Spdk/test/unit/lib/bdev/bdev_raid.c/bdev_raid_ut.c
Jim Harris e58deb0257 test/raid: remove unused spdk_thread_send_msg stub
Signed-off-by: Jim Harris <james.r.harris@intel.com>
Change-Id: I7fc128a82b3d1d1f780c1c396644f331306de600

Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/472437
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Paul Luse <paul.e.luse@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Reviewed-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
2019-11-01 17:46:42 +00:00

2277 lines
68 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk_cunit.h"
#include "spdk/env.h"
#include "spdk_internal/mock.h"
#include "bdev/raid/bdev_raid.c"
#include "bdev/raid/bdev_raid_rpc.c"
#include "bdev/raid/raid0.c"
#define MAX_BASE_DRIVES 32
#define MAX_RAIDS 2
#define INVALID_IO_SUBMIT 0xFFFF
#define MAX_TEST_IO_RANGE (3 * 3 * 3 * (MAX_BASE_DRIVES + 5))
#define BLOCK_CNT (1024ul * 1024ul * 1024ul * 1024ul)
struct spdk_bdev_channel {
struct spdk_io_channel *channel;
};
/* Data structure to capture the output of IO for verification */
struct io_output {
struct spdk_bdev_desc *desc;
struct spdk_io_channel *ch;
uint64_t offset_blocks;
uint64_t num_blocks;
spdk_bdev_io_completion_cb cb;
void *cb_arg;
enum spdk_bdev_io_type iotype;
};
struct raid_io_ranges {
uint64_t lba;
uint64_t nblocks;
};
/* Globals */
int g_bdev_io_submit_status;
struct io_output *g_io_output = NULL;
uint32_t g_io_output_index;
uint32_t g_io_comp_status;
bool g_child_io_status_flag;
void *g_rpc_req;
uint32_t g_rpc_req_size;
TAILQ_HEAD(bdev, spdk_bdev);
struct bdev g_bdev_list;
TAILQ_HEAD(waitq, spdk_bdev_io_wait_entry);
struct waitq g_io_waitq;
uint32_t g_block_len;
uint32_t g_strip_size;
uint32_t g_max_io_size;
uint8_t g_max_base_drives;
uint8_t g_max_raids;
uint8_t g_ignore_io_output;
uint8_t g_rpc_err;
char *g_get_raids_output[MAX_RAIDS];
uint32_t g_get_raids_count;
uint8_t g_json_decode_obj_err;
uint8_t g_json_decode_obj_create;
uint8_t g_config_level_create = 0;
uint8_t g_test_multi_raids;
struct raid_io_ranges g_io_ranges[MAX_TEST_IO_RANGE];
uint32_t g_io_range_idx;
uint64_t g_lba_offset;
DEFINE_STUB_V(spdk_io_device_register, (void *io_device, spdk_io_channel_create_cb create_cb,
spdk_io_channel_destroy_cb destroy_cb, uint32_t ctx_size,
const char *name));
DEFINE_STUB_V(spdk_io_device_unregister, (void *io_device,
spdk_io_device_unregister_cb unregister_cb));
DEFINE_STUB(spdk_get_io_channel, struct spdk_io_channel *, (void *io_device), NULL);
DEFINE_STUB_V(spdk_bdev_module_examine_done, (struct spdk_bdev_module *module));
DEFINE_STUB_V(spdk_bdev_module_list_add, (struct spdk_bdev_module *bdev_module));
DEFINE_STUB(spdk_bdev_register, int, (struct spdk_bdev *bdev), 0);
DEFINE_STUB(spdk_bdev_get_io_channel, struct spdk_io_channel *, (struct spdk_bdev_desc *desc),
(void *)1);
DEFINE_STUB(spdk_bdev_io_type_supported, bool, (struct spdk_bdev *bdev,
enum spdk_bdev_io_type io_type), true);
DEFINE_STUB_V(spdk_bdev_close, (struct spdk_bdev_desc *desc));
DEFINE_STUB(spdk_bdev_flush_blocks, int, (struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb,
void *cb_arg), 0);
DEFINE_STUB(spdk_conf_next_section, struct spdk_conf_section *, (struct spdk_conf_section *sp),
NULL);
DEFINE_STUB_V(spdk_rpc_register_method, (const char *method, spdk_rpc_method_handler func,
uint32_t state_mask));
DEFINE_STUB_V(spdk_rpc_register_alias_deprecated, (const char *method, const char *alias));
DEFINE_STUB_V(spdk_jsonrpc_end_result, (struct spdk_jsonrpc_request *request,
struct spdk_json_write_ctx *w));
DEFINE_STUB(spdk_json_decode_string, int, (const struct spdk_json_val *val, void *out), 0);
DEFINE_STUB(spdk_json_decode_uint32, int, (const struct spdk_json_val *val, void *out), 0);
DEFINE_STUB(spdk_json_decode_array, int, (const struct spdk_json_val *values,
spdk_json_decode_fn decode_func,
void *out, size_t max_size, size_t *out_size, size_t stride), 0);
DEFINE_STUB(spdk_json_write_name, int, (struct spdk_json_write_ctx *w, const char *name), 0);
DEFINE_STUB(spdk_json_write_object_begin, int, (struct spdk_json_write_ctx *w), 0);
DEFINE_STUB(spdk_json_write_named_object_begin, int, (struct spdk_json_write_ctx *w,
const char *name), 0);
DEFINE_STUB(spdk_json_write_object_end, int, (struct spdk_json_write_ctx *w), 0);
DEFINE_STUB(spdk_json_write_array_begin, int, (struct spdk_json_write_ctx *w), 0);
DEFINE_STUB(spdk_json_write_array_end, int, (struct spdk_json_write_ctx *w), 0);
DEFINE_STUB(spdk_json_write_named_array_begin, int, (struct spdk_json_write_ctx *w,
const char *name), 0);
DEFINE_STUB(spdk_json_write_bool, int, (struct spdk_json_write_ctx *w, bool val), 0);
DEFINE_STUB(spdk_json_write_null, int, (struct spdk_json_write_ctx *w), 0);
DEFINE_STUB(spdk_strerror, const char *, (int errnum), NULL);
DEFINE_STUB(spdk_bdev_queue_io_wait, int, (struct spdk_bdev *bdev, struct spdk_io_channel *ch,
struct spdk_bdev_io_wait_entry *entry), 0);
static void
set_test_opts(void)
{
g_max_base_drives = MAX_BASE_DRIVES;
g_max_raids = MAX_RAIDS;
g_block_len = 4096;
g_strip_size = 64;
g_max_io_size = 1024;
printf("Test Options\n");
printf("blocklen = %u, strip_size = %u, max_io_size = %u, g_max_base_drives = %u, "
"g_max_raids = %u\n",
g_block_len, g_strip_size, g_max_io_size, g_max_base_drives, g_max_raids);
}
/* Set globals before every test run */
static void
set_globals(void)
{
uint32_t max_splits;
g_bdev_io_submit_status = 0;
if (g_max_io_size < g_strip_size) {
max_splits = 2;
} else {
max_splits = (g_max_io_size / g_strip_size) + 1;
}
if (max_splits < g_max_base_drives) {
max_splits = g_max_base_drives;
}
g_io_output = calloc(max_splits, sizeof(struct io_output));
SPDK_CU_ASSERT_FATAL(g_io_output != NULL);
g_io_output_index = 0;
memset(g_get_raids_output, 0, sizeof(g_get_raids_output));
g_get_raids_count = 0;
g_io_comp_status = 0;
g_ignore_io_output = 0;
g_config_level_create = 0;
g_rpc_err = 0;
g_test_multi_raids = 0;
g_child_io_status_flag = true;
TAILQ_INIT(&g_bdev_list);
TAILQ_INIT(&g_io_waitq);
g_rpc_req = NULL;
g_rpc_req_size = 0;
g_json_decode_obj_err = 0;
g_json_decode_obj_create = 0;
g_lba_offset = 0;
}
static void
base_bdevs_cleanup(void)
{
struct spdk_bdev *bdev;
struct spdk_bdev *bdev_next;
if (!TAILQ_EMPTY(&g_bdev_list)) {
TAILQ_FOREACH_SAFE(bdev, &g_bdev_list, internal.link, bdev_next) {
free(bdev->name);
TAILQ_REMOVE(&g_bdev_list, bdev, internal.link);
free(bdev);
}
}
}
static void
check_and_remove_raid_bdev(struct raid_bdev_config *raid_cfg)
{
struct raid_bdev *raid_bdev;
/* Get the raid structured allocated if exists */
raid_bdev = raid_cfg->raid_bdev;
if (raid_bdev == NULL) {
return;
}
for (uint8_t i = 0; i < raid_bdev->num_base_bdevs; i++) {
assert(raid_bdev->base_bdev_info != NULL);
if (raid_bdev->base_bdev_info[i].bdev) {
raid_bdev_free_base_bdev_resource(raid_bdev, i);
}
}
assert(raid_bdev->num_base_bdevs_discovered == 0);
raid_bdev_cleanup(raid_bdev);
}
/* Reset globals */
static void
reset_globals(void)
{
if (g_io_output) {
free(g_io_output);
g_io_output = NULL;
}
g_rpc_req = NULL;
g_rpc_req_size = 0;
}
void
spdk_bdev_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb,
uint64_t len)
{
cb(bdev_io->internal.ch->channel, bdev_io, true);
}
/* Store the IO completion status in global variable to verify by various tests */
void
spdk_bdev_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status)
{
g_io_comp_status = ((status == SPDK_BDEV_IO_STATUS_SUCCESS) ? true : false);
}
static void
set_io_output(struct io_output *output,
struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg,
enum spdk_bdev_io_type iotype)
{
output->desc = desc;
output->ch = ch;
output->offset_blocks = offset_blocks;
output->num_blocks = num_blocks;
output->cb = cb;
output->cb_arg = cb_arg;
output->iotype = iotype;
}
/* It will cache the split IOs for verification */
int
spdk_bdev_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct io_output *output = &g_io_output[g_io_output_index];
struct spdk_bdev_io *child_io;
if (g_ignore_io_output) {
return 0;
}
if (g_max_io_size < g_strip_size) {
SPDK_CU_ASSERT_FATAL(g_io_output_index < 2);
} else {
SPDK_CU_ASSERT_FATAL(g_io_output_index < (g_max_io_size / g_strip_size) + 1);
}
if (g_bdev_io_submit_status == 0) {
set_io_output(output, desc, ch, offset_blocks, num_blocks, cb, cb_arg,
SPDK_BDEV_IO_TYPE_WRITE);
g_io_output_index++;
child_io = calloc(1, sizeof(struct spdk_bdev_io));
SPDK_CU_ASSERT_FATAL(child_io != NULL);
cb(child_io, g_child_io_status_flag, cb_arg);
}
return g_bdev_io_submit_status;
}
int
spdk_bdev_reset(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct io_output *output = &g_io_output[g_io_output_index];
struct spdk_bdev_io *child_io;
if (g_ignore_io_output) {
return 0;
}
if (g_bdev_io_submit_status == 0) {
set_io_output(output, desc, ch, 0, 0, cb, cb_arg, SPDK_BDEV_IO_TYPE_RESET);
g_io_output_index++;
child_io = calloc(1, sizeof(struct spdk_bdev_io));
SPDK_CU_ASSERT_FATAL(child_io != NULL);
cb(child_io, g_child_io_status_flag, cb_arg);
}
return g_bdev_io_submit_status;
}
int
spdk_bdev_unmap_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct io_output *output = &g_io_output[g_io_output_index];
struct spdk_bdev_io *child_io;
if (g_ignore_io_output) {
return 0;
}
if (g_bdev_io_submit_status == 0) {
set_io_output(output, desc, ch, offset_blocks, num_blocks, cb, cb_arg,
SPDK_BDEV_IO_TYPE_UNMAP);
g_io_output_index++;
child_io = calloc(1, sizeof(struct spdk_bdev_io));
SPDK_CU_ASSERT_FATAL(child_io != NULL);
cb(child_io, g_child_io_status_flag, cb_arg);
}
return g_bdev_io_submit_status;
}
void
spdk_bdev_unregister(struct spdk_bdev *bdev, spdk_bdev_unregister_cb cb_fn, void *cb_arg)
{
bdev->fn_table->destruct(bdev->ctxt);
if (cb_fn) {
cb_fn(cb_arg, 0);
}
}
int
spdk_bdev_open(struct spdk_bdev *bdev, bool write, spdk_bdev_remove_cb_t remove_cb,
void *remove_ctx, struct spdk_bdev_desc **_desc)
{
*_desc = (void *)0x1;
return 0;
}
void
spdk_put_io_channel(struct spdk_io_channel *ch)
{
CU_ASSERT(ch == (void *)1);
}
char *
spdk_sprintf_alloc(const char *format, ...)
