In DPDK 22.11 rte_cryptodev_sym_session_create() now takes a single mempool with element size big enough to hold session data and session private data. Signed-off-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com> Change-Id: I6c9db063825843a903d1ff84dd8d77f198a841a1 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/15435 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Shuhei Matsumoto <smatsumoto@nvidia.com> Reviewed-by: Aleksey Marchuk <alexeymar@nvidia.com> Community-CI: Mellanox Build Bot
2129 lines
68 KiB
C
2129 lines
68 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright (C) 2018 Intel Corporation.
|
|
* All rights reserved.
|
|
* Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES.
|
|
* All rights reserved.
|
|
*/
|
|
|
|
#include "vbdev_crypto.h"
|
|
|
|
#include "spdk/env.h"
|
|
#include "spdk/likely.h"
|
|
#include "spdk/endian.h"
|
|
#include "spdk/thread.h"
|
|
#include "spdk/bdev_module.h"
|
|
#include "spdk/log.h"
|
|
#include "spdk/hexlify.h"
|
|
|
|
#include <rte_config.h>
|
|
#include <rte_bus_vdev.h>
|
|
#include <rte_crypto.h>
|
|
#include <rte_cryptodev.h>
|
|
#include <rte_mbuf_dyn.h>
|
|
#include <rte_version.h>
|
|
|
|
/* Used to store IO context in mbuf */
|
|
static const struct rte_mbuf_dynfield rte_mbuf_dynfield_io_context = {
|
|
.name = "context_bdev_io",
|
|
.size = sizeof(uint64_t),
|
|
.align = __alignof__(uint64_t),
|
|
.flags = 0,
|
|
};
|
|
static int g_mbuf_offset;
|
|
|
|
/* To add support for new device types, follow the examples of the following...
|
|
* Note that the string names are defined by the DPDK PMD in question so be
|
|
* sure to use the exact names.
|
|
*/
|
|
#define MAX_NUM_DRV_TYPES 3
|
|
|
|
/* The VF spread is the number of queue pairs between virtual functions, we use this to
|
|
* load balance the QAT device.
|
|
*/
|
|
#define QAT_VF_SPREAD 32
|
|
static uint8_t g_qat_total_qp = 0;
|
|
static uint8_t g_next_qat_index;
|
|
|
|
const char *g_driver_names[MAX_NUM_DRV_TYPES] = { AESNI_MB, QAT, MLX5 };
|
|
|
|
/* Global list of available crypto devices. */
|
|
struct vbdev_dev {
|
|
struct rte_cryptodev_info cdev_info; /* includes device friendly name */
|
|
uint8_t cdev_id; /* identifier for the device */
|
|
TAILQ_ENTRY(vbdev_dev) link;
|
|
};
|
|
static TAILQ_HEAD(, vbdev_dev) g_vbdev_devs = TAILQ_HEAD_INITIALIZER(g_vbdev_devs);
|
|
|
|
/* Global list and lock for unique device/queue pair combos. We keep 1 list per supported PMD
|
|
* so that we can optimize per PMD where it make sense. For example, with QAT there an optimal
|
|
* pattern for assigning queue pairs where with AESNI there is not.
|
|
*/
|
|
struct device_qp {
|
|
struct vbdev_dev *device; /* ptr to crypto device */
|
|
uint8_t qp; /* queue pair for this node */
|
|
bool in_use; /* whether this node is in use or not */
|
|
uint8_t index; /* used by QAT to load balance placement of qpairs */
|
|
TAILQ_ENTRY(device_qp) link;
|
|
};
|
|
static TAILQ_HEAD(, device_qp) g_device_qp_qat = TAILQ_HEAD_INITIALIZER(g_device_qp_qat);
|
|
static TAILQ_HEAD(, device_qp) g_device_qp_aesni_mb = TAILQ_HEAD_INITIALIZER(g_device_qp_aesni_mb);
|
|
static TAILQ_HEAD(, device_qp) g_device_qp_mlx5 = TAILQ_HEAD_INITIALIZER(g_device_qp_mlx5);
|
|
static pthread_mutex_t g_device_qp_lock = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
|
|
/* In order to limit the number of resources we need to do one crypto
|
|
* operation per LBA (we use LBA as IV), we tell the bdev layer that
|
|
* our max IO size is something reasonable. Units here are in bytes.
|
|
*/
|
|
#define CRYPTO_MAX_IO (64 * 1024)
|
|
|
|
/* This controls how many ops will be dequeued from the crypto driver in one run
|
|
* of the poller. It is mainly a performance knob as it effectively determines how
|
|
* much work the poller has to do. However even that can vary between crypto drivers
|
|
* as the AESNI_MB driver for example does all the crypto work on dequeue whereas the
|
|
* QAT driver just dequeues what has been completed already.
|
|
*/
|
|
#define MAX_DEQUEUE_BURST_SIZE 64
|
|
|
|
/* When enqueueing, we need to supply the crypto driver with an array of pointers to
|
|
* operation structs. As each of these can be max 512B, we can adjust the CRYPTO_MAX_IO
|
|
* value in conjunction with the other defines to make sure we're not using crazy amounts
|
|
* of memory. All of these numbers can and probably should be adjusted based on the
|
|
* workload. By default we'll use the worst case (smallest) block size for the
|
|
* minimum number of array entries. As an example, a CRYPTO_MAX_IO size of 64K with 512B
|
|
* blocks would give us an enqueue array size of 128.
|
|
*/
|
|
#define MAX_ENQUEUE_ARRAY_SIZE (CRYPTO_MAX_IO / 512)
|
|
|
|
/* The number of MBUFS we need must be a power of two and to support other small IOs
|
|
* in addition to the limits mentioned above, we go to the next power of two. It is
|
|
* big number because it is one mempool for source and destination mbufs. It may
|
|
* need to be bigger to support multiple crypto drivers at once.
|
|
*/
|
|
#define NUM_MBUFS 32768
|
|
#define POOL_CACHE_SIZE 256
|
|
#define MAX_CRYPTO_VOLUMES 128
|
|
#define NUM_SESSIONS (2 * MAX_CRYPTO_VOLUMES)
|
|
#define SESS_MEMPOOL_CACHE_SIZE 0
|
|
uint8_t g_number_of_claimed_volumes = 0;
|
|
|
|
/* This is the max number of IOs we can supply to any crypto device QP at one time.
|
|
* It can vary between drivers.
|
|
*/
|
|
#define CRYPTO_QP_DESCRIPTORS 2048
|
|
|
|
/* At this moment DPDK descriptors allocation for mlx5 has some issues. We use 512
|
|
* as an compromise value between performance and the time spent for initialization. */
|
|
#define CRYPTO_QP_DESCRIPTORS_MLX5 512
|
|
|
|
#define AESNI_MB_NUM_QP 64
|
|
|
|
/* Common for supported devices. */
|
|
#define DEFAULT_NUM_XFORMS 2
|
|
#define IV_OFFSET (sizeof(struct rte_crypto_op) + \
|
|
sizeof(struct rte_crypto_sym_op) + \
|
|
(DEFAULT_NUM_XFORMS * \
|
|
sizeof(struct rte_crypto_sym_xform)))
|
|
#define IV_LENGTH 16
|
|
#define QUEUED_OP_OFFSET (IV_OFFSET + IV_LENGTH)
|
|
|
|
static void _complete_internal_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
|
|
static void _complete_internal_read(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
|
|
static void _complete_internal_write(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
|
|
static void vbdev_crypto_examine(struct spdk_bdev *bdev);
|
|
static int vbdev_crypto_claim(const char *bdev_name);
|
|
static void vbdev_crypto_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io);
|
|
|
|
struct bdev_names {
|
|
struct vbdev_crypto_opts *opts;
|
|
TAILQ_ENTRY(bdev_names) link;
|
|
};
|
|
|
|
/* List of crypto_bdev names and their base bdevs via configuration file. */
|
|
static TAILQ_HEAD(, bdev_names) g_bdev_names = TAILQ_HEAD_INITIALIZER(g_bdev_names);
|
|
|
|
struct vbdev_crypto {
|
|
struct spdk_bdev *base_bdev; /* the thing we're attaching to */
|
|
struct spdk_bdev_desc *base_desc; /* its descriptor we get from open */
|
|
struct spdk_bdev crypto_bdev; /* the crypto virtual bdev */
|
|
struct vbdev_crypto_opts *opts; /* crypto options such as key, cipher */
|
|
uint32_t qp_desc_nr; /* number of qp descriptors */
|
|
void *session_encrypt; /* encryption session for this bdev */
|
|
void *session_decrypt; /* decryption session for this bdev */
|
|
struct rte_crypto_sym_xform cipher_xform; /* crypto control struct for this bdev */
|
|
TAILQ_ENTRY(vbdev_crypto) link;
|
|
struct spdk_thread *thread; /* thread where base device is opened */
|
|
};
|
|
|
|
/* List of virtual bdevs and associated info for each. We keep the device friendly name here even
|
|
* though its also in the device struct because we use it early on.
