Spdk/test/unit/lib/nvme/nvme_qpair.c/nvme_qpair_ut.c
Seth Howell 58216dd07e lib/nvme: fix mem leak in req submit.
Signed-off-by: Seth Howell <seth.howell@intel.com>
Change-Id: If64c06177605a8f57d87ba22b86fe58ddebd6f7a
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/3921
Community-CI: Mellanox Build Bot
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
Reviewed-by: Michael Haeuptle <michaelhaeuptle@gmail.com>
Reviewed-by: Paul Luse <paul.e.luse@intel.com>
2020-09-02 07:38:38 +00:00

642 lines
20 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk_cunit.h"
#include "common/lib/test_env.c"
pid_t g_spdk_nvme_pid;
bool trace_flag = false;
#define SPDK_LOG_NVME trace_flag
#include "nvme/nvme_qpair.c"
struct nvme_driver _g_nvme_driver = {
.lock = PTHREAD_MUTEX_INITIALIZER,
};
DEFINE_STUB_V(nvme_transport_qpair_abort_reqs, (struct spdk_nvme_qpair *qpair, uint32_t dnr));
DEFINE_STUB(nvme_transport_qpair_submit_request, int,
(struct spdk_nvme_qpair *qpair, struct nvme_request *req), 0);
DEFINE_STUB(spdk_nvme_ctrlr_free_io_qpair, int, (struct spdk_nvme_qpair *qpair), 0);
DEFINE_STUB_V(nvme_transport_ctrlr_disconnect_qpair, (struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *qpair));
DEFINE_STUB_V(nvme_ctrlr_disconnect_qpair, (struct spdk_nvme_qpair *qpair));
void
nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove)
{
if (hot_remove) {
ctrlr->is_removed = true;
}
ctrlr->is_failed = true;
}
static bool g_called_transport_process_completions = false;
static int32_t g_transport_process_completions_rc = 0;
int32_t
nvme_transport_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
{
g_called_transport_process_completions = true;
return g_transport_process_completions_rc;
}
static void
prepare_submit_request_test(struct spdk_nvme_qpair *qpair,
struct spdk_nvme_ctrlr *ctrlr)
{
memset(ctrlr, 0, sizeof(*ctrlr));
ctrlr->free_io_qids = NULL;
TAILQ_INIT(&ctrlr->active_io_qpairs);
TAILQ_INIT(&ctrlr->active_procs);
MOCK_CLEAR(spdk_zmalloc);
nvme_qpair_init(qpair, 1, ctrlr, 0, 32);
}
static void
cleanup_submit_request_test(struct spdk_nvme_qpair *qpair)
{
free(qpair->req_buf);
}
static void
expected_success_callback(void *arg, const struct spdk_nvme_cpl *cpl)
{
CU_ASSERT(!spdk_nvme_cpl_is_error(cpl));
}
static void
expected_failure_callback(void *arg, const struct spdk_nvme_cpl *cpl)
{
CU_ASSERT(spdk_nvme_cpl_is_error(cpl));
}
static void
test3(void)
{
struct spdk_nvme_qpair qpair = {};
struct nvme_request *req;
struct spdk_nvme_ctrlr ctrlr = {};
qpair.state = NVME_QPAIR_ENABLED;
prepare_submit_request_test(&qpair, &ctrlr);
req = nvme_allocate_request_null(&qpair, expected_success_callback, NULL);
SPDK_CU_ASSERT_FATAL(req != NULL);
CU_ASSERT(nvme_qpair_submit_request(&qpair, req) == 0);
nvme_free_request(req);
cleanup_submit_request_test(&qpair);
}
static void
test_ctrlr_failed(void)
{
struct spdk_nvme_qpair qpair = {};
struct nvme_request *req;
struct spdk_nvme_ctrlr ctrlr = {};
char payload[4096];
prepare_submit_request_test(&qpair, &ctrlr);
req = nvme_allocate_request_contig(&qpair, payload, sizeof(payload), expected_failure_callback,
NULL);
SPDK_CU_ASSERT_FATAL(req != NULL);
/* Set the controller to failed.
* Set the controller to resetting so that the qpair won't get re-enabled.
*/
ctrlr.is_failed = true;
ctrlr.is_resetting = true;
CU_ASSERT(nvme_qpair_submit_request(&qpair, req) != 0);
cleanup_submit_request_test(&qpair);
}
static void struct_packing(void)
{
/* ctrlr is the first field in nvme_qpair after the fields
* that are used in the I/O path. Make sure the I/O path fields
* all fit into two cache lines.