{
return strdup(format);
}
int spdk_json_write_named_uint32(struct spdk_json_write_ctx *w, const char *name, uint32_t val)
{
struct rpc_bdev_raid_create *req = g_rpc_req;
if (strcmp(name, "strip_size_kb") == 0) {
CU_ASSERT(req->strip_size_kb == val);
} else if (strcmp(name, "blocklen_shift") == 0) {
CU_ASSERT(spdk_u32log2(g_block_len) == val);
} else if (strcmp(name, "num_base_bdevs") == 0) {
CU_ASSERT(req->base_bdevs.num_base_bdevs == val);
} else if (strcmp(name, "state") == 0) {
CU_ASSERT(val == RAID_BDEV_STATE_ONLINE);
} else if (strcmp(name, "destruct_called") == 0) {
CU_ASSERT(val == 0);
} else if (strcmp(name, "num_base_bdevs_discovered") == 0) {
CU_ASSERT(req->base_bdevs.num_base_bdevs == val);
}
return 0;
}
int spdk_json_write_named_string(struct spdk_json_write_ctx *w, const char *name, const char *val)
{
struct rpc_bdev_raid_create *req = g_rpc_req;
if (strcmp(name, "raid_level") == 0) {
CU_ASSERT(strcmp(val, raid_bdev_level_to_str(req->level)) == 0);
}
return 0;
}
void
spdk_for_each_thread(spdk_msg_fn fn, void *ctx, spdk_msg_fn cpl)
{
fn(ctx);
cpl(ctx);
}
void
spdk_bdev_free_io(struct spdk_bdev_io *bdev_io)
{
if (bdev_io) {
free(bdev_io);
}
}
/* It will cache split IOs for verification */
int
spdk_bdev_readv_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct io_output *output = &g_io_output[g_io_output_index];
struct spdk_bdev_io *child_io;
if (g_ignore_io_output) {
return 0;
}
SPDK_CU_ASSERT_FATAL(g_io_output_index <= (g_max_io_size / g_strip_size) + 1);
if (g_bdev_io_submit_status == 0) {
set_io_output(output, desc, ch, offset_blocks, num_blocks, cb, cb_arg,
SPDK_BDEV_IO_TYPE_READ);
g_io_output_index++;
child_io = calloc(1, sizeof(struct spdk_bdev_io));
SPDK_CU_ASSERT_FATAL(child_io != NULL);
cb(child_io, g_child_io_status_flag, cb_arg);
}
return g_bdev_io_submit_status;
}
void
spdk_bdev_module_release_bdev(struct spdk_bdev *bdev)
{
CU_ASSERT(bdev->internal.claim_module != NULL);
bdev->internal.claim_module = NULL;
}
struct spdk_conf_section *
spdk_conf_first_section(struct spdk_conf *cp)
{
if (g_config_level_create) {
return (void *) 0x1;
}
return NULL;
}
bool
spdk_conf_section_match_prefix(const struct spdk_conf_section *sp, const char *name_prefix)
{
if (g_config_level_create) {
return true;
}
return false;
}
char *
spdk_conf_section_get_val(struct spdk_conf_section *sp, const char *key)
{
struct rpc_bdev_raid_create *req = g_rpc_req;
if (g_config_level_create) {
if (strcmp(key, "Name") == 0) {
return req->name;
} else if (strcmp(key, "RaidLevel") == 0) {
return (char *)raid_bdev_level_to_str(req->level);
}
}
return NULL;
}
int
spdk_conf_section_get_intval(struct spdk_conf_section *sp, const char *key)
{
struct rpc_bdev_raid_create *req = g_rpc_req;
if (g_config_level_create) {
if (strcmp(key, "StripSize") == 0) {
return req->strip_size_kb;
} else if (strcmp(key, "NumDevices") == 0) {
return req->base_bdevs.num_base_bdevs;
}
}
return 0;
}
char *
spdk_conf_section_get_nmval(struct spdk_conf_section *sp, const char *key, int idx1, int idx2)
{
struct rpc_bdev_raid_create *req = g_rpc_req;
if (g_config_level_create) {
if (strcmp(key, "Devices") == 0) {
if (idx2 >= g_max_base_drives) {
return NULL;
}
return req->base_bdevs.base_bdevs[idx2];
}
}
return NULL;
}
int
spdk_bdev_module_claim_bdev(struct spdk_bdev *bdev, struct spdk_bdev_desc *desc,
struct spdk_bdev_module *module)
{
if (bdev->internal.claim_module != NULL) {
return -1;
}
bdev->internal.claim_module = module;
return 0;
}
int
spdk_json_decode_object(const struct spdk_json_val *values,
const struct spdk_json_object_decoder *decoders, size_t num_decoders,
void *out)
{
struct rpc_bdev_raid_create *req, *_out;
size_t i;
if (g_json_decode_obj_err) {
return -1;
} else if (g_json_decode_obj_create) {
req = g_rpc_req;
_out = out;
_out->name = strdup(req->name);
SPDK_CU_ASSERT_FATAL(_out->name != NULL);
_out->strip_size_kb = req->strip_size_kb;
_out->level = req->level;
_out->base_bdevs.num_base_bdevs = req->base_bdevs.num_base_bdevs;
for (i = 0; i < req->base_bdevs.num_base_bdevs; i++) {
_out->base_bdevs.base_bdevs[i] = strdup(req->base_bdevs.base_bdevs[i]);
SPDK_CU_ASSERT_FATAL(_out->base_bdevs.base_bdevs[i]);
}
} else {
memcpy(out, g_rpc_req, g_rpc_req_size);
}
return 0;
}
struct spdk_json_write_ctx *
spdk_jsonrpc_begin_result(struct spdk_jsonrpc_request *request)
{
return (void *)1;
}
int
spdk_json_write_string(struct spdk_json_write_ctx *w, const char *val)
{
if (g_test_multi_raids) {
g_get_raids_output[g_get_raids_count] = strdup(val);
SPDK_CU_ASSERT_FATAL(g_get_raids_output[g_get_raids_count] != NULL);
g_get_raids_count++;
}
return 0;
}
void
spdk_jsonrpc_send_error_response(struct spdk_jsonrpc_request *request,
int error_code, const char *msg)
{
g_rpc_err = 1;
}
void
spdk_jsonrpc_send_error_response_fmt(struct spdk_jsonrpc_request *request,
int error_code, const char *fmt, ...)
