Spdk/test/unit/lib/thread/thread.c/thread_ut.c
Shuhei Matsumoto 70ec72871e lib/thread: Fail spdk_thread_exit() if thread is already exiting
This is a preparation to support voluntary thread termination by
calling spdk_thread_exit().

Change spdk_thread_exit() to return -EINVAL if the thread is already
marked as exited.  This will be helpful to detect wrong call sequence
of voluntary thread termination.

Besides, update reactor shutdown and unit test framework shutdown
to incorporate this change accordingly.

Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Change-Id: I2296c61e273bf4d9580656dcbc2da0e8a8f3bcf7
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/671
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
2020-02-13 09:51:15 +00:00

864 lines
20 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk_cunit.h"
#include "spdk_internal/thread.h"
#include "thread/thread.c"
#include "common/lib/ut_multithread.c"
static int g_sched_rc = 0;
static int
_thread_schedule(struct spdk_thread *thread)
{
return g_sched_rc;
}
static void
thread_alloc(void)
{
struct spdk_thread *thread;
/* No schedule callback */
spdk_thread_lib_init(NULL, 0);
thread = spdk_thread_create(NULL, NULL);
SPDK_CU_ASSERT_FATAL(thread != NULL);
spdk_set_thread(thread);
spdk_thread_exit(thread);
spdk_thread_destroy(thread);
spdk_thread_lib_fini();
/* Schedule callback exists */
spdk_thread_lib_init(_thread_schedule, 0);
/* Scheduling succeeds */
g_sched_rc = 0;
thread = spdk_thread_create(NULL, NULL);
SPDK_CU_ASSERT_FATAL(thread != NULL);
spdk_set_thread(thread);
spdk_thread_exit(thread);
spdk_thread_destroy(thread);
/* Scheduling fails */
g_sched_rc = -1;
thread = spdk_thread_create(NULL, NULL);
SPDK_CU_ASSERT_FATAL(thread == NULL);
spdk_thread_lib_fini();
}
static void
send_msg_cb(void *ctx)
{
bool *done = ctx;
*done = true;
}
static void
thread_send_msg(void)
{
struct spdk_thread *thread0;
bool done = false;
allocate_threads(2);
set_thread(0);
thread0 = spdk_get_thread();
set_thread(1);
/* Simulate thread 1 sending a message to thread 0. */
spdk_thread_send_msg(thread0, send_msg_cb, &done);
/* We have not polled thread 0 yet, so done should be false. */
CU_ASSERT(!done);
/*
* Poll thread 1. The message was sent to thread 0, so this should be
* a nop and done should still be false.
*/
poll_thread(1);
CU_ASSERT(!done);
/*
* Poll thread 0. This should execute the message and done should then
* be true.
*/
poll_thread(0);
CU_ASSERT(done);
free_threads();
}
static int
poller_run_done(void *ctx)
{
bool *poller_run = ctx;
*poller_run = true;
return -1;
}
static void
thread_poller(void)
{
struct spdk_poller *poller = NULL;
bool poller_run = false;
allocate_threads(1);
set_thread(0);
MOCK_SET(spdk_get_ticks, 0);
/* Register a poller with no-wait time and test execution */
poller = spdk_poller_register(poller_run_done, &poller_run, 0);
CU_ASSERT(poller != NULL);
poll_threads();
CU_ASSERT(poller_run == true);
spdk_poller_unregister(&poller);
CU_ASSERT(poller == NULL);
/* Register a poller with 1000us wait time and test single execution */
poller_run = false;
poller = spdk_poller_register(poller_run_done, &poller_run, 1000);
CU_ASSERT(poller != NULL);
poll_threads();
CU_ASSERT(poller_run == false);
spdk_delay_us(1000);
poll_threads();
CU_ASSERT(poller_run == true);
poller_run = false;
poll_threads();
CU_ASSERT(poller_run == false);
spdk_delay_us(1000);
poll_threads();
CU_ASSERT(poller_run == true);
spdk_poller_unregister(&poller);
CU_ASSERT(poller == NULL);
free_threads();
}
struct poller_ctx {
struct spdk_poller *poller;
bool run;
};
static int
poller_run_pause(void *ctx)
{
struct poller_ctx *poller_ctx = ctx;
poller_ctx->run = true;
spdk_poller_pause(poller_ctx->poller);
return 0;
}
static void
poller_msg_pause_cb(void *ctx)
{
struct spdk_poller *poller = ctx;
spdk_poller_pause(poller);
}
static void
poller_msg_resume_cb(void *ctx)
{