*/
CU_ASSERT(offsetof(struct spdk_nvme_qpair, ctrlr) <= 128);
}
static int g_num_cb_failed = 0;
static int g_num_cb_passed = 0;
static void
dummy_cb_fn(void *cb_arg, const struct spdk_nvme_cpl *cpl)
{
if (cpl->status.sc == SPDK_NVME_SC_SUCCESS) {
g_num_cb_passed++;
} else {
g_num_cb_failed++;
}
}
static void test_nvme_qpair_process_completions(void)
{
struct spdk_nvme_qpair admin_qp = {0};
struct spdk_nvme_qpair qpair = {0};
struct spdk_nvme_ctrlr ctrlr = {0};
struct nvme_request dummy_1 = {{0}};
struct nvme_request dummy_2 = {{0}};
int rc;
dummy_1.cb_fn = dummy_cb_fn;
dummy_2.cb_fn = dummy_cb_fn;
dummy_1.qpair = &qpair;
dummy_2.qpair = &qpair;
TAILQ_INIT(&ctrlr.active_io_qpairs);
TAILQ_INIT(&ctrlr.active_procs);
nvme_qpair_init(&qpair, 1, &ctrlr, 0, 32);
nvme_qpair_init(&admin_qp, 0, &ctrlr, 0, 32);
ctrlr.adminq = &admin_qp;
STAILQ_INIT(&qpair.queued_req);
STAILQ_INSERT_TAIL(&qpair.queued_req, &dummy_1, stailq);
STAILQ_INSERT_TAIL(&qpair.queued_req, &dummy_2, stailq);
/* If the controller is failed, return -ENXIO */
ctrlr.is_failed = true;
ctrlr.is_removed = false;
rc = spdk_nvme_qpair_process_completions(&qpair, 0);
CU_ASSERT(rc == -ENXIO);
CU_ASSERT(!STAILQ_EMPTY(&qpair.queued_req));
CU_ASSERT(g_num_cb_passed == 0);
CU_ASSERT(g_num_cb_failed == 0);
/* Same if the qpair is failed at the transport layer. */
ctrlr.is_failed = false;
ctrlr.is_removed = false;
qpair.state = NVME_QPAIR_DISCONNECTED;
rc = spdk_nvme_qpair_process_completions(&qpair, 0);
CU_ASSERT(rc == -ENXIO);
CU_ASSERT(!STAILQ_EMPTY(&qpair.queued_req));
CU_ASSERT(g_num_cb_passed == 0);
CU_ASSERT(g_num_cb_failed == 0);
/* If the controller is removed, make sure we abort the requests. */
ctrlr.is_failed = true;
ctrlr.is_removed = true;
qpair.state = NVME_QPAIR_CONNECTED;
rc = spdk_nvme_qpair_process_completions(&qpair, 0);
CU_ASSERT(rc == -ENXIO);
CU_ASSERT(STAILQ_EMPTY(&qpair.queued_req));
CU_ASSERT(g_num_cb_passed == 0);
CU_ASSERT(g_num_cb_failed == 2);
/* If we are resetting, make sure that we don't call into the transport. */
STAILQ_INSERT_TAIL(&qpair.queued_req, &dummy_1, stailq);
dummy_1.queued = true;
STAILQ_INSERT_TAIL(&qpair.queued_req, &dummy_2, stailq);
dummy_2.queued = true;
g_num_cb_failed = 0;
ctrlr.is_failed = false;
ctrlr.is_removed = false;
ctrlr.is_resetting = true;
rc = spdk_nvme_qpair_process_completions(&qpair, 0);
CU_ASSERT(rc == -ENXIO);
CU_ASSERT(g_called_transport_process_completions == false);
/* We also need to make sure we didn't abort the requests. */
CU_ASSERT(!STAILQ_EMPTY(&qpair.queued_req));
CU_ASSERT(g_num_cb_passed == 0);
CU_ASSERT(g_num_cb_failed == 0);
/* The case where we aren't resetting, but are enabling the qpair is the same as above. */
ctrlr.is_resetting = false;
qpair.state = NVME_QPAIR_ENABLING;
rc = spdk_nvme_qpair_process_completions(&qpair, 0);
CU_ASSERT(rc == -ENXIO);
CU_ASSERT(g_called_transport_process_completions == false);
CU_ASSERT(!STAILQ_EMPTY(&qpair.queued_req));
CU_ASSERT(g_num_cb_passed == 0);
CU_ASSERT(g_num_cb_failed == 0);
/* For other qpair states, we want to enable the qpair. */
qpair.state = NVME_QPAIR_CONNECTED;
rc = spdk_nvme_qpair_process_completions(&qpair, 1);
CU_ASSERT(rc == 0);
CU_ASSERT(g_called_transport_process_completions == true);
/* These should have been submitted to the lower layer. */
CU_ASSERT(STAILQ_EMPTY(&qpair.queued_req));
CU_ASSERT(g_num_cb_passed == 0);
