For correct behaviour, pthread_mutex must be initialized before use and destroyed afterwards. An already initialized mutex should not be re-initialized. Add calls to nvme_ctrlr_construct where nvme_ctrlr_destruct is called without a matching construct. Add missing calls to mutex_init and mutex_destroy as required. Signed-off-by: Nick Connolly <nick.connolly@mayadata.io> Change-Id: I9753fa7fbd77402f23a08a66f4b489a5c229487a Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/11298 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com> Reviewed-by: Konrad Sztyber <konrad.sztyber@intel.com> Community-CI: Mellanox Build Bot
3311 lines
100 KiB
C
3311 lines
100 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation. All rights reserved.
|
|
* Copyright (c) 2020, 2021 Mellanox Technologies LTD. All rights reserved.
|
|
* Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "spdk/stdinc.h"
|
|
|
|
#include "spdk_cunit.h"
|
|
|
|
#include "spdk/log.h"
|
|
|
|
#include "common/lib/test_env.c"
|
|
|
|
#include "nvme/nvme_ctrlr.c"
|
|
#include "nvme/nvme_quirks.c"
|
|
|
|
SPDK_LOG_REGISTER_COMPONENT(nvme)
|
|
|
|
pid_t g_spdk_nvme_pid;
|
|
|
|
struct nvme_driver _g_nvme_driver = {
|
|
.lock = PTHREAD_MUTEX_INITIALIZER,
|
|
};
|
|
|
|
struct nvme_driver *g_spdk_nvme_driver = &_g_nvme_driver;
|
|
|
|
struct spdk_nvme_registers g_ut_nvme_regs = {};
|
|
typedef void (*set_reg_cb)(void);
|
|
set_reg_cb g_set_reg_cb;
|
|
|
|
__thread int nvme_thread_ioq_index = -1;
|
|
|
|
uint32_t set_size = 1;
|
|
|
|
int set_status_cpl = -1;
|
|
|
|
DEFINE_STUB(nvme_ctrlr_cmd_set_host_id, int,
|
|
(struct spdk_nvme_ctrlr *ctrlr, void *host_id, uint32_t host_id_size,
|
|
spdk_nvme_cmd_cb cb_fn, void *cb_arg), 0);
|
|
DEFINE_STUB_V(nvme_ns_set_identify_data, (struct spdk_nvme_ns *ns));
|
|
DEFINE_STUB_V(nvme_ns_set_id_desc_list_data, (struct spdk_nvme_ns *ns));
|
|
DEFINE_STUB_V(nvme_ns_free_iocs_specific_data, (struct spdk_nvme_ns *ns));
|
|
DEFINE_STUB_V(nvme_qpair_abort_all_queued_reqs, (struct spdk_nvme_qpair *qpair, uint32_t dnr));
|
|
DEFINE_STUB(spdk_nvme_poll_group_remove, int, (struct spdk_nvme_poll_group *group,
|
|
struct spdk_nvme_qpair *qpair), 0);
|
|
DEFINE_STUB_V(nvme_io_msg_ctrlr_update, (struct spdk_nvme_ctrlr *ctrlr));
|
|
DEFINE_STUB(nvme_io_msg_process, int, (struct spdk_nvme_ctrlr *ctrlr), 0);
|
|
DEFINE_STUB(nvme_transport_ctrlr_reserve_cmb, int, (struct spdk_nvme_ctrlr *ctrlr), 0);
|
|
DEFINE_STUB(spdk_nvme_ctrlr_cmd_security_receive, int, (struct spdk_nvme_ctrlr *ctrlr,
|
|
uint8_t secp, uint16_t spsp, uint8_t nssf, void *payload,
|
|
uint32_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg), 0);
|
|
DEFINE_STUB(spdk_nvme_ctrlr_cmd_security_send, int, (struct spdk_nvme_ctrlr *ctrlr,
|
|
uint8_t secp, uint16_t spsp, uint8_t nssf, void *payload,
|
|
uint32_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg), 0);
|
|
DEFINE_STUB_V(nvme_qpair_abort_queued_reqs, (struct spdk_nvme_qpair *qpair, uint32_t dnr));
|
|
|
|
DEFINE_RETURN_MOCK(nvme_transport_ctrlr_get_memory_domains, int);
|
|
int
|
|
nvme_transport_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
|
|
struct spdk_memory_domain **domains, int array_size)
|
|
{
|
|
HANDLE_RETURN_MOCK(nvme_transport_ctrlr_get_memory_domains);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct spdk_nvme_ctrlr *nvme_transport_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
|
|
const struct spdk_nvme_ctrlr_opts *opts,
|
|
void *devhandle)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
int
|
|
nvme_transport_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
nvme_ctrlr_destruct_finish(ctrlr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_transport_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_transport_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
|
|
{
|
|
SPDK_CU_ASSERT_FATAL(offset <= sizeof(struct spdk_nvme_registers) - 4);
|
|
*(uint32_t *)((uintptr_t)&g_ut_nvme_regs + offset) = value;
|
|
if (g_set_reg_cb) {
|
|
g_set_reg_cb();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_transport_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
|
|
{
|
|
SPDK_CU_ASSERT_FATAL(offset <= sizeof(struct spdk_nvme_registers) - 8);
|
|
*(uint64_t *)((uintptr_t)&g_ut_nvme_regs + offset) = value;
|
|
if (g_set_reg_cb) {
|
|
g_set_reg_cb();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_transport_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
|
|
{
|
|
SPDK_CU_ASSERT_FATAL(offset <= sizeof(struct spdk_nvme_registers) - 4);
|
|
*value = *(uint32_t *)((uintptr_t)&g_ut_nvme_regs + offset);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_transport_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
|
|
{
|
|
SPDK_CU_ASSERT_FATAL(offset <= sizeof(struct spdk_nvme_registers) - 8);
|
|
*value = *(uint64_t *)((uintptr_t)&g_ut_nvme_regs + offset);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_transport_ctrlr_set_reg_4_async(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset,
|
|
uint32_t value, spdk_nvme_reg_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct spdk_nvme_cpl cpl = {};
|
|
|
|
cpl.status.sct = SPDK_NVME_SCT_GENERIC;
|
|
cpl.status.sc = SPDK_NVME_SC_SUCCESS;
|
|
|
|
nvme_transport_ctrlr_set_reg_4(ctrlr, offset, value);
|
|
cb_fn(cb_arg, value, &cpl);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_transport_ctrlr_set_reg_8_async(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset,
|
|
uint64_t value, spdk_nvme_reg_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct spdk_nvme_cpl cpl = {};
|
|
|
|
cpl.status.sct = SPDK_NVME_SCT_GENERIC;
|
|
cpl.status.sc = SPDK_NVME_SC_SUCCESS;
|
|
|
|
nvme_transport_ctrlr_set_reg_8(ctrlr, offset, value);
|
|
cb_fn(cb_arg, value, &cpl);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_transport_ctrlr_get_reg_4_async(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset,
|
|
spdk_nvme_reg_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct spdk_nvme_cpl cpl = {};
|
|
uint32_t value;
|
|
|
|
cpl.status.sct = SPDK_NVME_SCT_GENERIC;
|
|
cpl.status.sc = SPDK_NVME_SC_SUCCESS;
|
|
|
|
nvme_transport_ctrlr_get_reg_4(ctrlr, offset, &value);
|
|
cb_fn(cb_arg, value, &cpl);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_transport_ctrlr_get_reg_8_async(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset,
|
|
spdk_nvme_reg_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct spdk_nvme_cpl cpl = {};
|
|
uint64_t value;
|
|
|
|
cpl.status.sct = SPDK_NVME_SCT_GENERIC;
|
|
cpl.status.sc = SPDK_NVME_SC_SUCCESS;
|
|
|
|
nvme_transport_ctrlr_get_reg_8(ctrlr, offset, &value);
|
|
cb_fn(cb_arg, value, &cpl);
|
|
return 0;
|
|
}
|
|
|
|
uint32_t
|
|
nvme_transport_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return UINT32_MAX;
|
|
}
|
|
|
|
uint16_t
|
|
nvme_transport_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
void *
|
|
nvme_transport_ctrlr_map_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
int
|
|
nvme_transport_ctrlr_unmap_cmb(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_transport_ctrlr_enable_pmr(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_transport_ctrlr_disable_pmr(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void *
|
|
nvme_transport_ctrlr_map_pmr(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
int
|
|
nvme_transport_ctrlr_unmap_pmr(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
struct spdk_nvme_qpair *
|
|
nvme_transport_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
|
|
const struct spdk_nvme_io_qpair_opts *opts)
|
|
{
|
|
struct spdk_nvme_qpair *qpair;
|
|
|
|
qpair = calloc(1, sizeof(*qpair));
|
|
SPDK_CU_ASSERT_FATAL(qpair != NULL);
|
|
|
|
qpair->ctrlr = ctrlr;
|
|
qpair->id = qid;
|
|
qpair->qprio = opts->qprio;
|
|
|
|
return qpair;
|
|
}
|
|
|
|
void
|
|
nvme_transport_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
|
|
{
|
|
free(qpair);
|
|
}
|
|
|
|
void
|
|
nvme_transport_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
|
|
{
|
|
}
|
|
|
|
int
|
|
nvme_transport_qpair_reset(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
nvme_transport_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
}
|
|
|
|
void
|
|
nvme_transport_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
|
|
{
|
|
}
|
|
|
|
int
|
|
nvme_driver_init(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int nvme_qpair_init(struct spdk_nvme_qpair *qpair, uint16_t id,
|
|
struct spdk_nvme_ctrlr *ctrlr,
|
|
enum spdk_nvme_qprio qprio,
|
|
uint32_t num_requests, bool async)
|
|
{
|
|
qpair->id = id;
|
|
qpair->qprio = qprio;
|
|
qpair->ctrlr = ctrlr;
|
|
qpair->async = async;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct spdk_nvme_cpl fake_cpl = {};
|
|
static enum spdk_nvme_generic_command_status_code set_status_code = SPDK_NVME_SC_SUCCESS;
|
|
|
|
static void
|
|
fake_cpl_sc(spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
fake_cpl.status.sc = set_status_code;
|
|
cb_fn(cb_arg, &fake_cpl);
|
|
}
|
|
|
|
static uint32_t g_ut_cdw11;
|
|
|
|
int
|
|
spdk_nvme_ctrlr_cmd_set_feature(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature,
|
|
uint32_t cdw11, uint32_t cdw12, void *payload, uint32_t payload_size,
|
|
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
g_ut_cdw11 = cdw11;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_cmd_get_feature(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature,
|
|
uint32_t cdw11, void *payload, uint32_t payload_size,
|
|
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
fake_cpl_sc(cb_fn, cb_arg);
|
|
return 0;
|
|
}
|
|
|
|
struct spdk_nvme_ana_page *g_ana_hdr;
|
|
struct spdk_nvme_ana_group_descriptor **g_ana_descs;
|
|
|
|
int
|
|
spdk_nvme_ctrlr_cmd_get_log_page(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page,
|
|
uint32_t nsid, void *payload, uint32_t payload_size,
|
|
uint64_t offset, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
if ((log_page == SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS) && g_ana_hdr) {
|
|
uint32_t i;
|
|
uint8_t *ptr = payload;
|
|
|
|
memset(payload, 0, payload_size);
|
|
memcpy(ptr, g_ana_hdr, sizeof(*g_ana_hdr));
|
|
ptr += sizeof(*g_ana_hdr);
|
|
for (i = 0; i < g_ana_hdr->num_ana_group_desc; ++i) {
|
|
uint32_t desc_size = sizeof(**g_ana_descs) +
|
|
g_ana_descs[i]->num_of_nsid * sizeof(uint32_t);
|
|
memcpy(ptr, g_ana_descs[i], desc_size);
|
|
ptr += desc_size;
|
|
}
|
|
} else if (log_page == SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY) {
|
|
struct spdk_nvme_intel_log_page_directory *log_page_directory = payload;
|
|
log_page_directory->read_latency_log_len = true;
|
|
log_page_directory->write_latency_log_len = true;
|
|
log_page_directory->temperature_statistics_log_len = true;
|
|
log_page_directory->smart_log_len = true;
|
|
log_page_directory->marketing_description_log_len = true;
|
|
}
|
|
|
|
fake_cpl_sc(cb_fn, cb_arg);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_cmd_get_log_page_ext(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page,
|
|
uint32_t nsid, void *payload, uint32_t payload_size,
|
|
uint64_t offset, uint32_t cdw10, uint32_t cdw11,
|
|
uint32_t cdw14, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
fake_cpl_sc(cb_fn, cb_arg);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
|
|
{
|
|
CU_ASSERT(req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST);
|
|
STAILQ_INSERT_HEAD(&qpair->free_req, req, stailq);
|
|
|
|
/*
|
|
* For the purposes of this unit test, we don't need to bother emulating request submission.