|
|
*/
|
|
static TAILQ_HEAD(, vbdev_crypto) g_vbdev_crypto = TAILQ_HEAD_INITIALIZER(g_vbdev_crypto);
|
|
|
|
/* Shared mempools between all devices on this system */
|
|
static struct rte_mempool *g_session_mp = NULL;
|
|
static struct rte_mempool *g_session_mp_priv = NULL;
|
|
static struct rte_mempool *g_mbuf_mp = NULL; /* mbuf mempool */
|
|
static struct rte_mempool *g_crypto_op_mp = NULL; /* crypto operations, must be rte* mempool */
|
|
|
|
static struct rte_mbuf_ext_shared_info g_shinfo = {}; /* used by DPDK mbuf macro */
|
|
|
|
/* For queueing up crypto operations that we can't submit for some reason */
|
|
struct vbdev_crypto_op {
|
|
uint8_t cdev_id;
|
|
uint8_t qp;
|
|
struct rte_crypto_op *crypto_op;
|
|
struct spdk_bdev_io *bdev_io;
|
|
TAILQ_ENTRY(vbdev_crypto_op) link;
|
|
};
|
|
#define QUEUED_OP_LENGTH (sizeof(struct vbdev_crypto_op))
|
|
|
|
/* The crypto vbdev channel struct. It is allocated and freed on my behalf by the io channel code.
|
|
* We store things in here that are needed on per thread basis like the base_channel for this thread,
|
|
* and the poller for this thread.
|
|
*/
|
|
struct crypto_io_channel {
|
|
struct spdk_io_channel *base_ch; /* IO channel of base device */
|
|
struct spdk_poller *poller; /* completion poller */
|
|
struct device_qp *device_qp; /* unique device/qp combination for this channel */
|
|
TAILQ_HEAD(, spdk_bdev_io) pending_cry_ios; /* outstanding operations to the crypto device */
|
|
struct spdk_io_channel_iter *iter; /* used with for_each_channel in reset */
|
|
TAILQ_HEAD(, vbdev_crypto_op) queued_cry_ops; /* queued for re-submission to CryptoDev */
|
|
};
|
|
|
|
/* This is the crypto per IO context that the bdev layer allocates for us opaquely and attaches to
|
|
* each IO for us.
|
|
*/
|
|
struct crypto_bdev_io {
|
|
int cryop_cnt_remaining; /* counter used when completing crypto ops */
|
|
struct crypto_io_channel *crypto_ch; /* need to store for crypto completion handling */
|
|
struct vbdev_crypto *crypto_bdev; /* the crypto node struct associated with this IO */
|
|
struct spdk_bdev_io *orig_io; /* the original IO */
|
|
struct spdk_bdev_io *read_io; /* the read IO we issued */
|
|
int8_t bdev_io_status; /* the status we'll report back on the bdev IO */
|
|
bool on_pending_list;
|
|
/* Used for the single contiguous buffer that serves as the crypto destination target for writes */
|
|
uint64_t aux_num_blocks; /* num of blocks for the contiguous buffer */
|
|
uint64_t aux_offset_blocks; /* block offset on media */
|
|
void *aux_buf_raw; /* raw buffer that the bdev layer gave us for write buffer */
|
|
struct iovec aux_buf_iov; /* iov representing aligned contig write buffer */
|
|
|
|
/* for bdev_io_wait */
|
|
struct spdk_bdev_io_wait_entry bdev_io_wait;
|
|
struct spdk_io_channel *ch;
|
|
};
|
|
|
|
/* Called by vbdev_crypto_init_crypto_drivers() to init each discovered crypto device */
|
|
static int
|
|
create_vbdev_dev(uint8_t index, uint16_t num_lcores)
|
|
{
|
|
struct vbdev_dev *device;
|
|
uint8_t j, cdev_id, cdrv_id;
|
|
struct device_qp *dev_qp;
|
|
struct device_qp *tmp_qp;
|
|
uint32_t qp_desc_nr;
|
|
int rc;
|
|
TAILQ_HEAD(device_qps, device_qp) *dev_qp_head;
|
|
|
|
device = calloc(1, sizeof(struct vbdev_dev));
|
|
if (!device) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Get details about this device. */
|
|
rte_cryptodev_info_get(index, &device->cdev_info);
|
|
cdrv_id = device->cdev_info.driver_id;
|
|
cdev_id = device->cdev_id = index;
|
|
|
|
/* QAT_ASYM devices are not supported at this time. */
|
|
if (strcmp(device->cdev_info.driver_name, QAT_ASYM) == 0) {
|
|
free(device);
|
|
return 0;
|
|
}
|
|
|
|
/* Before going any further, make sure we have enough resources for this
|
|
* device type to function. We need a unique queue pair per core across each
|
|
* device type to remain lockless....
|
|
*/
|
|
if ((rte_cryptodev_device_count_by_driver(cdrv_id) *
|
|
device->cdev_info.max_nb_queue_pairs) < num_lcores) {
|
|
SPDK_ERRLOG("Insufficient unique queue pairs available for %s\n",
|
|
device->cdev_info.driver_name);
|
|
SPDK_ERRLOG("Either add more crypto devices or decrease core count\n");
|
|
rc = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
/* Setup queue pairs. */
|
|
struct rte_cryptodev_config conf = {
|
|
.nb_queue_pairs = device->cdev_info.max_nb_queue_pairs,
|
|
.socket_id = SPDK_ENV_SOCKET_ID_ANY
|
|
};
|
|
|
|
rc = rte_cryptodev_configure(cdev_id, &conf);
|
|
if (rc < 0) {
|
|
SPDK_ERRLOG("Failed to configure cryptodev %u: error %d\n",
|
|
cdev_id, rc);
|
|
rc = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
/* Select the right device/qp list based on driver name
|
|
* or error if it does not exist.
|
|
*/
|
|
if (strcmp(device->cdev_info.driver_name, QAT) == 0) {
|
|
dev_qp_head = (struct device_qps *)&g_device_qp_qat;
|
|
qp_desc_nr = CRYPTO_QP_DESCRIPTORS;
|
|
} else if (strcmp(device->cdev_info.driver_name, AESNI_MB) == 0) {
|
|
dev_qp_head = (struct device_qps *)&g_device_qp_aesni_mb;
|
|
qp_desc_nr = CRYPTO_QP_DESCRIPTORS;
|
|
} else if (strcmp(device->cdev_info.driver_name, MLX5) == 0) {
|
|
dev_qp_head = (struct device_qps *)&g_device_qp_mlx5;
|
|
qp_desc_nr = CRYPTO_QP_DESCRIPTORS_MLX5;
|
|
} else {
|
|
SPDK_ERRLOG("Failed to start device %u. Invalid driver name \"%s\"\n",
|
|
cdev_id, device->cdev_info.driver_name);
|
|
rc = -EINVAL;
|
|
goto err_qp_setup;
|
|
}
|
|
|
|
struct rte_cryptodev_qp_conf qp_conf = {
|
|
.nb_descriptors = qp_desc_nr,
|
|
.mp_session = g_session_mp,
|
|
#if RTE_VERSION < RTE_VERSION_NUM(22, 11, 0, 0)
|
|
.mp_session_private = g_session_mp_priv,
|
|
#endif
|
|
};
|
|
|
|
/* Pre-setup all potential qpairs now and assign them in the channel
|
|
* callback. If we were to create them there, we'd have to stop the
|
|
* entire device affecting all other threads that might be using it
|
|
* even on other queue pairs.
|
|
*/
|
|
for (j = 0; j < device->cdev_info.max_nb_queue_pairs; j++) {
|
|
rc = rte_cryptodev_queue_pair_setup(cdev_id, j, &qp_conf, SOCKET_ID_ANY);
|
|
if (rc < 0) {
|
|
SPDK_ERRLOG("Failed to setup queue pair %u on "
|
|
"cryptodev %u: error %d\n", j, cdev_id, rc);
|
|
rc = -EINVAL;
|
|
goto err_qp_setup;
|
|
}
|
|
}
|
|
|
|
rc = rte_cryptodev_start(cdev_id);
|
|
if (rc < 0) {
|
|
SPDK_ERRLOG("Failed to start device %u: error %d\n",
|
|
cdev_id, rc);
|
|
rc = -EINVAL;
|
|
goto err_dev_start;
|
|
}
|
|
|
|
/* Build up lists of device/qp combinations per PMD */
|
|
for (j = 0; j < device->cdev_info.max_nb_queue_pairs; j++) {
|
|
dev_qp = calloc(1, sizeof(struct device_qp));
|
|
if (!dev_qp) {
|
|
rc = -ENOMEM;
|
|
goto err_qp_alloc;
|
|
}
|
|
dev_qp->device = device;
|
|
dev_qp->qp = j;
|
|
dev_qp->in_use = false;
|
|
if (strcmp(device->cdev_info.driver_name, QAT) == 0) {
|
|
g_qat_total_qp++;
|
|
}
|
|
TAILQ_INSERT_TAIL(dev_qp_head, dev_qp, link);
|
|
}
|
|
|
|
/* Add to our list of available crypto devices. */
|
|
TAILQ_INSERT_TAIL(&g_vbdev_devs, device, link);
|
|
|
|
return 0;
|
|
err_qp_alloc:
|
|
TAILQ_FOREACH_SAFE(dev_qp, dev_qp_head, link, tmp_qp) {
|
|
if (dev_qp->device->cdev_id != device->cdev_id) {
|
|
continue;
|
|
}
|
|
TAILQ_REMOVE(dev_qp_head, dev_qp, link);
|
|
if (dev_qp_head == (struct device_qps *)&g_device_qp_qat) {
|
|
g_qat_total_qp--;
|
|
}
|
|
free(dev_qp);
|
|
}
|
|
rte_cryptodev_stop(cdev_id);
|
|
err_dev_start:
|
|
err_qp_setup:
|
|
rte_cryptodev_close(cdev_id);
|
|
err:
|
|
free(device);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
release_vbdev_dev(struct vbdev_dev *device)
|
|
{
|
|
struct device_qp *dev_qp;
|
|
struct device_qp *tmp_qp;
|
|
TAILQ_HEAD(device_qps, device_qp) *dev_qp_head = NULL;
|
|
|
|
assert(device);
|
|
|
|
/* Select the right device/qp list based on driver name. */
|
|
if (strcmp(device->cdev_info.driver_name, QAT) == 0) {
|
|
dev_qp_head = (struct device_qps *)&g_device_qp_qat;
|
|
} else if (strcmp(device->cdev_info.driver_name, AESNI_MB) == 0) {
|
|
dev_qp_head = (struct device_qps *)&g_device_qp_aesni_mb;
|
|
} else if (strcmp(device->cdev_info.driver_name, MLX5) == 0) {
|
|
dev_qp_head = (struct device_qps *)&g_device_qp_mlx5;
|
|
}
|
|
if (dev_qp_head) {
|
|
TAILQ_FOREACH_SAFE(dev_qp, dev_qp_head, link, tmp_qp) {
|
|
/* Remove only qps of our device even if the driver names matches. */
|
|
if (dev_qp->device->cdev_id != device->cdev_id) {
|
|
continue;
|
|
}
|
|
TAILQ_REMOVE(dev_qp_head, dev_qp, link);
|
|
if (dev_qp_head == (struct device_qps *)&g_device_qp_qat) {
|
|
g_qat_total_qp--;
|
|
}
|
|
free(dev_qp);
|
|
}
|
|
}
|
|
rte_cryptodev_stop(device->cdev_id);
|
|
rte_cryptodev_close(device->cdev_id);
|
|
free(device);
|
|
}
|
|
|
|
/* Dummy function used by DPDK to free ext attached buffers to mbufs, we free them ourselves but
|
|
* this callback has to be here. */
|
|
static void
|
|
shinfo_free_cb(void *arg1, void *arg2)
|
|
{
|
|
}
|
|
|
|
/* This is called from the module's init function. We setup all crypto devices early on as we are unable
|
|
* to easily dynamically configure queue pairs after the drivers are up and running. So, here, we
|
|
* configure the max capabilities of each device and assign threads to queue pairs as channels are
|
|
* requested.