CU_ASSERT(g_num_cb_failed == 0);
CU_ASSERT(nvme_qpair_get_state(&qpair) == NVME_QPAIR_ENABLED);
g_called_transport_process_completions = false;
g_transport_process_completions_rc = -ENXIO;
/* Fail the controller if we get an error from the transport on admin qpair. */
admin_qp.state = NVME_QPAIR_ENABLED;
rc = spdk_nvme_qpair_process_completions(&admin_qp, 0);
CU_ASSERT(rc == -ENXIO);
CU_ASSERT(g_called_transport_process_completions == true);
CU_ASSERT(ctrlr.is_failed == true);
/* Don't fail the controller for regular qpairs. */
ctrlr.is_failed = false;
g_called_transport_process_completions = false;
rc = spdk_nvme_qpair_process_completions(&qpair, 0);
CU_ASSERT(rc == -ENXIO);
CU_ASSERT(g_called_transport_process_completions == true);
CU_ASSERT(ctrlr.is_failed == false);
/* Make sure we don't modify the return value from the transport. */
ctrlr.is_failed = false;
g_called_transport_process_completions = false;
g_transport_process_completions_rc = 23;
rc = spdk_nvme_qpair_process_completions(&qpair, 0);
CU_ASSERT(rc == 23);
CU_ASSERT(g_called_transport_process_completions == true);
CU_ASSERT(ctrlr.is_failed == false);
free(qpair.req_buf);
free(admin_qp.req_buf);
}
static void test_nvme_completion_is_retry(void)
{
struct spdk_nvme_cpl cpl = {};
cpl.status.sct = SPDK_NVME_SCT_GENERIC;
cpl.status.sc = SPDK_NVME_SC_NAMESPACE_NOT_READY;
cpl.status.dnr = 0;
CU_ASSERT_TRUE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_FORMAT_IN_PROGRESS;
cpl.status.dnr = 1;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.dnr = 0;
CU_ASSERT_TRUE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_INVALID_OPCODE;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_INVALID_FIELD;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_COMMAND_ID_CONFLICT;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_DATA_TRANSFER_ERROR;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_ABORTED_POWER_LOSS;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_ABORTED_FAILED_FUSED;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_ABORTED_MISSING_FUSED;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_INVALID_NAMESPACE_OR_FORMAT;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_COMMAND_SEQUENCE_ERROR;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_INVALID_SGL_SEG_DESCRIPTOR;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_INVALID_NUM_SGL_DESCIRPTORS;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_METADATA_SGL_LENGTH_INVALID;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_INVALID_CONTROLLER_MEM_BUF;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_INVALID_PRP_OFFSET;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_LBA_OUT_OF_RANGE;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_CAPACITY_EXCEEDED;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = SPDK_NVME_SC_RESERVATION_CONFLICT;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sc = 0x70;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sct = SPDK_NVME_SCT_PATH;
cpl.status.sc = SPDK_NVME_SC_INTERNAL_PATH_ERROR;
cpl.status.dnr = 0;
CU_ASSERT_TRUE(nvme_completion_is_retry(&cpl));
cpl.status.sct = SPDK_NVME_SCT_PATH;
cpl.status.sc = SPDK_NVME_SC_INTERNAL_PATH_ERROR;
cpl.status.dnr = 1;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sct = SPDK_NVME_SCT_VENDOR_SPECIFIC;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
cpl.status.sct = 0x4;
