Spdk/test/unit/lib/nvmf/rdma.c/rdma_ut.c
Seth Howell 8126509c4f rdma: replace improperly aligned buffers in requests.
It is a very rare thing for a buffer to be split over two memory
regions. In fact, it is only possible in dpdk versions where
--match-allocations is not passed as a startup parameter to dpdk but
dynamic memory allocation is enabled.

By adding a small helper function, we avoid failing an I/O because it
was assigned one of these improperly aligned buffers. Also, we try to
remove the buffer from circulation so that it doesn't get picked up
again by another request.

Also, add a unit test to catch this case.

Change-Id: Ia09865c2f77160a960571665b29c4533b11758ae
Signed-off-by: Seth Howell <seth.howell@intel.com>
Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/467446
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Reviewed-by: Paul Luse <paul.e.luse@intel.com>
2019-09-17 19:43:01 +00:00

817 lines
31 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation. All rights reserved.
* Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk_cunit.h"
#include "common/lib/test_env.c"
#include "nvmf/rdma.c"
uint64_t g_mr_size;
uint64_t g_mr_next_size;
struct ibv_mr g_rdma_mr;
#define RDMA_UT_UNITS_IN_MAX_IO 16
struct spdk_nvmf_transport_opts g_rdma_ut_transport_opts = {
.max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH,
.max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR,
.in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE,
.max_io_size = (SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE * RDMA_UT_UNITS_IN_MAX_IO),
.io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE,
.max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH,
.num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS,
};
SPDK_LOG_REGISTER_COMPONENT("nvmf", SPDK_LOG_NVMF)
DEFINE_STUB(spdk_mem_map_set_translation, int, (struct spdk_mem_map *map, uint64_t vaddr,
uint64_t size, uint64_t translation), 0);
DEFINE_STUB(spdk_mem_map_clear_translation, int, (struct spdk_mem_map *map, uint64_t vaddr,
uint64_t size), 0);
DEFINE_STUB(spdk_mem_map_alloc, struct spdk_mem_map *, (uint64_t default_translation,
const struct spdk_mem_map_ops *ops, void *cb_ctx), NULL);
DEFINE_STUB(spdk_nvmf_qpair_disconnect, int, (struct spdk_nvmf_qpair *qpair,
nvmf_qpair_disconnect_cb cb_fn, void *ctx), 0);
DEFINE_STUB_V(spdk_mem_map_free, (struct spdk_mem_map **pmap));
struct spdk_trace_histories *g_trace_histories;
DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn));
DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix));
DEFINE_STUB_V(spdk_trace_register_description, (const char *name,
uint16_t tpoint_id, uint8_t owner_type, uint8_t object_type, uint8_t new_object,
uint8_t arg1_type, const char *arg1_name));
DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id,
uint32_t size, uint64_t object_id, uint64_t arg1));
DEFINE_STUB_V(spdk_nvmf_request_exec, (struct spdk_nvmf_request *req));
DEFINE_STUB(spdk_nvme_transport_id_compare, int, (const struct spdk_nvme_transport_id *trid1,
const struct spdk_nvme_transport_id *trid2), 0);
DEFINE_STUB_V(spdk_nvmf_ctrlr_abort_aer, (struct spdk_nvmf_ctrlr *ctrlr));
void
spdk_nvmf_request_free_buffers(struct spdk_nvmf_request *req,
struct spdk_nvmf_transport_poll_group *group,
struct spdk_nvmf_transport *transport,
uint32_t num_buffers)
{
uint32_t i;
for (i = 0; i < num_buffers; i++) {
if (group->buf_cache_count < group->buf_cache_size) {
STAILQ_INSERT_HEAD(&group->buf_cache,