struct spdk_poller *poller = ctx;
spdk_poller_resume(poller);
}
static void
poller_pause(void)
{
struct poller_ctx poller_ctx = {};
unsigned int delay[] = { 0, 1000 };
unsigned int i;
allocate_threads(1);
set_thread(0);
/* Register a poller that pauses itself */
poller_ctx.poller = spdk_poller_register(poller_run_pause, &poller_ctx, 0);
CU_ASSERT_PTR_NOT_NULL(poller_ctx.poller);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, true);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, false);
spdk_poller_unregister(&poller_ctx.poller);
CU_ASSERT_PTR_NULL(poller_ctx.poller);
/* Verify that resuming an unpaused poller doesn't do anything */
poller_ctx.poller = spdk_poller_register(poller_run_done, &poller_ctx.run, 0);
CU_ASSERT_PTR_NOT_NULL(poller_ctx.poller);
spdk_poller_resume(poller_ctx.poller);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, true);
/* Verify that pausing the same poller twice works too */
spdk_poller_pause(poller_ctx.poller);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, false);
spdk_poller_pause(poller_ctx.poller);
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, false);
spdk_poller_resume(poller_ctx.poller);
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, true);
/* Verify that a poller is run when it's resumed immediately after pausing */
poller_ctx.run = false;
spdk_poller_pause(poller_ctx.poller);
spdk_poller_resume(poller_ctx.poller);
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, true);
spdk_poller_unregister(&poller_ctx.poller);
CU_ASSERT_PTR_NULL(poller_ctx.poller);
/* Poll the thread to make sure the previous poller gets unregistered */
poll_threads();
CU_ASSERT_EQUAL(spdk_thread_has_pollers(spdk_get_thread()), false);
/* Verify that it's possible to unregister a paused poller */
poller_ctx.poller = spdk_poller_register(poller_run_done, &poller_ctx.run, 0);
CU_ASSERT_PTR_NOT_NULL(poller_ctx.poller);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, true);
spdk_poller_pause(poller_ctx.poller);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, false);
spdk_poller_unregister(&poller_ctx.poller);
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, false);
CU_ASSERT_EQUAL(spdk_thread_has_pollers(spdk_get_thread()), false);
/* Register pollers with 0 and 1000us wait time and pause/resume them */
for (i = 0; i < SPDK_COUNTOF(delay); ++i) {
poller_ctx.poller = spdk_poller_register(poller_run_done, &poller_ctx.run, delay[i]);
CU_ASSERT_PTR_NOT_NULL(poller_ctx.poller);
spdk_delay_us(delay[i]);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, true);
spdk_poller_pause(poller_ctx.poller);
spdk_delay_us(delay[i]);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, false);
spdk_poller_resume(poller_ctx.poller);
spdk_delay_us(delay[i]);
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, true);
/* Verify that the poller can be paused/resumed from spdk_thread_send_msg */
spdk_thread_send_msg(spdk_get_thread(), poller_msg_pause_cb, poller_ctx.poller);
spdk_delay_us(delay[i]);
poller_ctx.run = false;
poll_threads();
CU_ASSERT_EQUAL(poller_ctx.run, false);
spdk_thread_send_msg(spdk_get_thread(), poller_msg_resume_cb, poller_ctx.poller);
poll_threads();
if (delay[i] > 0) {
spdk_delay_us(delay[i]);
poll_threads();
}
CU_ASSERT_EQUAL(poller_ctx.run, true);
spdk_poller_unregister(&poller_ctx.poller);
CU_ASSERT_PTR_NULL(poller_ctx.poller);
}
free_threads();
}
static void
for_each_cb(void *ctx)
{
int *count = ctx;
(*count)++;
}
static void
thread_for_each(void)
{
int count = 0;
int i;
allocate_threads(3);
set_thread(0);
spdk_for_each_thread(for_each_cb, &count, for_each_cb);
/* We have not polled thread 0 yet, so count should be 0 */
CU_ASSERT(count == 0);
/* Poll each thread to verify the message is passed to each */
for (i = 0; i < 3; i++) {
poll_thread(i);
CU_ASSERT(count == (i + 1));
}
/*
* After each thread is called, the completion calls it
* one more time.