|
|
*/
|
|
static int
|
|
vbdev_crypto_init_crypto_drivers(void)
|
|
{
|
|
uint8_t cdev_count;
|
|
uint8_t cdev_id;
|
|
int i, rc;
|
|
struct vbdev_dev *device;
|
|
struct vbdev_dev *tmp_dev;
|
|
struct device_qp *dev_qp;
|
|
unsigned int max_sess_size = 0, sess_size;
|
|
uint16_t num_lcores = rte_lcore_count();
|
|
char aesni_args[32];
|
|
|
|
/* Only the first call, via RPC or module init should init the crypto drivers. */
|
|
if (g_session_mp != NULL) {
|
|
return 0;
|
|
}
|
|
|
|
/* We always init AESNI_MB */
|
|
snprintf(aesni_args, sizeof(aesni_args), "max_nb_queue_pairs=%d", AESNI_MB_NUM_QP);
|
|
rc = rte_vdev_init(AESNI_MB, aesni_args);
|
|
if (rc) {
|
|
SPDK_NOTICELOG("Failed to create virtual PMD %s: error %d. "
|
|
"Possibly %s is not supported by DPDK library. "
|
|
"Keep going...\n", AESNI_MB, rc, AESNI_MB);
|
|
}
|
|
|
|
/* If we have no crypto devices, there's no reason to continue. */
|
|
cdev_count = rte_cryptodev_count();
|
|
SPDK_NOTICELOG("Found crypto devices: %d\n", (int)cdev_count);
|
|
if (cdev_count == 0) {
|
|
return 0;
|
|
}
|
|
|
|
g_mbuf_offset = rte_mbuf_dynfield_register(&rte_mbuf_dynfield_io_context);
|
|
if (g_mbuf_offset < 0) {
|
|
SPDK_ERRLOG("error registering dynamic field with DPDK\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Create global mempools, shared by all devices regardless of type.
|
|
*/
|
|
|
|
/* First determine max session size, most pools are shared by all the devices,
|
|
* so we need to find the global max sessions size.
|
|
*/
|
|
for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
|
|
sess_size = rte_cryptodev_sym_get_private_session_size(cdev_id);
|
|
if (sess_size > max_sess_size) {
|
|
max_sess_size = sess_size;
|
|
}
|
|
}
|
|
|
|
#if RTE_VERSION < RTE_VERSION_NUM(22, 11, 0, 0)
|
|
g_session_mp_priv = rte_mempool_create("session_mp_priv", NUM_SESSIONS, max_sess_size,
|
|
SESS_MEMPOOL_CACHE_SIZE, 0, NULL, NULL, NULL,
|
|
NULL, SOCKET_ID_ANY, 0);
|
|
if (g_session_mp_priv == NULL) {
|
|
SPDK_ERRLOG("Cannot create private session pool max size 0x%x\n", max_sess_size);
|
|
return -ENOMEM;
|
|
}
|
|
/* When session private data mempool allocated, the element size for the session mempool
|
|
* should be 0. */
|
|
max_sess_size = 0;
|
|
#endif
|
|
|
|
g_session_mp = rte_cryptodev_sym_session_pool_create(
|
|
"session_mp",
|
|
NUM_SESSIONS, max_sess_size, SESS_MEMPOOL_CACHE_SIZE, 0,
|
|
SOCKET_ID_ANY);
|
|
if (g_session_mp == NULL) {
|
|
SPDK_ERRLOG("Cannot create session pool max size 0x%x\n", max_sess_size);
|
|
rc = -ENOMEM;
|
|
goto error_create_session_mp;
|
|
}
|
|
|
|
g_mbuf_mp = rte_pktmbuf_pool_create("mbuf_mp", NUM_MBUFS, POOL_CACHE_SIZE,
|
|
0, 0, SPDK_ENV_SOCKET_ID_ANY);
|
|
if (g_mbuf_mp == NULL) {
|
|
SPDK_ERRLOG("Cannot create mbuf pool\n");
|
|
rc = -ENOMEM;
|
|
goto error_create_mbuf;
|
|
}
|
|
|
|
/* We use per op private data as suggested by DPDK and to store the IV and
|
|
* our own struct for queueing ops.
|
|
*/
|
|
g_crypto_op_mp = rte_crypto_op_pool_create("op_mp",
|
|
RTE_CRYPTO_OP_TYPE_SYMMETRIC,
|
|
NUM_MBUFS,
|
|
POOL_CACHE_SIZE,
|
|
(DEFAULT_NUM_XFORMS *
|
|
sizeof(struct rte_crypto_sym_xform)) +
|
|
IV_LENGTH + QUEUED_OP_LENGTH,
|
|
rte_socket_id());
|
|
|
|
if (g_crypto_op_mp == NULL) {
|
|
SPDK_ERRLOG("Cannot create op pool\n");
|
|
rc = -ENOMEM;
|
|
goto error_create_op;
|
|
}
|
|
|
|
/* Init all devices */
|
|
for (i = 0; i < cdev_count; i++) {
|
|
rc = create_vbdev_dev(i, num_lcores);
|
|
if (rc) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/* Assign index values to the QAT device qp nodes so that we can
|
|
* assign them for optimal performance.
|
|
*/
|
|
i = 0;
|
|
TAILQ_FOREACH(dev_qp, &g_device_qp_qat, link) {
|
|
dev_qp->index = i++;
|
|
}
|
|
|
|
g_shinfo.free_cb = shinfo_free_cb;
|
|
return 0;
|
|
|
|
/* Error cleanup paths. */
|
|
err:
|
|
TAILQ_FOREACH_SAFE(device, &g_vbdev_devs, link, tmp_dev) {
|
|
TAILQ_REMOVE(&g_vbdev_devs, device, link);
|
|
release_vbdev_dev(device);
|
|
}
|
|
rte_mempool_free(g_crypto_op_mp);
|
|
g_crypto_op_mp = NULL;
|
|
error_create_op:
|
|
rte_mempool_free(g_mbuf_mp);
|
|
g_mbuf_mp = NULL;
|
|
error_create_mbuf:
|
|
rte_mempool_free(g_session_mp);
|
|
g_session_mp = NULL;
|
|
error_create_session_mp:
|
|
if (g_session_mp_priv != NULL) {
|
|
rte_mempool_free(g_session_mp_priv);
|
|
g_session_mp_priv = NULL;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* Following an encrypt or decrypt we need to then either write the encrypted data or finish
|
|
* the read on decrypted data. Do that here.
|
|
*/
|
|
static void
|
|
_crypto_operation_complete(struct spdk_bdev_io *bdev_io)
|
|
{
|
|
struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
|
|
crypto_bdev);
|
|
struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
|
|
struct crypto_io_channel *crypto_ch = io_ctx->crypto_ch;
|
|
struct spdk_bdev_io *free_me = io_ctx->read_io;
|
|
int rc = 0;
|
|
|
|
/* Can also be called from the crypto_dev_poller() to fail the stuck re-enqueue ops IO. */
|
|
if (io_ctx->on_pending_list) {
|
|
TAILQ_REMOVE(&crypto_ch->pending_cry_ios, bdev_io, module_link);
|
|
io_ctx->on_pending_list = false;
|
|
}
|
|
|
|
if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
|
|
|
|
/* Complete the original IO and then free the one that we created
|
|
* as a result of issuing an IO via submit_request.