(struct spdk_nvmf_transport_pg_cache_buf *)req->buffers[i],
link);
group->buf_cache_count++;
} else {
spdk_mempool_put(transport->data_buf_pool, req->buffers[i]);
}
req->iov[i].iov_base = NULL;
req->buffers[i] = NULL;
req->iov[i].iov_len = 0;
}
req->data_from_pool = false;
}
int
spdk_nvmf_request_get_buffers(struct spdk_nvmf_request *req,
struct spdk_nvmf_transport_poll_group *group,
struct spdk_nvmf_transport *transport,
uint32_t num_buffers)
{
uint32_t i = 0;
while (i < num_buffers) {
if (!(STAILQ_EMPTY(&group->buf_cache))) {
group->buf_cache_count--;
req->buffers[i] = STAILQ_FIRST(&group->buf_cache);
STAILQ_REMOVE_HEAD(&group->buf_cache, link);
i++;
} else {
if (spdk_mempool_get_bulk(transport->data_buf_pool, &req->buffers[i],
num_buffers - i)) {
goto err_exit;
}
i += num_buffers - i;
}
}
return 0;
err_exit:
spdk_nvmf_request_free_buffers(req, group, transport, i);
return -ENOMEM;
}
uint64_t
spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr, uint64_t *size)
{
if (g_mr_size != 0) {
*(uint32_t *)size = g_mr_size;
if (g_mr_next_size != 0) {
g_mr_size = g_mr_next_size;
}
}
return (uint64_t)&g_rdma_mr;
}
static void reset_nvmf_rdma_request(struct spdk_nvmf_rdma_request *rdma_req)
{
int i;
rdma_req->req.length = 0;
rdma_req->req.data_from_pool = false;
rdma_req->req.data = NULL;
rdma_req->data.wr.num_sge = 0;
rdma_req->data.wr.wr.rdma.remote_addr = 0;
rdma_req->data.wr.wr.rdma.rkey = 0;
for (i = 0; i < SPDK_NVMF_MAX_SGL_ENTRIES; i++) {
rdma_req->req.iov[i].iov_base = 0;
rdma_req->req.iov[i].iov_len = 0;
rdma_req->req.buffers[i] = 0;
rdma_req->data.wr.sg_list[i].addr = 0;
rdma_req->data.wr.sg_list[i].length = 0;
rdma_req->data.wr.sg_list[i].lkey = 0;
}
}
static void
test_spdk_nvmf_rdma_request_parse_sgl(void)
{
struct spdk_nvmf_rdma_transport rtransport;
struct spdk_nvmf_rdma_device device;
struct spdk_nvmf_rdma_request rdma_req;
struct spdk_nvmf_rdma_recv recv;
struct spdk_nvmf_rdma_poll_group group;
struct spdk_nvmf_rdma_qpair rqpair;
struct spdk_nvmf_rdma_poller poller;
union nvmf_c2h_msg cpl;
union nvmf_h2c_msg cmd;
struct spdk_nvme_sgl_descriptor *sgl;
struct spdk_nvmf_transport_pg_cache_buf bufs[4];
struct spdk_nvme_sgl_descriptor sgl_desc[SPDK_NVMF_MAX_SGL_ENTRIES] = {{0}};
struct spdk_nvmf_rdma_request_data data;
struct spdk_nvmf_transport_pg_cache_buf buffer;
struct spdk_nvmf_transport_pg_cache_buf *buffer_ptr;
int rc, i;
data.wr.sg_list = data.sgl;
STAILQ_INIT(&group.group.buf_cache);
group.group.buf_cache_size = 0;
group.group.buf_cache_count = 0;
group.group.transport = &rtransport.transport;
STAILQ_INIT(&group.retired_bufs);
poller.group = &group;
rqpair.poller = &poller;
rqpair.max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
sgl = &cmd.nvme_cmd.dptr.sgl1;
rdma_req.recv = &recv;
rdma_req.req.cmd = &cmd;
rdma_req.req.rsp = &cpl;
rdma_req.data.wr.sg_list = rdma_req.data.sgl;
rdma_req.req.qpair = &rqpair.qpair;
rdma_req.req.xfer = SPDK_NVME_DATA_CONTROLLER_TO_HOST;
rtransport.transport.opts = g_rdma_ut_transport_opts;
rtransport.data_wr_pool = NULL;
rtransport.transport.data_buf_pool = NULL;
device.attr.device_cap_flags = 0;
g_rdma_mr.lkey = 0xABCD;
sgl->keyed.key = 0xEEEE;
sgl->address = 0xFFFF;
rdma_req.recv->buf = (void *)0xDDDD;
/* Test 1: sgl type: keyed data block subtype: address */
sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
/* Part 1: simple I/O, one SGL smaller than the transport io unit size */
MOCK_SET(spdk_mempool_get, (void *)0x2000);
reset_nvmf_rdma_request(&rdma_req);
sgl->keyed.length = rtransport.transport.opts.io_unit_size / 2;