*/
poll_thread(0);
CU_ASSERT(count == 4);
free_threads();
}
static int
channel_create(void *io_device, void *ctx_buf)
{
int *ch_count = io_device;
(*ch_count)++;
return 0;
}
static void
channel_destroy(void *io_device, void *ctx_buf)
{
int *ch_count = io_device;
(*ch_count)--;
}
static void
channel_msg(struct spdk_io_channel_iter *i)
{
int *msg_count = spdk_io_channel_iter_get_ctx(i);
(*msg_count)++;
spdk_for_each_channel_continue(i, 0);
}
static void
channel_cpl(struct spdk_io_channel_iter *i, int status)
{
int *msg_count = spdk_io_channel_iter_get_ctx(i);
(*msg_count)++;
}
static void
for_each_channel_remove(void)
{
struct spdk_io_channel *ch0, *ch1, *ch2;
int ch_count = 0;
int msg_count = 0;
allocate_threads(3);
set_thread(0);
spdk_io_device_register(&ch_count, channel_create, channel_destroy, sizeof(int), NULL);
ch0 = spdk_get_io_channel(&ch_count);
set_thread(1);
ch1 = spdk_get_io_channel(&ch_count);
set_thread(2);
ch2 = spdk_get_io_channel(&ch_count);
CU_ASSERT(ch_count == 3);
/*
* Test that io_channel handles the case where we start to iterate through
* the channels, and during the iteration, one of the channels is deleted.
* This is done in some different and sometimes non-intuitive orders, because
* some operations are deferred and won't execute until their threads are
* polled.
*
* Case #1: Put the I/O channel before spdk_for_each_channel.
*/
set_thread(0);
spdk_put_io_channel(ch0);
CU_ASSERT(ch_count == 3);
poll_threads();
CU_ASSERT(ch_count == 2);
spdk_for_each_channel(&ch_count, channel_msg, &msg_count, channel_cpl);
CU_ASSERT(msg_count == 0);
poll_threads();
CU_ASSERT(msg_count == 3);
msg_count = 0;
/*
* Case #2: Put the I/O channel after spdk_for_each_channel, but before
* thread 0 is polled.