|
|
*/
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int32_t g_wait_for_completion_return_val;
|
|
|
|
int32_t
|
|
spdk_nvme_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
|
|
{
|
|
return g_wait_for_completion_return_val;
|
|
}
|
|
|
|
void
|
|
nvme_qpair_complete_error_reqs(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
}
|
|
|
|
|
|
void
|
|
nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_completion_poll_status *status = arg;
|
|
/* This should not happen it test env since this callback is always called
|
|
* before wait_for_completion_* while this field can only be set to true in
|
|
* wait_for_completion_* functions */
|
|
CU_ASSERT(status->timed_out == false);
|
|
|
|
status->cpl = *cpl;
|
|
status->done = true;
|
|
}
|
|
|
|
static struct nvme_completion_poll_status *g_failed_status;
|
|
|
|
int
|
|
nvme_wait_for_completion_robust_lock_timeout(
|
|
struct spdk_nvme_qpair *qpair,
|
|
struct nvme_completion_poll_status *status,
|
|
pthread_mutex_t *robust_mutex,
|
|
uint64_t timeout_in_usecs)
|
|
{
|
|
if (spdk_nvme_qpair_process_completions(qpair, 0) < 0) {
|
|
g_failed_status = status;
|
|
status->timed_out = true;
|
|
return -1;
|
|
}
|
|
|
|
status->done = true;
|
|
if (set_status_cpl == 1) {
|
|
status->cpl.status.sc = 1;
|
|
}
|
|
return spdk_nvme_cpl_is_error(&status->cpl) ? -EIO : 0;
|
|
}
|
|
|
|
int
|
|
nvme_wait_for_completion_robust_lock(
|
|
struct spdk_nvme_qpair *qpair,
|
|
struct nvme_completion_poll_status *status,
|
|
pthread_mutex_t *robust_mutex)
|
|
{
|
|
return nvme_wait_for_completion_robust_lock_timeout(qpair, status, robust_mutex, 0);
|
|
}
|
|
|
|
int
|
|
nvme_wait_for_completion(struct spdk_nvme_qpair *qpair,
|
|
struct nvme_completion_poll_status *status)
|
|
{
|
|
return nvme_wait_for_completion_robust_lock_timeout(qpair, status, NULL, 0);
|
|
}
|
|
|
|
int
|
|
nvme_wait_for_completion_timeout(struct spdk_nvme_qpair *qpair,
|
|
struct nvme_completion_poll_status *status,
|
|
uint64_t timeout_in_usecs)
|
|
{
|
|
return nvme_wait_for_completion_robust_lock_timeout(qpair, status, NULL, timeout_in_usecs);
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_cmd_set_async_event_config(struct spdk_nvme_ctrlr *ctrlr,
|
|
union spdk_nvme_feat_async_event_configuration config, spdk_nvme_cmd_cb cb_fn,
|
|
void *cb_arg)
|
|
{
|
|
fake_cpl_sc(cb_fn, cb_arg);
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t *g_active_ns_list = NULL;
|
|
static uint32_t g_active_ns_list_length = 0;
|
|
static struct spdk_nvme_ctrlr_data *g_cdata = NULL;
|
|
static bool g_fail_next_identify = false;
|
|
|
|
int
|
|
nvme_ctrlr_cmd_identify(struct spdk_nvme_ctrlr *ctrlr, uint8_t cns, uint16_t cntid, uint32_t nsid,
|
|
uint8_t csi, void *payload, size_t payload_size,
|
|
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
if (g_fail_next_identify) {
|
|
g_fail_next_identify = false;
|
|
return 1;
|
|
}
|
|
|
|
memset(payload, 0, payload_size);
|
|
if (cns == SPDK_NVME_IDENTIFY_ACTIVE_NS_LIST) {
|
|
uint32_t count = 0;
|
|
uint32_t i = 0;
|
|
struct spdk_nvme_ns_list *ns_list = (struct spdk_nvme_ns_list *)payload;
|
|
|
|
if (g_active_ns_list == NULL) {
|
|
for (i = 1; i <= ctrlr->cdata.nn; i++) {
|
|
if (i <= nsid) {
|
|
continue;
|
|
}
|
|
|
|
ns_list->ns_list[count++] = i;
|
|
if (count == SPDK_COUNTOF(ns_list->ns_list)) {
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
for (i = 0; i < g_active_ns_list_length; i++) {
|
|
uint32_t cur_nsid = g_active_ns_list[i];
|
|
if (cur_nsid <= nsid) {
|
|
continue;
|
|
}
|
|
|
|
ns_list->ns_list[count++] = cur_nsid;
|
|
if (count == SPDK_COUNTOF(ns_list->ns_list)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else if (cns == SPDK_NVME_IDENTIFY_CTRLR) {
|
|
if (g_cdata) {
|
|
memcpy(payload, g_cdata, sizeof(*g_cdata));
|
|
}
|
|
} else if (cns == SPDK_NVME_IDENTIFY_NS_IOCS) {
|
|
return 0;
|
|
}
|
|
|
|
fake_cpl_sc(cb_fn, cb_arg);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_cmd_set_num_queues(struct spdk_nvme_ctrlr *ctrlr,
|
|
uint32_t num_queues, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
fake_cpl_sc(cb_fn, cb_arg);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_cmd_get_num_queues(struct spdk_nvme_ctrlr *ctrlr,
|
|
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
CU_ASSERT(0);
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_cmd_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
|
|
struct spdk_nvme_ctrlr_list *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_cmd_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
|
|
struct spdk_nvme_ctrlr_list *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_cmd_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload,
|
|
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
fake_cpl_sc(cb_fn, cb_arg);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_cmd_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, spdk_nvme_cmd_cb cb_fn,
|
|
void *cb_arg)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_cmd_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, struct spdk_nvme_format *format,
|
|
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_cmd_directive_send(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
|
|
uint32_t doper, uint32_t dtype, uint32_t dspec,
|
|
void *payload, uint32_t payload_size, uint32_t cdw12,
|
|
uint32_t cdw13, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_cmd_directive_receive(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
|
|
uint32_t doper, uint32_t dtype, uint32_t dspec,
|
|
void *payload, uint32_t payload_size, uint32_t cdw12,
|
|
uint32_t cdw13, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_cmd_fw_commit(struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_fw_commit *fw_commit,
|
|
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
CU_ASSERT(fw_commit->ca == SPDK_NVME_FW_COMMIT_REPLACE_IMG);
|
|
if (fw_commit->fs == 0) {
|
|
return -1;
|
|
}
|
|
set_status_cpl = 1;
|
|
if (ctrlr->is_resetting == true) {
|
|
set_status_cpl = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_cmd_fw_image_download(struct spdk_nvme_ctrlr *ctrlr,
|
|
uint32_t size, uint32_t offset, void *payload,
|
|
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
if ((size != 0 && payload == NULL) || (size == 0 && payload != NULL)) {
|
|
return -1;
|
|
}
|
|
CU_ASSERT(offset == 0);
|
|
return 0;
|
|
}
|
|
|
|
bool
|
|
nvme_ns_has_supported_iocs_specific_data(struct spdk_nvme_ns *ns)
|
|
{
|
|
switch (ns->csi) {
|
|
case SPDK_NVME_CSI_NVM:
|
|
/*
|
|
* NVM Command Set Specific Identify Namespace data structure
|
|
* is currently all-zeroes, reserved for future use.
|
|
*/
|
|
return false;
|
|
case SPDK_NVME_CSI_ZNS:
|
|
return true;
|
|
default:
|
|
SPDK_WARNLOG("Unsupported CSI: %u for NSID: %u\n", ns->csi, ns->id);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void
|
|
nvme_ns_free_zns_specific_data(struct spdk_nvme_ns *ns)
|
|
{
|
|
if (!ns->id) {
|
|
return;
|
|
}
|
|
|
|
if (ns->nsdata_zns) {
|
|
spdk_free(ns->nsdata_zns);
|
|
ns->nsdata_zns = NULL;
|
|
}
|
|
}
|
|
|
|
void
|
|
nvme_ns_destruct(struct spdk_nvme_ns *ns)
|
|
{
|
|
}
|
|
|
|
int
|
|
nvme_ns_construct(struct spdk_nvme_ns *ns, uint32_t id,
|
|
struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
spdk_pci_device_detach(struct spdk_pci_device *device)
|
|
{
|
|
}
|
|
|
|
#define DECLARE_AND_CONSTRUCT_CTRLR() \
|
|
struct spdk_nvme_ctrlr ctrlr = {}; \
|
|
struct spdk_nvme_qpair adminq = {}; \
|
|
struct nvme_request req; \
|
|
\
|
|
STAILQ_INIT(&adminq.free_req); \
|
|
STAILQ_INSERT_HEAD(&adminq.free_req, &req, stailq); \
|
|
ctrlr.adminq = &adminq;
|
|
|
|
static void
|
|
test_nvme_ctrlr_init_en_1_rdy_0(void)
|
|
{
|
|
DECLARE_AND_CONSTRUCT_CTRLR();
|
|
|
|
memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs));
|
|
|
|
/*
|
|
* Initial state: CC.EN = 1, CSTS.RDY = 0
|
|
*/
|
|
g_ut_nvme_regs.cc.bits.en = 1;
|
|
g_ut_nvme_regs.csts.bits.rdy = 0;
|
|
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.cdata.nn = 1;
|
|
ctrlr.page_size = 0x1000;
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1);
|
|
|
|
/*
|
|
* Transition to CSTS.RDY = 1.
|
|
* init() should set CC.EN = 0.
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.rdy = 1;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_EN_0);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0);
|
|
|
|
/*
|
|
* Transition to CSTS.RDY = 0.
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.rdy = 0;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
|
|
|
|
/*
|
|
* Transition to CC.EN = 1
|
|
*/
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
|
|
|
|
/*
|
|
* Transition to CSTS.RDY = 1.
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.rdy = 1;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE);
|
|
|
|
/*
|
|
* Transition to READY.
|
|
*/
|
|
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
|
|
nvme_ctrlr_process_init(&ctrlr);
|
|
}
|
|
|
|
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_init_en_1_rdy_1(void)
|
|
{
|
|
DECLARE_AND_CONSTRUCT_CTRLR();
|
|
|
|
memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs));
|
|
|
|
/*
|
|
* Initial state: CC.EN = 1, CSTS.RDY = 1
|
|
* init() should set CC.EN = 0.
|
|
*/
|
|
g_ut_nvme_regs.cc.bits.en = 1;
|
|
g_ut_nvme_regs.csts.bits.rdy = 1;
|
|
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.cdata.nn = 1;
|
|
ctrlr.page_size = 0x1000;
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_SET_EN_0) {
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0);
|
|
|
|
/*
|
|
* Transition to CSTS.RDY = 0.
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.rdy = 0;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
|
|
|
|
/*
|
|
* Transition to CC.EN = 1
|
|
*/
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
|
|
|
|
/*
|
|
* Transition to CSTS.RDY = 1.
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.rdy = 1;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE);
|
|
|
|
/*
|
|
* Transition to READY.
|
|
*/
|
|
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
|
|
nvme_ctrlr_process_init(&ctrlr);
|
|
}
|
|
|
|
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_init_en_0_rdy_0_ams_rr(void)
|
|
{
|
|
DECLARE_AND_CONSTRUCT_CTRLR();
|
|
|
|
memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs));
|
|
|
|
/*
|
|
* Initial state: CC.EN = 0, CSTS.RDY = 0
|
|
* init() should set CC.EN = 1.
|
|
*/
|
|
g_ut_nvme_regs.cc.bits.en = 0;
|
|
g_ut_nvme_regs.csts.bits.rdy = 0;
|
|
|
|
/*
|
|
* Default round robin enabled
|
|
*/
|
|
g_ut_nvme_regs.cap.bits.ams = 0x0;
|
|
ctrlr.cap = g_ut_nvme_regs.cap;
|
|
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.cdata.nn = 1;
|
|
ctrlr.page_size = 0x1000;
|
|
/*
|
|
* Case 1: default round robin arbitration mechanism selected
|
|
*/
|
|
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_RR;
|
|
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_RR);
|
|
CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_RR);
|
|
|
|
/*
|
|
* Complete and destroy the controller
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
|
|
/*
|
|
* Reset to initial state
|
|
*/
|
|
g_ut_nvme_regs.cc.bits.en = 0;
|
|
g_ut_nvme_regs.csts.bits.rdy = 0;
|
|
|
|
/*
|
|
* Case 2: weighted round robin arbitration mechanism selected
|
|
*/
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.cdata.nn = 1;
|
|
ctrlr.page_size = 0x1000;
|
|
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_WRR;
|
|
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0);
|
|
|
|
/*
|
|
* Complete and destroy the controller
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
|
|
/*
|
|
* Reset to initial state
|
|
*/
|
|
g_ut_nvme_regs.cc.bits.en = 0;
|
|
g_ut_nvme_regs.csts.bits.rdy = 0;
|
|
|
|
/*
|
|
* Case 3: vendor specific arbitration mechanism selected
|
|
*/
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.cdata.nn = 1;
|
|
ctrlr.page_size = 0x1000;
|
|
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS;
|
|
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0);
|
|
|
|
/*
|
|
* Complete and destroy the controller
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
|
|
/*
|
|
* Reset to initial state
|
|
*/
|
|
g_ut_nvme_regs.cc.bits.en = 0;
|
|
g_ut_nvme_regs.csts.bits.rdy = 0;
|
|
|
|
/*
|
|
* Case 4: invalid arbitration mechanism selected
|
|
*/
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.cdata.nn = 1;
|
|
ctrlr.page_size = 0x1000;
|
|
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS + 1;
|
|
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0);
|
|
|
|
/*
|
|
* Complete and destroy the controller
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
|
|
/*
|
|
* Reset to initial state
|
|
*/
|
|
g_ut_nvme_regs.cc.bits.en = 0;
|
|
g_ut_nvme_regs.csts.bits.rdy = 0;
|
|
|
|
/*
|
|
* Case 5: reset to default round robin arbitration mechanism
|
|
*/
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.cdata.nn = 1;
|
|
ctrlr.page_size = 0x1000;
|
|
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_RR;
|
|
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_RR);
|
|
CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_RR);
|
|
|
|
/*
|
|
* Transition to CSTS.RDY = 1.