device.map = (void *)0x0;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size / 2);
CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
CU_ASSERT(rdma_req.data.wr.num_sge == 1);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
CU_ASSERT((uint64_t)rdma_req.req.buffers[0] == 0x2000);
CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0x2000);
CU_ASSERT(rdma_req.data.wr.sg_list[0].length == rtransport.transport.opts.io_unit_size / 2);
CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == g_rdma_mr.lkey);
/* Part 2: simple I/O, one SGL larger than the transport io unit size (equal to the max io size) */
reset_nvmf_rdma_request(&rdma_req);
sgl->keyed.length = rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO);
CU_ASSERT(rdma_req.data.wr.num_sge == RDMA_UT_UNITS_IN_MAX_IO);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
for (i = 0; i < RDMA_UT_UNITS_IN_MAX_IO; i++) {
CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == 0x2000);
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
CU_ASSERT(rdma_req.data.wr.sg_list[i].lkey == g_rdma_mr.lkey);
}
/* Part 3: simple I/O one SGL larger than the transport max io size */
reset_nvmf_rdma_request(&rdma_req);
sgl->keyed.length = rtransport.transport.opts.max_io_size * 2;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == -1);
/* Part 4: Pretend there are no buffer pools */
MOCK_SET(spdk_mempool_get, NULL);
reset_nvmf_rdma_request(&rdma_req);
sgl->keyed.length = rtransport.transport.opts.io_unit_size * RDMA_UT_UNITS_IN_MAX_IO;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == false);
CU_ASSERT(rdma_req.req.data == NULL);
CU_ASSERT(rdma_req.data.wr.num_sge == 0);
CU_ASSERT(rdma_req.req.buffers[0] == NULL);
CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == 0);
CU_ASSERT(rdma_req.data.wr.sg_list[0].length == 0);
CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == 0);
rdma_req.recv->buf = (void *)0xDDDD;
/* Test 2: sgl type: keyed data block subtype: offset (in capsule data) */
sgl->generic.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
/* Part 1: Normal I/O smaller than in capsule data size no offset */
reset_nvmf_rdma_request(&rdma_req);
sgl->address = 0;
sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data == (void *)0xDDDD);
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.in_capsule_data_size);
CU_ASSERT(rdma_req.req.data_from_pool == false);
/* Part 2: I/O offset + length too large */
reset_nvmf_rdma_request(&rdma_req);
sgl->address = rtransport.transport.opts.in_capsule_data_size;
sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == -1);
/* Part 3: I/O too large */
reset_nvmf_rdma_request(&rdma_req);
sgl->address = 0;
sgl->unkeyed.length = rtransport.transport.opts.in_capsule_data_size * 2;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == -1);
/* Test 3: Multi SGL */
sgl->generic.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
sgl->unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
sgl->address = 0;
rdma_req.recv->buf = (void *)&sgl_desc;
MOCK_SET(spdk_mempool_get, &data);
/* part 1: 2 segments each with 1 wr. */
reset_nvmf_rdma_request(&rdma_req);
sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
for (i = 0; i < 2; i++) {
sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
sgl_desc[i].keyed.length = rtransport.transport.opts.io_unit_size;
sgl_desc[i].address = 0x4000 + i * rtransport.transport.opts.io_unit_size;
sgl_desc[i].keyed.key = 0x44;
}