*/
ch0 = spdk_get_io_channel(&ch_count);
CU_ASSERT(ch_count == 3);
spdk_for_each_channel(&ch_count, channel_msg, &msg_count, channel_cpl);
spdk_put_io_channel(ch0);
CU_ASSERT(ch_count == 3);
poll_threads();
CU_ASSERT(ch_count == 2);
CU_ASSERT(msg_count == 4);
set_thread(1);
spdk_put_io_channel(ch1);
CU_ASSERT(ch_count == 2);
set_thread(2);
spdk_put_io_channel(ch2);
CU_ASSERT(ch_count == 2);
poll_threads();
CU_ASSERT(ch_count == 0);
spdk_io_device_unregister(&ch_count, NULL);
poll_threads();
free_threads();
}
struct unreg_ctx {
bool ch_done;
bool foreach_done;
};
static void
unreg_ch_done(struct spdk_io_channel_iter *i)
{
struct unreg_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
ctx->ch_done = true;
SPDK_CU_ASSERT_FATAL(i->cur_thread != NULL);
spdk_for_each_channel_continue(i, 0);
}
static void
unreg_foreach_done(struct spdk_io_channel_iter *i, int status)
{
struct unreg_ctx *ctx = spdk_io_channel_iter_get_ctx(i);
ctx->foreach_done = true;
}
static void
for_each_channel_unreg(void)
{
struct spdk_io_channel *ch0;
struct io_device *dev;
struct unreg_ctx ctx = {};
int io_target;
allocate_threads(1);
set_thread(0);
CU_ASSERT(TAILQ_EMPTY(&g_io_devices));
spdk_io_device_register(&io_target, channel_create, channel_destroy, sizeof(int), NULL);
CU_ASSERT(!TAILQ_EMPTY(&g_io_devices));
dev = TAILQ_FIRST(&g_io_devices);
SPDK_CU_ASSERT_FATAL(dev != NULL);
CU_ASSERT(TAILQ_NEXT(dev, tailq) == NULL);
ch0 = spdk_get_io_channel(&io_target);
spdk_for_each_channel(&io_target, unreg_ch_done, &ctx, unreg_foreach_done);
spdk_io_device_unregister(&io_target, NULL);
/*
* There is an outstanding foreach call on the io_device, so the unregister should not
* have removed the device.
*/
CU_ASSERT(dev == TAILQ_FIRST(&g_io_devices));
spdk_io_device_register(&io_target, channel_create, channel_destroy, sizeof(int), NULL);
/*
* There is already a device registered at &io_target, so a new io_device should not
* have been added to g_io_devices.
*/
CU_ASSERT(dev == TAILQ_FIRST(&g_io_devices));
CU_ASSERT(TAILQ_NEXT(dev, tailq) == NULL);
poll_thread(0);
CU_ASSERT(ctx.ch_done == true);
CU_ASSERT(ctx.foreach_done == true);
/*
* There are no more foreach operations outstanding, so we can unregister the device,
* even though a channel still exists for the device.
*/
spdk_io_device_unregister(&io_target, NULL);
CU_ASSERT(TAILQ_EMPTY(&g_io_devices));
set_thread(0);
spdk_put_io_channel(ch0);
poll_threads();
free_threads();
}
static void
thread_name(void)
{
struct spdk_thread *thread;
const char *name;
spdk_thread_lib_init(NULL, 0);
/* Create thread with no name, which automatically generates one */
thread = spdk_thread_create(NULL, NULL);
spdk_set_thread(thread);
thread = spdk_get_thread();
SPDK_CU_ASSERT_FATAL(thread != NULL);
name = spdk_thread_get_name(thread);
CU_ASSERT(name != NULL);
spdk_thread_exit(thread);
spdk_thread_destroy(thread);
/* Create thread named "test_thread" */
thread = spdk_thread_create("test_thread", NULL);
spdk_set_thread(thread);