{
g_rpc_err = 1;
}
struct spdk_bdev *
spdk_bdev_get_by_name(const char *bdev_name)
{
struct spdk_bdev *bdev;
if (!TAILQ_EMPTY(&g_bdev_list)) {
TAILQ_FOREACH(bdev, &g_bdev_list, internal.link) {
if (strcmp(bdev_name, bdev->name) == 0) {
return bdev;
}
}
}
return NULL;
}
static void
bdev_io_cleanup(struct spdk_bdev_io *bdev_io)
{
if (bdev_io->u.bdev.iovs) {
if (bdev_io->u.bdev.iovs->iov_base) {
free(bdev_io->u.bdev.iovs->iov_base);
}
free(bdev_io->u.bdev.iovs);
}
free(bdev_io);
}
static void
bdev_io_initialize(struct spdk_bdev_io *bdev_io, struct spdk_io_channel *ch, struct spdk_bdev *bdev,
uint64_t lba, uint64_t blocks, int16_t iotype)
{
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
bdev_io->bdev = bdev;
bdev_io->u.bdev.offset_blocks = lba;
bdev_io->u.bdev.num_blocks = blocks;
bdev_io->type = iotype;
if (bdev_io->type == SPDK_BDEV_IO_TYPE_UNMAP || bdev_io->type == SPDK_BDEV_IO_TYPE_FLUSH) {
return;
}
bdev_io->u.bdev.iovcnt = 1;
bdev_io->u.bdev.iovs = calloc(1, sizeof(struct iovec));
SPDK_CU_ASSERT_FATAL(bdev_io->u.bdev.iovs != NULL);
bdev_io->u.bdev.iovs->iov_base = calloc(1, bdev_io->u.bdev.num_blocks * g_block_len);
SPDK_CU_ASSERT_FATAL(bdev_io->u.bdev.iovs->iov_base != NULL);
bdev_io->u.bdev.iovs->iov_len = bdev_io->u.bdev.num_blocks * g_block_len;
bdev_io->internal.ch = channel;
}
static void
verify_reset_io(struct spdk_bdev_io *bdev_io, uint8_t num_base_drives,
struct raid_bdev_io_channel *ch_ctx, struct raid_bdev *raid_bdev, uint32_t io_status)
{
uint8_t index = 0;
struct io_output *output;
SPDK_CU_ASSERT_FATAL(raid_bdev != NULL);
SPDK_CU_ASSERT_FATAL(num_base_drives != 0);
SPDK_CU_ASSERT_FATAL(io_status != INVALID_IO_SUBMIT);
SPDK_CU_ASSERT_FATAL(ch_ctx->base_channel != NULL);
CU_ASSERT(g_io_output_index == num_base_drives);
for (index = 0; index < g_io_output_index; index++) {
output = &g_io_output[index];
CU_ASSERT(ch_ctx->base_channel[index] == output->ch);
CU_ASSERT(raid_bdev->base_bdev_info[index].desc == output->desc);
CU_ASSERT(bdev_io->type == output->iotype);
}
CU_ASSERT(g_io_comp_status == io_status);
}
static void
verify_io(struct spdk_bdev_io *bdev_io, uint8_t num_base_drives,
struct raid_bdev_io_channel *ch_ctx, struct raid_bdev *raid_bdev, uint32_t io_status)
{
uint32_t strip_shift = spdk_u32log2(g_strip_size);
uint64_t start_strip = bdev_io->u.bdev.offset_blocks >> strip_shift;
uint64_t end_strip = (bdev_io->u.bdev.offset_blocks + bdev_io->u.bdev.num_blocks - 1) >>
strip_shift;
uint32_t splits_reqd = (end_strip - start_strip + 1);
uint32_t strip;
uint64_t pd_strip;
uint8_t pd_idx;
uint32_t offset_in_strip;
uint64_t pd_lba;
uint64_t pd_blocks;
uint32_t index = 0;
uint8_t *buf = bdev_io->u.bdev.iovs->iov_base;
struct io_output *output;
if (io_status == INVALID_IO_SUBMIT) {
CU_ASSERT(g_io_comp_status == false);
return;
}
SPDK_CU_ASSERT_FATAL(raid_bdev != NULL);
SPDK_CU_ASSERT_FATAL(num_base_drives != 0);
CU_ASSERT(splits_reqd == g_io_output_index);
for (strip = start_strip; strip <= end_strip; strip++, index++) {
pd_strip = strip / num_base_drives;
pd_idx = strip % num_base_drives;
if (strip == start_strip) {
offset_in_strip = bdev_io->u.bdev.offset_blocks & (g_strip_size - 1);
pd_lba = (pd_strip << strip_shift) + offset_in_strip;
if (strip == end_strip) {
pd_blocks = bdev_io->u.bdev.num_blocks;
} else {
pd_blocks = g_strip_size - offset_in_strip;
}
} else if (strip == end_strip) {
pd_lba = pd_strip << strip_shift;
pd_blocks = ((bdev_io->u.bdev.offset_blocks + bdev_io->u.bdev.num_blocks - 1) &
(g_strip_size - 1)) + 1;
} else {
pd_lba = pd_strip << raid_bdev->strip_size_shift;
pd_blocks = raid_bdev->strip_size;
}
output = &g_io_output[index];
CU_ASSERT(pd_lba == output->offset_blocks);
CU_ASSERT(pd_blocks == output->num_blocks);
CU_ASSERT(ch_ctx->base_channel[pd_idx] == output->ch);
CU_ASSERT(raid_bdev->base_bdev_info[pd_idx].desc == output->desc);
CU_ASSERT(bdev_io->type == output->iotype);
buf += (pd_blocks << spdk_u32log2(g_block_len));
}
CU_ASSERT(g_io_comp_status == io_status);
}
static void
verify_io_without_payload(struct spdk_bdev_io *bdev_io, uint8_t num_base_drives,
struct raid_bdev_io_channel *ch_ctx, struct raid_bdev *raid_bdev,
uint32_t io_status)
{
uint32_t strip_shift = spdk_u32log2(g_strip_size);
uint64_t start_offset_in_strip = bdev_io->u.bdev.offset_blocks % g_strip_size;
uint64_t end_offset_in_strip = (bdev_io->u.bdev.offset_blocks + bdev_io->u.bdev.num_blocks - 1) %
g_strip_size;
uint64_t start_strip = bdev_io->u.bdev.offset_blocks >> strip_shift;
uint64_t end_strip = (bdev_io->u.bdev.offset_blocks + bdev_io->u.bdev.num_blocks - 1) >>
strip_shift;
uint8_t n_disks_involved;
uint64_t start_strip_disk_idx;
uint64_t end_strip_disk_idx;
uint64_t nblocks_in_start_disk;
uint64_t offset_in_start_disk;
uint8_t disk_idx;
uint64_t base_io_idx;
uint64_t sum_nblocks = 0;
struct io_output *output;
if (io_status == INVALID_IO_SUBMIT) {
CU_ASSERT(g_io_comp_status == false);
return;
}
SPDK_CU_ASSERT_FATAL(raid_bdev != NULL);
SPDK_CU_ASSERT_FATAL(num_base_drives != 0);
SPDK_CU_ASSERT_FATAL(bdev_io->type != SPDK_BDEV_IO_TYPE_READ);
SPDK_CU_ASSERT_FATAL(bdev_io->type != SPDK_BDEV_IO_TYPE_WRITE);
n_disks_involved = spdk_min(end_strip - start_strip + 1, num_base_drives);
CU_ASSERT(n_disks_involved == g_io_output_index);
start_strip_disk_idx = start_strip % num_base_drives;
end_strip_disk_idx = end_strip % num_base_drives;
offset_in_start_disk = g_io_output[0].offset_blocks;
nblocks_in_start_disk = g_io_output[0].num_blocks;
for (base_io_idx = 0, disk_idx = start_strip_disk_idx; base_io_idx < n_disks_involved;
base_io_idx++, disk_idx++) {
uint64_t start_offset_in_disk;
uint64_t end_offset_in_disk;
output = &g_io_output[base_io_idx];
/* round disk_idx */
if (disk_idx >= num_base_drives) {
disk_idx %= num_base_drives;
}
/* start_offset_in_disk aligned in strip check:
* The first base io has a same start_offset_in_strip with the whole raid io.
* Other base io should have aligned start_offset_in_strip which is 0.
*/
start_offset_in_disk = output->offset_blocks;
if (base_io_idx == 0) {
CU_ASSERT(start_offset_in_disk % g_strip_size == start_offset_in_strip);
} else {
CU_ASSERT(start_offset_in_disk % g_strip_size == 0);
}
/* end_offset_in_disk aligned in strip check:
* Base io on disk at which end_strip is located, has a same end_offset_in_strip
* with the whole raid io.
* Other base io should have aligned end_offset_in_strip.
*/
end_offset_in_disk = output->offset_blocks + output->num_blocks - 1;
if (disk_idx == end_strip_disk_idx) {
CU_ASSERT(end_offset_in_disk % g_strip_size == end_offset_in_strip);
} else {
CU_ASSERT(end_offset_in_disk % g_strip_size == g_strip_size - 1);
}
/* start_offset_in_disk compared with start_disk.
* 1. For disk_idx which is larger than start_strip_disk_idx: Its start_offset_in_disk
* mustn't be larger than the start offset of start_offset_in_disk; And the gap
* must be less than strip size.
* 2. For disk_idx which is less than start_strip_disk_idx, Its start_offset_in_disk
* must be larger than the start offset of start_offset_in_disk; And the gap mustn't
* be less than strip size.
*/
if (disk_idx > start_strip_disk_idx) {
CU_ASSERT(start_offset_in_disk <= offset_in_start_disk);
CU_ASSERT(offset_in_start_disk - start_offset_in_disk < g_strip_size);
} else if (disk_idx < start_strip_disk_idx) {
CU_ASSERT(start_offset_in_disk > offset_in_start_disk);
CU_ASSERT(output->offset_blocks - offset_in_start_disk <= g_strip_size);
}
/* nblocks compared with start_disk:
* The gap between them must be within a strip size.