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.rdy = 1;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE);
|
|
|
|
/*
|
|
* Transition to READY.
|
|
*/
|
|
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
|
|
nvme_ctrlr_process_init(&ctrlr);
|
|
}
|
|
|
|
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_init_en_0_rdy_0_ams_wrr(void)
|
|
{
|
|
DECLARE_AND_CONSTRUCT_CTRLR();
|
|
|
|
memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs));
|
|
|
|
/*
|
|
* Initial state: CC.EN = 0, CSTS.RDY = 0
|
|
* init() should set CC.EN = 1.
|
|
*/
|
|
g_ut_nvme_regs.cc.bits.en = 0;
|
|
g_ut_nvme_regs.csts.bits.rdy = 0;
|
|
|
|
/*
|
|
* Weighted round robin enabled
|
|
*/
|
|
g_ut_nvme_regs.cap.bits.ams = SPDK_NVME_CAP_AMS_WRR;
|
|
ctrlr.cap = g_ut_nvme_regs.cap;
|
|
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.cdata.nn = 1;
|
|
ctrlr.page_size = 0x1000;
|
|
/*
|
|
* Case 1: default round robin arbitration mechanism selected
|
|
*/
|
|
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_RR;
|
|
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_RR);
|
|
CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_RR);
|
|
|
|
/*
|
|
* Complete and destroy the controller
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
|
|
/*
|
|
* Reset to initial state
|
|
*/
|
|
g_ut_nvme_regs.cc.bits.en = 0;
|
|
g_ut_nvme_regs.csts.bits.rdy = 0;
|
|
|
|
/*
|
|
* Case 2: weighted round robin arbitration mechanism selected
|
|
*/
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.cdata.nn = 1;
|
|
ctrlr.page_size = 0x1000;
|
|
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_WRR;
|
|
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_WRR);
|
|
CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_WRR);
|
|
|
|
/*
|
|
* Complete and destroy the controller
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
|
|
/*
|
|
* Reset to initial state
|
|
*/
|
|
g_ut_nvme_regs.cc.bits.en = 0;
|
|
g_ut_nvme_regs.csts.bits.rdy = 0;
|
|
|
|
/*
|
|
* Case 3: vendor specific arbitration mechanism selected
|
|
*/
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.cdata.nn = 1;
|
|
ctrlr.page_size = 0x1000;
|
|
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS;
|
|
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0);
|
|
|
|
/*
|
|
* Complete and destroy the controller
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
|
|
/*
|
|
* Reset to initial state
|
|
*/
|
|
g_ut_nvme_regs.cc.bits.en = 0;
|
|
g_ut_nvme_regs.csts.bits.rdy = 0;
|
|
|
|
/*
|
|
* Case 4: invalid arbitration mechanism selected
|
|
*/
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.cdata.nn = 1;
|
|
ctrlr.page_size = 0x1000;
|
|
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS + 1;
|
|
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0);
|
|
|
|
/*
|
|
* Complete and destroy the controller
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
|
|
/*
|
|
* Reset to initial state
|
|
*/
|
|
g_ut_nvme_regs.cc.bits.en = 0;
|
|
g_ut_nvme_regs.csts.bits.rdy = 0;
|
|
|
|
/*
|
|
* Case 5: reset to weighted round robin arbitration mechanism
|
|
*/
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.cdata.nn = 1;
|
|
ctrlr.page_size = 0x1000;
|
|
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_WRR;
|
|
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_WRR);
|
|
CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_WRR);
|
|
|
|
/*
|
|
* Transition to CSTS.RDY = 1.
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.rdy = 1;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE);
|
|
|
|
/*
|
|
* Transition to READY.
|
|
*/
|
|
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
|
|
nvme_ctrlr_process_init(&ctrlr);
|
|
}
|
|
|
|
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
}
|
|
static void
|
|
test_nvme_ctrlr_init_en_0_rdy_0_ams_vs(void)
|
|
{
|
|
DECLARE_AND_CONSTRUCT_CTRLR();
|
|
|
|
memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs));
|
|
|
|
/*
|
|
* Initial state: CC.EN = 0, CSTS.RDY = 0
|
|
* init() should set CC.EN = 1.
|
|
*/
|
|
g_ut_nvme_regs.cc.bits.en = 0;
|
|
g_ut_nvme_regs.csts.bits.rdy = 0;
|
|
|
|
/*
|
|
* Default round robin enabled
|
|
*/
|
|
g_ut_nvme_regs.cap.bits.ams = SPDK_NVME_CAP_AMS_VS;
|
|
ctrlr.cap = g_ut_nvme_regs.cap;
|
|
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.cdata.nn = 1;
|
|
ctrlr.page_size = 0x1000;
|
|
/*
|
|
* Case 1: default round robin arbitration mechanism selected
|
|
*/
|
|
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_RR;
|
|
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_RR);
|
|
CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_RR);
|
|
|
|
/*
|
|
* Complete and destroy the controller
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
|
|
/*
|
|
* Reset to initial state
|
|
*/
|
|
g_ut_nvme_regs.cc.bits.en = 0;
|
|
g_ut_nvme_regs.csts.bits.rdy = 0;
|
|
|
|
/*
|
|
* Case 2: weighted round robin arbitration mechanism selected
|
|
*/
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.cdata.nn = 1;
|
|
ctrlr.page_size = 0x1000;
|
|
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_WRR;
|
|
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0);
|
|
|
|
/*
|
|
* Complete and destroy the controller
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
|
|
/*
|
|
* Reset to initial state
|
|
*/
|
|
g_ut_nvme_regs.cc.bits.en = 0;
|
|
g_ut_nvme_regs.csts.bits.rdy = 0;
|
|
|
|
/*
|
|
* Case 3: vendor specific arbitration mechanism selected
|
|
*/
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.cdata.nn = 1;
|
|
ctrlr.page_size = 0x1000;
|
|
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS;
|
|
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_VS);
|
|
CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_VS);
|
|
|
|
/*
|
|
* Complete and destroy the controller
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
|
|
/*
|
|
* Reset to initial state
|
|
*/
|
|
g_ut_nvme_regs.cc.bits.en = 0;
|
|
g_ut_nvme_regs.csts.bits.rdy = 0;
|
|
|
|
/*
|
|
* Case 4: invalid arbitration mechanism selected
|
|
*/
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.cdata.nn = 1;
|
|
ctrlr.page_size = 0x1000;
|
|
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS + 1;
|
|
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0);
|
|
|
|
/*
|
|
* Complete and destroy the controller
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
|
|
/*
|
|
* Reset to initial state
|
|
*/
|
|
g_ut_nvme_regs.cc.bits.en = 0;
|
|
g_ut_nvme_regs.csts.bits.rdy = 0;
|
|
|
|
/*
|
|
* Case 5: reset to vendor specific arbitration mechanism
|
|
*/
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.cdata.nn = 1;
|
|
ctrlr.page_size = 0x1000;
|
|
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS;
|
|
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_VS);
|
|
CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_VS);
|
|
|
|
/*
|
|
* Transition to CSTS.RDY = 1.
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.rdy = 1;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE);
|
|
|
|
/*
|
|
* Transition to READY.
|
|
*/
|
|
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
|
|
nvme_ctrlr_process_init(&ctrlr);
|
|
}
|
|
|
|
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_init_en_0_rdy_0(void)
|
|
{
|
|
DECLARE_AND_CONSTRUCT_CTRLR();
|
|
|
|
memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs));
|
|
|
|
/*
|
|
* Initial state: CC.EN = 0, CSTS.RDY = 0
|
|
* init() should set CC.EN = 1.
|
|
*/
|
|
g_ut_nvme_regs.cc.bits.en = 0;
|
|
g_ut_nvme_regs.csts.bits.rdy = 0;
|
|
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.cdata.nn = 1;
|
|
ctrlr.page_size = 0x1000;
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
|
|
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
|
|
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
|
|
|
|
/*
|
|
* Transition to CSTS.RDY = 1.
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.rdy = 1;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE);
|
|
|
|
/*
|
|
* Transition to READY.
|
|
*/
|
|
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
|
|
nvme_ctrlr_process_init(&ctrlr);
|
|
}
|
|
|
|
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_init_en_0_rdy_1(void)
|
|
{
|
|
DECLARE_AND_CONSTRUCT_CTRLR();
|
|
|
|
memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs));
|
|
|
|
/*
|
|
* Initial state: CC.EN = 0, CSTS.RDY = 1
|
|
*/
|
|
g_ut_nvme_regs.cc.bits.en = 0;
|
|
g_ut_nvme_regs.csts.bits.rdy = 1;
|
|
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.cdata.nn = 1;
|
|
ctrlr.page_size = 0x1000;
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
|
|
|
|
/*
|
|
* Transition to CSTS.RDY = 0.
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.rdy = 0;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
|
|
|
|
/*
|
|
* Transition to CC.EN = 1
|
|
*/
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
|
|
|
|
/*
|
|
* Transition to CSTS.RDY = 1.
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.rdy = 1;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE);
|
|
|
|
/*
|
|
* Transition to READY.
|
|
*/
|
|
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
|
|
nvme_ctrlr_process_init(&ctrlr);
|
|
}
|
|
|
|
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
}
|
|
|
|
static void
|
|
setup_qpairs(struct spdk_nvme_ctrlr *ctrlr, uint32_t num_io_queues)
|
|
{
|
|
uint32_t i;
|
|
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(ctrlr) == 0);
|
|
|
|
ctrlr->page_size = 0x1000;
|
|
ctrlr->opts.num_io_queues = num_io_queues;
|
|
ctrlr->free_io_qids = spdk_bit_array_create(num_io_queues + 1);
|
|
ctrlr->state = NVME_CTRLR_STATE_READY;
|
|
SPDK_CU_ASSERT_FATAL(ctrlr->free_io_qids != NULL);
|
|
|
|
spdk_bit_array_clear(ctrlr->free_io_qids, 0);
|
|
for (i = 1; i <= num_io_queues; i++) {
|
|
spdk_bit_array_set(ctrlr->free_io_qids, i);
|
|
}
|
|
}
|
|
|
|
static void
|
|
cleanup_qpairs(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
nvme_ctrlr_destruct(ctrlr);
|
|
}
|
|
|
|
static void
|
|
test_alloc_io_qpair_rr_1(void)
|
|
{
|
|
struct spdk_nvme_io_qpair_opts opts;
|
|
struct spdk_nvme_ctrlr ctrlr = {};
|
|
struct spdk_nvme_qpair *q0;
|
|
|
|
setup_qpairs(&ctrlr, 1);
|
|
|
|
/*
|
|
* Fake to simulate the controller with default round robin
|
|
* arbitration mechanism.
|
|
*/
|
|
g_ut_nvme_regs.cc.bits.ams = SPDK_NVME_CC_AMS_RR;
|
|
|
|
spdk_nvme_ctrlr_get_default_io_qpair_opts(&ctrlr, &opts, sizeof(opts));
|
|
|
|
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, NULL, 0);
|
|
SPDK_CU_ASSERT_FATAL(q0 != NULL);
|
|
SPDK_CU_ASSERT_FATAL(q0->qprio == 0);
|
|
/* Only 1 I/O qpair was allocated, so this should fail */
|
|
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, NULL, 0) == NULL);
|
|
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0);
|
|
|
|
/*
|
|
* Now that the qpair has been returned to the free list,
|
|
* we should be able to allocate it again.
|
|
*/
|
|
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, NULL, 0);
|
|
SPDK_CU_ASSERT_FATAL(q0 != NULL);
|
|
SPDK_CU_ASSERT_FATAL(q0->qprio == 0);
|
|
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0);
|
|
|
|
/* Only 0 qprio is acceptable for default round robin arbitration mechanism */
|
|
opts.qprio = 1;
|
|
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
|
|
SPDK_CU_ASSERT_FATAL(q0 == NULL);
|
|
|
|
opts.qprio = 2;
|
|
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
|
|
SPDK_CU_ASSERT_FATAL(q0 == NULL);
|
|
|
|
opts.qprio = 3;
|
|
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
|
|
SPDK_CU_ASSERT_FATAL(q0 == NULL);
|
|
|
|
/* Only 0 ~ 3 qprio is acceptable */
|
|
opts.qprio = 4;
|
|
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)) == NULL);
|
|
opts.qprio = 0;
|
|
|
|
/* IO qpair can only be created when ctrlr is in READY state */
|
|
ctrlr.state = NVME_CTRLR_STATE_ENABLE;
|
|
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
|
|
SPDK_CU_ASSERT_FATAL(q0 == NULL);
|
|
ctrlr.state = NVME_CTRLR_STATE_READY;
|
|
|
|
cleanup_qpairs(&ctrlr);
|
|
}
|
|
|
|
static void
|
|
test_alloc_io_qpair_wrr_1(void)
|
|
{
|
|
struct spdk_nvme_io_qpair_opts opts;
|
|
struct spdk_nvme_ctrlr ctrlr = {};
|
|
struct spdk_nvme_qpair *q0, *q1;
|
|
|
|
setup_qpairs(&ctrlr, 2);
|
|
|
|
/*
|
|
* Fake to simulate the controller with weighted round robin
|
|
* arbitration mechanism.
|
|
*/
|
|
ctrlr.process_init_cc.bits.ams = SPDK_NVME_CC_AMS_WRR;
|
|
|
|
spdk_nvme_ctrlr_get_default_io_qpair_opts(&ctrlr, &opts, sizeof(opts));
|
|
|
|
/*
|
|
* Allocate 2 qpairs and free them
|
|
*/
|
|
opts.qprio = 0;
|
|
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
|
|
SPDK_CU_ASSERT_FATAL(q0 != NULL);
|
|
SPDK_CU_ASSERT_FATAL(q0->qprio == 0);
|
|
|
|
opts.qprio = 1;
|
|
q1 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
|
|
SPDK_CU_ASSERT_FATAL(q1 != NULL);
|
|
SPDK_CU_ASSERT_FATAL(q1->qprio == 1);
|
|
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q1) == 0);
|
|
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0);
|
|
|
|
/*
|
|
* Allocate 2 qpairs and free them in the reverse order
|
|
*/
|
|
opts.qprio = 2;
|
|
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
|
|
SPDK_CU_ASSERT_FATAL(q0 != NULL);
|
|
SPDK_CU_ASSERT_FATAL(q0->qprio == 2);
|
|
|
|
opts.qprio = 3;
|
|
q1 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
|
|
SPDK_CU_ASSERT_FATAL(q1 != NULL);
|
|
SPDK_CU_ASSERT_FATAL(q1->qprio == 3);
|
|
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0);
|
|
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q1) == 0);
|
|
|
|
/* Only 0 ~ 3 qprio is acceptable */
|
|
opts.qprio = 4;
|
|
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)) == NULL);
|
|
|
|
cleanup_qpairs(&ctrlr);
|
|
}
|
|
|
|
static void
|
|
test_alloc_io_qpair_wrr_2(void)
|
|
{
|
|
struct spdk_nvme_io_qpair_opts opts;
|
|
struct spdk_nvme_ctrlr ctrlr = {};
|
|
struct spdk_nvme_qpair *q0, *q1, *q2, *q3;
|
|
|
|
setup_qpairs(&ctrlr, 4);
|
|
|
|
/*
|
|
* Fake to simulate the controller with weighted round robin
|
|
* arbitration mechanism.
