_recv_inv = create_recv(&rqpair, opc);
|
|
rdma_req_inv = create_req(&rqpair, rdma_recv_inv);
|
|
|
|
/* NEW -> RDMA_REQUEST_STATE_COMPLETING */
|
|
rqpair.current_recv_depth = 1;
|
|
progress = nvmf_rdma_request_process(&rtransport, rdma_req_inv);
|
|
CU_ASSERT(progress == true);
|
|
CU_ASSERT(rdma_req_inv->state == RDMA_REQUEST_STATE_COMPLETING);
|
|
CU_ASSERT(rdma_req_inv->req.rsp->nvme_cpl.status.sct == SPDK_NVME_SCT_GENERIC);
|
|
CU_ASSERT(rdma_req_inv->req.rsp->nvme_cpl.status.sc == SPDK_NVME_SC_INVALID_OPCODE);
|
|
|
|
/* RDMA_REQUEST_STATE_COMPLETED -> FREE */
|
|
rdma_req_inv->state = RDMA_REQUEST_STATE_COMPLETED;
|
|
nvmf_rdma_request_process(&rtransport, rdma_req_inv);
|
|
CU_ASSERT(rdma_req_inv->state == RDMA_REQUEST_STATE_FREE);
|
|
|
|
free_recv(rdma_recv_inv);
|
|
free_req(rdma_req_inv);
|
|
poller_reset(&poller, &group);
|
|
qpair_reset(&rqpair, &poller, &device, &resources);
|
|
}
|
|
|
|
spdk_mempool_free(rtransport.transport.data_buf_pool);
|
|
spdk_mempool_free(rtransport.data_wr_pool);
|
|
}
|
|
|
|
#define TEST_GROUPS_COUNT 5
|
|
static void
|
|
test_nvmf_rdma_get_optimal_poll_group(void)
|
|
{
|
|
struct spdk_nvmf_rdma_transport rtransport = {};
|
|
struct spdk_nvmf_transport *transport = &rtransport.transport;
|
|
struct spdk_nvmf_rdma_qpair rqpair = {};
|
|
struct spdk_nvmf_transport_poll_group *groups[TEST_GROUPS_COUNT];
|
|
struct spdk_nvmf_rdma_poll_group *rgroups[TEST_GROUPS_COUNT];
|
|
struct spdk_nvmf_transport_poll_group *result;
|
|
uint32_t i;
|
|
|
|
rqpair.qpair.transport = transport;
|
|
pthread_mutex_init(&rtransport.lock, NULL);
|
|
TAILQ_INIT(&rtransport.poll_groups);
|
|
|
|
for (i = 0; i < TEST_GROUPS_COUNT; i++) {
|
|
groups[i] = nvmf_rdma_poll_group_create(transport);
|
|
CU_ASSERT(groups[i] != NULL);
|
|
rgroups[i] = SPDK_CONTAINEROF(groups[i], struct spdk_nvmf_rdma_poll_group, group);
|
|
groups[i]->transport = transport;
|
|
}
|
|
CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[0]);
|
|
CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[0]);
|
|
|
|
/* Emulate connection of %TEST_GROUPS_COUNT% initiators - each creates 1 admin and 1 io qp */
|
|
for (i = 0; i < TEST_GROUPS_COUNT; i++) {
|
|
rqpair.qpair.qid = 0;
|
|
result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
|
|
CU_ASSERT(result == groups[i]);
|
|
CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[(i + 1) % TEST_GROUPS_COUNT]);
|
|
CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[i]);
|
|
|
|
rqpair.qpair.qid = 1;
|
|
result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
|
|
CU_ASSERT(result == groups[i]);
|
|
CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[(i + 1) % TEST_GROUPS_COUNT]);
|
|
CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[(i + 1) % TEST_GROUPS_COUNT]);
|
|
}
|
|
/* wrap around, admin/io pg point to the first pg
|
|
Destroy all poll groups except of the last one */
|
|
for (i = 0; i < TEST_GROUPS_COUNT - 1; i++) {
|
|
nvmf_rdma_poll_group_destroy(groups[i]);
|
|
CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[i + 1]);
|
|
CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[i + 1]);
|
|
}
|
|
|
|
CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[TEST_GROUPS_COUNT - 1]);
|
|
CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[TEST_GROUPS_COUNT - 1]);
|
|
|
|
/* Check that pointers to the next admin/io poll groups are not changed */
|
|
rqpair.qpair.qid = 0;
|
|
result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
|
|
CU_ASSERT(result == groups[TEST_GROUPS_COUNT - 1]);
|
|
CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[TEST_GROUPS_COUNT - 1]);
|
|
CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[TEST_GROUPS_COUNT - 1]);
|
|
|
|