*/
if (output->num_blocks <= nblocks_in_start_disk) {
CU_ASSERT(nblocks_in_start_disk - output->num_blocks <= g_strip_size);
} else {
CU_ASSERT(output->num_blocks - nblocks_in_start_disk < g_strip_size);
}
sum_nblocks += output->num_blocks;
CU_ASSERT(ch_ctx->base_channel[disk_idx] == output->ch);
CU_ASSERT(raid_bdev->base_bdev_info[disk_idx].desc == output->desc);
CU_ASSERT(bdev_io->type == output->iotype);
}
/* Sum of each nblocks should be same with raid bdev_io */
CU_ASSERT(bdev_io->u.bdev.num_blocks == sum_nblocks);
CU_ASSERT(g_io_comp_status == io_status);
}
static void
verify_raid_config_present(const char *name, bool presence)
{
struct raid_bdev_config *raid_cfg;
bool cfg_found;
cfg_found = false;
TAILQ_FOREACH(raid_cfg, &g_raid_config.raid_bdev_config_head, link) {
if (raid_cfg->name != NULL) {
if (strcmp(name, raid_cfg->name) == 0) {
cfg_found = true;
break;
}
}
}
if (presence == true) {
CU_ASSERT(cfg_found == true);
} else {
CU_ASSERT(cfg_found == false);
}
}
static void
verify_raid_bdev_present(const char *name, bool presence)
{
struct raid_bdev *pbdev;
bool pbdev_found;
pbdev_found = false;
TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) {
if (strcmp(pbdev->bdev.name, name) == 0) {
pbdev_found = true;
break;
}
}
if (presence == true) {
CU_ASSERT(pbdev_found == true);
} else {
CU_ASSERT(pbdev_found == false);
}
}
static void
verify_raid_config(struct rpc_bdev_raid_create *r, bool presence)
{
struct raid_bdev_config *raid_cfg = NULL;
uint8_t i;
int val;
TAILQ_FOREACH(raid_cfg, &g_raid_config.raid_bdev_config_head, link) {
if (strcmp(r->name, raid_cfg->name) == 0) {
if (presence == false) {
break;
}
CU_ASSERT(raid_cfg->raid_bdev != NULL);
CU_ASSERT(raid_cfg->strip_size == r->strip_size_kb);
CU_ASSERT(raid_cfg->num_base_bdevs == r->base_bdevs.num_base_bdevs);
CU_ASSERT(raid_cfg->level == r->level);
if (raid_cfg->base_bdev != NULL) {
for (i = 0; i < raid_cfg->num_base_bdevs; i++) {
val = strcmp(raid_cfg->base_bdev[i].name,
r->base_bdevs.base_bdevs[i]);
CU_ASSERT(val == 0);
}
}
break;
}
}
if (presence == true) {
CU_ASSERT(raid_cfg != NULL);
} else {
CU_ASSERT(raid_cfg == NULL);
}
}
static void
verify_raid_bdev(struct rpc_bdev_raid_create *r, bool presence, uint32_t raid_state)
{
struct raid_bdev *pbdev;
uint8_t i;
struct spdk_bdev *bdev = NULL;
bool pbdev_found;
uint64_t min_blockcnt = 0xFFFFFFFFFFFFFFFF;
pbdev_found = false;
TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) {
if (strcmp(pbdev->bdev.name, r->name) == 0) {
pbdev_found = true;
if (presence == false) {
break;
}
CU_ASSERT(pbdev->config->raid_bdev == pbdev);
CU_ASSERT(pbdev->base_bdev_info != NULL);
CU_ASSERT(pbdev->strip_size == ((r->strip_size_kb * 1024) / g_block_len));
CU_ASSERT(pbdev->strip_size_shift == spdk_u32log2(((r->strip_size_kb * 1024) /
g_block_len)));
CU_ASSERT(pbdev->blocklen_shift == spdk_u32log2(g_block_len));
CU_ASSERT(pbdev->state == raid_state);
CU_ASSERT(pbdev->num_base_bdevs == r->base_bdevs.num_base_bdevs);
CU_ASSERT(pbdev->num_base_bdevs_discovered == r->base_bdevs.num_base_bdevs);
CU_ASSERT(pbdev->level == r->level);
CU_ASSERT(pbdev->destruct_called == false);
for (i = 0; i < pbdev->num_base_bdevs; i++) {
if (pbdev->base_bdev_info && pbdev->base_bdev_info[i].bdev) {
bdev = spdk_bdev_get_by_name(pbdev->base_bdev_info[i].bdev->name);
CU_ASSERT(bdev != NULL);
CU_ASSERT(pbdev->base_bdev_info[i].remove_scheduled == false);
} else {
CU_ASSERT(0);
}
if (bdev && bdev->blockcnt < min_blockcnt) {
min_blockcnt = bdev->blockcnt;
}
}
CU_ASSERT((((min_blockcnt / (r->strip_size_kb * 1024 / g_block_len)) *
(r->strip_size_kb * 1024 / g_block_len)) *
r->base_bdevs.num_base_bdevs) == pbdev->bdev.blockcnt);
CU_ASSERT(strcmp(pbdev->bdev.product_name, "Raid Volume") == 0);
CU_ASSERT(pbdev->bdev.write_cache == 0);
CU_ASSERT(pbdev->bdev.blocklen == g_block_len);
if (pbdev->num_base_bdevs > 1) {
CU_ASSERT(pbdev->bdev.optimal_io_boundary == pbdev->strip_size);
CU_ASSERT(pbdev->bdev.split_on_optimal_io_boundary == true);
} else {
CU_ASSERT(pbdev->bdev.optimal_io_boundary == 0);
CU_ASSERT(pbdev->bdev.split_on_optimal_io_boundary == false);
}
CU_ASSERT(pbdev->bdev.ctxt == pbdev);
CU_ASSERT(pbdev->bdev.fn_table == &g_raid_bdev_fn_table);
CU_ASSERT(pbdev->bdev.module == &g_raid_if);
break;
}
}
if (presence == true) {
CU_ASSERT(pbdev_found == true);
} else {
CU_ASSERT(pbdev_found == false);
}
pbdev_found = false;
if (raid_state == RAID_BDEV_STATE_ONLINE) {
TAILQ_FOREACH(pbdev, &g_raid_bdev_configured_list, state_link) {
if (strcmp(pbdev->bdev.name, r->name) == 0) {
pbdev_found = true;
break;
}
}
} else if (raid_state == RAID_BDEV_STATE_CONFIGURING) {
TAILQ_FOREACH(pbdev, &g_raid_bdev_configuring_list, state_link) {
if (strcmp(pbdev->bdev.name, r->name) == 0) {
pbdev_found = true;
break;
}
}
} else if (raid_state == RAID_BDEV_STATE_OFFLINE) {
TAILQ_FOREACH(pbdev, &g_raid_bdev_offline_list, state_link) {
if (strcmp(pbdev->bdev.name, r->name) == 0) {
pbdev_found = true;
break;
}
}
}
if (presence == true) {
CU_ASSERT(pbdev_found == true);
} else {
CU_ASSERT(pbdev_found == false);
}
}
static void
verify_get_raids(struct rpc_bdev_raid_create *construct_req,
uint8_t g_max_raids,
char **g_get_raids_output, uint32_t g_get_raids_count)
{
uint8_t i, j;
bool found;
CU_ASSERT(g_max_raids == g_get_raids_count);
if (g_max_raids == g_get_raids_count) {
for (i = 0; i < g_max_raids; i++) {
found = false;
for (j = 0; j < g_max_raids; j++) {
if (construct_req[i].name &&
strcmp(construct_req[i].name, g_get_raids_output[i]) == 0) {
found = true;
break;
}
}
CU_ASSERT(found == true);
}
}
}
static void
create_base_bdevs(uint32_t bbdev_start_idx)
{
uint8_t i;
struct spdk_bdev *base_bdev;
char name[16];
for (i = 0; i < g_max_base_drives; i++, bbdev_start_idx++) {
snprintf(name, 16, "%s%u%s", "Nvme", bbdev_start_idx, "n1");
base_bdev = calloc(1, sizeof(struct spdk_bdev));
SPDK_CU_ASSERT_FATAL(base_bdev != NULL);
base_bdev->name = strdup(name);
SPDK_CU_ASSERT_FATAL(base_bdev->name != NULL);
base_bdev->blocklen = g_block_len;
base_bdev->blockcnt = BLOCK_CNT;
TAILQ_INSERT_TAIL(&g_bdev_list, base_bdev, internal.link);
}
}
static void
create_test_req(struct rpc_bdev_raid_create *r, const char *raid_name,
uint8_t bbdev_start_idx, bool create_base_bdev)
{
uint8_t i;
char name[16];
uint8_t bbdev_idx = bbdev_start_idx;
r->name = strdup(raid_name);
SPDK_CU_ASSERT_FATAL(r->name != NULL);
r->strip_size_kb = (g_strip_size * g_block_len) / 1024;
r->level = RAID0;
r->base_bdevs.num_base_bdevs = g_max_base_drives;
for (i = 0; i < g_max_base_drives; i++, bbdev_idx++) {
snprintf(name, 16, "%s%u%s", "Nvme", bbdev_idx, "n1");
r->base_bdevs.base_bdevs[i] = strdup(name);
SPDK_CU_ASSERT_FATAL(r->base_bdevs.base_bdevs[i] != NULL);
}
if (create_base_bdev == true) {
create_base_bdevs(bbdev_start_idx);
}
g_rpc_req = r;
g_rpc_req_size = sizeof(*r);
}
static void
create_raid_bdev_create_req(struct rpc_bdev_raid_create *r, const char *raid_name,
uint8_t bbdev_start_idx, bool create_base_bdev,
uint8_t json_decode_obj_err)
{
create_test_req(r, raid_name, bbdev_start_idx, create_base_bdev);
g_rpc_err = 0;
g_json_decode_obj_create = 1;
g_json_decode_obj_err = json_decode_obj_err;
g_config_level_create = 0;
g_test_multi_raids = 0;
}
static void
create_raid_bdev_create_config(struct rpc_bdev_raid_create *r, const char *raid_name,
uint8_t bbdev_start_idx, bool create_base_bdev)
{
create_test_req(r, raid_name, bbdev_start_idx, create_base_bdev);
g_config_level_create = 1;
g_test_multi_raids = 0;
}
static void
free_test_req(struct rpc_bdev_raid_create *r)
{
uint8_t i;
free(r->name);
for (i = 0; i < r->base_bdevs.num_base_bdevs; i++) {
free(r->base_bdevs.base_bdevs[i]);
}
}
static void
create_raid_bdev_delete_req(struct rpc_bdev_raid_delete *r, const char *raid_name,
uint8_t json_decode_obj_err)
{
r->name = strdup(raid_name);
SPDK_CU_ASSERT_FATAL(r->name != NULL);
g_rpc_req = r;
g_rpc_req_size = sizeof(*r);
g_rpc_err = 0;
g_json_decode_obj_create = 0;
g_json_decode_obj_err = json_decode_obj_err;
g_config_level_create = 0;
g_test_multi_raids = 0;
}
static void
create_get_raids_req(struct rpc_bdev_raid_get_bdevs *r, const char *category,
uint8_t json_decode_obj_err)
{
r->category = strdup(category);
SPDK_CU_ASSERT_FATAL(r->category != NULL);
g_rpc_req = r;
g_rpc_req_size = sizeof(*r);
g_rpc_err = 0;
g_json_decode_obj_create = 0;
g_json_decode_obj_err = json_decode_obj_err;