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 2);
CU_ASSERT(rdma_req.data.wr.num_sge == 1);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
CU_ASSERT(rdma_req.data.wr.next == &data.wr);
CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size);
CU_ASSERT(data.wr.num_sge == 1);
CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
/* part 2: 2 segments, each with 1 wr containing 8 sge_elements */
reset_nvmf_rdma_request(&rdma_req);
sgl->unkeyed.length = 2 * sizeof(struct spdk_nvme_sgl_descriptor);
for (i = 0; i < 2; i++) {
sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
sgl_desc[i].keyed.length = rtransport.transport.opts.io_unit_size * 8;
sgl_desc[i].address = 0x4000 + i * 8 * rtransport.transport.opts.io_unit_size;
sgl_desc[i].keyed.key = 0x44;
}
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 16);
CU_ASSERT(rdma_req.req.iovcnt == 16);
CU_ASSERT(rdma_req.data.wr.num_sge == 8);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
CU_ASSERT(rdma_req.data.wr.next == &data.wr);
CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size * 8);
CU_ASSERT(data.wr.num_sge == 8);
CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
/* part 3: 2 segments, one very large, one very small */
reset_nvmf_rdma_request(&rdma_req);
for (i = 0; i < 2; i++) {
sgl_desc[i].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
sgl_desc[i].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
sgl_desc[i].keyed.key = 0x44;
}
sgl_desc[0].keyed.length = rtransport.transport.opts.io_unit_size * 15 +
rtransport.transport.opts.io_unit_size / 2;
sgl_desc[0].address = 0x4000;
sgl_desc[1].keyed.length = rtransport.transport.opts.io_unit_size / 2;
sgl_desc[1].address = 0x4000 + rtransport.transport.opts.io_unit_size * 15 +
rtransport.transport.opts.io_unit_size / 2;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
CU_ASSERT(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 16);
CU_ASSERT(rdma_req.req.iovcnt == 17);
CU_ASSERT(rdma_req.data.wr.num_sge == 16);
for (i = 0; i < 15; i++) {
CU_ASSERT(rdma_req.data.sgl[i].length == rtransport.transport.opts.io_unit_size);
}
CU_ASSERT(rdma_req.data.sgl[15].length == rtransport.transport.opts.io_unit_size / 2);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0x44);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0x4000);
CU_ASSERT(rdma_req.data.wr.next == &data.wr);
CU_ASSERT(data.wr.wr.rdma.rkey == 0x44);
CU_ASSERT(data.wr.wr.rdma.remote_addr == 0x4000 + rtransport.transport.opts.io_unit_size * 15 +
rtransport.transport.opts.io_unit_size / 2);
CU_ASSERT(data.sgl[0].length == rtransport.transport.opts.io_unit_size / 2);
CU_ASSERT(data.wr.num_sge == 1);
CU_ASSERT(data.wr.next == &rdma_req.rsp.wr);
/* Test 4: use PG buffer cache */
sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
sgl->address = 0xFFFF;
rdma_req.recv->buf = (void *)0xDDDD;
g_rdma_mr.lkey = 0xABCD;
sgl->keyed.key = 0xEEEE;
for (i = 0; i < 4; i++) {
STAILQ_INSERT_TAIL(&group.group.buf_cache, &bufs[i], link);
}
/* part 1: use the four buffers from the pg cache */
group.group.buf_cache_size = 4;
group.group.buf_cache_count = 4;
MOCK_SET(spdk_mempool_get, (void *)0x2000);
reset_nvmf_rdma_request(&rdma_req);
sgl->keyed.length = rtransport.transport.opts.io_unit_size * 4;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
SPDK_CU_ASSERT_FATAL(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 4);
CU_ASSERT((uint64_t)rdma_req.req.data == (((uint64_t)&bufs[0] + NVMF_DATA_BUFFER_MASK) &
~NVMF_DATA_BUFFER_MASK));