|
|
*/
|
|
ctrlr.process_init_cc.bits.ams = SPDK_NVME_CC_AMS_WRR;
|
|
|
|
spdk_nvme_ctrlr_get_default_io_qpair_opts(&ctrlr, &opts, sizeof(opts));
|
|
|
|
opts.qprio = 0;
|
|
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
|
|
SPDK_CU_ASSERT_FATAL(q0 != NULL);
|
|
SPDK_CU_ASSERT_FATAL(q0->qprio == 0);
|
|
|
|
opts.qprio = 1;
|
|
q1 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
|
|
SPDK_CU_ASSERT_FATAL(q1 != NULL);
|
|
SPDK_CU_ASSERT_FATAL(q1->qprio == 1);
|
|
|
|
opts.qprio = 2;
|
|
q2 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
|
|
SPDK_CU_ASSERT_FATAL(q2 != NULL);
|
|
SPDK_CU_ASSERT_FATAL(q2->qprio == 2);
|
|
|
|
opts.qprio = 3;
|
|
q3 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
|
|
SPDK_CU_ASSERT_FATAL(q3 != NULL);
|
|
SPDK_CU_ASSERT_FATAL(q3->qprio == 3);
|
|
|
|
/* Only 4 I/O qpairs was allocated, so this should fail */
|
|
opts.qprio = 0;
|
|
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)) == NULL);
|
|
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q3) == 0);
|
|
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q2) == 0);
|
|
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q1) == 0);
|
|
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0);
|
|
|
|
/*
|
|
* Now that the qpair has been returned to the free list,
|
|
* we should be able to allocate it again.
|
|
*
|
|
* Allocate 4 I/O qpairs and half of them with same qprio.
|
|
*/
|
|
opts.qprio = 1;
|
|
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
|
|
SPDK_CU_ASSERT_FATAL(q0 != NULL);
|
|
SPDK_CU_ASSERT_FATAL(q0->qprio == 1);
|
|
|
|
opts.qprio = 1;
|
|
q1 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
|
|
SPDK_CU_ASSERT_FATAL(q1 != NULL);
|
|
SPDK_CU_ASSERT_FATAL(q1->qprio == 1);
|
|
|
|
opts.qprio = 3;
|
|
q2 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
|
|
SPDK_CU_ASSERT_FATAL(q2 != NULL);
|
|
SPDK_CU_ASSERT_FATAL(q2->qprio == 3);
|
|
|
|
opts.qprio = 3;
|
|
q3 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
|
|
SPDK_CU_ASSERT_FATAL(q3 != NULL);
|
|
SPDK_CU_ASSERT_FATAL(q3->qprio == 3);
|
|
|
|
/*
|
|
* Free all I/O qpairs in reverse order
|
|
*/
|
|
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0);
|
|
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q1) == 0);
|
|
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q2) == 0);
|
|
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q3) == 0);
|
|
|
|
cleanup_qpairs(&ctrlr);
|
|
}
|
|
|
|
bool g_connect_qpair_called = false;
|
|
int g_connect_qpair_return_code = 0;
|
|
int nvme_transport_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
|
|
{
|
|
g_connect_qpair_called = true;
|
|
qpair->state = NVME_QPAIR_CONNECTED;
|
|
return g_connect_qpair_return_code;
|
|
}
|
|
|
|
static void
|
|
test_spdk_nvme_ctrlr_reconnect_io_qpair(void)
|
|
{
|
|
struct spdk_nvme_ctrlr ctrlr = {};
|
|
struct spdk_nvme_qpair qpair = {};
|
|
int rc;
|
|
|
|
CU_ASSERT(pthread_mutex_init(&ctrlr.ctrlr_lock, NULL) == 0);
|
|
|
|
/* Various states of controller disconnect. */
|
|
qpair.id = 1;
|
|
qpair.ctrlr = &ctrlr;
|
|
ctrlr.is_removed = 1;
|
|
ctrlr.is_failed = 0;
|
|
ctrlr.is_resetting = 0;
|
|
rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair);
|
|
CU_ASSERT(rc == -ENODEV)
|
|
|
|
ctrlr.is_removed = 0;
|
|
ctrlr.is_failed = 1;
|
|
rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair);
|
|
CU_ASSERT(rc == -ENXIO)
|
|
|
|
ctrlr.is_failed = 0;
|
|
ctrlr.is_resetting = 1;
|
|
rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair);
|
|
CU_ASSERT(rc == -EAGAIN)
|
|
|
|
/* Confirm precedence for controller states: removed > resetting > failed */
|
|
ctrlr.is_removed = 1;
|
|
ctrlr.is_failed = 1;
|
|
rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair);
|
|
CU_ASSERT(rc == -ENODEV)
|
|
|
|
ctrlr.is_removed = 0;
|
|
rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair);
|
|
CU_ASSERT(rc == -EAGAIN)
|
|
|
|
ctrlr.is_resetting = 0;
|
|
rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair);
|
|
CU_ASSERT(rc == -ENXIO)
|
|
|
|
/* qpair not failed. Make sure we don't call down to the transport */
|
|
ctrlr.is_failed = 0;
|
|
qpair.state = NVME_QPAIR_CONNECTED;
|
|
g_connect_qpair_called = false;
|
|
rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair);
|
|
CU_ASSERT(g_connect_qpair_called == false);
|
|
CU_ASSERT(rc == 0)
|
|
|
|
/* transport qpair is failed. make sure we call down to the transport */
|
|
qpair.state = NVME_QPAIR_DISCONNECTED;
|
|
rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair);
|
|
CU_ASSERT(g_connect_qpair_called == true);
|
|
CU_ASSERT(rc == 0)
|
|
|
|
CU_ASSERT(pthread_mutex_destroy(&ctrlr.ctrlr_lock) == 0);
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_fail(void)
|
|
{
|
|
struct spdk_nvme_ctrlr ctrlr = {};
|
|
|
|
ctrlr.opts.num_io_queues = 0;
|
|
nvme_ctrlr_fail(&ctrlr, false);
|
|
|
|
CU_ASSERT(ctrlr.is_failed == true);
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_construct_intel_support_log_page_list(void)
|
|
{
|
|
bool res;
|
|
struct spdk_nvme_ctrlr ctrlr = {};
|
|
struct spdk_nvme_intel_log_page_directory payload = {};
|
|
struct spdk_pci_id pci_id = {};
|
|
|
|
/* Get quirks for a device with all 0 vendor/device id */
|
|
ctrlr.quirks = nvme_get_quirks(&pci_id);
|
|
CU_ASSERT(ctrlr.quirks == 0);
|
|
|
|
nvme_ctrlr_construct_intel_support_log_page_list(&ctrlr, &payload);
|
|
res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_TEMPERATURE);
|
|
CU_ASSERT(res == false);
|
|
|
|
/* Set the vendor to Intel, but provide no device id */
|
|
pci_id.class_id = SPDK_PCI_CLASS_NVME;
|
|
ctrlr.cdata.vid = pci_id.vendor_id = SPDK_PCI_VID_INTEL;
|
|
payload.temperature_statistics_log_len = 1;
|
|
ctrlr.quirks = nvme_get_quirks(&pci_id);
|
|
memset(ctrlr.log_page_supported, 0, sizeof(ctrlr.log_page_supported));
|
|
|
|
nvme_ctrlr_construct_intel_support_log_page_list(&ctrlr, &payload);
|
|
res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY);
|
|
CU_ASSERT(res == true);
|
|
res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_TEMPERATURE);
|
|
CU_ASSERT(res == true);
|
|
res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY);
|
|
CU_ASSERT(res == false);
|
|
res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_SMART);
|
|
CU_ASSERT(res == false);
|
|
|
|
/* set valid vendor id, device id and sub device id */
|
|
ctrlr.cdata.vid = SPDK_PCI_VID_INTEL;
|
|
payload.temperature_statistics_log_len = 0;
|
|
pci_id.vendor_id = SPDK_PCI_VID_INTEL;
|
|
pci_id.device_id = 0x0953;
|
|
pci_id.subvendor_id = SPDK_PCI_VID_INTEL;
|
|
pci_id.subdevice_id = 0x3702;
|
|
ctrlr.quirks = nvme_get_quirks(&pci_id);
|
|
memset(ctrlr.log_page_supported, 0, sizeof(ctrlr.log_page_supported));
|
|
|
|
nvme_ctrlr_construct_intel_support_log_page_list(&ctrlr, &payload);
|
|
res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY);
|
|
CU_ASSERT(res == true);
|
|
res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_TEMPERATURE);
|
|
CU_ASSERT(res == false);
|
|
res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY);
|
|
CU_ASSERT(res == true);
|
|
res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_SMART);
|
|
CU_ASSERT(res == false);
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_set_supported_features(void)
|
|
{
|
|
bool res;
|
|
struct spdk_nvme_ctrlr ctrlr = {};
|
|
|
|
/* set a invalid vendor id */
|
|
ctrlr.cdata.vid = 0xFFFF;
|
|
nvme_ctrlr_set_supported_features(&ctrlr);
|
|
res = spdk_nvme_ctrlr_is_feature_supported(&ctrlr, SPDK_NVME_FEAT_ARBITRATION);
|
|
CU_ASSERT(res == true);
|
|
res = spdk_nvme_ctrlr_is_feature_supported(&ctrlr, SPDK_NVME_INTEL_FEAT_MAX_LBA);
|
|
CU_ASSERT(res == false);
|
|
|
|
ctrlr.cdata.vid = SPDK_PCI_VID_INTEL;
|
|
nvme_ctrlr_set_supported_features(&ctrlr);
|
|
res = spdk_nvme_ctrlr_is_feature_supported(&ctrlr, SPDK_NVME_FEAT_ARBITRATION);
|
|
CU_ASSERT(res == true);
|
|
res = spdk_nvme_ctrlr_is_feature_supported(&ctrlr, SPDK_NVME_INTEL_FEAT_MAX_LBA);
|
|
CU_ASSERT(res == true);
|
|
}
|
|
|
|
static void
|
|
test_ctrlr_get_default_ctrlr_opts(void)
|
|
{
|
|
struct spdk_nvme_ctrlr_opts opts = {};
|
|
|
|
CU_ASSERT(spdk_uuid_parse(&g_spdk_nvme_driver->default_extended_host_id,
|
|
"e53e9258-c93b-48b5-be1a-f025af6d232a") == 0);
|
|
|
|
memset(&opts, 0, sizeof(opts));
|
|
|
|
/* set a smaller opts_size */
|
|
CU_ASSERT(sizeof(opts) > 8);
|
|
spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, 8);
|
|
CU_ASSERT_EQUAL(opts.num_io_queues, DEFAULT_MAX_IO_QUEUES);
|
|
CU_ASSERT_FALSE(opts.use_cmb_sqs);
|
|
/* check below fields are not initialized by default value */
|
|
CU_ASSERT_EQUAL(opts.arb_mechanism, 0);
|
|
CU_ASSERT_EQUAL(opts.keep_alive_timeout_ms, 0);
|
|
CU_ASSERT_EQUAL(opts.io_queue_size, 0);
|
|
CU_ASSERT_EQUAL(opts.io_queue_requests, 0);
|
|
for (int i = 0; i < 8; i++) {
|
|
CU_ASSERT(opts.host_id[i] == 0);
|
|
}
|
|
for (int i = 0; i < 16; i++) {
|
|
CU_ASSERT(opts.extended_host_id[i] == 0);
|
|
}
|
|
CU_ASSERT(strlen(opts.hostnqn) == 0);
|
|
CU_ASSERT(strlen(opts.src_addr) == 0);
|
|
CU_ASSERT(strlen(opts.src_svcid) == 0);
|
|
CU_ASSERT_EQUAL(opts.admin_timeout_ms, 0);
|
|
|
|
/* set a consistent opts_size */
|
|
spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, sizeof(opts));
|
|
CU_ASSERT_EQUAL(opts.num_io_queues, DEFAULT_MAX_IO_QUEUES);
|
|
CU_ASSERT_FALSE(opts.use_cmb_sqs);
|
|
CU_ASSERT_EQUAL(opts.arb_mechanism, SPDK_NVME_CC_AMS_RR);
|
|
CU_ASSERT_EQUAL(opts.keep_alive_timeout_ms, 10 * 1000);
|
|
CU_ASSERT_EQUAL(opts.io_queue_size, DEFAULT_IO_QUEUE_SIZE);
|
|
CU_ASSERT_EQUAL(opts.io_queue_requests, DEFAULT_IO_QUEUE_REQUESTS);
|
|
for (int i = 0; i < 8; i++) {
|
|
CU_ASSERT(opts.host_id[i] == 0);
|
|
}
|
|
CU_ASSERT_STRING_EQUAL(opts.hostnqn,
|
|
"nqn.2014-08.org.nvmexpress:uuid:e53e9258-c93b-48b5-be1a-f025af6d232a");
|
|
CU_ASSERT(memcmp(opts.extended_host_id, &g_spdk_nvme_driver->default_extended_host_id,
|
|
sizeof(opts.extended_host_id)) == 0);
|
|
CU_ASSERT(strlen(opts.src_addr) == 0);
|
|
CU_ASSERT(strlen(opts.src_svcid) == 0);
|
|
CU_ASSERT_EQUAL(opts.admin_timeout_ms, NVME_MAX_ADMIN_TIMEOUT_IN_SECS * 1000);
|
|
}
|
|
|
|
static void
|
|
test_ctrlr_get_default_io_qpair_opts(void)
|
|
{
|
|
struct spdk_nvme_ctrlr ctrlr = {};
|
|
struct spdk_nvme_io_qpair_opts opts = {};
|
|
|
|
memset(&opts, 0, sizeof(opts));
|
|
|
|
/* set a smaller opts_size */
|
|
ctrlr.opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE;