g_config_level_create = 0;
g_test_multi_raids = 1;
g_get_raids_count = 0;
}
static void
test_create_raid(void)
{
struct rpc_bdev_raid_create req;
struct rpc_bdev_raid_delete delete_req;
set_globals();
CU_ASSERT(raid_bdev_init() == 0);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
create_raid_bdev_create_req(&req, "raid1", 0, true, 0);
spdk_rpc_bdev_raid_create(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config(&req, true);
verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE);
free_test_req(&req);
create_raid_bdev_delete_req(&delete_req, "raid1", 0);
spdk_rpc_bdev_raid_delete(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
raid_bdev_exit();
base_bdevs_cleanup();
reset_globals();
}
static void
test_delete_raid(void)
{
struct rpc_bdev_raid_create construct_req;
struct rpc_bdev_raid_delete delete_req;
set_globals();
CU_ASSERT(raid_bdev_init() == 0);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
create_raid_bdev_create_req(&construct_req, "raid1", 0, true, 0);
spdk_rpc_bdev_raid_create(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config(&construct_req, true);
verify_raid_bdev(&construct_req, true, RAID_BDEV_STATE_ONLINE);
free_test_req(&construct_req);
create_raid_bdev_delete_req(&delete_req, "raid1", 0);
spdk_rpc_bdev_raid_delete(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
raid_bdev_exit();
base_bdevs_cleanup();
reset_globals();
}
static void
test_create_raid_invalid_args(void)
{
struct rpc_bdev_raid_create req;
struct rpc_bdev_raid_delete destroy_req;
struct raid_bdev_config *raid_cfg;
set_globals();
CU_ASSERT(raid_bdev_init() == 0);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
create_raid_bdev_create_req(&req, "raid1", 0, true, 0);
req.level = INVALID_RAID_LEVEL;
spdk_rpc_bdev_raid_create(NULL, NULL);
CU_ASSERT(g_rpc_err == 1);
free_test_req(&req);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
create_raid_bdev_create_req(&req, "raid1", 0, false, 1);
spdk_rpc_bdev_raid_create(NULL, NULL);
CU_ASSERT(g_rpc_err == 1);
free_test_req(&req);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
create_raid_bdev_create_req(&req, "raid1", 0, false, 0);
req.strip_size_kb = 1231;
spdk_rpc_bdev_raid_create(NULL, NULL);
CU_ASSERT(g_rpc_err == 1);
free_test_req(&req);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
create_raid_bdev_create_req(&req, "raid1", 0, false, 0);
spdk_rpc_bdev_raid_create(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config(&req, true);
verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE);
free_test_req(&req);
create_raid_bdev_create_req(&req, "raid1", 0, false, 0);
spdk_rpc_bdev_raid_create(NULL, NULL);
CU_ASSERT(g_rpc_err == 1);
free_test_req(&req);
create_raid_bdev_create_req(&req, "raid2", 0, false, 0);
spdk_rpc_bdev_raid_create(NULL, NULL);
CU_ASSERT(g_rpc_err == 1);
free_test_req(&req);
verify_raid_config_present("raid2", false);
verify_raid_bdev_present("raid2", false);
create_raid_bdev_create_req(&req, "raid2", g_max_base_drives, true, 0);
free(req.base_bdevs.base_bdevs[g_max_base_drives - 1]);
req.base_bdevs.base_bdevs[g_max_base_drives - 1] = strdup("Nvme0n1");
SPDK_CU_ASSERT_FATAL(req.base_bdevs.base_bdevs[g_max_base_drives - 1] != NULL);
spdk_rpc_bdev_raid_create(NULL, NULL);
CU_ASSERT(g_rpc_err == 1);
free_test_req(&req);
verify_raid_config_present("raid2", false);
verify_raid_bdev_present("raid2", false);
create_raid_bdev_create_req(&req, "raid2", g_max_base_drives, true, 0);
free(req.base_bdevs.base_bdevs[g_max_base_drives - 1]);
req.base_bdevs.base_bdevs[g_max_base_drives - 1] = strdup("Nvme100000n1");
SPDK_CU_ASSERT_FATAL(req.base_bdevs.base_bdevs[g_max_base_drives - 1] != NULL);
spdk_rpc_bdev_raid_create(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
free_test_req(&req);
verify_raid_config_present("raid2", true);
verify_raid_bdev_present("raid2", true);
raid_cfg = raid_bdev_config_find_by_name("raid2");
SPDK_CU_ASSERT_FATAL(raid_cfg != NULL);
check_and_remove_raid_bdev(raid_cfg);
raid_bdev_config_cleanup(raid_cfg);
create_raid_bdev_create_req(&req, "raid2", g_max_base_drives, false, 0);
spdk_rpc_bdev_raid_create(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
free_test_req(&req);
verify_raid_config_present("raid2", true);
verify_raid_bdev_present("raid2", true);
verify_raid_config_present("raid1", true);
verify_raid_bdev_present("raid1", true);
create_raid_bdev_delete_req(&destroy_req, "raid1", 0);
spdk_rpc_bdev_raid_delete(NULL, NULL);
create_raid_bdev_delete_req(&destroy_req, "raid2", 0);
spdk_rpc_bdev_raid_delete(NULL, NULL);
raid_bdev_exit();
base_bdevs_cleanup();
reset_globals();
}
static void
test_delete_raid_invalid_args(void)
{
struct rpc_bdev_raid_create construct_req;
struct rpc_bdev_raid_delete destroy_req;
set_globals();
CU_ASSERT(raid_bdev_init() == 0);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
create_raid_bdev_create_req(&construct_req, "raid1", 0, true, 0);
spdk_rpc_bdev_raid_create(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config(&construct_req, true);
verify_raid_bdev(&construct_req, true, RAID_BDEV_STATE_ONLINE);
free_test_req(&construct_req);
create_raid_bdev_delete_req(&destroy_req, "raid2", 0);
spdk_rpc_bdev_raid_delete(NULL, NULL);
CU_ASSERT(g_rpc_err == 1);
create_raid_bdev_delete_req(&destroy_req, "raid1", 1);
spdk_rpc_bdev_raid_delete(NULL, NULL);
CU_ASSERT(g_rpc_err == 1);
free(destroy_req.name);
verify_raid_config_present("raid1", true);
verify_raid_bdev_present("raid1", true);
create_raid_bdev_delete_req(&destroy_req, "raid1", 0);
spdk_rpc_bdev_raid_delete(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
raid_bdev_exit();
base_bdevs_cleanup();
reset_globals();
}
static void
test_io_channel(void)
{
struct rpc_bdev_raid_create req;
struct rpc_bdev_raid_delete destroy_req;
struct raid_bdev *pbdev;
struct raid_bdev_io_channel *ch_ctx;
uint8_t i;
set_globals();
CU_ASSERT(raid_bdev_init() == 0);
create_raid_bdev_create_req(&req, "raid1", 0, true, 0);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
spdk_rpc_bdev_raid_create(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config(&req, true);
verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE);
TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) {
if (strcmp(pbdev->bdev.name, "raid1") == 0) {
break;
}
}
CU_ASSERT(pbdev != NULL);
ch_ctx = calloc(1, sizeof(struct raid_bdev_io_channel));
SPDK_CU_ASSERT_FATAL(ch_ctx != NULL);
CU_ASSERT(raid_bdev_create_cb(pbdev, ch_ctx) == 0);
for (i = 0; i < req.base_bdevs.num_base_bdevs; i++) {
CU_ASSERT(ch_ctx->base_channel && ch_ctx->base_channel[i] == (void *)0x1);
}
raid_bdev_destroy_cb(pbdev, ch_ctx);
CU_ASSERT(ch_ctx->base_channel == NULL);
free_test_req(&req);
create_raid_bdev_delete_req(&destroy_req, "raid1", 0);
spdk_rpc_bdev_raid_delete(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
free(ch_ctx);
raid_bdev_exit();
base_bdevs_cleanup();
reset_globals();
}
static void
test_write_io(void)
{
struct rpc_bdev_raid_create req;
struct rpc_bdev_raid_delete destroy_req;
struct raid_bdev *pbdev;
struct spdk_io_channel *ch;
struct raid_bdev_io_channel *ch_ctx;
uint8_t i;
struct spdk_bdev_io *bdev_io;
uint64_t io_len;
uint64_t lba = 0;
struct spdk_io_channel *ch_b;
struct spdk_bdev_channel *ch_b_ctx;
set_globals();
CU_ASSERT(raid_bdev_init() == 0);
create_raid_bdev_create_req(&req, "raid1", 0, true, 0);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
spdk_rpc_bdev_raid_create(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config(&req, true);
verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE);
TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) {
if (strcmp(pbdev->bdev.name, "raid1") == 0) {
break;
}
}
CU_ASSERT(pbdev != NULL);
ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct raid_bdev_io_channel));
SPDK_CU_ASSERT_FATAL(ch != NULL);
ch_b = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct spdk_bdev_channel));
SPDK_CU_ASSERT_FATAL(ch_b != NULL);
ch_b_ctx = spdk_io_channel_get_ctx(ch_b);
ch_b_ctx->channel = ch;
ch_ctx = spdk_io_channel_get_ctx(ch);
SPDK_CU_ASSERT_FATAL(ch_ctx != NULL);
CU_ASSERT(raid_bdev_create_cb(pbdev, ch_ctx) == 0);
for (i = 0; i < req.base_bdevs.num_base_bdevs; i++) {
CU_ASSERT(ch_ctx->base_channel && ch_ctx->base_channel[i] == (void *)0x1);
}
/* test 2 IO sizes based on global strip size set earlier */
for (i = 0; i < 2; i++) {
bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io));
SPDK_CU_ASSERT_FATAL(bdev_io != NULL);
io_len = (g_strip_size / 2) << i;
bdev_io_initialize(bdev_io, ch_b, &pbdev->bdev, lba, io_len, SPDK_BDEV_IO_TYPE_WRITE);
lba += g_strip_size;
memset(g_io_output, 0, ((g_max_io_size / g_strip_size) + 1) * sizeof(struct io_output));
g_io_output_index = 0;
raid_bdev_submit_request(ch, bdev_io);
verify_io(bdev_io, req.base_bdevs.num_base_bdevs, ch_ctx, pbdev,
g_child_io_status_flag);
bdev_io_cleanup(bdev_io);
}
free_test_req(&req);
raid_bdev_destroy_cb(pbdev, ch_ctx);
CU_ASSERT(ch_ctx->base_channel == NULL);
free(ch);
free(ch_b);
create_raid_bdev_delete_req(&destroy_req, "raid1", 0);
spdk_rpc_bdev_raid_delete(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
raid_bdev_exit();
base_bdevs_cleanup();
reset_globals();
}
static void
test_read_io(void)
{
struct rpc_bdev_raid_create req;
struct rpc_bdev_raid_delete destroy_req;
struct raid_bdev *pbdev;
struct spdk_io_channel *ch;
struct raid_bdev_io_channel *ch_ctx;
uint8_t i;
struct spdk_bdev_io *bdev_io;
uint64_t io_len;
uint64_t lba;
struct spdk_io_channel *ch_b;
struct spdk_bdev_channel *ch_b_ctx;
set_globals();
CU_ASSERT(raid_bdev_init() == 0);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
create_raid_bdev_create_req(&req, "raid1", 0, true, 0);
spdk_rpc_bdev_raid_create(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config(&req, true);
verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE);
TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) {
if (strcmp(pbdev->bdev.name, "raid1") == 0) {
break;
}
}
CU_ASSERT(pbdev != NULL);
ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct raid_bdev_io_channel));
SPDK_CU_ASSERT_FATAL(ch != NULL);
ch_b = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct spdk_bdev_channel));
SPDK_CU_ASSERT_FATAL(ch_b != NULL);
ch_b_ctx = spdk_io_channel_get_ctx(ch_b);
ch_b_ctx->channel = ch;
ch_ctx = spdk_io_channel_get_ctx(ch);
SPDK_CU_ASSERT_FATAL(ch_ctx != NULL);
CU_ASSERT(raid_bdev_create_cb(pbdev, ch_ctx) == 0);
for (i = 0; i < req.base_bdevs.num_base_bdevs; i++) {
CU_ASSERT(ch_ctx->base_channel && ch_ctx->base_channel[i] == (void *)0x1);
}
free_test_req(&req);
/* test 2 IO sizes based on global strip size set earlier */
lba = 0;
for (i = 0; i < 2; i++) {
bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io));
SPDK_CU_ASSERT_FATAL(bdev_io != NULL);
io_len = (g_strip_size / 2) << i;
bdev_io_initialize(bdev_io, ch_b, &pbdev->bdev, lba, io_len, SPDK_BDEV_IO_TYPE_READ);
lba += g_strip_size;
memset(g_io_output, 0, ((g_max_io_size / g_strip_size) + 1) * sizeof(struct io_output));
g_io_output_index = 0;
raid_bdev_submit_request(ch, bdev_io);
verify_io(bdev_io, req.base_bdevs.num_base_bdevs, ch_ctx, pbdev,
g_child_io_status_flag);
bdev_io_cleanup(bdev_io);
}
raid_bdev_destroy_cb(pbdev, ch_ctx);
CU_ASSERT(ch_ctx->base_channel == NULL);
free(ch);
free(ch_b);
create_raid_bdev_delete_req(&destroy_req, "raid1", 0);
spdk_rpc_bdev_raid_delete(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
raid_bdev_exit();
base_bdevs_cleanup();
reset_globals();
}
static void
raid_bdev_io_generate_by_strips(uint64_t n_strips)
{
uint64_t lba;
uint64_t nblocks;
uint64_t start_offset;
uint64_t end_offset;
uint64_t offsets_in_strip[3];
uint64_t start_bdev_idx;
uint64_t start_bdev_offset;
uint64_t start_bdev_idxs[3];
int i, j, l;
/* 3 different situations of offset in strip */
offsets_in_strip[0] = 0;
offsets_in_strip[1] = g_strip_size >> 1;
offsets_in_strip[2] = g_strip_size - 1;
/* 3 different situations of start_bdev_idx */
start_bdev_idxs[0] = 0;
start_bdev_idxs[1] = g_max_base_drives >> 1;
start_bdev_idxs[2] = g_max_base_drives - 1;
/* consider different offset in strip */
for (i = 0; i < 3; i++) {
start_offset = offsets_in_strip[i];
for (j = 0; j < 3; j++) {
end_offset = offsets_in_strip[j];
if (n_strips == 1 && start_offset > end_offset) {
continue;
}
/* consider at which base_bdev lba is started. */
for (l = 0; l < 3; l++) {
start_bdev_idx = start_bdev_idxs[l];
start_bdev_offset = start_bdev_idx * g_strip_size;
lba = g_lba_offset + start_bdev_offset + start_offset;
nblocks = (n_strips - 1) * g_strip_size + end_offset - start_offset + 1;
g_io_ranges[g_io_range_idx].lba = lba;
g_io_ranges[g_io_range_idx].nblocks = nblocks;
SPDK_CU_ASSERT_FATAL(g_io_range_idx < MAX_TEST_IO_RANGE);
g_io_range_idx++;
}
}
}
}
static void
raid_bdev_io_generate(void)
{
uint64_t n_strips;
uint64_t n_strips_span = g_max_base_drives;
uint64_t n_strips_times[5] = {g_max_base_drives + 1, g_max_base_drives * 2 - 1,
g_max_base_drives * 2, g_max_base_drives * 3,
g_max_base_drives * 4
};
uint32_t i;
g_io_range_idx = 0;
/* consider different number of strips from 1 to strips spanned base bdevs,
* and even to times of strips spanned base bdevs
*/
for (n_strips = 1; n_strips < n_strips_span; n_strips++) {
raid_bdev_io_generate_by_strips(n_strips);
}
for (i = 0; i < SPDK_COUNTOF(n_strips_times); i++) {
n_strips = n_strips_times[i];
raid_bdev_io_generate_by_strips(n_strips);
}
}
static void
test_unmap_io(void)
{
struct rpc_bdev_raid_create req;
struct rpc_bdev_raid_delete destroy_req;
struct raid_bdev *pbdev;
struct spdk_io_channel *ch;
struct raid_bdev_io_channel *ch_ctx;
uint8_t i;
struct spdk_bdev_io *bdev_io;
uint32_t count;
uint64_t io_len;
uint64_t lba;
set_globals();
CU_ASSERT(raid_bdev_init() == 0);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
create_raid_bdev_create_req(&req, "raid1", 0, true, 0);
spdk_rpc_bdev_raid_create(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config(&req, true);
verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE);
TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) {
if (strcmp(pbdev->bdev.name, "raid1") == 0) {
break;
}
}
CU_ASSERT(pbdev != NULL);
ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct raid_bdev_io_channel));
SPDK_CU_ASSERT_FATAL(ch != NULL);
ch_ctx = spdk_io_channel_get_ctx(ch);
SPDK_CU_ASSERT_FATAL(ch_ctx != NULL);
CU_ASSERT(raid_bdev_create_cb(pbdev, ch_ctx) == 0);
for (i = 0; i < req.base_bdevs.num_base_bdevs; i++) {
SPDK_CU_ASSERT_FATAL(ch_ctx->base_channel && ch_ctx->base_channel[i] == (void *)0x1);
}
CU_ASSERT(raid_bdev_io_type_supported(pbdev, SPDK_BDEV_IO_TYPE_UNMAP) == true);
CU_ASSERT(raid_bdev_io_type_supported(pbdev, SPDK_BDEV_IO_TYPE_FLUSH) == true);
raid_bdev_io_generate();
for (count = 0; count < g_io_range_idx; count++) {
bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io));
SPDK_CU_ASSERT_FATAL(bdev_io != NULL);
io_len = g_io_ranges[count].nblocks;
lba = g_io_ranges[count].lba;
bdev_io_initialize(bdev_io, ch, &pbdev->bdev, lba, io_len, SPDK_BDEV_IO_TYPE_UNMAP);
memset(g_io_output, 0, g_max_base_drives * sizeof(struct io_output));
g_io_output_index = 0;
raid_bdev_submit_request(ch, bdev_io);
verify_io_without_payload(bdev_io, req.base_bdevs.num_base_bdevs, ch_ctx, pbdev,
g_child_io_status_flag);
bdev_io_cleanup(bdev_io);
}
free_test_req(&req);
raid_bdev_destroy_cb(pbdev, ch_ctx);
CU_ASSERT(ch_ctx->base_channel == NULL);
free(ch);
create_raid_bdev_delete_req(&destroy_req, "raid1", 0);
spdk_rpc_bdev_raid_delete(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
raid_bdev_exit();
base_bdevs_cleanup();
reset_globals();
}
/* Test IO failures */
static void
test_io_failure(void)
{
struct rpc_bdev_raid_create req;
struct rpc_bdev_raid_delete destroy_req;
struct raid_bdev *pbdev;
struct spdk_io_channel *ch;
struct raid_bdev_io_channel *ch_ctx;
uint8_t i;
struct spdk_bdev_io *bdev_io;
uint32_t count;
uint64_t io_len;
uint64_t lba;
set_globals();
CU_ASSERT(raid_bdev_init() == 0);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
create_raid_bdev_create_req(&req, "raid1", 0, true, 0);
spdk_rpc_bdev_raid_create(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config(&req, true);
verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE);
TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) {
if (strcmp(pbdev->bdev.name, req.name) == 0) {
break;
}
}
CU_ASSERT(pbdev != NULL);
ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct raid_bdev_io_channel));
SPDK_CU_ASSERT_FATAL(ch != NULL);
ch_ctx = spdk_io_channel_get_ctx(ch);
SPDK_CU_ASSERT_FATAL(ch_ctx != NULL);
CU_ASSERT(raid_bdev_create_cb(pbdev, ch_ctx) == 0);
for (i = 0; i < req.base_bdevs.num_base_bdevs; i++) {
CU_ASSERT(ch_ctx->base_channel && ch_ctx->base_channel[i] == (void *)0x1);
}
free_test_req(&req);