|
|
*/
|
|
if (io_ctx->bdev_io_status != SPDK_BDEV_IO_STATUS_FAILED) {
|
|
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
|
|
} else {
|
|
SPDK_ERRLOG("Issue with decryption on bdev_io %p\n", bdev_io);
|
|
rc = -EINVAL;
|
|
}
|
|
spdk_bdev_free_io(free_me);
|
|
|
|
} else if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
|
|
|
|
if (io_ctx->bdev_io_status != SPDK_BDEV_IO_STATUS_FAILED) {
|
|
/* Write the encrypted data. */
|
|
rc = spdk_bdev_writev_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
|
|
&io_ctx->aux_buf_iov, 1, io_ctx->aux_offset_blocks,
|
|
io_ctx->aux_num_blocks, _complete_internal_write,
|
|
bdev_io);
|
|
} else {
|
|
SPDK_ERRLOG("Issue with encryption on bdev_io %p\n", bdev_io);
|
|
rc = -EINVAL;
|
|
}
|
|
|
|
} else {
|
|
SPDK_ERRLOG("Unknown bdev type %u on crypto operation completion\n",
|
|
bdev_io->type);
|
|
rc = -EINVAL;
|
|
}
|
|
|
|
if (rc) {
|
|
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
|
|
}
|
|
}
|
|
|
|
static void
|
|
cancel_queued_crypto_ops(struct crypto_io_channel *crypto_ch, struct spdk_bdev_io *bdev_io)
|
|
{
|
|
struct rte_mbuf *mbufs_to_free[2 * MAX_DEQUEUE_BURST_SIZE];
|
|
struct rte_crypto_op *dequeued_ops[MAX_DEQUEUE_BURST_SIZE];
|
|
struct vbdev_crypto_op *op_to_cancel, *tmp_op;
|
|
struct rte_crypto_op *crypto_op;
|
|
int num_mbufs, num_dequeued_ops;
|
|
|
|
/* Remove all ops from the failed IO. Since we don't know the
|
|
* order we have to check them all. */
|
|
num_mbufs = 0;
|
|
num_dequeued_ops = 0;
|
|
TAILQ_FOREACH_SAFE(op_to_cancel, &crypto_ch->queued_cry_ops, link, tmp_op) {
|
|
/* Checking if this is our op. One IO contains multiple ops. */
|
|
if (bdev_io == op_to_cancel->bdev_io) {
|
|
crypto_op = op_to_cancel->crypto_op;
|
|
TAILQ_REMOVE(&crypto_ch->queued_cry_ops, op_to_cancel, link);
|
|
|
|
/* Populating lists for freeing mbufs and ops. */
|
|
mbufs_to_free[num_mbufs++] = (void *)crypto_op->sym->m_src;
|
|
if (crypto_op->sym->m_dst) {
|
|
mbufs_to_free[num_mbufs++] = (void *)crypto_op->sym->m_dst;
|
|
}
|
|
dequeued_ops[num_dequeued_ops++] = crypto_op;
|
|
}
|
|
}
|
|
|
|
/* Now bulk free both mbufs and crypto operations. */
|
|
if (num_dequeued_ops > 0) {
|
|
rte_mempool_put_bulk(g_crypto_op_mp, (void **)dequeued_ops,
|
|
num_dequeued_ops);
|
|
assert(num_mbufs > 0);
|
|
/* This also releases chained mbufs if any. */
|
|
rte_pktmbuf_free_bulk(mbufs_to_free, num_mbufs);
|
|
}
|
|
}
|
|
|
|
static int _crypto_operation(struct spdk_bdev_io *bdev_io,
|
|
enum rte_crypto_cipher_operation crypto_op,
|
|
void *aux_buf);
|
|
|
|
/* This is the poller for the crypto device. It uses a single API to dequeue whatever is ready at
|
|
* the device. Then we need to decide if what we've got so far (including previous poller
|
|
* runs) totals up to one or more complete bdev_ios and if so continue with the bdev_io
|
|
* accordingly. This means either completing a read or issuing a new write.
|
|
*/
|
|
static int
|
|
crypto_dev_poller(void *args)
|
|
{
|
|
struct crypto_io_channel *crypto_ch = args;
|
|
uint8_t cdev_id = crypto_ch->device_qp->device->cdev_id;
|
|
int i, num_dequeued_ops, num_enqueued_ops;
|
|
struct spdk_bdev_io *bdev_io = NULL;
|
|
struct crypto_bdev_io *io_ctx = NULL;
|
|
struct rte_crypto_op *dequeued_ops[MAX_DEQUEUE_BURST_SIZE];
|
|
struct rte_mbuf *mbufs_to_free[2 * MAX_DEQUEUE_BURST_SIZE];
|
|
int num_mbufs = 0;
|
|
struct vbdev_crypto_op *op_to_resubmit;
|
|
|
|
/* Each run of the poller will get just what the device has available
|
|
* at the moment we call it, we don't check again after draining the
|
|
* first batch.
|
|
*/
|
|
num_dequeued_ops = rte_cryptodev_dequeue_burst(cdev_id, crypto_ch->device_qp->qp,
|
|
dequeued_ops, MAX_DEQUEUE_BURST_SIZE);
|
|
|
|
/* Check if operation was processed successfully */
|
|
for (i = 0; i < num_dequeued_ops; i++) {
|
|
|
|
/* We don't know the order or association of the crypto ops wrt any
|
|
* particular bdev_io so need to look at each and determine if it's
|
|
* the last one for it's bdev_io or not.
|
|
*/
|
|
bdev_io = (struct spdk_bdev_io *)*RTE_MBUF_DYNFIELD(dequeued_ops[i]->sym->m_src, g_mbuf_offset,
|
|
uint64_t *);
|
|
assert(bdev_io != NULL);
|
|
io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
|
|
|
|
if (dequeued_ops[i]->status != RTE_CRYPTO_OP_STATUS_SUCCESS) {
|
|
SPDK_ERRLOG("error with op %d status %u\n", i,
|
|
dequeued_ops[i]->status);
|
|
/* Update the bdev status to error, we'll still process the
|
|
* rest of the crypto ops for this bdev_io though so they
|
|
* aren't left hanging.
|
|
*/
|
|
io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
|
|
}
|
|
|
|
assert(io_ctx->cryop_cnt_remaining > 0);
|
|
|
|
/* Return the associated src and dst mbufs by collecting them into
|
|
* an array that we can use the bulk API to free after the loop.
|
|
*/
|
|
*RTE_MBUF_DYNFIELD(dequeued_ops[i]->sym->m_src, g_mbuf_offset, uint64_t *) = 0;
|
|
mbufs_to_free[num_mbufs++] = (void *)dequeued_ops[i]->sym->m_src;
|
|
if (dequeued_ops[i]->sym->m_dst) {
|
|
mbufs_to_free[num_mbufs++] = (void *)dequeued_ops[i]->sym->m_dst;
|
|
}
|
|
|
|
/* done encrypting, complete the bdev_io */
|
|
if (--io_ctx->cryop_cnt_remaining == 0) {
|
|
|
|
/* If we're completing this with an outstanding reset we need
|
|
* to fail it.
|
|
*/
|
|
if (crypto_ch->iter) {
|
|
io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
|
|
}
|
|
|
|
/* Complete the IO */
|
|
_crypto_operation_complete(bdev_io);
|
|
}
|
|
}
|
|
|
|
/* Now bulk free both mbufs and crypto operations. */
|
|
if (num_dequeued_ops > 0) {
|
|
rte_mempool_put_bulk(g_crypto_op_mp,
|
|
(void **)dequeued_ops,
|
|
num_dequeued_ops);
|
|
assert(num_mbufs > 0);
|
|
/* This also releases chained mbufs if any. */
|
|
rte_pktmbuf_free_bulk(mbufs_to_free, num_mbufs);
|
|
}
|
|
|
|
/* Check if there are any pending crypto ops to process */
|
|
while (!TAILQ_EMPTY(&crypto_ch->queued_cry_ops)) {
|
|
op_to_resubmit = TAILQ_FIRST(&crypto_ch->queued_cry_ops);
|
|
bdev_io = op_to_resubmit->bdev_io;
|
|
io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
|
|
num_enqueued_ops = rte_cryptodev_enqueue_burst(op_to_resubmit->cdev_id,
|
|
op_to_resubmit->qp,
|
|
&op_to_resubmit->crypto_op,
|
|
1);
|
|
if (num_enqueued_ops == 1) {
|
|
/* Make sure we don't put this on twice as one bdev_io is made up
|
|
* of many crypto ops.
|
|
*/
|
|
if (io_ctx->on_pending_list == false) {
|
|
TAILQ_INSERT_TAIL(&crypto_ch->pending_cry_ios, bdev_io, module_link);
|
|
io_ctx->on_pending_list = true;
|
|
}
|
|
TAILQ_REMOVE(&crypto_ch->queued_cry_ops, op_to_resubmit, link);
|
|
} else {
|
|
if (op_to_resubmit->crypto_op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED) {
|
|
/* If we couldn't get one, just break and try again later. */
|
|
break;
|
|
} else {
|
|
/* Something is really wrong with the op. Most probably the
|
|
* mbuf is broken or the HW is not able to process the request.
|
|
* Fail the IO and remove its ops from the queued ops list. */
|
|
io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
|
|
|
|
cancel_queued_crypto_ops(crypto_ch, bdev_io);
|
|
|
|
/* Fail the IO if there is nothing left on device. */
|
|
if (--io_ctx->cryop_cnt_remaining == 0) {
|
|
_crypto_operation_complete(bdev_io);
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
/* If the channel iter is not NULL, we need to continue to poll
|
|
* until the pending list is empty, then we can move on to the
|
|
* next channel.