CU_ASSERT(rdma_req.data.wr.num_sge == 4);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
CU_ASSERT(group.group.buf_cache_count == 0);
CU_ASSERT(STAILQ_EMPTY(&group.group.buf_cache));
for (i = 0; i < 4; i++) {
CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == (uint64_t)&bufs[i]);
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (((uint64_t)&bufs[i] + NVMF_DATA_BUFFER_MASK) &
~NVMF_DATA_BUFFER_MASK));
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
}
/* part 2: now that we have used the buffers from the cache, try again. We should get mempool buffers. */
reset_nvmf_rdma_request(&rdma_req);
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
SPDK_CU_ASSERT_FATAL(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 4);
CU_ASSERT((uint64_t)rdma_req.req.data == 0x2000);
CU_ASSERT(rdma_req.data.wr.num_sge == 4);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
CU_ASSERT(group.group.buf_cache_count == 0);
CU_ASSERT(STAILQ_EMPTY(&group.group.buf_cache));
for (i = 0; i < 4; i++) {
CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == 0x2000);
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
CU_ASSERT(group.group.buf_cache_count == 0);
}
/* part 3: half and half */
group.group.buf_cache_count = 2;
for (i = 0; i < 2; i++) {
STAILQ_INSERT_TAIL(&group.group.buf_cache, &bufs[i], link);
}
reset_nvmf_rdma_request(&rdma_req);
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
SPDK_CU_ASSERT_FATAL(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size * 4);
CU_ASSERT((uint64_t)rdma_req.req.data == (((uint64_t)&bufs[0] + NVMF_DATA_BUFFER_MASK) &
~NVMF_DATA_BUFFER_MASK));
CU_ASSERT(rdma_req.data.wr.num_sge == 4);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
CU_ASSERT(group.group.buf_cache_count == 0);
for (i = 0; i < 2; i++) {
CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == (uint64_t)&bufs[i]);
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == (((uint64_t)&bufs[i] + NVMF_DATA_BUFFER_MASK) &
~NVMF_DATA_BUFFER_MASK));
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
}
for (i = 2; i < 4; i++) {
CU_ASSERT((uint64_t)rdma_req.req.buffers[i] == 0x2000);
CU_ASSERT(rdma_req.data.wr.sg_list[i].addr == 0x2000);
CU_ASSERT(rdma_req.data.wr.sg_list[i].length == rtransport.transport.opts.io_unit_size);
}
reset_nvmf_rdma_request(&rdma_req);
/* Test 5 dealing with a buffer split over two Memory Regions */
MOCK_SET(spdk_mempool_get, (void *)&buffer);
sgl->generic.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
sgl->keyed.length = rtransport.transport.opts.io_unit_size / 2;
g_mr_size = rtransport.transport.opts.io_unit_size / 4;
g_mr_next_size = rtransport.transport.opts.io_unit_size / 2;
rc = spdk_nvmf_rdma_request_parse_sgl(&rtransport, &device, &rdma_req);
SPDK_CU_ASSERT_FATAL(rc == 0);
CU_ASSERT(rdma_req.req.data_from_pool == true);
CU_ASSERT(rdma_req.req.length == rtransport.transport.opts.io_unit_size / 2);
CU_ASSERT((uint64_t)rdma_req.req.data == (((uint64_t)&buffer + NVMF_DATA_BUFFER_MASK) &
~NVMF_DATA_BUFFER_MASK));
CU_ASSERT(rdma_req.data.wr.num_sge == 1);
CU_ASSERT(rdma_req.data.wr.wr.rdma.rkey == 0xEEEE);
CU_ASSERT(rdma_req.data.wr.wr.rdma.remote_addr == 0xFFFF);
CU_ASSERT(rdma_req.req.buffers[0] == &buffer);
CU_ASSERT(rdma_req.data.wr.sg_list[0].addr == (((uint64_t)&buffer + NVMF_DATA_BUFFER_MASK) &
~NVMF_DATA_BUFFER_MASK));
CU_ASSERT(rdma_req.data.wr.sg_list[0].length == rtransport.transport.opts.io_unit_size / 2);
CU_ASSERT(rdma_req.data.wr.sg_list[0].lkey == g_rdma_mr.lkey);