lba = 0;
for (count = 0; count < 1; count++) {
bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io));
SPDK_CU_ASSERT_FATAL(bdev_io != NULL);
io_len = (g_strip_size / 2) << count;
bdev_io_initialize(bdev_io, ch, &pbdev->bdev, lba, io_len, SPDK_BDEV_IO_TYPE_INVALID);
lba += g_strip_size;
memset(g_io_output, 0, ((g_max_io_size / g_strip_size) + 1) * sizeof(struct io_output));
g_io_output_index = 0;
raid_bdev_submit_request(ch, bdev_io);
verify_io(bdev_io, req.base_bdevs.num_base_bdevs, ch_ctx, pbdev,
INVALID_IO_SUBMIT);
bdev_io_cleanup(bdev_io);
}
lba = 0;
g_child_io_status_flag = false;
for (count = 0; count < 1; count++) {
bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io));
SPDK_CU_ASSERT_FATAL(bdev_io != NULL);
io_len = (g_strip_size / 2) << count;
bdev_io_initialize(bdev_io, ch, &pbdev->bdev, lba, io_len, SPDK_BDEV_IO_TYPE_WRITE);
lba += g_strip_size;
memset(g_io_output, 0, ((g_max_io_size / g_strip_size) + 1) * sizeof(struct io_output));
g_io_output_index = 0;
raid_bdev_submit_request(ch, bdev_io);
verify_io(bdev_io, req.base_bdevs.num_base_bdevs, ch_ctx, pbdev,
g_child_io_status_flag);
bdev_io_cleanup(bdev_io);
}
raid_bdev_destroy_cb(pbdev, ch_ctx);
CU_ASSERT(ch_ctx->base_channel == NULL);
free(ch);
create_raid_bdev_delete_req(&destroy_req, "raid1", 0);
spdk_rpc_bdev_raid_delete(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
raid_bdev_exit();
base_bdevs_cleanup();
reset_globals();
}
/* Test reset IO */
static void
test_reset_io(void)
{
struct rpc_bdev_raid_create req;
struct rpc_bdev_raid_delete destroy_req;
struct raid_bdev *pbdev;
struct spdk_io_channel *ch;
struct raid_bdev_io_channel *ch_ctx;
uint8_t i;
struct spdk_bdev_io *bdev_io;
set_globals();
CU_ASSERT(raid_bdev_init() == 0);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
create_raid_bdev_create_req(&req, "raid1", 0, true, 0);
spdk_rpc_bdev_raid_create(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config(&req, true);
verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE);
TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) {
if (strcmp(pbdev->bdev.name, "raid1") == 0) {
break;
}
}
CU_ASSERT(pbdev != NULL);
ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct raid_bdev_io_channel));
SPDK_CU_ASSERT_FATAL(ch != NULL);
ch_ctx = spdk_io_channel_get_ctx(ch);
SPDK_CU_ASSERT_FATAL(ch_ctx != NULL);
SPDK_CU_ASSERT_FATAL(raid_bdev_create_cb(pbdev, ch_ctx) == 0);
for (i = 0; i < req.base_bdevs.num_base_bdevs; i++) {
CU_ASSERT(ch_ctx->base_channel && ch_ctx->base_channel[i] == (void *)0x1);
}
free_test_req(&req);
g_bdev_io_submit_status = 0;
g_child_io_status_flag = true;
CU_ASSERT(raid_bdev_io_type_supported(pbdev, SPDK_BDEV_IO_TYPE_RESET) == true);
bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io));
SPDK_CU_ASSERT_FATAL(bdev_io != NULL);
bdev_io_initialize(bdev_io, ch, &pbdev->bdev, 0, 1, SPDK_BDEV_IO_TYPE_RESET);
memset(g_io_output, 0, g_max_base_drives * sizeof(struct io_output));
g_io_output_index = 0;
raid_bdev_submit_request(ch, bdev_io);
verify_reset_io(bdev_io, req.base_bdevs.num_base_bdevs, ch_ctx, pbdev,
true);
bdev_io_cleanup(bdev_io);
raid_bdev_destroy_cb(pbdev, ch_ctx);
CU_ASSERT(ch_ctx->base_channel == NULL);
free(ch);
create_raid_bdev_delete_req(&destroy_req, "raid1", 0);
spdk_rpc_bdev_raid_delete(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
raid_bdev_exit();
base_bdevs_cleanup();
reset_globals();
}
/* Create multiple raids, destroy raids without IO, get_raids related tests */
static void
test_multi_raid_no_io(void)
{
struct rpc_bdev_raid_create *construct_req;
struct rpc_bdev_raid_delete destroy_req;
struct rpc_bdev_raid_get_bdevs get_raids_req;
uint8_t i;
char name[16];
uint8_t bbdev_idx = 0;
set_globals();
construct_req = calloc(MAX_RAIDS, sizeof(struct rpc_bdev_raid_create));
SPDK_CU_ASSERT_FATAL(construct_req != NULL);
CU_ASSERT(raid_bdev_init() == 0);
for (i = 0; i < g_max_raids; i++) {
snprintf(name, 16, "%s%u", "raid", i);
verify_raid_config_present(name, false);
verify_raid_bdev_present(name, false);
create_raid_bdev_create_req(&construct_req[i], name, bbdev_idx, true, 0);
bbdev_idx += g_max_base_drives;
spdk_rpc_bdev_raid_create(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config(&construct_req[i], true);
verify_raid_bdev(&construct_req[i], true, RAID_BDEV_STATE_ONLINE);
}
create_get_raids_req(&get_raids_req, "all", 0);
spdk_rpc_bdev_raid_get_bdevs(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_get_raids(construct_req, g_max_raids, g_get_raids_output, g_get_raids_count);
for (i = 0; i < g_get_raids_count; i++) {
free(g_get_raids_output[i]);
}
create_get_raids_req(&get_raids_req, "online", 0);
spdk_rpc_bdev_raid_get_bdevs(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_get_raids(construct_req, g_max_raids, g_get_raids_output, g_get_raids_count);
for (i = 0; i < g_get_raids_count; i++) {
free(g_get_raids_output[i]);
}
create_get_raids_req(&get_raids_req, "configuring", 0);
spdk_rpc_bdev_raid_get_bdevs(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
CU_ASSERT(g_get_raids_count == 0);
create_get_raids_req(&get_raids_req, "offline", 0);
spdk_rpc_bdev_raid_get_bdevs(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
CU_ASSERT(g_get_raids_count == 0);
create_get_raids_req(&get_raids_req, "invalid_category", 0);
spdk_rpc_bdev_raid_get_bdevs(NULL, NULL);
CU_ASSERT(g_rpc_err == 1);
CU_ASSERT(g_get_raids_count == 0);
create_get_raids_req(&get_raids_req, "all", 1);
spdk_rpc_bdev_raid_get_bdevs(NULL, NULL);
CU_ASSERT(g_rpc_err == 1);
free(get_raids_req.category);
CU_ASSERT(g_get_raids_count == 0);
create_get_raids_req(&get_raids_req, "all", 0);
spdk_rpc_bdev_raid_get_bdevs(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
CU_ASSERT(g_get_raids_count == g_max_raids);
for (i = 0; i < g_get_raids_count; i++) {
free(g_get_raids_output[i]);
}
for (i = 0; i < g_max_raids; i++) {
SPDK_CU_ASSERT_FATAL(construct_req[i].name != NULL);
snprintf(name, 16, "%s", construct_req[i].name);
create_raid_bdev_delete_req(&destroy_req, name, 0);
spdk_rpc_bdev_raid_delete(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config_present(name, false);
verify_raid_bdev_present(name, false);
}
raid_bdev_exit();
for (i = 0; i < g_max_raids; i++) {
free_test_req(&construct_req[i]);
}
free(construct_req);
base_bdevs_cleanup();
reset_globals();
}
/* Create multiple raids, fire IOs on raids */
static void
test_multi_raid_with_io(void)
{
struct rpc_bdev_raid_create *construct_req;
struct rpc_bdev_raid_delete destroy_req;
uint8_t i, j;
char name[16];
uint8_t bbdev_idx = 0;
struct raid_bdev *pbdev;
struct spdk_io_channel *ch;
struct raid_bdev_io_channel *ch_ctx;
struct spdk_bdev_io *bdev_io;
uint64_t io_len;
uint64_t lba = 0;
int16_t iotype;
struct spdk_io_channel *ch_b;
struct spdk_bdev_channel *ch_b_ctx;
set_globals();
construct_req = calloc(g_max_raids, sizeof(struct rpc_bdev_raid_create));
SPDK_CU_ASSERT_FATAL(construct_req != NULL);
CU_ASSERT(raid_bdev_init() == 0);
ch = calloc(g_max_raids, sizeof(struct spdk_io_channel) + sizeof(struct raid_bdev_io_channel));
SPDK_CU_ASSERT_FATAL(ch != NULL);
ch_b = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct spdk_bdev_channel));
SPDK_CU_ASSERT_FATAL(ch_b != NULL);
ch_b_ctx = spdk_io_channel_get_ctx(ch_b);
ch_b_ctx->channel = ch;
for (i = 0; i < g_max_raids; i++) {
snprintf(name, 16, "%s%u", "raid", i);
verify_raid_config_present(name, false);
verify_raid_bdev_present(name, false);
create_raid_bdev_create_req(&construct_req[i], name, bbdev_idx, true, 0);
bbdev_idx += g_max_base_drives;
spdk_rpc_bdev_raid_create(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config(&construct_req[i], true);
verify_raid_bdev(&construct_req[i], true, RAID_BDEV_STATE_ONLINE);
TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) {
if (strcmp(pbdev->bdev.name, construct_req[i].name) == 0) {
break;
}
}
CU_ASSERT(pbdev != NULL);
ch_ctx = spdk_io_channel_get_ctx(&ch[i]);
SPDK_CU_ASSERT_FATAL(ch_ctx != NULL);
CU_ASSERT(raid_bdev_create_cb(pbdev, ch_ctx) == 0);
SPDK_CU_ASSERT_FATAL(ch_ctx->base_channel != NULL);
for (j = 0; j < construct_req[i].base_bdevs.num_base_bdevs; j++) {
CU_ASSERT(ch_ctx->base_channel[j] == (void *)0x1);
}
}
/* This will perform a write on the first raid and a read on the second. It can be
* expanded in the future to perform r/w on each raid device in the event that
* multiple raid levels are supported.