|
|
*/
|
|
if (crypto_ch->iter && TAILQ_EMPTY(&crypto_ch->pending_cry_ios)) {
|
|
SPDK_NOTICELOG("Channel %p has been quiesced.\n", crypto_ch);
|
|
spdk_for_each_channel_continue(crypto_ch->iter, 0);
|
|
crypto_ch->iter = NULL;
|
|
}
|
|
|
|
return num_dequeued_ops;
|
|
}
|
|
|
|
/* Allocate the new mbuf of @remainder size with data pointed by @addr and attach
|
|
* it to the @orig_mbuf. */
|
|
static int
|
|
mbuf_chain_remainder(struct spdk_bdev_io *bdev_io, struct rte_mbuf *orig_mbuf,
|
|
uint8_t *addr, uint32_t remainder)
|
|
{
|
|
uint64_t phys_addr, phys_len;
|
|
struct rte_mbuf *chain_mbuf;
|
|
int rc;
|
|
|
|
phys_len = remainder;
|
|
phys_addr = spdk_vtophys((void *)addr, &phys_len);
|
|
if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR || phys_len != remainder)) {
|
|
return -EFAULT;
|
|
}
|
|
rc = rte_pktmbuf_alloc_bulk(g_mbuf_mp, (struct rte_mbuf **)&chain_mbuf, 1);
|
|
if (spdk_unlikely(rc)) {
|
|
return -ENOMEM;
|
|
}
|
|
/* Store context in every mbuf as we don't know anything about completion order */
|
|
*RTE_MBUF_DYNFIELD(chain_mbuf, g_mbuf_offset, uint64_t *) = (uint64_t)bdev_io;
|
|
rte_pktmbuf_attach_extbuf(chain_mbuf, addr, phys_addr, phys_len, &g_shinfo);
|
|
rte_pktmbuf_append(chain_mbuf, phys_len);
|
|
|
|
/* Chained buffer is released by rte_pktbuf_free_bulk() automagicaly. */
|
|
rte_pktmbuf_chain(orig_mbuf, chain_mbuf);
|
|
return 0;
|
|
}
|
|
|
|
/* Attach data buffer pointed by @addr to @mbuf. Return utilized len of the
|
|
* contiguous space that was physically available. */
|
|
static uint64_t
|
|
mbuf_attach_buf(struct spdk_bdev_io *bdev_io, struct rte_mbuf *mbuf,
|
|
uint8_t *addr, uint32_t len)
|
|
{
|
|
uint64_t phys_addr, phys_len;
|
|
|
|
/* Store context in every mbuf as we don't know anything about completion order */
|
|
*RTE_MBUF_DYNFIELD(mbuf, g_mbuf_offset, uint64_t *) = (uint64_t)bdev_io;
|
|
|
|
phys_len = len;
|
|
phys_addr = spdk_vtophys((void *)addr, &phys_len);
|
|
if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR || phys_len == 0)) {
|
|
return 0;
|
|
}
|
|
assert(phys_len <= len);
|
|
|
|
/* Set the mbuf elements address and length. */
|
|
rte_pktmbuf_attach_extbuf(mbuf, addr, phys_addr, phys_len, &g_shinfo);
|
|
rte_pktmbuf_append(mbuf, phys_len);
|
|
|
|
return phys_len;
|
|
}
|
|
|
|
/* We're either encrypting on the way down or decrypting on the way back. */
|
|
static int
|
|
_crypto_operation(struct spdk_bdev_io *bdev_io, enum rte_crypto_cipher_operation crypto_op,
|
|
void *aux_buf)
|
|
{
|
|
uint16_t num_enqueued_ops = 0;
|
|
uint32_t cryop_cnt = bdev_io->u.bdev.num_blocks;
|
|
struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
|
|
struct crypto_io_channel *crypto_ch = io_ctx->crypto_ch;
|
|
uint8_t cdev_id = crypto_ch->device_qp->device->cdev_id;
|
|
uint32_t crypto_len = io_ctx->crypto_bdev->crypto_bdev.blocklen;
|
|
uint64_t total_length = bdev_io->u.bdev.num_blocks * crypto_len;
|
|
int rc;
|
|
uint32_t iov_index = 0;
|
|
uint32_t allocated = 0;
|
|
uint8_t *current_iov = NULL;
|
|
uint64_t total_remaining = 0;
|
|
uint64_t current_iov_remaining = 0;
|
|
uint32_t crypto_index = 0;
|
|
uint32_t en_offset = 0;
|
|
struct rte_crypto_op *crypto_ops[MAX_ENQUEUE_ARRAY_SIZE];
|
|
struct rte_mbuf *src_mbufs[MAX_ENQUEUE_ARRAY_SIZE];
|
|
struct rte_mbuf *dst_mbufs[MAX_ENQUEUE_ARRAY_SIZE];
|
|
int burst;
|
|
struct vbdev_crypto_op *op_to_queue;
|
|
uint64_t alignment = spdk_bdev_get_buf_align(&io_ctx->crypto_bdev->crypto_bdev);
|
|
|
|
assert((bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen) <= CRYPTO_MAX_IO);
|
|
|
|
/* Get the number of source mbufs that we need. These will always be 1:1 because we
|
|
* don't support chaining. The reason we don't is because of our decision to use
|
|
* LBA as IV, there can be no case where we'd need >1 mbuf per crypto op or the
|
|
* op would be > 1 LBA.
|
|
*/
|
|
rc = rte_pktmbuf_alloc_bulk(g_mbuf_mp, src_mbufs, cryop_cnt);
|
|
if (rc) {
|
|
SPDK_ERRLOG("Failed to get src_mbufs!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Get the same amount but these buffers to describe the encrypted data location (dst). */
|
|
if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
|
|
rc = rte_pktmbuf_alloc_bulk(g_mbuf_mp, dst_mbufs, cryop_cnt);
|
|
if (rc) {
|
|
SPDK_ERRLOG("Failed to get dst_mbufs!\n");
|
|
rc = -ENOMEM;
|
|
goto error_get_dst;
|
|
}
|
|
}
|
|
|
|
#ifdef __clang_analyzer__
|
|
/* silence scan-build false positive */
|
|
SPDK_CLANG_ANALYZER_PREINIT_PTR_ARRAY(crypto_ops, MAX_ENQUEUE_ARRAY_SIZE, 0x1000);
|
|
#endif
|
|
/* Allocate crypto operations. */
|
|
allocated = rte_crypto_op_bulk_alloc(g_crypto_op_mp,
|
|
RTE_CRYPTO_OP_TYPE_SYMMETRIC,
|
|
crypto_ops, cryop_cnt);
|
|
if (allocated < cryop_cnt) {
|
|
SPDK_ERRLOG("Failed to allocate crypto ops!\n");
|
|
rc = -ENOMEM;
|
|
goto error_get_ops;
|
|
}
|
|
|
|
/* For encryption, we need to prepare a single contiguous buffer as the encryption
|
|
* destination, we'll then pass that along for the write after encryption is done.
|
|
* This is done to avoiding encrypting the provided write buffer which may be
|
|
* undesirable in some use cases.
|
|
*/
|
|
if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
|
|
io_ctx->aux_buf_iov.iov_len = total_length;
|
|
io_ctx->aux_buf_raw = aux_buf;
|
|
io_ctx->aux_buf_iov.iov_base = (void *)(((uintptr_t)aux_buf + (alignment - 1)) & ~(alignment - 1));
|
|
io_ctx->aux_offset_blocks = bdev_io->u.bdev.offset_blocks;
|
|
io_ctx->aux_num_blocks = bdev_io->u.bdev.num_blocks;
|
|
}
|
|
|
|
/* This value is used in the completion callback to determine when the bdev_io is
|
|
* complete.
|
|
*/
|
|
io_ctx->cryop_cnt_remaining = cryop_cnt;
|
|
|
|
/* As we don't support chaining because of a decision to use LBA as IV, construction
|
|
* of crypto operations is straightforward. We build both the op, the mbuf and the
|
|
* dst_mbuf in our local arrays by looping through the length of the bdev IO and
|
|
* picking off LBA sized blocks of memory from the IOVs as we walk through them. Each
|
|
* LBA sized chunk of memory will correspond 1:1 to a crypto operation and a single
|
|
* mbuf per crypto operation.
|
|
*/
|
|
total_remaining = total_length;
|
|
current_iov = bdev_io->u.bdev.iovs[iov_index].iov_base;
|
|
current_iov_remaining = bdev_io->u.bdev.iovs[iov_index].iov_len;
|
|
do {
|
|
uint8_t *iv_ptr;
|
|
uint8_t *buf_addr;
|
|
uint64_t phys_len;
|
|
uint32_t remainder;
|
|
uint64_t op_block_offset;
|
|
|
|
phys_len = mbuf_attach_buf(bdev_io, src_mbufs[crypto_index],
|
|
current_iov, crypto_len);
|
|
if (spdk_unlikely(phys_len == 0)) {
|
|
goto error_attach_session;
|
|
rc = -EFAULT;
|
|
}
|
|
|
|
/* Handle the case of page boundary. */
|
|
remainder = crypto_len - phys_len;
|
|
if (spdk_unlikely(remainder > 0)) {
|
|
rc = mbuf_chain_remainder(bdev_io, src_mbufs[crypto_index],
|
|
current_iov + phys_len, remainder);
|
|
if (spdk_unlikely(rc)) {
|
|
goto error_attach_session;
|
|
}
|
|
}
|
|
|
|
/* Set the IV - we use the LBA of the crypto_op */
|
|
iv_ptr = rte_crypto_op_ctod_offset(crypto_ops[crypto_index], uint8_t *,
|
|
IV_OFFSET);
|
|
memset(iv_ptr, 0, IV_LENGTH);
|
|
op_block_offset = bdev_io->u.bdev.offset_blocks + crypto_index;
|
|
rte_memcpy(iv_ptr, &op_block_offset, sizeof(uint64_t));
|
|
|
|
/* Set the data to encrypt/decrypt length */
|
|
crypto_ops[crypto_index]->sym->cipher.data.length = crypto_len;
|
|
crypto_ops[crypto_index]->sym->cipher.data.offset = 0;
|
|
|
|
/* link the mbuf to the crypto op. */
|
|
crypto_ops[crypto_index]->sym->m_src = src_mbufs[crypto_index];
|
|
|
|
/* For encrypt, point the destination to a buffer we allocate and redirect the bdev_io
|
|
* that will be used to process the write on completion to the same buffer. Setting
|
|
* up the en_buffer is a little simpler as we know the destination buffer is single IOV.