CU_ASSERT_FALSE(nvme_completion_is_retry(&cpl));
}
#ifdef DEBUG
static void
test_get_status_string(void)
{
const char *status_string;
struct spdk_nvme_status status;
status.sct = SPDK_NVME_SCT_GENERIC;
status.sc = SPDK_NVME_SC_SUCCESS;
status_string = spdk_nvme_cpl_get_status_string(&status);
CU_ASSERT(strcmp(status_string, "SUCCESS") == 0);
status.sct = SPDK_NVME_SCT_COMMAND_SPECIFIC;
status.sc = SPDK_NVME_SC_COMPLETION_QUEUE_INVALID;
status_string = spdk_nvme_cpl_get_status_string(&status);
CU_ASSERT(strcmp(status_string, "INVALID COMPLETION QUEUE") == 0);
status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
status.sc = SPDK_NVME_SC_UNRECOVERED_READ_ERROR;
status_string = spdk_nvme_cpl_get_status_string(&status);
CU_ASSERT(strcmp(status_string, "UNRECOVERED READ ERROR") == 0);
status.sct = SPDK_NVME_SCT_VENDOR_SPECIFIC;
status.sc = 0;
status_string = spdk_nvme_cpl_get_status_string(&status);
CU_ASSERT(strcmp(status_string, "VENDOR SPECIFIC") == 0);
status.sct = 0x4;
status.sc = 0;
status_string = spdk_nvme_cpl_get_status_string(&status);
CU_ASSERT(strcmp(status_string, "RESERVED") == 0);
}
#endif
static void
test_nvme_qpair_add_cmd_error_injection(void)
{
struct spdk_nvme_qpair qpair = {};
struct spdk_nvme_ctrlr ctrlr = {};
int rc;
prepare_submit_request_test(&qpair, &ctrlr);
ctrlr.adminq = &qpair;
/* Admin error injection at submission path */
MOCK_CLEAR(spdk_zmalloc);
rc = spdk_nvme_qpair_add_cmd_error_injection(&ctrlr, NULL,
SPDK_NVME_OPC_GET_FEATURES, true, 5000, 1,
SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_INVALID_FIELD);
CU_ASSERT(rc == 0);
CU_ASSERT(!TAILQ_EMPTY(&qpair.err_cmd_head));
/* Remove cmd error injection */
spdk_nvme_qpair_remove_cmd_error_injection(&ctrlr, NULL, SPDK_NVME_OPC_GET_FEATURES);
CU_ASSERT(TAILQ_EMPTY(&qpair.err_cmd_head));
/* IO error injection at completion path */
rc = spdk_nvme_qpair_add_cmd_error_injection(&ctrlr, &qpair,
SPDK_NVME_OPC_READ, false, 0, 1,
SPDK_NVME_SCT_MEDIA_ERROR, SPDK_NVME_SC_UNRECOVERED_READ_ERROR);
CU_ASSERT(rc == 0);
CU_ASSERT(!TAILQ_EMPTY(&qpair.err_cmd_head));
/* Provide the same opc, and check whether allocate a new entry */
rc = spdk_nvme_qpair_add_cmd_error_injection(&ctrlr, &qpair,
SPDK_NVME_OPC_READ, false, 0, 1,
SPDK_NVME_SCT_MEDIA_ERROR, SPDK_NVME_SC_UNRECOVERED_READ_ERROR);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&qpair.err_cmd_head));
CU_ASSERT(TAILQ_NEXT(TAILQ_FIRST(&qpair.err_cmd_head), link) == NULL);
/* Remove cmd error injection */
spdk_nvme_qpair_remove_cmd_error_injection(&ctrlr, &qpair, SPDK_NVME_OPC_READ);
CU_ASSERT(TAILQ_EMPTY(&qpair.err_cmd_head));
rc = spdk_nvme_qpair_add_cmd_error_injection(&ctrlr, &qpair,
SPDK_NVME_OPC_COMPARE, true, 0, 5,
SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_COMPARE_FAILURE);
CU_ASSERT(rc == 0);
CU_ASSERT(!TAILQ_EMPTY(&qpair.err_cmd_head));
/* Remove cmd error injection */
spdk_nvme_qpair_remove_cmd_error_injection(&ctrlr, &qpair, SPDK_NVME_OPC_COMPARE);
CU_ASSERT(TAILQ_EMPTY(&qpair.err_cmd_head));
cleanup_submit_request_test(&qpair);
}
static struct nvme_request *
allocate_request_tree(struct spdk_nvme_qpair *qpair)
{
struct nvme_request *req, *req1, *req2, *req3, *req2_1, *req2_2, *req2_3;
/*
* Build a request chain like the following:
* req
* |
* ---------------
* | | |
* req1 req2 req3
* |
* ---------------
* | | |
* req2_1 req2_2 req2_3
*/