|
|
CU_ASSERT(sizeof(opts) > 8);
|
|
spdk_nvme_ctrlr_get_default_io_qpair_opts(&ctrlr, &opts, 8);
|
|
CU_ASSERT_EQUAL(opts.qprio, SPDK_NVME_QPRIO_URGENT);
|
|
CU_ASSERT_EQUAL(opts.io_queue_size, DEFAULT_IO_QUEUE_SIZE);
|
|
/* check below field is not initialized by default value */
|
|
CU_ASSERT_EQUAL(opts.io_queue_requests, 0);
|
|
|
|
/* set a consistent opts_size */
|
|
ctrlr.opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE;
|
|
ctrlr.opts.io_queue_requests = DEFAULT_IO_QUEUE_REQUESTS;
|
|
spdk_nvme_ctrlr_get_default_io_qpair_opts(&ctrlr, &opts, sizeof(opts));
|
|
CU_ASSERT_EQUAL(opts.qprio, SPDK_NVME_QPRIO_URGENT);
|
|
CU_ASSERT_EQUAL(opts.io_queue_size, DEFAULT_IO_QUEUE_SIZE);
|
|
CU_ASSERT_EQUAL(opts.io_queue_requests, DEFAULT_IO_QUEUE_REQUESTS);
|
|
}
|
|
|
|
#if 0 /* TODO: move to PCIe-specific unit test */
|
|
static void
|
|
test_nvme_ctrlr_alloc_cmb(void)
|
|
{
|
|
int rc;
|
|
uint64_t offset;
|
|
struct spdk_nvme_ctrlr ctrlr = {};
|
|
|
|
ctrlr.cmb_size = 0x1000000;
|
|
ctrlr.cmb_current_offset = 0x100;
|
|
rc = nvme_ctrlr_alloc_cmb(&ctrlr, 0x200, 0x1000, &offset);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(offset == 0x1000);
|
|
CU_ASSERT(ctrlr.cmb_current_offset == 0x1200);
|
|
|
|
rc = nvme_ctrlr_alloc_cmb(&ctrlr, 0x800, 0x1000, &offset);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(offset == 0x2000);
|
|
CU_ASSERT(ctrlr.cmb_current_offset == 0x2800);
|
|
|
|
rc = nvme_ctrlr_alloc_cmb(&ctrlr, 0x800000, 0x100000, &offset);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(offset == 0x100000);
|
|
CU_ASSERT(ctrlr.cmb_current_offset == 0x900000);
|
|
|
|
rc = nvme_ctrlr_alloc_cmb(&ctrlr, 0x8000000, 0x1000, &offset);
|
|
CU_ASSERT(rc == -1);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
test_spdk_nvme_ctrlr_update_firmware(void)
|
|
{
|
|
struct spdk_nvme_ctrlr ctrlr = {};
|
|
void *payload = NULL;
|
|
int point_payload = 1;
|
|
int slot = 0;
|
|
int ret = 0;
|
|
struct spdk_nvme_status status;
|
|
enum spdk_nvme_fw_commit_action commit_action = SPDK_NVME_FW_COMMIT_REPLACE_IMG;
|
|
|
|
CU_ASSERT(pthread_mutex_init(&ctrlr.ctrlr_lock, NULL) == 0);
|
|
|
|
/* Set invalid size check function return value */
|
|
set_size = 5;
|
|
ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status);
|
|
CU_ASSERT(ret == -1);
|
|
|
|
/* When payload is NULL but set_size < min_page_size */
|
|
set_size = 4;
|
|
ctrlr.min_page_size = 5;
|
|
ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status);
|
|
CU_ASSERT(ret == -1);
|
|
|
|
/* When payload not NULL but min_page_size is 0 */
|
|
set_size = 4;
|
|
ctrlr.min_page_size = 0;
|
|
payload = &point_payload;
|
|
ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status);
|
|
CU_ASSERT(ret == -1);
|
|
|
|
/* Check firmware image download when payload not NULL and min_page_size not 0 , status.cpl value is 1 */
|
|
set_status_cpl = 1;
|
|
set_size = 4;
|
|
ctrlr.min_page_size = 5;
|
|
payload = &point_payload;
|
|
ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status);
|
|
CU_ASSERT(ret == -ENXIO);
|
|
|
|
/* Check firmware image download and set status.cpl value is 0 */
|
|
set_status_cpl = 0;
|
|
set_size = 4;
|
|
ctrlr.min_page_size = 5;
|
|
payload = &point_payload;
|
|
ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status);
|
|
CU_ASSERT(ret == -1);
|
|
|
|
/* Check firmware commit */
|
|
ctrlr.is_resetting = false;
|
|
set_status_cpl = 0;
|
|
slot = 1;
|
|
set_size = 4;
|
|
ctrlr.min_page_size = 5;
|
|
payload = &point_payload;
|
|
ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status);
|
|
CU_ASSERT(ret == -ENXIO);
|
|
|
|
/* Set size check firmware download and firmware commit */
|
|
ctrlr.is_resetting = true;
|
|
set_status_cpl = 0;
|
|
slot = 1;
|
|
set_size = 4;
|
|
ctrlr.min_page_size = 5;
|
|
payload = &point_payload;
|
|
ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status);
|
|
CU_ASSERT(ret == 0);
|
|
|
|
/* nvme_wait_for_completion returns an error */
|
|
g_wait_for_completion_return_val = -1;
|
|
ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status);
|
|
CU_ASSERT(ret == -ENXIO);
|
|
CU_ASSERT(g_failed_status != NULL);
|
|
CU_ASSERT(g_failed_status->timed_out == true);
|
|
/* status should be freed by callback, which is not triggered in test env.
|
|
Store status to global variable and free it manually.
|
|
If spdk_nvme_ctrlr_update_firmware changes its behaviour and frees the status
|
|
itself, we'll get a double free here.. */
|
|
free(g_failed_status);
|
|
g_failed_status = NULL;
|
|
g_wait_for_completion_return_val = 0;
|
|
|
|
CU_ASSERT(pthread_mutex_destroy(&ctrlr.ctrlr_lock) == 0);
|
|
set_status_cpl = 0;
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_cmd_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr, uint64_t prp1, uint64_t prp2,
|
|
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
fake_cpl_sc(cb_fn, cb_arg);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
test_spdk_nvme_ctrlr_doorbell_buffer_config(void)
|
|
{
|
|
struct spdk_nvme_ctrlr ctrlr = {};
|
|
int ret = -1;
|
|
|
|
ctrlr.cdata.oacs.doorbell_buffer_config = 1;
|
|
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
|
|
ctrlr.page_size = 0x1000;
|
|
MOCK_CLEAR(spdk_malloc);
|
|
MOCK_CLEAR(spdk_zmalloc);
|
|
ret = nvme_ctrlr_set_doorbell_buffer_config(&ctrlr);
|
|
CU_ASSERT(ret == 0);
|
|
nvme_ctrlr_free_doorbell_buffer(&ctrlr);
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_test_active_ns(void)
|
|
{
|
|
uint32_t nsid, minor;
|
|
size_t ns_id_count;
|
|
struct spdk_nvme_ctrlr ctrlr = {};
|
|
uint32_t active_ns_list[1531];
|
|
|
|
for (nsid = 1; nsid <= 1531; nsid++) {
|
|
active_ns_list[nsid - 1] = nsid;
|
|
}
|
|
|
|
g_active_ns_list = active_ns_list;
|
|
|
|
ctrlr.page_size = 0x1000;
|
|
|
|
for (minor = 0; minor <= 2; minor++) {
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.state = NVME_CTRLR_STATE_READY;
|
|
|
|
ctrlr.vs.bits.mjr = 1;
|
|
ctrlr.vs.bits.mnr = minor;
|
|
ctrlr.vs.bits.ter = 0;
|
|
ctrlr.cdata.nn = 1531;
|
|
|
|
RB_INIT(&ctrlr.ns);
|
|
|
|
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list);
|
|
nvme_ctrlr_identify_active_ns(&ctrlr);
|
|
|
|
for (nsid = 1; nsid <= ctrlr.cdata.nn; nsid++) {
|
|
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, nsid) == true);
|
|
}
|
|
|
|
for (; nsid <= 1559; nsid++) {
|
|
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, nsid) == false);
|
|
}
|
|
|
|
g_active_ns_list_length = 0;
|
|
if (minor <= 1) {
|
|
ctrlr.cdata.nn = 0;
|
|
}
|
|
nvme_ctrlr_identify_active_ns(&ctrlr);
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_first_active_ns(&ctrlr) == 0);
|
|
|
|
g_active_ns_list_length = 1;
|
|
if (minor <= 1) {
|
|
ctrlr.cdata.nn = 1;
|
|
}
|
|
nvme_ctrlr_identify_active_ns(&ctrlr);
|
|
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1) == true);
|
|
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 2) == false);
|
|
nsid = spdk_nvme_ctrlr_get_first_active_ns(&ctrlr);
|
|
CU_ASSERT(nsid == 1);
|
|
|
|
if (minor >= 2) {
|
|
/* For NVMe 1.2 and newer, the namespace list can have "holes" where
|
|
* some namespaces are not active. Test this. */
|
|
g_active_ns_list_length = 2;
|
|
g_active_ns_list[1] = 3;
|
|
nvme_ctrlr_identify_active_ns(&ctrlr);
|
|
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1) == true);
|
|
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 2) == false);
|
|
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 3) == true);
|
|
nsid = spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, nsid);
|
|
CU_ASSERT(nsid == 3);
|
|
nsid = spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, nsid);
|
|
CU_ASSERT(nsid == 0);
|
|
|
|
/* Reset the active namespace list array */
|
|
g_active_ns_list[1] = 2;
|
|
}
|
|
|
|
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list);
|
|
if (minor <= 1) {
|
|
ctrlr.cdata.nn = 1531;
|
|
}
|
|
nvme_ctrlr_identify_active_ns(&ctrlr);
|
|
|
|
ns_id_count = 0;
|
|
for (nsid = spdk_nvme_ctrlr_get_first_active_ns(&ctrlr);
|
|
nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, nsid)) {
|
|
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, nsid) == true);
|
|
ns_id_count++;
|
|
}
|
|
CU_ASSERT(ns_id_count == ctrlr.cdata.nn);
|
|
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
}
|
|
|
|
g_active_ns_list = NULL;
|
|
g_active_ns_list_length = 0;
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_test_active_ns_error_case(void)
|
|
{
|
|
int rc;
|
|
struct spdk_nvme_ctrlr ctrlr = {.state = NVME_CTRLR_STATE_READY};
|
|
|
|
ctrlr.page_size = 0x1000;
|
|
ctrlr.vs.bits.mjr = 1;
|
|
ctrlr.vs.bits.mnr = 2;
|
|
ctrlr.vs.bits.ter = 0;
|
|
ctrlr.cdata.nn = 2;
|
|
|
|
set_status_code = SPDK_NVME_SC_INVALID_FIELD;
|
|
rc = nvme_ctrlr_identify_active_ns(&ctrlr);
|
|
CU_ASSERT(rc == -ENXIO);
|
|
set_status_code = SPDK_NVME_SC_SUCCESS;
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_init_delay(void)
|
|
{
|
|
DECLARE_AND_CONSTRUCT_CTRLR();
|
|
|
|
memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs));
|
|
|
|
/*
|
|
* Initial state: CC.EN = 0, CSTS.RDY = 0
|
|
* init() should set CC.EN = 1.
|
|
*/
|
|
g_ut_nvme_regs.cc.bits.en = 0;
|
|
g_ut_nvme_regs.csts.bits.rdy = 0;
|
|
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
/* Test that the initialization delay works correctly. We only
|
|
* do the initialization delay on SSDs that require it, so
|
|
* set that quirk here.
|
|
*/
|
|
ctrlr.quirks = NVME_QUIRK_DELAY_BEFORE_INIT;
|
|
ctrlr.cdata.nn = 1;
|
|
ctrlr.page_size = 0x1000;
|
|
ctrlr.state = NVME_CTRLR_STATE_INIT_DELAY;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
|
|
CU_ASSERT(ctrlr.sleep_timeout_tsc != 0);
|
|
|
|
/* delay 1s, just return as sleep time isn't enough */
|
|
spdk_delay_us(1 * spdk_get_ticks_hz());
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
|
|
CU_ASSERT(ctrlr.sleep_timeout_tsc != 0);
|
|
|
|
/* sleep timeout, start to initialize */
|
|
spdk_delay_us(2 * spdk_get_ticks_hz());
|
|
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
|
|
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
|
|
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
|
|
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
|
|
|
|
/*
|
|
* Transition to CSTS.RDY = 1.
|
|
*/
|
|
g_ut_nvme_regs.csts.bits.rdy = 1;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE);
|
|
|
|
/*
|
|
* Transition to READY.