buffer_ptr = STAILQ_FIRST(&group.retired_bufs);
CU_ASSERT(buffer_ptr == &buffer);
STAILQ_REMOVE(&group.retired_bufs, buffer_ptr, spdk_nvmf_transport_pg_cache_buf, link);
CU_ASSERT(STAILQ_EMPTY(&group.retired_bufs));
reset_nvmf_rdma_request(&rdma_req);
}
static struct spdk_nvmf_rdma_recv *
create_recv(struct spdk_nvmf_rdma_qpair *rqpair, enum spdk_nvme_nvm_opcode opc)
{
struct spdk_nvmf_rdma_recv *rdma_recv;
union nvmf_h2c_msg *cmd;
struct spdk_nvme_sgl_descriptor *sgl;
rdma_recv = calloc(1, sizeof(*rdma_recv));
rdma_recv->qpair = rqpair;
cmd = calloc(1, sizeof(*cmd));
rdma_recv->sgl[0].addr = (uintptr_t)cmd;
cmd->nvme_cmd.opc = opc;
sgl = &cmd->nvme_cmd.dptr.sgl1;
sgl->keyed.key = 0xEEEE;
sgl->address = 0xFFFF;
sgl->keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
sgl->keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
sgl->keyed.length = 1;
return rdma_recv;
}
static void
free_recv(struct spdk_nvmf_rdma_recv *rdma_recv)
{
free((void *)rdma_recv->sgl[0].addr);
free(rdma_recv);
}
static struct spdk_nvmf_rdma_request *
create_req(struct spdk_nvmf_rdma_qpair *rqpair,
struct spdk_nvmf_rdma_recv *rdma_recv)
{
struct spdk_nvmf_rdma_request *rdma_req;
union nvmf_c2h_msg *cpl;
rdma_req = calloc(1, sizeof(*rdma_req));
rdma_req->recv = rdma_recv;
rdma_req->req.qpair = &rqpair->qpair;
rdma_req->state = RDMA_REQUEST_STATE_NEW;
rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr;
rdma_req->data.wr.sg_list = rdma_req->data.sgl;
cpl = calloc(1, sizeof(*cpl));
rdma_req->rsp.sgl[0].addr = (uintptr_t)cpl;
rdma_req->req.rsp = cpl;
return rdma_req;
}
static void
free_req(struct spdk_nvmf_rdma_request *rdma_req)
{
free((void *)rdma_req->rsp.sgl[0].addr);
free(rdma_req);
}
static void
qpair_reset(struct spdk_nvmf_rdma_qpair *rqpair,
struct spdk_nvmf_rdma_poller *poller,
struct spdk_nvmf_rdma_port *port,
struct spdk_nvmf_rdma_resources *resources)
{
memset(rqpair, 0, sizeof(*rqpair));
STAILQ_INIT(&rqpair->pending_rdma_write_queue);
STAILQ_INIT(&rqpair->pending_rdma_read_queue);
rqpair->poller = poller;
rqpair->port = port;
rqpair->resources = resources;
rqpair->qpair.qid = 1;
rqpair->ibv_state = IBV_QPS_RTS;
rqpair->qpair.state = SPDK_NVMF_QPAIR_ACTIVE;
rqpair->max_send_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
rqpair->max_send_depth = 16;
rqpair->max_read_depth = 16;
resources->recvs_to_post.first = resources->recvs_to_post.last = NULL;
}
static void
poller_reset(struct spdk_nvmf_rdma_poller *poller,
struct spdk_nvmf_rdma_poll_group *group)
{
memset(poller, 0, sizeof(*poller));
STAILQ_INIT(&poller->qpairs_pending_recv);
STAILQ_INIT(&poller->qpairs_pending_send);
poller->group = group;
}
static void
test_spdk_nvmf_rdma_request_process(void)
{
struct spdk_nvmf_rdma_transport rtransport = {};
struct spdk_nvmf_rdma_poll_group group = {};
struct spdk_nvmf_rdma_poller poller = {};
struct spdk_nvmf_rdma_port port = {};
struct spdk_nvmf_rdma_device device = {};
struct spdk_nvmf_rdma_resources resources = {};
struct spdk_nvmf_rdma_qpair rqpair = {};
struct spdk_nvmf_rdma_recv *rdma_recv;
struct spdk_nvmf_rdma_request *rdma_req;
bool progress;
STAILQ_INIT(&group.group.buf_cache);
STAILQ_INIT(&group.group.pending_buf_queue);
group.group.buf_cache_size = 0;
group.group.buf_cache_count = 0;
port.device = &device;
poller_reset(&poller, &group);
qpair_reset(&rqpair, &poller, &port, &resources);
rtransport.transport.opts = g_rdma_ut_transport_opts;
rtransport.transport.data_buf_pool = spdk_mempool_create("test_data_pool", 16, 128, 0, 0);