*/
for (i = 0; i < g_max_raids; i++) {
bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io));
SPDK_CU_ASSERT_FATAL(bdev_io != NULL);
io_len = g_strip_size;
iotype = (i) ? SPDK_BDEV_IO_TYPE_WRITE : SPDK_BDEV_IO_TYPE_READ;
memset(g_io_output, 0, ((g_max_io_size / g_strip_size) + 1) * sizeof(struct io_output));
g_io_output_index = 0;
TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) {
if (strcmp(pbdev->bdev.name, construct_req[i].name) == 0) {
break;
}
}
bdev_io_initialize(bdev_io, ch_b, &pbdev->bdev, lba, io_len, iotype);
CU_ASSERT(pbdev != NULL);
raid_bdev_submit_request(ch, bdev_io);
verify_io(bdev_io, g_max_base_drives, ch_ctx, pbdev,
g_child_io_status_flag);
bdev_io_cleanup(bdev_io);
}
for (i = 0; i < g_max_raids; i++) {
TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) {
if (strcmp(pbdev->bdev.name, construct_req[i].name) == 0) {
break;
}
}
CU_ASSERT(pbdev != NULL);
ch_ctx = spdk_io_channel_get_ctx(&ch[i]);
SPDK_CU_ASSERT_FATAL(ch_ctx != NULL);
raid_bdev_destroy_cb(pbdev, ch_ctx);
CU_ASSERT(ch_ctx->base_channel == NULL);
snprintf(name, 16, "%s", construct_req[i].name);
create_raid_bdev_delete_req(&destroy_req, name, 0);
spdk_rpc_bdev_raid_delete(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config_present(name, false);
verify_raid_bdev_present(name, false);
}
raid_bdev_exit();
for (i = 0; i < g_max_raids; i++) {
free_test_req(&construct_req[i]);
}
free(construct_req);
free(ch);
free(ch_b);
base_bdevs_cleanup();
reset_globals();
}
static void
test_io_type_supported(void)
{
CU_ASSERT(raid_bdev_io_type_supported(NULL, SPDK_BDEV_IO_TYPE_READ) == true);
CU_ASSERT(raid_bdev_io_type_supported(NULL, SPDK_BDEV_IO_TYPE_WRITE) == true);
CU_ASSERT(raid_bdev_io_type_supported(NULL, SPDK_BDEV_IO_TYPE_INVALID) == false);
}
static void
test_create_raid_from_config(void)
{
struct rpc_bdev_raid_create req;
struct spdk_bdev *bdev;
struct rpc_bdev_raid_delete destroy_req;
bool can_claim;
struct raid_bdev_config *raid_cfg;
uint8_t base_bdev_slot;
set_globals();
create_raid_bdev_create_config(&req, "raid1", 0, true);
CU_ASSERT(raid_bdev_init() == 0);
verify_raid_config_present("raid1", true);
verify_raid_bdev_present("raid1", true);
TAILQ_FOREACH(bdev, &g_bdev_list, internal.link) {
raid_bdev_examine(bdev);
}
can_claim = raid_bdev_can_claim_bdev("Invalid", &raid_cfg, &base_bdev_slot);
CU_ASSERT(can_claim == false);
verify_raid_config(&req, true);
verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE);
create_raid_bdev_delete_req(&destroy_req, "raid1", 0);
spdk_rpc_bdev_raid_delete(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
raid_bdev_exit();
free_test_req(&req);
base_bdevs_cleanup();
reset_globals();
}
static void
test_create_raid_from_config_invalid_params(void)
{
struct rpc_bdev_raid_create req;
set_globals();
create_raid_bdev_create_config(&req, "raid1", 0, true);
free(req.name);
req.name = NULL;
CU_ASSERT(raid_bdev_init() != 0);
free_test_req(&req);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
create_raid_bdev_create_config(&req, "raid1", 0, false);
req.strip_size_kb = 1234;
CU_ASSERT(raid_bdev_init() != 0);
free_test_req(&req);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
create_raid_bdev_create_config(&req, "raid1", 0, false);
req.level = INVALID_RAID_LEVEL;
CU_ASSERT(raid_bdev_init() != 0);
free_test_req(&req);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
create_raid_bdev_create_config(&req, "raid1", 0, false);
req.level = INVALID_RAID_LEVEL;
CU_ASSERT(raid_bdev_init() != 0);
free_test_req(&req);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
create_raid_bdev_create_config(&req, "raid1", 0, false);
req.base_bdevs.num_base_bdevs++;
CU_ASSERT(raid_bdev_init() != 0);
req.base_bdevs.num_base_bdevs--;
free_test_req(&req);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
create_raid_bdev_create_config(&req, "raid1", 0, false);
req.base_bdevs.num_base_bdevs--;
CU_ASSERT(raid_bdev_init() != 0);
req.base_bdevs.num_base_bdevs++;
free_test_req(&req);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
if (g_max_base_drives > 1) {
create_raid_bdev_create_config(&req, "raid1", 0, false);
snprintf(req.base_bdevs.base_bdevs[g_max_base_drives - 1], 15, "%s", "Nvme0n1");
CU_ASSERT(raid_bdev_init() != 0);
free_test_req(&req);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
}
raid_bdev_exit();
base_bdevs_cleanup();
reset_globals();
}
static void
test_raid_json_dump_info(void)
{
struct rpc_bdev_raid_create req;
struct rpc_bdev_raid_delete destroy_req;
struct raid_bdev *pbdev;
set_globals();
CU_ASSERT(raid_bdev_init() == 0);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
create_raid_bdev_create_req(&req, "raid1", 0, true, 0);
spdk_rpc_bdev_raid_create(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE);
TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) {
if (strcmp(pbdev->bdev.name, "raid1") == 0) {
break;
}
}
CU_ASSERT(pbdev != NULL);
CU_ASSERT(raid_bdev_dump_info_json(pbdev, NULL) == 0);
free_test_req(&req);
create_raid_bdev_delete_req(&destroy_req, "raid1", 0);
spdk_rpc_bdev_raid_delete(NULL, NULL);
CU_ASSERT(g_rpc_err == 0);
verify_raid_config_present("raid1", false);
verify_raid_bdev_present("raid1", false);
raid_bdev_exit();
base_bdevs_cleanup();
reset_globals();
}
static void
test_context_size(void)
{
CU_ASSERT(raid_bdev_get_ctx_size() == sizeof(struct raid_bdev_io));
}
static void
test_raid_level_conversions(void)
{
const char *raid_str;
CU_ASSERT(raid_bdev_parse_raid_level("abcd123") == INVALID_RAID_LEVEL);
CU_ASSERT(raid_bdev_parse_raid_level("0") == RAID0);
CU_ASSERT(raid_bdev_parse_raid_level("raid0") == RAID0);
CU_ASSERT(raid_bdev_parse_raid_level("RAID0") == RAID0);
raid_str = raid_bdev_level_to_str(INVALID_RAID_LEVEL);
CU_ASSERT(raid_str != NULL && strlen(raid_str) == 0);
raid_str = raid_bdev_level_to_str(1234);
CU_ASSERT(raid_str != NULL && strlen(raid_str) == 0);
raid_str = raid_bdev_level_to_str(RAID0);
CU_ASSERT(raid_str != NULL && strcmp(raid_str, "raid0") == 0);
}
int main(int argc, char **argv)
{
CU_pSuite suite = NULL;
unsigned int num_failures;
if (CU_initialize_registry() != CUE_SUCCESS) {
return CU_get_error();
}
suite = CU_add_suite("raid", NULL, NULL);
if (suite == NULL) {
CU_cleanup_registry();
return CU_get_error();
}
if (
CU_add_test(suite, "test_create_raid", test_create_raid) == NULL ||
CU_add_test(suite, "test_delete_raid", test_delete_raid) == NULL ||
CU_add_test(suite, "test_create_raid_invalid_args",
test_create_raid_invalid_args) == NULL ||
CU_add_test(suite, "test_delete_raid_invalid_args",
test_delete_raid_invalid_args) == NULL ||
CU_add_test(suite, "test_io_channel", test_io_channel) == NULL ||
CU_add_test(suite, "test_reset_io", test_reset_io) == NULL ||
CU_add_test(suite, "test_write_io", test_write_io) == NULL ||
CU_add_test(suite, "test_read_io", test_read_io) == NULL ||
CU_add_test(suite, "test_unmap_io", test_unmap_io) == NULL ||
CU_add_test(suite, "test_io_failure", test_io_failure) == NULL ||
CU_add_test(suite, "test_multi_raid_no_io", test_multi_raid_no_io) == NULL ||
CU_add_test(suite, "test_multi_raid_with_io", test_multi_raid_with_io) == NULL ||
CU_add_test(suite, "test_io_type_supported", test_io_type_supported) == NULL ||
CU_add_test(suite, "test_create_raid_from_config", test_create_raid_from_config) == NULL ||
CU_add_test(suite, "test_create_raid_from_config_invalid_params",
test_create_raid_from_config_invalid_params) == NULL ||
CU_add_test(suite, "test_raid_json_dump_info", test_raid_json_dump_info) == NULL ||
CU_add_test(suite, "test_context_size", test_context_size) == NULL ||
CU_add_test(suite, "test_raid_level_conversions", test_raid_level_conversions) == NULL
) {
CU_cleanup_registry();
return CU_get_error();
}
CU_basic_set_mode(CU_BRM_VERBOSE);
set_test_opts();
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
return num_failures;
}