thread = spdk_get_thread();
SPDK_CU_ASSERT_FATAL(thread != NULL);
name = spdk_thread_get_name(thread);
SPDK_CU_ASSERT_FATAL(name != NULL);
CU_ASSERT(strcmp(name, "test_thread") == 0);
spdk_thread_exit(thread);
spdk_thread_destroy(thread);
spdk_thread_lib_fini();
}
static uint64_t g_device1;
static uint64_t g_device2;
static uint64_t g_device3;
static uint64_t g_ctx1 = 0x1111;
static uint64_t g_ctx2 = 0x2222;
static int g_create_cb_calls = 0;
static int g_destroy_cb_calls = 0;
static int
create_cb_1(void *io_device, void *ctx_buf)
{
CU_ASSERT(io_device == &g_device1);
*(uint64_t *)ctx_buf = g_ctx1;
g_create_cb_calls++;
return 0;
}
static void
destroy_cb_1(void *io_device, void *ctx_buf)
{
CU_ASSERT(io_device == &g_device1);
CU_ASSERT(*(uint64_t *)ctx_buf == g_ctx1);
g_destroy_cb_calls++;
}
static int
create_cb_2(void *io_device, void *ctx_buf)
{
CU_ASSERT(io_device == &g_device2);
*(uint64_t *)ctx_buf = g_ctx2;
g_create_cb_calls++;
return 0;
}
static void
destroy_cb_2(void *io_device, void *ctx_buf)
{
CU_ASSERT(io_device == &g_device2);
CU_ASSERT(*(uint64_t *)ctx_buf == g_ctx2);
g_destroy_cb_calls++;
}
static void
channel(void)
{
struct spdk_io_channel *ch1, *ch2;
void *ctx;
allocate_threads(1);
set_thread(0);
spdk_io_device_register(&g_device1, create_cb_1, destroy_cb_1, sizeof(g_ctx1), NULL);
spdk_io_device_register(&g_device2, create_cb_2, destroy_cb_2, sizeof(g_ctx2), NULL);
g_create_cb_calls = 0;
ch1 = spdk_get_io_channel(&g_device1);
CU_ASSERT(g_create_cb_calls == 1);
SPDK_CU_ASSERT_FATAL(ch1 != NULL);
g_create_cb_calls = 0;
ch2 = spdk_get_io_channel(&g_device1);
CU_ASSERT(g_create_cb_calls == 0);
CU_ASSERT(ch1 == ch2);
SPDK_CU_ASSERT_FATAL(ch2 != NULL);
g_destroy_cb_calls = 0;
spdk_put_io_channel(ch2);
poll_threads();
CU_ASSERT(g_destroy_cb_calls == 0);
g_create_cb_calls = 0;
ch2 = spdk_get_io_channel(&g_device2);
CU_ASSERT(g_create_cb_calls == 1);
CU_ASSERT(ch1 != ch2);
SPDK_CU_ASSERT_FATAL(ch2 != NULL);
ctx = spdk_io_channel_get_ctx(ch2);
CU_ASSERT(*(uint64_t *)ctx == g_ctx2);
g_destroy_cb_calls = 0;
spdk_put_io_channel(ch1);
poll_threads();
CU_ASSERT(g_destroy_cb_calls == 1);
g_destroy_cb_calls = 0;
spdk_put_io_channel(ch2);
poll_threads();
CU_ASSERT(g_destroy_cb_calls == 1);
ch1 = spdk_get_io_channel(&g_device3);
CU_ASSERT(ch1 == NULL);
spdk_io_device_unregister(&g_device1, NULL);
poll_threads();
spdk_io_device_unregister(&g_device2, NULL);
poll_threads();
CU_ASSERT(TAILQ_EMPTY(&g_io_devices));
free_threads();
CU_ASSERT(TAILQ_EMPTY(&g_threads));
}
static int
create_cb(void *io_device, void *ctx_buf)
{
uint64_t *refcnt = (uint64_t *)ctx_buf;
CU_ASSERT(*refcnt == 0);
*refcnt = 1;
return 0;
}
static void
destroy_cb(void *io_device, void *ctx_buf)
{
uint64_t *refcnt = (uint64_t *)ctx_buf;
CU_ASSERT(*refcnt == 1);
*refcnt = 0;
}
/**
* This test is checking that a sequence of get, put, get, put without allowing
* the deferred put operation to complete doesn't result in releasing the memory
* for the channel twice.