rtransport.data_wr_pool = spdk_mempool_create("test_wr_pool", 128,
sizeof(struct spdk_nvmf_rdma_request_data),
0, 0);
MOCK_CLEAR(spdk_mempool_get);
device.attr.device_cap_flags = 0;
device.map = (void *)0x0;
g_rdma_mr.lkey = 0xABCD;
/* Test 1: single SGL READ request */
rdma_recv = create_recv(&rqpair, SPDK_NVME_OPC_READ);
rdma_req = create_req(&rqpair, rdma_recv);
rqpair.current_recv_depth = 1;
/* NEW -> EXECUTING */
progress = spdk_nvmf_rdma_request_process(&rtransport, rdma_req);
CU_ASSERT(progress == true);
CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_EXECUTING);
CU_ASSERT(rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST);
/* EXECUTED -> TRANSFERRING_C2H */
rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
progress = spdk_nvmf_rdma_request_process(&rtransport, rdma_req);
CU_ASSERT(progress == true);
CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST);
CU_ASSERT(rdma_req->recv == NULL);
CU_ASSERT(rqpair.sends_to_post.first == &rdma_req->data.wr);
CU_ASSERT(rqpair.sends_to_post.last == &rdma_req->rsp.wr);
CU_ASSERT(resources.recvs_to_post.first == &rdma_recv->wr);
CU_ASSERT(resources.recvs_to_post.last == &rdma_recv->wr);
/* COMPLETED -> FREE */
rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
progress = spdk_nvmf_rdma_request_process(&rtransport, rdma_req);
CU_ASSERT(progress == true);
CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_FREE);
free_recv(rdma_recv);
free_req(rdma_req);
poller_reset(&poller, &group);
qpair_reset(&rqpair, &poller, &port, &resources);
/* Test 2: single SGL WRITE request */
rdma_recv = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
rdma_req = create_req(&rqpair, rdma_recv);
rqpair.current_recv_depth = 1;
/* NEW -> TRANSFERRING_H2C */
progress = spdk_nvmf_rdma_request_process(&rtransport, rdma_req);
CU_ASSERT(progress == true);
CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
CU_ASSERT(rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
CU_ASSERT(rqpair.sends_to_post.first == &rdma_req->data.wr);
CU_ASSERT(rqpair.sends_to_post.last == &rdma_req->data.wr);
rqpair.sends_to_post.first = rqpair.sends_to_post.last = NULL;
STAILQ_INIT(&poller.qpairs_pending_send);
/* READY_TO_EXECUTE -> EXECUTING */
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
progress = spdk_nvmf_rdma_request_process(&rtransport, rdma_req);
CU_ASSERT(progress == true);
CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_EXECUTING);
/* EXECUTED -> COMPLETING */
rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
progress = spdk_nvmf_rdma_request_process(&rtransport, rdma_req);
CU_ASSERT(progress == true);
CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_COMPLETING);
CU_ASSERT(rdma_req->recv == NULL);
CU_ASSERT(rqpair.sends_to_post.first == &rdma_req->rsp.wr);
CU_ASSERT(rqpair.sends_to_post.last == &rdma_req->rsp.wr);
CU_ASSERT(resources.recvs_to_post.first == &rdma_recv->wr);
CU_ASSERT(resources.recvs_to_post.last == &rdma_recv->wr);
/* COMPLETED -> FREE */
rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
progress = spdk_nvmf_rdma_request_process(&rtransport, rdma_req);
CU_ASSERT(progress == true);
CU_ASSERT(rdma_req->state == RDMA_REQUEST_STATE_FREE);
free_recv(rdma_recv);
free_req(rdma_req);
poller_reset(&poller, &group);
qpair_reset(&rqpair, &poller, &port, &resources);
/* Test 3: WRITE+WRITE ibv_send batching */
{
struct spdk_nvmf_rdma_recv *recv1, *recv2;
struct spdk_nvmf_rdma_request *req1, *req2;
recv1 = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