rqpair.qpair.qid = 1;
|
|
result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
|
|
CU_ASSERT(result == groups[TEST_GROUPS_COUNT - 1]);
|
|
CU_ASSERT(rtransport.conn_sched.next_admin_pg == rgroups[TEST_GROUPS_COUNT - 1]);
|
|
CU_ASSERT(rtransport.conn_sched.next_io_pg == rgroups[TEST_GROUPS_COUNT - 1]);
|
|
|
|
/* Remove the last poll group, check that pointers are NULL */
|
|
nvmf_rdma_poll_group_destroy(groups[TEST_GROUPS_COUNT - 1]);
|
|
CU_ASSERT(rtransport.conn_sched.next_admin_pg == NULL);
|
|
CU_ASSERT(rtransport.conn_sched.next_io_pg == NULL);
|
|
|
|
/* Request optimal poll group, result must be NULL */
|
|
rqpair.qpair.qid = 0;
|
|
result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
|
|
CU_ASSERT(result == NULL);
|
|
|
|
rqpair.qpair.qid = 1;
|
|
result = nvmf_rdma_get_optimal_poll_group(&rqpair.qpair);
|
|
CU_ASSERT(result == NULL);
|
|
|
|
pthread_mutex_destroy(&rtransport.lock);
|
|
}
|
|
#undef TEST_GROUPS_COUNT
|
|
|
|
static void
|
|
test_spdk_nvmf_rdma_request_parse_sgl_with_md(void)
|
|
{
|
|
struct spdk_nvmf_rdma_transport rtransport;
|
|
struct spdk_nvmf_rdma_device device;
|
|
struct spdk_nvmf_rdma_request rdma_req = {};
|
|
struct spdk_nvmf_rdma_recv recv;
|
|
struct spdk_nvmf_rdma_poll_group group;
|
|
struct spdk_nvmf_rdma_qpair rqpair;
|
|
struct spdk_nvmf_rdma_poller poller;
|
|
union nvmf_c2h_msg cpl;
|
|
union nvmf_h2c_msg cmd;
|
|
struct spdk_nvme_sgl_descriptor *sgl;
|
|
struct spdk_nvme_sgl_descriptor sgl_desc[SPDK_NVMF_MAX_SGL_ENTRIES] = {{0}};
|
|
struct spdk_nvmf_rdma_request_data data;
|
|
struct spdk_nvmf_transport_pg_cache_buf buffer;
|
|
struct spdk_nvmf_transport_pg_cache_buf *buffer_ptr;
|
|
const uint32_t data_bs = 512;
|
|
const uint32_t md_size = 8;
|
|
int rc, i;
|
|
void *aligned_buffer;
|
|
|
|
data.wr.sg_list = data.sgl;
|
|
STAILQ_INIT(&group.group.buf_cache);
|
|
group.group.buf_cache_size = 0;
|
|
group.group.buf_cache_count = 0;
|
|
group.group.transport = &rtransport.transport;
|
|
STAILQ_INIT(&group.retired_bufs);
|
|
poller.group = &group;
|
|
rqpair.poller = &poller;
|
|
rqpair.max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
|
|
|
|
sgl = &cmd.nvme_cmd.dptr.sgl1;
|
|
rdma_req.recv = &recv;
|
|
rdma_req.req.cmd = &cmd;
|
|
rdma_req.req.rsp = &cpl;
|
|
rdma_req.data.wr.sg_list = rdma_req.data.sgl;
|
|
rdma_req.req.qpair = &rqpair.qpair;
|
|
rdma_req.req.xfer = SPDK_NVME_DATA_CONTROLLER_TO_HOST;
|
|
|
|
rtransport.transport.opts = g_rdma_ut_transport_opts;
|
|
rtransport.data_wr_pool = NULL;
|
|
rtransport.transport.data_buf_pool = NULL;
|
|
|
|
device.attr.device_cap_flags = 0;
|
|
device.map = NULL;
|
|
g_rdma_mr.lkey = 0xABCD;
|
|
sgl->keyed.key = 0xEEEE;
|
|
sgl->address = 0xFFFF;
|
|
rdma_req.recv->buf = (void *)0xDDDD;
|
|
|
|
/* Test 1: sgl type: keyed data block subtype: address */
|
|
sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
|
|
sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
|
|
|
|
/* Part 1: simple I/O, one SGL smaller than the transport io unit size, block size 512 */
|
|
MOCK_SET(spdk_mempool_get, (void *)0x2000);
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
|
|
SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
|
|
0, 0, 0, 0, 0);
|
|
rdma_req.req.dif.dif_insert_or_strip = true;
|
|
rtransport.transport.opts.io_unit_size = data_bs * 8;
|
|
sgl->keyed.length = data_bs * 4;
|
|
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(rdma_req.req.data_from_pool == true);
|
|
CU_ASSERT(rdma_req.req.length == data_bs * 4);
|
|
CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
|
|
CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
|
|
CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
|
|