|
|
*/
|
|
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
|
|
nvme_ctrlr_process_init(&ctrlr);
|
|
}
|
|
|
|
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
}
|
|
|
|
static void
|
|
test_spdk_nvme_ctrlr_set_trid(void)
|
|
{
|
|
struct spdk_nvme_ctrlr ctrlr = {{0}};
|
|
struct spdk_nvme_transport_id new_trid = {{0}};
|
|
|
|
CU_ASSERT(pthread_mutex_init(&ctrlr.ctrlr_lock, NULL) == 0);
|
|
|
|
ctrlr.is_failed = false;
|
|
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
|
|
snprintf(ctrlr.trid.subnqn, SPDK_NVMF_NQN_MAX_LEN, "%s", "nqn.2016-06.io.spdk:cnode1");
|
|
snprintf(ctrlr.trid.traddr, SPDK_NVMF_TRADDR_MAX_LEN, "%s", "192.168.100.8");
|
|
snprintf(ctrlr.trid.trsvcid, SPDK_NVMF_TRSVCID_MAX_LEN, "%s", "4420");
|
|
CU_ASSERT(spdk_nvme_ctrlr_set_trid(&ctrlr, &new_trid) == -EPERM);
|
|
|
|
ctrlr.is_failed = true;
|
|
new_trid.trtype = SPDK_NVME_TRANSPORT_TCP;
|
|
CU_ASSERT(spdk_nvme_ctrlr_set_trid(&ctrlr, &new_trid) == -EINVAL);
|
|
CU_ASSERT(ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_RDMA);
|
|
|
|
new_trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
|
|
snprintf(new_trid.subnqn, SPDK_NVMF_NQN_MAX_LEN, "%s", "nqn.2016-06.io.spdk:cnode2");
|
|
CU_ASSERT(spdk_nvme_ctrlr_set_trid(&ctrlr, &new_trid) == -EINVAL);
|
|
CU_ASSERT(strncmp(ctrlr.trid.subnqn, "nqn.2016-06.io.spdk:cnode1", SPDK_NVMF_NQN_MAX_LEN) == 0);
|
|
|
|
|
|
snprintf(new_trid.subnqn, SPDK_NVMF_NQN_MAX_LEN, "%s", "nqn.2016-06.io.spdk:cnode1");
|
|
snprintf(new_trid.traddr, SPDK_NVMF_TRADDR_MAX_LEN, "%s", "192.168.100.9");
|
|
snprintf(new_trid.trsvcid, SPDK_NVMF_TRSVCID_MAX_LEN, "%s", "4421");
|
|
CU_ASSERT(spdk_nvme_ctrlr_set_trid(&ctrlr, &new_trid) == 0);
|
|
CU_ASSERT(strncmp(ctrlr.trid.traddr, "192.168.100.9", SPDK_NVMF_TRADDR_MAX_LEN) == 0);
|
|
CU_ASSERT(strncmp(ctrlr.trid.trsvcid, "4421", SPDK_NVMF_TRSVCID_MAX_LEN) == 0);
|
|
|
|
CU_ASSERT(pthread_mutex_destroy(&ctrlr.ctrlr_lock) == 0);
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_init_set_nvmf_ioccsz(void)
|
|
{
|
|
struct spdk_nvme_ctrlr_data cdata = {};
|
|
DECLARE_AND_CONSTRUCT_CTRLR();
|
|
/* equivalent of 4096 bytes */
|
|
cdata.nvmf_specific.ioccsz = 260;
|
|
cdata.nvmf_specific.icdoff = 1;
|
|
g_cdata = &cdata;
|
|
|
|
/* Check PCI trtype, */
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
|
|
|
|
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_CONFIGURE_AER);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_NUM_QUEUES);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS);
|
|
|
|
CU_ASSERT(ctrlr.ioccsz_bytes == 0);
|
|
CU_ASSERT(ctrlr.icdoff == 0);
|
|
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
|
|
/* Check RDMA trtype, */
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
|
|
|
|
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_CONFIGURE_AER);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_NUM_QUEUES);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS);
|
|
|
|
CU_ASSERT(ctrlr.ioccsz_bytes == 4096);
|
|
CU_ASSERT(ctrlr.icdoff == 1);
|
|
ctrlr.ioccsz_bytes = 0;
|
|
ctrlr.icdoff = 0;
|
|
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
|
|
/* Check TCP trtype, */
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_TCP;
|
|
|
|
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_CONFIGURE_AER);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_NUM_QUEUES);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS);
|
|
|
|
CU_ASSERT(ctrlr.ioccsz_bytes == 4096);
|
|
CU_ASSERT(ctrlr.icdoff == 1);
|
|
ctrlr.ioccsz_bytes = 0;
|
|
ctrlr.icdoff = 0;
|
|
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
|
|
/* Check FC trtype, */
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_FC;
|
|
|
|
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_CONFIGURE_AER);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_NUM_QUEUES);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS);
|
|
|
|
CU_ASSERT(ctrlr.ioccsz_bytes == 4096);
|
|
CU_ASSERT(ctrlr.icdoff == 1);
|
|
ctrlr.ioccsz_bytes = 0;
|
|
ctrlr.icdoff = 0;
|
|
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
|
|
/* Check CUSTOM trtype, */
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_CUSTOM;
|
|
|
|
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_CONFIGURE_AER);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_NUM_QUEUES);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS);
|
|
|
|
CU_ASSERT(ctrlr.ioccsz_bytes == 0);
|
|
CU_ASSERT(ctrlr.icdoff == 0);
|
|
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
|
|
g_cdata = NULL;
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_init_set_num_queues(void)
|
|
{
|
|
DECLARE_AND_CONSTRUCT_CTRLR();
|
|
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
|
|
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_CONFIGURE_AER);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_NUM_QUEUES);
|
|
|
|
ctrlr.opts.num_io_queues = 64;
|
|
/* Num queues is zero-based. So, use 31 to get 32 queues */
|
|
fake_cpl.cdw0 = 31 + (31 << 16);
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); /* -> IDENTIFY_ACTIVE_NS */
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS);
|
|
CU_ASSERT(ctrlr.opts.num_io_queues == 32);
|
|
fake_cpl.cdw0 = 0;
|
|
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_init_set_keep_alive_timeout(void)
|
|
{
|
|
DECLARE_AND_CONSTRUCT_CTRLR();
|
|
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
|
|
ctrlr.opts.keep_alive_timeout_ms = 60000;
|
|
ctrlr.cdata.kas = 1;
|
|
ctrlr.state = NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT;
|
|
fake_cpl.cdw0 = 120000;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); /* -> IDENTIFY_IOCS_SPECIFIC */
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC);
|
|
CU_ASSERT(ctrlr.opts.keep_alive_timeout_ms == 120000);
|
|
fake_cpl.cdw0 = 0;
|
|
|
|
/* Target does not support Get Feature "Keep Alive Timer" */
|
|
ctrlr.opts.keep_alive_timeout_ms = 60000;
|
|
ctrlr.cdata.kas = 1;
|
|
ctrlr.state = NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT;
|
|
set_status_code = SPDK_NVME_SC_INVALID_FIELD;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); /* -> IDENTIFY_IOCS_SPECIFIC */
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC);
|
|
CU_ASSERT(ctrlr.opts.keep_alive_timeout_ms == 60000);
|
|
set_status_code = SPDK_NVME_SC_SUCCESS;
|
|
|
|
/* Target fails Get Feature "Keep Alive Timer" for another reason */
|
|
ctrlr.opts.keep_alive_timeout_ms = 60000;
|
|
ctrlr.cdata.kas = 1;
|
|
ctrlr.state = NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT;
|
|
set_status_code = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); /* -> ERROR */
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ERROR);
|
|
set_status_code = SPDK_NVME_SC_SUCCESS;
|
|
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
}
|
|
|
|
static void
|
|
test_alloc_io_qpair_fail(void)
|
|
{
|
|
struct spdk_nvme_ctrlr ctrlr = {};
|
|
struct spdk_nvme_qpair *q0;
|
|
|
|
setup_qpairs(&ctrlr, 1);
|
|
|
|
/* Modify the connect_qpair return code to inject a failure */
|
|
g_connect_qpair_return_code = 1;
|
|
|
|
/* Attempt to allocate a qpair, this should fail */
|
|
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, NULL, 0);
|
|
SPDK_CU_ASSERT_FATAL(q0 == NULL);
|
|
|
|
/* Verify that the qpair is removed from the lists */
|
|
SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&ctrlr.active_io_qpairs));
|
|
|
|
g_connect_qpair_return_code = 0;
|
|
cleanup_qpairs(&ctrlr);
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_add_remove_process(void)
|
|
{
|
|
struct spdk_nvme_ctrlr ctrlr = {};
|
|
void *devhandle = (void *)0xDEADBEEF;
|
|
struct spdk_nvme_ctrlr_process *proc = NULL;
|
|
int rc;
|
|
|
|
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
|
|
TAILQ_INIT(&ctrlr.active_procs);
|
|
|
|
rc = nvme_ctrlr_add_process(&ctrlr, devhandle);
|
|
CU_ASSERT(rc == 0);
|
|
proc = TAILQ_FIRST(&ctrlr.active_procs);
|
|
SPDK_CU_ASSERT_FATAL(proc != NULL);
|
|
CU_ASSERT(proc->is_primary == true);
|
|
CU_ASSERT(proc->pid == getpid());
|
|
CU_ASSERT(proc->devhandle == (void *)0xDEADBEEF);
|
|
CU_ASSERT(proc->ref == 0);
|
|
|
|
nvme_ctrlr_remove_process(&ctrlr, proc);
|
|
CU_ASSERT(TAILQ_EMPTY(&ctrlr.active_procs));
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_set_arbitration_feature(void)
|
|
{
|
|
struct spdk_nvme_ctrlr ctrlr = {};
|
|
|
|
ctrlr.opts.arbitration_burst = 6;
|
|
ctrlr.flags |= SPDK_NVME_CTRLR_WRR_SUPPORTED;
|
|
ctrlr.opts.low_priority_weight = 1;
|
|
ctrlr.opts.medium_priority_weight = 2;
|
|
ctrlr.opts.high_priority_weight = 3;
|
|
/* g_ut_cdw11 used to record value command feature set. */
|
|
g_ut_cdw11 = 0;
|
|
|
|
/* arbitration_burst count available. */
|
|
nvme_ctrlr_set_arbitration_feature(&ctrlr);
|
|
CU_ASSERT((uint8_t)g_ut_cdw11 == 6);
|
|
CU_ASSERT((uint8_t)(g_ut_cdw11 >> 8) == 1);
|
|
CU_ASSERT((uint8_t)(g_ut_cdw11 >> 16) == 2);
|
|
CU_ASSERT((uint8_t)(g_ut_cdw11 >> 24) == 3);
|
|
|
|
/* arbitration_burst unavailable. */
|
|
g_ut_cdw11 = 0;
|
|
ctrlr.opts.arbitration_burst = 8;
|
|
|
|
nvme_ctrlr_set_arbitration_feature(&ctrlr);
|
|
CU_ASSERT(g_ut_cdw11 == 0);
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_set_state(void)
|
|
{
|
|
struct spdk_nvme_ctrlr ctrlr = {};
|
|
MOCK_SET(spdk_get_ticks, 0);
|
|
|
|
nvme_ctrlr_set_state(&ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, 1000);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT);
|
|
CU_ASSERT(ctrlr.state_timeout_tsc == 1000000);
|
|
|
|
nvme_ctrlr_set_state(&ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT);
|
|
CU_ASSERT(ctrlr.state_timeout_tsc == NVME_TIMEOUT_INFINITE);
|
|
|
|
/* Time out ticks causes integer overflow. */
|
|
MOCK_SET(spdk_get_ticks, UINT64_MAX);
|
|
|
|
nvme_ctrlr_set_state(&ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, 1000);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT);
|
|
CU_ASSERT(ctrlr.state_timeout_tsc == NVME_TIMEOUT_INFINITE);
|
|
MOCK_CLEAR(spdk_get_ticks);
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_active_ns_list_v0(void)
|
|
{
|
|
DECLARE_AND_CONSTRUCT_CTRLR();
|
|
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
|
|
ctrlr.vs.bits.mjr = 1;
|
|
ctrlr.vs.bits.mnr = 0;
|
|
ctrlr.vs.bits.ter = 0;
|
|
ctrlr.cdata.nn = 1024;
|
|
|
|
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS;
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
SPDK_CU_ASSERT_FATAL(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS);
|
|
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1));
|
|
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1024));
|
|
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1025));
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_first_active_ns(&ctrlr) == 1);
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1023) == 1024);
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1024) == 0);
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1025) == 0);
|
|
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_active_ns_list_v2(void)
|
|
{
|
|
uint32_t i;
|
|
uint32_t active_ns_list[1024];
|
|
DECLARE_AND_CONSTRUCT_CTRLR();
|
|
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
|
|
ctrlr.vs.bits.mjr = 1;
|
|
ctrlr.vs.bits.mnr = 2;
|
|
ctrlr.vs.bits.ter = 0;
|
|
ctrlr.cdata.nn = 4096;
|
|
|
|
g_active_ns_list = active_ns_list;
|
|
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list);
|
|
|
|
/* No active namespaces */
|
|
memset(active_ns_list, 0, sizeof(active_ns_list));
|
|
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS;
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
SPDK_CU_ASSERT_FATAL(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS);
|
|
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1));
|
|
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1024));
|
|
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1025));
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_first_active_ns(&ctrlr) == 0);
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1024) == 0);
|
|
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
|
|
/* 1024 active namespaces - one full page */
|
|
memset(active_ns_list, 0, sizeof(active_ns_list));
|
|
for (i = 0; i < 1024; ++i) {
|
|
active_ns_list[i] = i + 1;
|
|
}
|
|
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
|
|
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS;
|
|
g_active_ns_list = active_ns_list;
|
|
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list);
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
SPDK_CU_ASSERT_FATAL(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS);
|
|
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1));
|
|
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1024));
|
|
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1025));
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_first_active_ns(&ctrlr) == 1);
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1023) == 1024);
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1024) == 0);
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1025) == 0);
|
|
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
|
|
/* 1023 active namespaces - full page minus one */
|
|
memset(active_ns_list, 0, sizeof(active_ns_list));
|
|
for (i = 0; i < 1023; ++i) {
|
|
active_ns_list[i] = i + 1;
|
|
}
|
|
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
|
|
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS;
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
SPDK_CU_ASSERT_FATAL(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS);
|
|
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1));
|
|
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1023));
|
|
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1024));
|
|
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1025));
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_first_active_ns(&ctrlr) == 1);