|
|
*/
|
|
if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
|
|
buf_addr = io_ctx->aux_buf_iov.iov_base + en_offset;
|
|
phys_len = mbuf_attach_buf(bdev_io, dst_mbufs[crypto_index],
|
|
buf_addr, crypto_len);
|
|
if (spdk_unlikely(phys_len == 0)) {
|
|
rc = -EFAULT;
|
|
goto error_attach_session;
|
|
}
|
|
|
|
crypto_ops[crypto_index]->sym->m_dst = dst_mbufs[crypto_index];
|
|
en_offset += phys_len;
|
|
|
|
/* Handle the case of page boundary. */
|
|
remainder = crypto_len - phys_len;
|
|
if (spdk_unlikely(remainder > 0)) {
|
|
rc = mbuf_chain_remainder(bdev_io, dst_mbufs[crypto_index],
|
|
buf_addr + phys_len, remainder);
|
|
if (spdk_unlikely(rc)) {
|
|
goto error_attach_session;
|
|
}
|
|
en_offset += remainder;
|
|
}
|
|
|
|
/* Attach the crypto session to the operation */
|
|
rc = rte_crypto_op_attach_sym_session(crypto_ops[crypto_index],
|
|
io_ctx->crypto_bdev->session_encrypt);
|
|
if (rc) {
|
|
rc = -EINVAL;
|
|
goto error_attach_session;
|
|
}
|
|
} else {
|
|
crypto_ops[crypto_index]->sym->m_dst = NULL;
|
|
|
|
/* Attach the crypto session to the operation */
|
|
rc = rte_crypto_op_attach_sym_session(crypto_ops[crypto_index],
|
|
io_ctx->crypto_bdev->session_decrypt);
|
|
if (rc) {
|
|
rc = -EINVAL;
|
|
goto error_attach_session;
|
|
}
|
|
}
|
|
|
|
/* Subtract our running totals for the op in progress and the overall bdev io */
|
|
total_remaining -= crypto_len;
|
|
current_iov_remaining -= crypto_len;
|
|
|
|
/* move our current IOV pointer accordingly. */
|
|
current_iov += crypto_len;
|
|
|
|
/* move on to the next crypto operation */
|
|
crypto_index++;
|
|
|
|
/* If we're done with this IOV, move to the next one. */
|
|
if (current_iov_remaining == 0 && total_remaining > 0) {
|
|
iov_index++;
|
|
current_iov = bdev_io->u.bdev.iovs[iov_index].iov_base;
|
|
current_iov_remaining = bdev_io->u.bdev.iovs[iov_index].iov_len;
|
|
}
|
|
} while (total_remaining > 0);
|
|
|
|
/* Enqueue everything we've got but limit by the max number of descriptors we
|
|
* configured the crypto device for.
|
|
*/
|
|
burst = spdk_min(cryop_cnt, io_ctx->crypto_bdev->qp_desc_nr);
|
|
num_enqueued_ops = rte_cryptodev_enqueue_burst(cdev_id, crypto_ch->device_qp->qp,
|
|
&crypto_ops[0],
|
|
burst);
|
|
|
|
/* Add this bdev_io to our outstanding list if any of its crypto ops made it. */
|
|
if (num_enqueued_ops > 0) {
|
|
TAILQ_INSERT_TAIL(&crypto_ch->pending_cry_ios, bdev_io, module_link);
|
|
io_ctx->on_pending_list = true;
|
|
}
|
|
/* We were unable to enqueue everything but did get some, so need to decide what
|
|
* to do based on the status of the last op.
|
|
*/
|
|
if (num_enqueued_ops < cryop_cnt) {
|
|
switch (crypto_ops[num_enqueued_ops]->status) {
|
|
case RTE_CRYPTO_OP_STATUS_NOT_PROCESSED:
|
|
/* Queue them up on a linked list to be resubmitted via the poller. */
|
|
for (crypto_index = num_enqueued_ops; crypto_index < cryop_cnt; crypto_index++) {
|
|
op_to_queue = (struct vbdev_crypto_op *)rte_crypto_op_ctod_offset(crypto_ops[crypto_index],
|
|
uint8_t *, QUEUED_OP_OFFSET);
|
|
op_to_queue->cdev_id = cdev_id;
|
|
op_to_queue->qp = crypto_ch->device_qp->qp;
|
|
op_to_queue->crypto_op = crypto_ops[crypto_index];
|
|
op_to_queue->bdev_io = bdev_io;
|
|
TAILQ_INSERT_TAIL(&crypto_ch->queued_cry_ops,
|
|
op_to_queue,
|
|
link);
|
|
}
|
|
break;
|
|
default:
|
|
/* For all other statuses, set the io_ctx bdev_io status so that
|
|
* the poller will pick the failure up for the overall bdev status.
|
|
*/
|
|
io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_FAILED;
|
|
if (num_enqueued_ops == 0) {
|
|
/* If nothing was enqueued, but the last one wasn't because of
|
|
* busy, fail it now as the poller won't know anything about it.
|
|
*/
|
|
rc = -EINVAL;
|
|
goto error_attach_session;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
|
|
/* Error cleanup paths. */
|
|
error_attach_session:
|
|
error_get_ops:
|
|
if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
|
|
/* This also releases chained mbufs if any. */
|
|
rte_pktmbuf_free_bulk(dst_mbufs, cryop_cnt);
|
|
}
|
|
if (allocated > 0) {
|
|
rte_mempool_put_bulk(g_crypto_op_mp, (void **)crypto_ops,
|
|
allocated);
|
|
}
|
|
error_get_dst:
|
|
/* This also releases chained mbufs if any. */
|
|
rte_pktmbuf_free_bulk(src_mbufs, cryop_cnt);
|
|
return rc;
|
|
}
|
|
|
|
/* This function is called after all channels have been quiesced following
|
|
* a bdev reset.
|
|
*/
|
|
static void
|
|
_ch_quiesce_done(struct spdk_io_channel_iter *i, int status)
|
|
{
|
|
struct crypto_bdev_io *io_ctx = spdk_io_channel_iter_get_ctx(i);
|
|
|
|
assert(TAILQ_EMPTY(&io_ctx->crypto_ch->pending_cry_ios));
|
|
assert(io_ctx->orig_io != NULL);
|
|
|
|
spdk_bdev_io_complete(io_ctx->orig_io, SPDK_BDEV_IO_STATUS_SUCCESS);
|
|
}
|
|
|
|
/* This function is called per channel to quiesce IOs before completing a
|
|
* bdev reset that we received.
|
|
*/
|
|
static void
|
|
_ch_quiesce(struct spdk_io_channel_iter *i)
|
|
{
|
|
struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
|
|
struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
|
|
|
|
crypto_ch->iter = i;
|
|
/* When the poller runs, it will see the non-NULL iter and handle
|
|
* the quiesce.
|
|
*/
|
|
}
|
|
|
|
/* Completion callback for IO that were issued from this bdev other than read/write.
|
|
* They have their own for readability.