CU_ASSERT(rdma_req.data.wr.num_sge == 4);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
|
|
CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size));
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == g_rdma_mr.lkey);
|
|
}
|
|
|
|
/* Part 2: simple I/O, one SGL equal to io unit size, io_unit_size is not aligned with md_size,
|
|
block size 512 */
|
|
MOCK_SET(spdk_mempool_get, (void *)0x2000);
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
|
|
SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
|
|
0, 0, 0, 0, 0);
|
|
rdma_req.req.dif.dif_insert_or_strip = true;
|
|
rtransport.transport.opts.io_unit_size = data_bs * 4;
|
|
sgl->keyed.length = data_bs * 4;
|
|
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(rdma_req.req.data_from_pool == true);
|
|
CU_ASSERT(rdma_req.req.length == data_bs * 4);
|
|
CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
|
|
CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
|
|
CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
|
|
CU_ASSERT(rdma_req.data.wr.num_sge == 5);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
|
|
CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
|
|
|
|
for (i = 0; i < 3; ++i) {
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size));
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == g_rdma_mr.lkey);
|
|
}
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[3].addr == 0x2000 + 3 * (data_bs + md_size));
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[3].length == 488);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[3].lkey == g_rdma_mr.lkey);
|
|
|
|
/* 2nd buffer consumed */
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[4].addr == 0x2000);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[4].length == 24);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[4].lkey == g_rdma_mr.lkey);
|
|
|
|
/* Part 3: simple I/O, one SGL equal io unit size, io_unit_size is equal to block size 512 bytes */
|
|
MOCK_SET(spdk_mempool_get, (void *)0x2000);
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
|
|
SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
|
|
0, 0, 0, 0, 0);
|
|
rdma_req.req.dif.dif_insert_or_strip = true;
|
|
rtransport.transport.opts.io_unit_size = data_bs;
|
|
sgl->keyed.length = data_bs;
|
|
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(rdma_req.req.data_from_pool == true);
|
|
CU_ASSERT(rdma_req.req.length == data_bs);
|
|
CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
|
|
CU_ASSERT(rdma_req.req.dif.elba_length == data_bs + md_size);
|
|
CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
|
|
CU_ASSERT(rdma_req.data.wr.num_sge == 1);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
|
|
CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
|
|
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[0].length == data_bs);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == g_rdma_mr.lkey);
|
|
|
|
CU_ASSERT(rdma_req.req.iovcnt == 2);
|
|
CU_ASSERT(rdma_req.req.iov[0].iov_base == (void *)((unsigned long)0x2000));
|
|
CU_ASSERT(rdma_req.req.iov[0].iov_len == data_bs);
|
|
/* 2nd buffer consumed for metadata */
|
|
CU_ASSERT(rdma_req.req.iov[1].iov_base == (void *)((unsigned long)0x2000));
|
|
CU_ASSERT(rdma_req.req.iov[1].iov_len == md_size);
|
|
|
|
/* Part 4: simple I/O, one SGL equal io unit size, io_unit_size is aligned with md_size,
|
|
block size 512 */
|
|
MOCK_SET(spdk_mempool_get, (void *)0x2000);
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
|
|
SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
|
|
0, 0, 0, 0, 0);
|
|
rdma_req.req.dif.dif_insert_or_strip = true;
|
|
rtransport.transport.opts.io_unit_size = (data_bs + md_size) * 4;
|
|