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1023) == 0);
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1024) == 0);
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1025) == 0);
|
|
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
|
|
g_active_ns_list = NULL;
|
|
g_active_ns_list_length = 0;
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_ns_mgmt(void)
|
|
{
|
|
DECLARE_AND_CONSTRUCT_CTRLR();
|
|
uint32_t active_ns_list[] = { 1, 2, 100, 1024 };
|
|
uint32_t active_ns_list2[] = { 1, 2, 3, 100, 1024 };
|
|
struct spdk_nvme_ns_data nsdata = {};
|
|
struct spdk_nvme_ctrlr_list ctrlr_list = {};
|
|
uint32_t nsid;
|
|
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
|
|
ctrlr.vs.bits.mjr = 1;
|
|
ctrlr.vs.bits.mnr = 2;
|
|
ctrlr.vs.bits.ter = 0;
|
|
ctrlr.cdata.nn = 4096;
|
|
|
|
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS;
|
|
g_active_ns_list = active_ns_list;
|
|
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
|
|
fake_cpl.cdw0 = 3;
|
|
nsid = spdk_nvme_ctrlr_create_ns(&ctrlr, &nsdata);
|
|
fake_cpl.cdw0 = 0;
|
|
CU_ASSERT(nsid == 3);
|
|
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 3));
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_ns(&ctrlr, 3) != NULL);
|
|
|
|
g_active_ns_list = active_ns_list2;
|
|
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list2);
|
|
CU_ASSERT(spdk_nvme_ctrlr_attach_ns(&ctrlr, 3, &ctrlr_list) == 0);
|
|
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 3));
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_ns(&ctrlr, 3) != NULL);
|
|
|
|
g_active_ns_list = active_ns_list;
|
|
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list);
|
|
CU_ASSERT(spdk_nvme_ctrlr_detach_ns(&ctrlr, 3, &ctrlr_list) == 0);
|
|
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 3));
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_ns(&ctrlr, 3) != NULL);
|
|
|
|
CU_ASSERT(spdk_nvme_ctrlr_delete_ns(&ctrlr, 3) == 0);
|
|
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 3));
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_ns(&ctrlr, 3) != NULL);
|
|
g_active_ns_list = NULL;
|
|
g_active_ns_list_length = 0;
|
|
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
}
|
|
|
|
static void check_en_set_rdy(void)
|
|
{
|
|
if (g_ut_nvme_regs.cc.bits.en == 1) {
|
|
g_ut_nvme_regs.csts.bits.rdy = 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_reset(void)
|
|
{
|
|
DECLARE_AND_CONSTRUCT_CTRLR();
|
|
struct spdk_nvme_ctrlr_data cdata = { .nn = 4096 };
|
|
uint32_t active_ns_list[] = { 1, 2, 100, 1024 };
|
|
uint32_t active_ns_list2[] = { 1, 100, 1024 };
|
|
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
|
|
g_ut_nvme_regs.vs.bits.mjr = 1;
|
|
g_ut_nvme_regs.vs.bits.mnr = 2;
|
|
g_ut_nvme_regs.vs.bits.ter = 0;
|
|
nvme_ctrlr_get_vs(&ctrlr, &ctrlr.vs);
|
|
ctrlr.cdata.nn = 2048;
|
|
|
|
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS;
|
|
g_active_ns_list = active_ns_list;
|
|
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_num_ns(&ctrlr) == 2048);
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_ns(&ctrlr, 2) != NULL);
|
|
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 2));
|
|
|
|
/* Reset controller with changed number of namespaces */
|
|
g_cdata = &cdata;
|
|
g_active_ns_list = active_ns_list2;
|
|
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list2);
|
|
STAILQ_INSERT_HEAD(&adminq.free_req, &req, stailq);
|
|
g_ut_nvme_regs.cc.raw = 0;
|
|
g_ut_nvme_regs.csts.raw = 0;
|
|
g_set_reg_cb = check_en_set_rdy;
|
|
CU_ASSERT(spdk_nvme_ctrlr_reset(&ctrlr) == 0);
|
|
g_set_reg_cb = NULL;
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_READY);
|
|
g_cdata = NULL;
|
|
g_active_ns_list = NULL;
|
|
g_active_ns_list_length = 0;
|
|
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_num_ns(&ctrlr) == 4096);
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_ns(&ctrlr, 2) != NULL);
|
|
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 2));
|
|
|
|
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
}
|
|
|
|
static uint32_t g_aer_cb_counter;
|
|
|
|
static void
|
|
aer_cb(void *aer_cb_arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
g_aer_cb_counter++;
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_aer_callback(void)
|
|
{
|
|
DECLARE_AND_CONSTRUCT_CTRLR();
|
|
uint32_t active_ns_list[] = { 1, 2, 100, 1024 };
|
|
union spdk_nvme_async_event_completion aer_event = {
|
|
.bits.async_event_type = SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE,
|
|
.bits.async_event_info = SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED
|
|
};
|
|
struct spdk_nvme_cpl aer_cpl = {
|
|
.status.sct = SPDK_NVME_SCT_GENERIC,
|
|
.status.sc = SPDK_NVME_SC_SUCCESS,
|
|
.cdw0 = aer_event.raw
|
|
};
|
|
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
|
|
ctrlr.vs.bits.mjr = 1;
|
|
ctrlr.vs.bits.mnr = 2;
|
|
ctrlr.vs.bits.ter = 0;
|
|
ctrlr.cdata.nn = 4096;
|
|
|
|
ctrlr.state = NVME_CTRLR_STATE_CONFIGURE_AER;
|
|
g_active_ns_list = active_ns_list;
|
|
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list);
|
|
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
|
|
CU_ASSERT(nvme_ctrlr_add_process(&ctrlr, NULL) == 0);
|
|
spdk_nvme_ctrlr_register_aer_callback(&ctrlr, aer_cb, NULL);
|
|
|
|
/* Async event */
|
|
g_aer_cb_counter = 0;
|
|
nvme_ctrlr_async_event_cb(&ctrlr.aer[0], &aer_cpl);
|
|
nvme_ctrlr_complete_queued_async_events(&ctrlr);
|
|
CU_ASSERT(g_aer_cb_counter == 1);
|
|
g_active_ns_list = NULL;
|
|
g_active_ns_list_length = 0;
|
|
|
|
nvme_ctrlr_free_processes(&ctrlr);
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_ns_attr_changed(void)
|
|
{
|
|
DECLARE_AND_CONSTRUCT_CTRLR();
|
|
uint32_t active_ns_list[] = { 1, 2, 100, 1024 };
|
|
uint32_t active_ns_list2[] = { 1, 2, 1024 };
|
|
uint32_t active_ns_list3[] = { 1, 2, 101, 1024 };
|
|
union spdk_nvme_async_event_completion aer_event = {
|
|
.bits.async_event_type = SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE,
|
|
.bits.async_event_info = SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED
|
|
};
|
|
struct spdk_nvme_cpl aer_cpl = {
|
|
.status.sct = SPDK_NVME_SCT_GENERIC,
|
|
.status.sc = SPDK_NVME_SC_SUCCESS,
|
|
.cdw0 = aer_event.raw
|
|
};
|
|
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
|
|
ctrlr.vs.bits.mjr = 1;
|
|
ctrlr.vs.bits.mnr = 3;
|
|
ctrlr.vs.bits.ter = 0;
|
|
ctrlr.cap.bits.css |= SPDK_NVME_CAP_CSS_IOCS;
|
|
ctrlr.cdata.nn = 4096;
|
|
|
|
ctrlr.state = NVME_CTRLR_STATE_CONFIGURE_AER;
|
|
g_active_ns_list = active_ns_list;
|
|
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list);
|
|
|
|
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
|
|
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 100));
|
|
|
|
CU_ASSERT(nvme_ctrlr_add_process(&ctrlr, NULL) == 0);
|
|
spdk_nvme_ctrlr_register_aer_callback(&ctrlr, aer_cb, NULL);
|
|
|
|
/* Remove NS 100 */
|
|
g_aer_cb_counter = 0;
|
|
g_active_ns_list = active_ns_list2;
|
|
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list2);
|
|
nvme_ctrlr_async_event_cb(&ctrlr.aer[0], &aer_cpl);
|
|
nvme_ctrlr_complete_queued_async_events(&ctrlr);
|
|
CU_ASSERT(g_aer_cb_counter == 1);
|
|
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 100));
|
|
|
|
/* Add NS 101 */
|
|
g_active_ns_list = active_ns_list3;
|
|
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list3);
|
|
nvme_ctrlr_async_event_cb(&ctrlr.aer[0], &aer_cpl);
|
|
nvme_ctrlr_complete_queued_async_events(&ctrlr);
|
|
CU_ASSERT(g_aer_cb_counter == 2);
|
|
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 101));
|
|
|
|
g_active_ns_list = NULL;
|
|
g_active_ns_list_length = 0;
|
|
nvme_ctrlr_free_processes(&ctrlr);
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_identify_namespaces_iocs_specific_next(void)
|
|
{
|
|
struct spdk_nvme_ctrlr ctrlr = {};
|
|
uint32_t prev_nsid;
|
|
struct spdk_nvme_ns ns[5] = {};
|
|
struct spdk_nvme_ctrlr ns_ctrlr[5] = {};
|
|
int rc = 0;
|
|
int i;
|
|
|
|
RB_INIT(&ctrlr.ns);
|
|
for (i = 0; i < 5; i++) {
|
|
ns[i].id = i + 1;
|
|
ns[i].active = true;
|
|
}
|
|
|
|
CU_ASSERT(pthread_mutex_init(&ctrlr.ctrlr_lock, NULL) == 0);
|
|
|
|
ctrlr.cdata.nn = 5;
|
|
/* case 1: No first/next active NS, move on to the next state, expect: pass */
|
|
prev_nsid = 0;
|
|
ctrlr.active_ns_count = 0;
|
|
ctrlr.opts.admin_timeout_ms = NVME_TIMEOUT_INFINITE;
|
|
rc = nvme_ctrlr_identify_namespaces_iocs_specific_next(&ctrlr, prev_nsid);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES);
|
|
CU_ASSERT(ctrlr.state_timeout_tsc == NVME_TIMEOUT_INFINITE);
|
|
|
|
/* case 2: move on to the next active NS, and no namespace with (supported) iocs specific data found , expect: pass */
|
|
memset(&ctrlr.state, 0x00, sizeof(ctrlr.state));
|
|
memset(&ctrlr.state_timeout_tsc, 0x00, sizeof(ctrlr.state_timeout_tsc));
|
|
prev_nsid = 1;
|
|
for (i = 0; i < 5; i++) {
|
|
RB_INSERT(nvme_ns_tree, &ctrlr.ns, &ns[i]);
|
|
}
|
|
ctrlr.active_ns_count = 5;
|
|
ns[1].csi = SPDK_NVME_CSI_NVM;
|
|
ns[1].id = 2;
|
|
rc = nvme_ctrlr_identify_namespaces_iocs_specific_next(&ctrlr, prev_nsid);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES);
|
|
CU_ASSERT(ctrlr.state_timeout_tsc == NVME_TIMEOUT_INFINITE);
|
|
|
|
/* case 3: ns.csi is SPDK_NVME_CSI_ZNS, do not loop, expect: pass */
|
|
memset(&ctrlr.state, 0x00, sizeof(ctrlr.state));
|
|
memset(&ctrlr.state_timeout_tsc, 0x00, sizeof(ctrlr.state_timeout_tsc));
|
|
ctrlr.opts.admin_timeout_ms = NVME_TIMEOUT_INFINITE;
|
|
prev_nsid = 0;
|
|
ctrlr.active_ns_count = 5;
|
|
|
|
for (int i = 0; i < 5; i++) {
|
|
ns[i].csi = SPDK_NVME_CSI_NVM;
|
|
ns[i].id = i + 1;
|
|
ns[i].ctrlr = &ns_ctrlr[i];
|
|
}
|
|
ns[4].csi = SPDK_NVME_CSI_ZNS;
|
|
ns_ctrlr[4].opts.admin_timeout_ms = NVME_TIMEOUT_INFINITE;
|
|
|
|
rc = nvme_ctrlr_identify_namespaces_iocs_specific_next(&ctrlr, prev_nsid);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(ctrlr.state == 0);
|
|
CU_ASSERT(ctrlr.state_timeout_tsc == NVME_TIMEOUT_INFINITE);
|
|
CU_ASSERT(ns_ctrlr[4].state == NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC);
|
|
CU_ASSERT(ns_ctrlr[4].state_timeout_tsc == NVME_TIMEOUT_INFINITE);
|
|
|
|
for (int i = 0; i < 5; i++) {
|
|
nvme_ns_free_zns_specific_data(&ns[i]);
|
|
}
|
|
|
|
/* case 4: nvme_ctrlr_identify_ns_iocs_specific_async return 1, expect: false */
|
|
memset(&ctrlr.state, 0x00, sizeof(ctrlr.state));
|
|
memset(&ctrlr.state_timeout_tsc, 0x00, sizeof(ctrlr.state_timeout_tsc));
|
|
prev_nsid = 1;
|
|
ctrlr.active_ns_count = 5;
|
|
ns[1].csi = SPDK_NVME_CSI_ZNS;
|
|
g_fail_next_identify = true;
|
|
rc = nvme_ctrlr_identify_namespaces_iocs_specific_next(&ctrlr, prev_nsid);
|
|
CU_ASSERT(rc == 1);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ERROR);
|
|
CU_ASSERT(ctrlr.state_timeout_tsc == NVME_TIMEOUT_INFINITE);
|
|
|
|
CU_ASSERT(pthread_mutex_destroy(&ctrlr.ctrlr_lock) == 0);
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_set_supported_log_pages(void)
|
|
{
|
|
int rc;
|
|
struct spdk_nvme_ctrlr ctrlr = {};
|
|
|
|
/* ana supported */
|
|
memset(&ctrlr, 0, sizeof(ctrlr));
|
|
ctrlr.cdata.cmic.ana_reporting = true;
|
|
ctrlr.cdata.lpa.celp = 1;
|
|
ctrlr.cdata.nanagrpid = 1;
|
|
ctrlr.active_ns_count = 1;
|
|
|
|
rc = nvme_ctrlr_set_supported_log_pages(&ctrlr);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_LOG_ERROR] == true);
|
|
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] == true);
|
|
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] == true);
|
|
CU_ASSERT(ctrlr.ana_log_page_size == sizeof(struct spdk_nvme_ana_page) +
|
|
sizeof(struct spdk_nvme_ana_group_descriptor) * 1 + sizeof(uint32_t) * 1);
|
|
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS] == true);
|
|
free(ctrlr.ana_log_page);
|
|
free(ctrlr.copied_ana_desc);
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_set_intel_supported_log_pages(void)
|
|
{
|
|
DECLARE_AND_CONSTRUCT_CTRLR();
|
|
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
|
|
ctrlr.opts.admin_timeout_ms = NVME_TIMEOUT_INFINITE;
|
|
ctrlr.cdata.vid = SPDK_PCI_VID_INTEL;
|
|
ctrlr.state = NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES;
|
|
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES);
|
|
|
|
set_status_code = SPDK_NVME_SC_SUCCESS;
|
|
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES);
|
|
|
|
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_LOG_ERROR] == true);
|
|
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] == true);
|
|
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] == true);
|
|
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] == true);
|
|
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] == true);
|
|
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] == true);
|
|
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_INTEL_LOG_SMART] == true);
|
|
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] == true);
|
|
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
}
|
|
|
|
#define UT_ANA_DESC_SIZE (sizeof(struct spdk_nvme_ana_group_descriptor) + \
|
|
sizeof(uint32_t))
|
|
static void
|
|
test_nvme_ctrlr_parse_ana_log_page(void)
|
|
{
|
|
int rc, i;
|
|
struct spdk_nvme_ctrlr ctrlr = {};
|
|
struct spdk_nvme_ns ns[3] = {};
|
|
struct spdk_nvme_ana_page ana_hdr;
|
|
char _ana_desc[UT_ANA_DESC_SIZE];
|
|
struct spdk_nvme_ana_group_descriptor *ana_desc;
|
|
uint32_t offset;
|
|
|
|
RB_INIT(&ctrlr.ns);
|
|
for (i = 0; i < 3; i++) {
|
|
ns[i].id = i + 1;
|
|
ns[i].active = true;
|
|
RB_INSERT(nvme_ns_tree, &ctrlr.ns, &ns[i]);
|
|
}
|
|
|
|
CU_ASSERT(pthread_mutex_init(&ctrlr.ctrlr_lock, NULL) == 0);
|
|
|
|
ctrlr.cdata.nn = 3;
|
|
ctrlr.cdata.nanagrpid = 3;
|
|
ctrlr.active_ns_count = 3;
|
|
|
|
rc = nvme_ctrlr_init_ana_log_page(&ctrlr);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(ctrlr.ana_log_page != NULL);
|
|
CU_ASSERT(ctrlr.copied_ana_desc != NULL);
|
|
|
|
/*
|
|
* Create ANA log page data - There are three ANA groups.