*/
static void
channel_destroy_races(void)
{
uint64_t device;
struct spdk_io_channel *ch;
allocate_threads(1);
set_thread(0);
spdk_io_device_register(&device, create_cb, destroy_cb, sizeof(uint64_t), NULL);
ch = spdk_get_io_channel(&device);
SPDK_CU_ASSERT_FATAL(ch != NULL);
spdk_put_io_channel(ch);
ch = spdk_get_io_channel(&device);
SPDK_CU_ASSERT_FATAL(ch != NULL);
spdk_put_io_channel(ch);
poll_threads();
spdk_io_device_unregister(&device, NULL);
poll_threads();
CU_ASSERT(TAILQ_EMPTY(&g_io_devices));
free_threads();
CU_ASSERT(TAILQ_EMPTY(&g_threads));
}
static void
thread_exit(void)
{
struct spdk_thread *thread;
struct spdk_io_channel *ch;
void *ctx;
bool done1 = false, done2 = false;
int rc __attribute__((unused));
allocate_threads(4);
/* Test all pending messages are reaped for the thread marked as exited. */
set_thread(0);
thread = spdk_get_thread();
/* Sending message to thread 0 will be accepted. */
set_thread(1);
rc = spdk_thread_send_msg(thread, send_msg_cb, &done1);
CU_ASSERT(rc == 0);
CU_ASSERT(!done1);
/* Mark thread 0 as exited. */
set_thread(0);
spdk_thread_exit(thread);
/* Sending message to thread 0 will be rejected. */
set_thread(1);
rc = spdk_thread_send_msg(thread, send_msg_cb, &done2);
CU_ASSERT(rc == -EIO);
/* Thread 0 will reap pending message. */
poll_thread(0);
CU_ASSERT(done1 == true);
CU_ASSERT(done2 == false);
/* Test releasing I/O channel is reaped even after the thread is marked
* as exited.
*/
set_thread(2);
spdk_io_device_register(&g_device1, create_cb_1, destroy_cb_1, sizeof(g_ctx1), NULL);
g_create_cb_calls = 0;
ch = spdk_get_io_channel(&g_device1);
CU_ASSERT(g_create_cb_calls == 1);
SPDK_CU_ASSERT_FATAL(ch != NULL);
ctx = spdk_io_channel_get_ctx(ch);
CU_ASSERT(*(uint64_t *)ctx == g_ctx1);
g_destroy_cb_calls = 0;
spdk_put_io_channel(ch);
thread = spdk_get_thread();
spdk_thread_exit(thread);
/* Thread will not be able to get I/O channel after it is marked as exited. */
ch = spdk_get_io_channel(&g_device1);
CU_ASSERT(ch == NULL);
poll_threads();
CU_ASSERT(g_destroy_cb_calls == 1);
spdk_io_device_unregister(&g_device1, NULL);
poll_threads();
/* Test call spdk_thread_exit() is only once for a single thread. */
set_thread(3);
thread = spdk_get_thread();
CU_ASSERT(spdk_thread_exit(thread) == 0);
CU_ASSERT(spdk_thread_exit(thread) == -EINVAL);
free_threads();
}
int
main(int argc, char **argv)
{
CU_pSuite suite = NULL;
unsigned int num_failures;
if (CU_initialize_registry() != CUE_SUCCESS) {
return CU_get_error();
}
suite = CU_add_suite("io_channel", NULL, NULL);
if (suite == NULL) {
CU_cleanup_registry();
return CU_get_error();
}
if (
CU_add_test(suite, "thread_alloc", thread_alloc) == NULL ||
CU_add_test(suite, "thread_send_msg", thread_send_msg) == NULL ||
CU_add_test(suite, "thread_poller", thread_poller) == NULL ||
CU_add_test(suite, "poller_pause", poller_pause) == NULL ||
CU_add_test(suite, "thread_for_each", thread_for_each) == NULL ||
CU_add_test(suite, "for_each_channel_remove", for_each_channel_remove) == NULL ||
CU_add_test(suite, "for_each_channel_unreg", for_each_channel_unreg) == NULL ||
CU_add_test(suite, "thread_name", thread_name) == NULL ||
CU_add_test(suite, "channel", channel) == NULL ||
CU_add_test(suite, "channel_destroy_races", channel_destroy_races) == NULL ||
CU_add_test(suite, "thread_exit", thread_exit) == NULL
) {
CU_cleanup_registry();
return CU_get_error();
}
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
return num_failures;
}