sgl->keyed.length = data_bs * 4;
|
|
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(rdma_req.req.data_from_pool == true);
|
|
CU_ASSERT(rdma_req.req.length == data_bs * 4);
|
|
CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
|
|
CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
|
|
CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
|
|
CU_ASSERT(rdma_req.data.wr.num_sge == 4);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
|
|
CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size));
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == g_rdma_mr.lkey);
|
|
}
|
|
|
|
/* Part 5: simple I/O, one SGL equal to 2x io unit size, io_unit_size is aligned with md_size,
|
|
block size 512 */
|
|
MOCK_SET(spdk_mempool_get, (void *)0x2000);
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
|
|
SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
|
|
0, 0, 0, 0, 0);
|
|
rdma_req.req.dif.dif_insert_or_strip = true;
|
|
rtransport.transport.opts.io_unit_size = (data_bs + md_size) * 2;
|
|
sgl->keyed.length = data_bs * 4;
|
|
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(rdma_req.req.data_from_pool == true);
|
|
CU_ASSERT(rdma_req.req.length == data_bs * 4);
|
|
CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
|
|
CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4);
|
|
CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
|
|
CU_ASSERT(rdma_req.data.wr.num_sge == 4);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
|
|
CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
|
|
|
|
for (i = 0; i < 2; ++i) {
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size));
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
|
|
}
|
|
for (i = 0; i < 2; ++i) {
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i + 2].addr == 0x2000 + i * (data_bs + md_size));
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i + 2].length == data_bs);
|
|
}
|
|
|
|
/* Part 6: simple I/O, one SGL larger than the transport io unit size, io_unit_size is not aligned to md_size,
|
|
block size 512 */
|
|
MOCK_SET(spdk_mempool_get, (void *)0x2000);
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
|
|
SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
|
|
0, 0, 0, 0, 0);
|
|
rdma_req.req.dif.dif_insert_or_strip = true;
|
|
rtransport.transport.opts.io_unit_size = data_bs * 4;
|
|
sgl->keyed.length = data_bs * 6;
|
|
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(rdma_req.req.data_from_pool == true);
|
|
CU_ASSERT(rdma_req.req.length == data_bs * 6);
|
|
CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
|
|
CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 6);
|
|
CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
|
|
CU_ASSERT(rdma_req.data.wr.num_sge == 7);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
|
|
CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
|
|
|
|
for (i = 0; i < 3; ++i) {
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000 + i * (data_bs + md_size));
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == g_rdma_mr.lkey);
|
|
}
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[3].addr == 0x2000 + 3 * (data_bs + md_size));
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[3].length == 488);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[3].lkey == g_rdma_mr.lkey);
|
|
|
|
/* 2nd IO buffer consumed */
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[4].addr == 0x2000);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[4].length == 24);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[4].lkey == g_rdma_mr.lkey);
|
|