req = nvme_allocate_request_null(qpair, NULL, NULL);
CU_ASSERT(req != NULL);
TAILQ_INIT(&req->children);
req1 = nvme_allocate_request_null(qpair, NULL, NULL);
CU_ASSERT(req1 != NULL);
req->num_children++;
TAILQ_INSERT_TAIL(&req->children, req1, child_tailq);
req1->parent = req;
req2 = nvme_allocate_request_null(qpair, NULL, NULL);
CU_ASSERT(req2 != NULL);
TAILQ_INIT(&req2->children);
req->num_children++;
TAILQ_INSERT_TAIL(&req->children, req2, child_tailq);
req2->parent = req;
req3 = nvme_allocate_request_null(qpair, NULL, NULL);
CU_ASSERT(req3 != NULL);
req->num_children++;
TAILQ_INSERT_TAIL(&req->children, req3, child_tailq);
req3->parent = req;
req2_1 = nvme_allocate_request_null(qpair, NULL, NULL);
CU_ASSERT(req2_1 != NULL);
req2->num_children++;
TAILQ_INSERT_TAIL(&req2->children, req2_1, child_tailq);
req2_1->parent = req2;
req2_2 = nvme_allocate_request_null(qpair, NULL, NULL);
CU_ASSERT(req2_2 != NULL);
req2->num_children++;
TAILQ_INSERT_TAIL(&req2->children, req2_2, child_tailq);
req2_2->parent = req2;
req2_3 = nvme_allocate_request_null(qpair, NULL, NULL);
CU_ASSERT(req2_3 != NULL);
req2->num_children++;
TAILQ_INSERT_TAIL(&req2->children, req2_3, child_tailq);
req2_3->parent = req2;
return req;
}
static void
test_nvme_qpair_submit_request(void)
{
int rc;
struct spdk_nvme_qpair qpair = {};
struct spdk_nvme_ctrlr ctrlr = {};
struct nvme_request *req;
prepare_submit_request_test(&qpair, &ctrlr);
req = allocate_request_tree(&qpair);
ctrlr.is_failed = true;
rc = nvme_qpair_submit_request(&qpair, req);
SPDK_CU_ASSERT_FATAL(rc == -ENXIO);
req = allocate_request_tree(&qpair);
ctrlr.is_failed = false;
qpair.state = NVME_QPAIR_DISCONNECTING;
rc = nvme_qpair_submit_request(&qpair, req);
SPDK_CU_ASSERT_FATAL(rc == -ENXIO);
cleanup_submit_request_test(&qpair);
}
static void
test_nvme_qpair_resubmit_request_with_transport_failed(void)
{
int rc;
struct spdk_nvme_qpair qpair = {};
struct spdk_nvme_ctrlr ctrlr = {};
struct nvme_request *req;
prepare_submit_request_test(&qpair, &ctrlr);
req = nvme_allocate_request_null(&qpair, dummy_cb_fn, NULL);
CU_ASSERT(req != NULL);
TAILQ_INIT(&req->children);
STAILQ_INSERT_TAIL(&qpair.queued_req, req, stailq);
req->queued = true;
g_transport_process_completions_rc = 1;
qpair.state = NVME_QPAIR_ENABLED;
g_num_cb_failed = 0;
MOCK_SET(nvme_transport_qpair_submit_request, -EINVAL);
rc = spdk_nvme_qpair_process_completions(&qpair, g_transport_process_completions_rc);
MOCK_CLEAR(nvme_transport_qpair_submit_request);
CU_ASSERT(rc == g_transport_process_completions_rc);
CU_ASSERT(STAILQ_EMPTY(&qpair.queued_req));
CU_ASSERT(g_num_cb_failed == 1);
cleanup_submit_request_test(&qpair);
}
int main(int argc, char **argv)
{
CU_pSuite suite = NULL;
unsigned int num_failures;
CU_set_error_action(CUEA_ABORT);
CU_initialize_registry();
suite = CU_add_suite("nvme_qpair", NULL, NULL);
CU_ADD_TEST(suite, test3);
CU_ADD_TEST(suite, test_ctrlr_failed);
CU_ADD_TEST(suite, struct_packing);
CU_ADD_TEST(suite, test_nvme_qpair_process_completions);
CU_ADD_TEST(suite, test_nvme_completion_is_retry);
#ifdef DEBUG
CU_ADD_TEST(suite, test_get_status_string);
#endif
CU_ADD_TEST(suite, test_nvme_qpair_add_cmd_error_injection);
CU_ADD_TEST(suite, test_nvme_qpair_submit_request);
CU_ADD_TEST(suite, test_nvme_qpair_resubmit_request_with_transport_failed);
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
return num_failures;
}