|
|
* Each ANA group has a namespace and has a different ANA state.
|
|
*/
|
|
memset(&ana_hdr, 0, sizeof(ana_hdr));
|
|
ana_hdr.num_ana_group_desc = 3;
|
|
|
|
SPDK_CU_ASSERT_FATAL(sizeof(ana_hdr) <= ctrlr.ana_log_page_size);
|
|
memcpy((char *)ctrlr.ana_log_page, (char *)&ana_hdr, sizeof(ana_hdr));
|
|
offset = sizeof(ana_hdr);
|
|
|
|
ana_desc = (struct spdk_nvme_ana_group_descriptor *)_ana_desc;
|
|
memset(ana_desc, 0, UT_ANA_DESC_SIZE);
|
|
ana_desc->num_of_nsid = 1;
|
|
|
|
ana_desc->ana_group_id = 1;
|
|
ana_desc->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
|
|
ana_desc->nsid[0] = 3;
|
|
|
|
SPDK_CU_ASSERT_FATAL(offset + UT_ANA_DESC_SIZE <= ctrlr.ana_log_page_size);
|
|
memcpy((char *)ctrlr.ana_log_page + offset, (char *)ana_desc, UT_ANA_DESC_SIZE);
|
|
offset += UT_ANA_DESC_SIZE;
|
|
|
|
ana_desc->ana_group_id = 2;
|
|
ana_desc->ana_state = SPDK_NVME_ANA_NON_OPTIMIZED_STATE;
|
|
ana_desc->nsid[0] = 2;
|
|
|
|
SPDK_CU_ASSERT_FATAL(offset + UT_ANA_DESC_SIZE <= ctrlr.ana_log_page_size);
|
|
memcpy((char *)ctrlr.ana_log_page + offset, (char *)ana_desc, UT_ANA_DESC_SIZE);
|
|
offset += UT_ANA_DESC_SIZE;
|
|
|
|
ana_desc->ana_group_id = 3;
|
|
ana_desc->ana_state = SPDK_NVME_ANA_INACCESSIBLE_STATE;
|
|
ana_desc->nsid[0] = 1;
|
|
|
|
SPDK_CU_ASSERT_FATAL(offset + UT_ANA_DESC_SIZE <= ctrlr.ana_log_page_size);
|
|
memcpy((char *)ctrlr.ana_log_page + offset, (char *)ana_desc, UT_ANA_DESC_SIZE);
|
|
|
|
/* Parse the created ANA log page data, and update ANA states. */
|
|
rc = nvme_ctrlr_parse_ana_log_page(&ctrlr, nvme_ctrlr_update_ns_ana_states,
|
|
&ctrlr);
|
|
CU_ASSERT(rc == 0);
|
|
CU_ASSERT(ns[0].ana_group_id == 3);
|
|
CU_ASSERT(ns[0].ana_state == SPDK_NVME_ANA_INACCESSIBLE_STATE);
|
|
CU_ASSERT(ns[1].ana_group_id == 2);
|
|
CU_ASSERT(ns[1].ana_state == SPDK_NVME_ANA_NON_OPTIMIZED_STATE);
|
|
CU_ASSERT(ns[2].ana_group_id == 1);
|
|
CU_ASSERT(ns[2].ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE);
|
|
|
|
CU_ASSERT(pthread_mutex_destroy(&ctrlr.ctrlr_lock) == 0);
|
|
|
|
free(ctrlr.ana_log_page);
|
|
free(ctrlr.copied_ana_desc);
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_ana_resize(void)
|
|
{
|
|
DECLARE_AND_CONSTRUCT_CTRLR();
|
|
uint32_t active_ns_list[] = { 1, 2, 3, 4 };
|
|
struct spdk_nvme_ana_page ana_hdr = {
|
|
.change_count = 0,
|
|
.num_ana_group_desc = 1
|
|
};
|
|
uint8_t ana_desc_buf[sizeof(struct spdk_nvme_ana_group_descriptor) + 4 * sizeof(uint32_t)] = {};
|
|
struct spdk_nvme_ana_group_descriptor *ana_desc =
|
|
(struct spdk_nvme_ana_group_descriptor *)ana_desc_buf;
|
|
struct spdk_nvme_ns *ns;
|
|
union spdk_nvme_async_event_completion aer_event = {
|
|
.bits.async_event_type = SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE,
|
|
.bits.async_event_info = SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED
|
|
};
|
|
struct spdk_nvme_cpl aer_cpl = {
|
|
.status.sct = SPDK_NVME_SCT_GENERIC,
|
|
.status.sc = SPDK_NVME_SC_SUCCESS,
|
|
.cdw0 = aer_event.raw
|
|
};
|
|
uint32_t i;
|
|
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_add_process(&ctrlr, NULL) == 0);
|
|
|
|
ctrlr.vs.bits.mjr = 1;
|
|
ctrlr.vs.bits.mnr = 4;
|
|
ctrlr.vs.bits.ter = 0;
|
|
ctrlr.cdata.nn = 4096;
|
|
ctrlr.cdata.cmic.ana_reporting = true;
|
|
ctrlr.cdata.nanagrpid = 1;
|
|
|
|
ctrlr.state = NVME_CTRLR_STATE_CONFIGURE_AER;
|
|
/* Start with 2 active namespaces */
|
|
g_active_ns_list = active_ns_list;
|
|
g_active_ns_list_length = 2;
|
|
g_ana_hdr = &ana_hdr;
|
|
g_ana_descs = &ana_desc;
|
|
ana_desc->ana_group_id = 1;
|
|
ana_desc->ana_state = SPDK_NVME_ANA_NON_OPTIMIZED_STATE;
|
|
ana_desc->num_of_nsid = 2;
|
|
for (i = 0; i < ana_desc->num_of_nsid; ++i) {
|
|
ana_desc->nsid[i] = i + 1;
|
|
}
|
|
|
|
/* Bring controller to ready state */
|
|
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
|
|
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0);
|
|
}
|
|
|
|
for (i = 0; i < ana_desc->num_of_nsid; ++i) {
|
|
ns = spdk_nvme_ctrlr_get_ns(&ctrlr, i + 1);
|
|
CU_ASSERT(ns->ana_state == SPDK_NVME_ANA_NON_OPTIMIZED_STATE);
|
|
}
|
|
|
|
/* Add more namespaces */
|
|
g_active_ns_list_length = 4;
|
|
nvme_ctrlr_async_event_cb(&ctrlr.aer[0], &aer_cpl);
|
|
nvme_ctrlr_complete_queued_async_events(&ctrlr);
|
|
|
|
/* Update ANA log with new namespaces */
|
|
ana_desc->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
|
|
ana_desc->num_of_nsid = 4;
|
|
for (i = 0; i < ana_desc->num_of_nsid; ++i) {
|
|
ana_desc->nsid[i] = i + 1;
|
|
}
|
|
aer_event.bits.async_event_info = SPDK_NVME_ASYNC_EVENT_ANA_CHANGE;
|
|
aer_cpl.cdw0 = aer_event.raw;
|
|
nvme_ctrlr_async_event_cb(&ctrlr.aer[0], &aer_cpl);
|
|
nvme_ctrlr_complete_queued_async_events(&ctrlr);
|
|
|
|
for (i = 0; i < ana_desc->num_of_nsid; ++i) {
|
|
ns = spdk_nvme_ctrlr_get_ns(&ctrlr, i + 1);
|
|
CU_ASSERT(ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE);
|
|
}
|
|
|
|
g_active_ns_list = NULL;
|
|
g_active_ns_list_length = 0;
|
|
g_ana_hdr = NULL;
|
|
g_ana_descs = NULL;
|
|
nvme_ctrlr_free_processes(&ctrlr);
|
|
nvme_ctrlr_destruct(&ctrlr);
|
|
}
|
|
|
|
static void
|
|
test_nvme_ctrlr_get_memory_domains(void)
|
|
{
|
|
struct spdk_nvme_ctrlr ctrlr = {};
|
|
|
|
MOCK_SET(nvme_transport_ctrlr_get_memory_domains, 1);
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_memory_domains(&ctrlr, NULL, 0) == 1);
|
|
|
|
MOCK_SET(nvme_transport_ctrlr_get_memory_domains, 0);
|
|
CU_ASSERT(spdk_nvme_ctrlr_get_memory_domains(&ctrlr, NULL, 0) == 0);
|
|
|
|
MOCK_CLEAR(nvme_transport_ctrlr_get_memory_domains);
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
CU_pSuite suite = NULL;
|
|
unsigned int num_failures;
|
|
|
|
CU_set_error_action(CUEA_ABORT);
|
|
CU_initialize_registry();
|
|
|
|
suite = CU_add_suite("nvme_ctrlr", NULL, NULL);
|
|
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_init_en_1_rdy_0);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_init_en_1_rdy_1);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_init_en_0_rdy_0);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_init_en_0_rdy_1);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_init_en_0_rdy_0_ams_rr);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_init_en_0_rdy_0_ams_wrr);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_init_en_0_rdy_0_ams_vs);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_init_delay);
|
|
CU_ADD_TEST(suite, test_alloc_io_qpair_rr_1);
|
|
CU_ADD_TEST(suite, test_ctrlr_get_default_ctrlr_opts);
|
|
CU_ADD_TEST(suite, test_ctrlr_get_default_io_qpair_opts);
|
|
CU_ADD_TEST(suite, test_alloc_io_qpair_wrr_1);
|
|
CU_ADD_TEST(suite, test_alloc_io_qpair_wrr_2);
|
|
CU_ADD_TEST(suite, test_spdk_nvme_ctrlr_update_firmware);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_fail);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_construct_intel_support_log_page_list);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_set_supported_features);
|
|
CU_ADD_TEST(suite, test_spdk_nvme_ctrlr_doorbell_buffer_config);
|
|
#if 0 /* TODO: move to PCIe-specific unit test */
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_alloc_cmb);
|
|
#endif
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_test_active_ns);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_test_active_ns_error_case);
|
|
CU_ADD_TEST(suite, test_spdk_nvme_ctrlr_reconnect_io_qpair);
|
|
CU_ADD_TEST(suite, test_spdk_nvme_ctrlr_set_trid);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_init_set_nvmf_ioccsz);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_init_set_num_queues);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_init_set_keep_alive_timeout);
|
|
CU_ADD_TEST(suite, test_alloc_io_qpair_fail);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_add_remove_process);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_set_arbitration_feature);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_set_state);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_active_ns_list_v0);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_active_ns_list_v2);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_ns_mgmt);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_reset);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_aer_callback);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_ns_attr_changed);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_identify_namespaces_iocs_specific_next);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_set_supported_log_pages);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_set_intel_supported_log_pages);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_parse_ana_log_page);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_ana_resize);
|
|
CU_ADD_TEST(suite, test_nvme_ctrlr_get_memory_domains);
|
|
|
|
CU_basic_set_mode(CU_BRM_VERBOSE);
|
|
CU_basic_run_tests();
|
|
num_failures = CU_get_number_of_failures();
|
|
CU_cleanup_registry();
|
|
return num_failures;
|
|
}
|