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[5].addr == 0x2000 + 24 + md_size);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[5].length == 512);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[5].lkey == g_rdma_mr.lkey);
|
|
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[6].addr == 0x2000 + 24 + 512 + md_size * 2);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[6].length == 512);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[6].lkey == g_rdma_mr.lkey);
|
|
|
|
/* Part 7: simple I/O, number of SGL entries exceeds the number of entries
|
|
one WR can hold. Additional WR is chained */
|
|
MOCK_SET(spdk_mempool_get, &data);
|
|
aligned_buffer = (void *)((uintptr_t)((char *)&data + NVMF_DATA_BUFFER_MASK) &
|
|
~NVMF_DATA_BUFFER_MASK);
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
|
|
SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
|
|
0, 0, 0, 0, 0);
|
|
rdma_req.req.dif.dif_insert_or_strip = true;
|
|
rtransport.transport.opts.io_unit_size = data_bs * 16;
|
|
sgl->keyed.length = data_bs * 16;
|
|
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(rdma_req.req.data_from_pool == true);
|
|
CU_ASSERT(rdma_req.req.length == data_bs * 16);
|
|
CU_ASSERT(rdma_req.req.iovcnt == 2);
|
|
CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
|
|
CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 16);
|
|
CU_ASSERT(rdma_req.req.data == aligned_buffer);
|
|
CU_ASSERT(rdma_req.data.wr.num_sge == 16);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
|
|
/* additional wr from pool */
|
|
CU_ASSERT(rdma_req.data.wr.next == (void *)&data.wr);
|
|
CU_ASSERT(rdma_req.data.wr.next->num_sge == 1);
|
|
CU_ASSERT(rdma_req.data.wr.next->next == &rdma_req.rsp.wr);
|
|
|
|
/* Part 8: simple I/O, data with metadata do not fit to 1 io_buffer */
|
|
MOCK_SET(spdk_mempool_get, (void *)0x2000);
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
|
|
SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
|
|
0, 0, 0, 0, 0);
|
|
rdma_req.req.dif.dif_insert_or_strip = true;
|
|
rtransport.transport.opts.io_unit_size = 516;
|
|
sgl->keyed.length = data_bs * 2;
|
|
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(rdma_req.req.data_from_pool == true);
|
|
CU_ASSERT(rdma_req.req.length == data_bs * 2);
|
|
CU_ASSERT(rdma_req.req.iovcnt == 3);
|
|
CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
|
|
CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 2);
|
|
CU_ASSERT(rdma_req.req.data == (void *)0x2000);
|
|
CU_ASSERT(rdma_req.data.wr.num_sge == 2);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
|
|
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[0].length == 512);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == g_rdma_mr.lkey);
|
|
|
|
/* 2nd IO buffer consumed, offset 4 bytes due to part of the metadata
|
|
is located at the beginning of that buffer */
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[1].addr == 0x2000 + 4);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[1].length == 512);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[1].lkey == g_rdma_mr.lkey);
|
|
|
|
/* Test 9 dealing with a buffer split over two Memory Regions */
|
|
MOCK_SET(spdk_mempool_get, (void *)&buffer);
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
|
|
SPDK_DIF_TYPE1, SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK,
|
|
0, 0, 0, 0, 0);
|
|
rdma_req.req.dif.dif_insert_or_strip = true;
|
|
rtransport.transport.opts.io_unit_size = data_bs * 4;
|
|
sgl->keyed.length = data_bs * 2;
|
|
g_mr_size = data_bs;
|
|
g_mr_next_size = rtransport.transport.opts.io_unit_size;
|
|
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
SPDK_CU_ASSERT_FATAL(rc == 0);
|
|
CU_ASSERT(rdma_req.req.data_from_pool == true);
|
|
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size / 2);
|
|