|
|
*/
|
|
static void
|
|
_complete_internal_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
|
|
{
|
|
struct spdk_bdev_io *orig_io = cb_arg;
|
|
int status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
|
|
|
|
if (bdev_io->type == SPDK_BDEV_IO_TYPE_RESET) {
|
|
struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
|
|
|
|
assert(orig_io == orig_ctx->orig_io);
|
|
|
|
spdk_bdev_free_io(bdev_io);
|
|
|
|
spdk_for_each_channel(orig_ctx->crypto_bdev,
|
|
_ch_quiesce,
|
|
orig_ctx,
|
|
_ch_quiesce_done);
|
|
return;
|
|
}
|
|
|
|
spdk_bdev_io_complete(orig_io, status);
|
|
spdk_bdev_free_io(bdev_io);
|
|
}
|
|
|
|
/* Completion callback for writes that were issued from this bdev. */
|
|
static void
|
|
_complete_internal_write(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
|
|
{
|
|
struct spdk_bdev_io *orig_io = cb_arg;
|
|
int status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
|
|
struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
|
|
|
|
spdk_bdev_io_put_aux_buf(orig_io, orig_ctx->aux_buf_raw);
|
|
|
|
spdk_bdev_io_complete(orig_io, status);
|
|
spdk_bdev_free_io(bdev_io);
|
|
}
|
|
|
|
/* Completion callback for reads that were issued from this bdev. */
|
|
static void
|
|
_complete_internal_read(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
|
|
{
|
|
struct spdk_bdev_io *orig_io = cb_arg;
|
|
struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx;
|
|
|
|
if (success) {
|
|
|
|
/* Save off this bdev_io so it can be freed after decryption. */
|
|
orig_ctx->read_io = bdev_io;
|
|
|
|
if (!_crypto_operation(orig_io, RTE_CRYPTO_CIPHER_OP_DECRYPT, NULL)) {
|
|
return;
|
|
} else {
|
|
SPDK_ERRLOG("Failed to decrypt!\n");
|
|
}
|
|
} else {
|
|
SPDK_ERRLOG("Failed to read prior to decrypting!\n");
|
|
}
|
|
|
|
spdk_bdev_io_complete(orig_io, SPDK_BDEV_IO_STATUS_FAILED);
|
|
spdk_bdev_free_io(bdev_io);
|
|
}
|
|
|
|
static void
|
|
vbdev_crypto_resubmit_io(void *arg)
|
|
{
|
|
struct spdk_bdev_io *bdev_io = (struct spdk_bdev_io *)arg;
|
|
struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
|
|
|
|
vbdev_crypto_submit_request(io_ctx->ch, bdev_io);
|
|
}
|
|
|
|
static void
|
|
vbdev_crypto_queue_io(struct spdk_bdev_io *bdev_io)
|
|
{
|
|
struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
|
|
int rc;
|
|
|
|
io_ctx->bdev_io_wait.bdev = bdev_io->bdev;
|
|
io_ctx->bdev_io_wait.cb_fn = vbdev_crypto_resubmit_io;
|
|
io_ctx->bdev_io_wait.cb_arg = bdev_io;
|
|
|
|
rc = spdk_bdev_queue_io_wait(bdev_io->bdev, io_ctx->crypto_ch->base_ch, &io_ctx->bdev_io_wait);
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("Queue io failed in vbdev_crypto_queue_io, rc=%d.\n", rc);
|
|
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
|
|
}
|
|
}
|
|
|
|
/* Callback for getting a buf from the bdev pool in the event that the caller passed
|
|
* in NULL, we need to own the buffer so it doesn't get freed by another vbdev module
|
|
* beneath us before we're done with it.
|
|
*/
|
|
static void
|
|
crypto_read_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
|
|
bool success)
|
|
{
|
|
struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
|
|
crypto_bdev);
|
|
struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
|
|
struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
|
|
int rc;
|
|
|
|
if (!success) {
|
|
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
|
|
return;
|
|
}
|
|
|
|
rc = spdk_bdev_readv_blocks(crypto_bdev->base_desc, crypto_ch->base_ch, bdev_io->u.bdev.iovs,
|
|
bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.offset_blocks,
|
|
bdev_io->u.bdev.num_blocks, _complete_internal_read,
|
|
bdev_io);
|
|
if (rc != 0) {
|
|
if (rc == -ENOMEM) {
|
|
SPDK_DEBUGLOG(vbdev_crypto, "No memory, queue the IO.\n");
|
|
io_ctx->ch = ch;
|
|
vbdev_crypto_queue_io(bdev_io);
|
|
} else {
|
|
SPDK_ERRLOG("Failed to submit bdev_io!\n");
|
|
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* For encryption we don't want to encrypt the data in place as the host isn't
|
|
* expecting us to mangle its data buffers so we need to encrypt into the bdev
|
|
* aux buffer, then we can use that as the source for the disk data transfer.
|
|
*/
|
|
static void
|
|
crypto_write_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
|
|
void *aux_buf)
|
|
{
|
|
struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
|
|
int rc = 0;
|
|
|
|
rc = _crypto_operation(bdev_io, RTE_CRYPTO_CIPHER_OP_ENCRYPT, aux_buf);
|
|
if (rc != 0) {
|
|
spdk_bdev_io_put_aux_buf(bdev_io, aux_buf);
|
|
if (rc == -ENOMEM) {
|
|
SPDK_DEBUGLOG(vbdev_crypto, "No memory, queue the IO.\n");
|
|
io_ctx->ch = ch;
|
|
vbdev_crypto_queue_io(bdev_io);
|
|
} else {
|
|
SPDK_ERRLOG("Failed to submit bdev_io!\n");
|
|
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Called when someone submits IO to this crypto vbdev. For IO's not relevant to crypto,
|
|
* we're simply passing it on here via SPDK IO calls which in turn allocate another bdev IO
|
|
* and call our cpl callback provided below along with the original bdev_io so that we can
|
|
* complete it once this IO completes. For crypto operations, we'll either encrypt it first
|
|
* (writes) then call back into bdev to submit it or we'll submit a read and then catch it
|
|
* on the way back for decryption.
|
|
*/
|
|
static void
|
|
vbdev_crypto_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
|
|
{
|
|
struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto,
|
|
crypto_bdev);
|
|
struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch);
|
|
struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx;
|
|
int rc = 0;
|
|
|
|
memset(io_ctx, 0, sizeof(struct crypto_bdev_io));
|
|
io_ctx->crypto_bdev = crypto_bdev;
|
|
io_ctx->crypto_ch = crypto_ch;
|
|
io_ctx->orig_io = bdev_io;
|
|
io_ctx->bdev_io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
|
|
|
|
switch (bdev_io->type) {
|
|
case SPDK_BDEV_IO_TYPE_READ:
|
|
spdk_bdev_io_get_buf(bdev_io, crypto_read_get_buf_cb,
|
|
bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
|
|
break;
|
|
case SPDK_BDEV_IO_TYPE_WRITE:
|
|
/* Tell the bdev layer that we need an aux buf in addition to the data
|
|
* buf already associated with the bdev.
|
|
*/
|
|
spdk_bdev_io_get_aux_buf(bdev_io, crypto_write_get_buf_cb);
|
|
break;
|
|
case SPDK_BDEV_IO_TYPE_UNMAP:
|
|
rc = spdk_bdev_unmap_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
|
|
bdev_io->u.bdev.offset_blocks,
|
|
bdev_io->u.bdev.num_blocks,
|
|
_complete_internal_io, bdev_io);
|
|
break;
|
|
case SPDK_BDEV_IO_TYPE_FLUSH:
|
|
rc = spdk_bdev_flush_blocks(crypto_bdev->base_desc, crypto_ch->base_ch,
|
|
bdev_io->u.bdev.offset_blocks,
|
|
bdev_io->u.bdev.num_blocks,
|
|
_complete_internal_io, bdev_io);
|
|
break;
|
|
case SPDK_BDEV_IO_TYPE_RESET:
|
|
rc = spdk_bdev_reset(crypto_bdev->base_desc, crypto_ch->base_ch,
|
|
_complete_internal_io, bdev_io);
|
|
break;
|
|
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
|
|
default:
|
|
SPDK_ERRLOG("crypto: unknown I/O type %d\n", bdev_io->type);
|
|
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
|
|
return;
|
|
}
|
|
|
|
if (rc != 0) {
|
|
if (rc == -ENOMEM) {
|
|
SPDK_DEBUGLOG(vbdev_crypto, "No memory, queue the IO.\n");
|
|
io_ctx->ch = ch;
|
|
vbdev_crypto_queue_io(bdev_io);
|
|
} else {
|
|
SPDK_ERRLOG("Failed to submit bdev_io!\n");
|
|
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We'll just call the base bdev and let it answer except for WZ command which
|
|
* we always say we don't support so that the bdev layer will actually send us
|
|
* real writes that we can encrypt.
|
|
*/
|
|
static bool
|
|
vbdev_crypto_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
|
|
{
|
|
struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
|
|
|
|
switch (io_type) {
|
|
case SPDK_BDEV_IO_TYPE_WRITE:
|
|
case SPDK_BDEV_IO_TYPE_UNMAP:
|
|
case SPDK_BDEV_IO_TYPE_RESET:
|
|
case SPDK_BDEV_IO_TYPE_READ:
|
|
case SPDK_BDEV_IO_TYPE_FLUSH:
|
|
return spdk_bdev_io_type_supported(crypto_bdev->base_bdev, io_type);
|
|
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
|
|
/* Force the bdev layer to issue actual writes of zeroes so we can
|
|
* encrypt them as regular writes.
|
|
*/
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static struct vbdev_dev *
|
|
_vdev_dev_get(struct vbdev_crypto *vbdev)
|
|
{
|
|
struct vbdev_dev *device;
|
|
|
|
TAILQ_FOREACH(device, &g_vbdev_devs, link) {
|
|
if (strcmp(device->cdev_info.driver_name, vbdev->opts->drv_name) == 0) {
|
|
return device;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
_cryptodev_sym_session_free(struct vbdev_crypto *vbdev, void *session)
|
|
{
|
|
#if RTE_VERSION >= RTE_VERSION_NUM(22, 11, 0, 0)
|
|
struct vbdev_dev *device = _vdev_dev_get(vbdev);
|
|
|
|
assert(device != NULL);
|
|
|
|
rte_cryptodev_sym_session_free(device->cdev_id, session);
|
|
#else
|
|
rte_cryptodev_sym_session_free(session);
|
|
#endif
|
|
}
|
|
|
|
static void *
|
|
_cryptodev_sym_session_create(struct vbdev_crypto *vbdev, struct rte_crypto_sym_xform *xforms)
|
|
{
|
|
void *session;
|
|
struct vbdev_dev *device;
|
|
|
|
device = _vdev_dev_get(vbdev);
|
|
if (!device) {
|
|
SPDK_ERRLOG("Failed to match crypto device driver to crypto vbdev.\n");
|
|
return NULL;
|
|
}
|
|
|
|
#if RTE_VERSION >= RTE_VERSION_NUM(22, 11, 0, 0)
|
|
session = rte_cryptodev_sym_session_create(device->cdev_id, xforms, g_session_mp);
|
|
#else
|
|
session = rte_cryptodev_sym_session_create(g_session_mp);
|
|
if (!session) {
|
|
return NULL;
|
|
}
|
|
|
|
if (rte_cryptodev_sym_session_init(device->cdev_id, session, xforms, g_session_mp_priv) < 0) {
|
|
_cryptodev_sym_session_free(vbdev, session);
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
return session;
|
|
}
|
|
|
|
/* Callback for unregistering the IO device. */
|
|
static void
|
|
_device_unregister_cb(void *io_device)
|
|
{
|
|
struct vbdev_crypto *crypto_bdev = io_device;
|
|
|
|
/* Done with this crypto_bdev. */
|
|
_cryptodev_sym_session_free(crypto_bdev, crypto_bdev->session_decrypt);
|
|
_cryptodev_sym_session_free(crypto_bdev, crypto_bdev->session_encrypt);
|
|
crypto_bdev->opts = NULL;
|
|
free(crypto_bdev->crypto_bdev.name);
|
|
free(crypto_bdev);
|
|
}
|
|
|
|
/* Wrapper for the bdev close operation. */
|
|
static void
|
|
_vbdev_crypto_destruct(void *ctx)
|
|
{
|
|
struct spdk_bdev_desc *desc = ctx;
|
|
|
|
spdk_bdev_close(desc);
|
|
}
|
|
|
|
/* Called after we've unregistered following a hot remove callback.