req1 = create_req(&rqpair, recv1);
recv2 = create_recv(&rqpair, SPDK_NVME_OPC_WRITE);
req2 = create_req(&rqpair, recv2);
/* WRITE 1: NEW -> TRANSFERRING_H2C */
rqpair.current_recv_depth = 1;
spdk_nvmf_rdma_request_process(&rtransport, req1);
CU_ASSERT(req1->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
/* WRITE 1 is the first in batching list */
CU_ASSERT(rqpair.sends_to_post.first == &req1->data.wr);
CU_ASSERT(rqpair.sends_to_post.last == &req1->data.wr);
/* WRITE 2: NEW -> TRANSFERRING_H2C */
rqpair.current_recv_depth = 2;
spdk_nvmf_rdma_request_process(&rtransport, req2);
CU_ASSERT(req2->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
/* WRITE 2 is now also in the batching list */
CU_ASSERT(rqpair.sends_to_post.first->next == &req2->data.wr);
CU_ASSERT(rqpair.sends_to_post.last == &req2->data.wr);
/* Send everything */
rqpair.sends_to_post.first = rqpair.sends_to_post.last = NULL;
STAILQ_INIT(&poller.qpairs_pending_send);
/* WRITE 1 completes before WRITE 2 has finished RDMA reading */
/* WRITE 1: READY_TO_EXECUTE -> EXECUTING */
req1->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
spdk_nvmf_rdma_request_process(&rtransport, req1);
CU_ASSERT(req1->state == RDMA_REQUEST_STATE_EXECUTING);
/* WRITE 1: EXECUTED -> COMPLETING */
req1->state = RDMA_REQUEST_STATE_EXECUTED;
spdk_nvmf_rdma_request_process(&rtransport, req1);
CU_ASSERT(req1->state == RDMA_REQUEST_STATE_COMPLETING);
CU_ASSERT(rqpair.sends_to_post.first == &req1->rsp.wr);
CU_ASSERT(rqpair.sends_to_post.last == &req1->rsp.wr);
rqpair.sends_to_post.first = rqpair.sends_to_post.last = NULL;
STAILQ_INIT(&poller.qpairs_pending_send);
/* WRITE 1: COMPLETED -> FREE */
req1->state = RDMA_REQUEST_STATE_COMPLETED;
spdk_nvmf_rdma_request_process(&rtransport, req1);
CU_ASSERT(req1->state == RDMA_REQUEST_STATE_FREE);
/* Now WRITE 2 has finished reading and completes */
/* WRITE 2: COMPLETED -> FREE */
/* WRITE 2: READY_TO_EXECUTE -> EXECUTING */
req2->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
spdk_nvmf_rdma_request_process(&rtransport, req2);
CU_ASSERT(req2->state == RDMA_REQUEST_STATE_EXECUTING);
/* WRITE 1: EXECUTED -> COMPLETING */
req2->state = RDMA_REQUEST_STATE_EXECUTED;
spdk_nvmf_rdma_request_process(&rtransport, req2);
CU_ASSERT(req2->state == RDMA_REQUEST_STATE_COMPLETING);
CU_ASSERT(rqpair.sends_to_post.first == &req2->rsp.wr);
CU_ASSERT(rqpair.sends_to_post.last == &req2->rsp.wr);
rqpair.sends_to_post.first = rqpair.sends_to_post.last = NULL;
STAILQ_INIT(&poller.qpairs_pending_send);
/* WRITE 1: COMPLETED -> FREE */
req2->state = RDMA_REQUEST_STATE_COMPLETED;
spdk_nvmf_rdma_request_process(&rtransport, req2);
CU_ASSERT(req2->state == RDMA_REQUEST_STATE_FREE);
free_recv(recv1);
free_req(req1);
free_recv(recv2);
free_req(req2);
poller_reset(&poller, &group);
qpair_reset(&rqpair, &poller, &port, &resources);
}
spdk_mempool_free(rtransport.transport.data_buf_pool);
spdk_mempool_free(rtransport.data_wr_pool);
}
int main(int argc, char **argv)
{
CU_pSuite suite = NULL;
unsigned int num_failures;
if (CU_initialize_registry() != CUE_SUCCESS) {
return CU_get_error();
}
suite = CU_add_suite("nvmf", NULL, NULL);
if (suite == NULL) {
CU_cleanup_registry();
return CU_get_error();
}
if (!CU_add_test(suite, "test_parse_sgl", test_spdk_nvmf_rdma_request_parse_sgl) ||
!CU_add_test(suite, "test_request_process", test_spdk_nvmf_rdma_request_process)) {
CU_cleanup_registry();
return CU_get_error();
}
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
return num_failures;
}