CU_ASSERT((uint64_t)rdma_req.req.data == (((uint64_t)&buffer + NVMF_DATA_BUFFER_MASK) &
|
|
~NVMF_DATA_BUFFER_MASK));
|
|
CU_ASSERT(rdma_req.data.wr.num_sge == 2);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
|
|
CU_ASSERT(rdma_req.req.buffers[0] == &buffer);
|
|
for (i = 0; i < 2; i++) {
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (uint64_t)rdma_req.req.data + i *
|
|
(data_bs + md_size));
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == g_rdma_mr.lkey);
|
|
}
|
|
buffer_ptr = STAILQ_FIRST(&group.retired_bufs);
|
|
CU_ASSERT(buffer_ptr == &buffer);
|
|
STAILQ_REMOVE(&group.retired_bufs, buffer_ptr, spdk_nvmf_transport_pg_cache_buf, link);
|
|
CU_ASSERT(STAILQ_EMPTY(&group.retired_bufs));
|
|
g_mr_size = 0;
|
|
g_mr_next_size = 0;
|
|
|
|
/* Test 2: Multi SGL */
|
|
sgl->generic.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
|
|
sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
|
|
sgl->address = 0;
|
|
rdma_req.recv->buf = (void *)&sgl_desc;
|
|
MOCK_SET(spdk_mempool_get, &data);
|
|
aligned_buffer = (void *)((uintptr_t)((char *)&data + NVMF_DATA_BUFFER_MASK) &
|
|
~NVMF_DATA_BUFFER_MASK);
|
|
|
|
/* part 1: 2 segments each with 1 wr. io_unit_size is aligned with data_bs + md_size */
|
|
reset_nvmf_rdma_request(&rdma_req);
|
|
spdk_dif_ctx_init(&rdma_req.req.dif.dif_ctx, data_bs + md_size, md_size, true, false,
|
|
SPDK_DIF_TYPE1,
|
|
SPDK_DIF_FLAGS_GUARD_CHECK | SPDK_DIF_FLAGS_REFTAG_CHECK, 0, 0, 0, 0, 0);
|
|
rdma_req.req.dif.dif_insert_or_strip = true;
|
|
rtransport.transport.opts.io_unit_size = (data_bs + md_size) * 4;
|
|
sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
|
|
sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
|
|
sgl_desc[i].keyed.length = data_bs * 4;
|
|
sgl_desc[i].address = 0x4000 + i * data_bs * 4;
|
|
sgl_desc[i].keyed.key = 0x44;
|
|
}
|
|
|
|
rc = nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
|
|
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(rdma_req.req.data_from_pool == true);
|
|
CU_ASSERT(rdma_req.req.length == data_bs * 4 * 2);
|
|
CU_ASSERT(rdma_req.req.dif.orig_length == rdma_req.req.length);
|
|
CU_ASSERT(rdma_req.req.dif.elba_length == (data_bs + md_size) * 4 * 2);
|
|
CU_ASSERT(rdma_req.data.wr.num_sge == 4);
|
|
for (i = 0; i < 4; ++i) {
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (uintptr_t)((unsigned char *)aligned_buffer) + i *
|
|
(data_bs + md_size));
|
|
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == data_bs);
|
|
}
|
|
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
|
|
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
|
|
CU_ASSERT(rdma_req.data.wr.next == &data.wr);
|
|
CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
|
|
CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + data_bs * 4);
|
|
CU_ASSERT(data.wr.num_sge == 4);
|
|
for (i = 0; i < 4; ++i) {
|
|
CU_ASSERT(data.wr.sg_list[i].addr == (uintptr_t)((unsigned char *)aligned_buffer) + i *
|
|
(data_bs + md_size));
|
|
CU_ASSERT(data.wr.sg_list[i].length == data_bs);
|
|
}
|
|
|
|
CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
CU_pSuite suite = NULL;
|
|
unsigned int num_failures;
|
|
|
|
CU_set_error_action(CUEA_ABORT);
|
|
CU_initialize_registry();
|
|
|
|
suite = CU_add_suite("nvmf", NULL, NULL);
|
|
|
|
CU_ADD_TEST(suite, test_spdk_nvmf_rdma_request_parse_sgl);
|
|
CU_ADD_TEST(suite, test_spdk_nvmf_rdma_request_process);
|
|
CU_ADD_TEST(suite, test_nvmf_rdma_get_optimal_poll_group);
|
|
CU_ADD_TEST(suite, test_spdk_nvmf_rdma_request_parse_sgl_with_md);
|
|
|
|
CU_basic_set_mode(CU_BRM_VERBOSE);
|
|
CU_basic_run_tests();
|
|
num_failures = CU_get_number_of_failures();
|
|
CU_cleanup_registry();
|
|
return num_failures;
|
|
}
|