|
|
* Our finish entry point will be called next.
|
|
*/
|
|
static int
|
|
vbdev_crypto_destruct(void *ctx)
|
|
{
|
|
struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
|
|
|
|
/* Remove this device from the internal list */
|
|
TAILQ_REMOVE(&g_vbdev_crypto, crypto_bdev, link);
|
|
|
|
/* Unclaim the underlying bdev. */
|
|
spdk_bdev_module_release_bdev(crypto_bdev->base_bdev);
|
|
|
|
/* Close the underlying bdev on its same opened thread. */
|
|
if (crypto_bdev->thread && crypto_bdev->thread != spdk_get_thread()) {
|
|
spdk_thread_send_msg(crypto_bdev->thread, _vbdev_crypto_destruct, crypto_bdev->base_desc);
|
|
} else {
|
|
spdk_bdev_close(crypto_bdev->base_desc);
|
|
}
|
|
|
|
/* Unregister the io_device. */
|
|
spdk_io_device_unregister(crypto_bdev, _device_unregister_cb);
|
|
|
|
g_number_of_claimed_volumes--;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* We supplied this as an entry point for upper layers who want to communicate to this
|
|
* bdev. This is how they get a channel. We are passed the same context we provided when
|
|
* we created our crypto vbdev in examine() which, for this bdev, is the address of one of
|
|
* our context nodes. From here we'll ask the SPDK channel code to fill out our channel
|
|
* struct and we'll keep it in our crypto node.
|
|
*/
|
|
static struct spdk_io_channel *
|
|
vbdev_crypto_get_io_channel(void *ctx)
|
|
{
|
|
struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
|
|
|
|
/* The IO channel code will allocate a channel for us which consists of
|
|
* the SPDK channel structure plus the size of our crypto_io_channel struct
|
|
* that we passed in when we registered our IO device. It will then call
|
|
* our channel create callback to populate any elements that we need to
|
|
* update.
|
|
*/
|
|
return spdk_get_io_channel(crypto_bdev);
|
|
}
|
|
|
|
/* This is the output for bdev_get_bdevs() for this vbdev */
|
|
static int
|
|
vbdev_crypto_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
|
|
{
|
|
struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx;
|
|
char *hexkey = NULL, *hexkey2 = NULL;
|
|
int rc = 0;
|
|
|
|
hexkey = spdk_hexlify(crypto_bdev->opts->key,
|
|
crypto_bdev->opts->key_size);
|
|
if (!hexkey) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (crypto_bdev->opts->key2) {
|
|
hexkey2 = spdk_hexlify(crypto_bdev->opts->key2,
|
|
crypto_bdev->opts->key2_size);
|
|
if (!hexkey2) {
|
|
rc = -ENOMEM;
|
|
goto out_err;
|
|
}
|
|
}
|
|
|
|
spdk_json_write_name(w, "crypto");
|
|
spdk_json_write_object_begin(w);
|
|
spdk_json_write_named_string(w, "base_bdev_name", spdk_bdev_get_name(crypto_bdev->base_bdev));
|
|
spdk_json_write_named_string(w, "name", spdk_bdev_get_name(&crypto_bdev->crypto_bdev));
|
|
spdk_json_write_named_string(w, "crypto_pmd", crypto_bdev->opts->drv_name);
|
|
spdk_json_write_named_string(w, "key", hexkey);
|
|
if (hexkey2) {
|
|
spdk_json_write_named_string(w, "key2", hexkey2);
|
|
}
|
|
spdk_json_write_named_string(w, "cipher", crypto_bdev->opts->cipher);
|
|
spdk_json_write_object_end(w);
|
|
out_err:
|
|
if (hexkey) {
|
|
memset(hexkey, 0, strlen(hexkey));
|
|
free(hexkey);
|
|
}
|
|
if (hexkey2) {
|
|
memset(hexkey2, 0, strlen(hexkey2));
|
|
free(hexkey2);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
vbdev_crypto_config_json(struct spdk_json_write_ctx *w)
|
|
{
|
|
struct vbdev_crypto *crypto_bdev;
|
|
|
|
TAILQ_FOREACH(crypto_bdev, &g_vbdev_crypto, link) {
|
|
char *hexkey = NULL, *hexkey2 = NULL;
|
|
|
|
hexkey = spdk_hexlify(crypto_bdev->opts->key,
|
|
crypto_bdev->opts->key_size);
|
|
if (!hexkey) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (crypto_bdev->opts->key2) {
|
|
hexkey2 = spdk_hexlify(crypto_bdev->opts->key2,
|
|
crypto_bdev->opts->key2_size);
|
|
if (!hexkey2) {
|
|
memset(hexkey, 0, strlen(hexkey));
|
|
free(hexkey);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
spdk_json_write_object_begin(w);
|
|
spdk_json_write_named_string(w, "method", "bdev_crypto_create");
|
|
spdk_json_write_named_object_begin(w, "params");
|
|
spdk_json_write_named_string(w, "base_bdev_name", spdk_bdev_get_name(crypto_bdev->base_bdev));
|
|
spdk_json_write_named_string(w, "name", spdk_bdev_get_name(&crypto_bdev->crypto_bdev));
|
|
spdk_json_write_named_string(w, "crypto_pmd", crypto_bdev->opts->drv_name);
|
|
spdk_json_write_named_string(w, "key", hexkey);
|
|
if (hexkey2) {
|
|
spdk_json_write_named_string(w, "key2", hexkey2);
|
|
}
|
|
spdk_json_write_named_string(w, "cipher", crypto_bdev->opts->cipher);
|
|
spdk_json_write_object_end(w);
|
|
spdk_json_write_object_end(w);
|
|
|
|
if (hexkey) {
|
|
memset(hexkey, 0, strlen(hexkey));
|
|
free(hexkey);
|
|
}
|
|
if (hexkey2) {
|
|
memset(hexkey2, 0, strlen(hexkey2));
|
|
free(hexkey2);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Helper function for the channel creation callback. */
|
|
static void
|
|
_assign_device_qp(struct vbdev_crypto *crypto_bdev, struct device_qp *device_qp,
|
|
struct crypto_io_channel *crypto_ch)
|
|
{
|
|
pthread_mutex_lock(&g_device_qp_lock);
|
|
if (strcmp(crypto_bdev->opts->drv_name, QAT) == 0) {
|
|
/* For some QAT devices, the optimal qp to use is every 32nd as this spreads the
|
|
* workload out over the multiple virtual functions in the device. For the devices
|
|
* where this isn't the case, it doesn't hurt.
|
|
*/
|
|
TAILQ_FOREACH(device_qp, &g_device_qp_qat, link) {
|
|
if (device_qp->index != g_next_qat_index) {
|
|
continue;
|
|
}
|
|
if (device_qp->in_use == false) {
|
|
crypto_ch->device_qp = device_qp;
|
|
device_qp->in_use = true;
|
|
g_next_qat_index = (g_next_qat_index + QAT_VF_SPREAD) % g_qat_total_qp;
|
|
break;
|
|
} else {
|
|
/* if the preferred index is used, skip to the next one in this set. */
|
|
g_next_qat_index = (g_next_qat_index + 1) % g_qat_total_qp;
|
|
}
|
|
}
|
|
} else if (strcmp(crypto_bdev->opts->drv_name, AESNI_MB) == 0) {
|
|
TAILQ_FOREACH(device_qp, &g_device_qp_aesni_mb, link) {
|
|
if (device_qp->in_use == false) {
|
|
crypto_ch->device_qp = device_qp;
|
|
device_qp->in_use = true;
|
|
break;
|
|
}
|
|
}
|
|
} else if (strcmp(crypto_bdev->opts->drv_name, MLX5) == 0) {
|
|
TAILQ_FOREACH(device_qp, &g_device_qp_mlx5, link) {
|
|
if (device_qp->in_use == false) {
|
|
crypto_ch->device_qp = device_qp;
|
|
device_qp->in_use = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
pthread_mutex_unlock(&g_device_qp_lock);
|
|
}
|
|
|
|
/* We provide this callback for the SPDK channel code to create a channel using
|
|
* the channel struct we provided in our module get_io_channel() entry point. Here
|
|
* we get and save off an underlying base channel of the device below us so that
|
|
* we can communicate with the base bdev on a per channel basis. We also register the
|
|
* poller used to complete crypto operations from the device.
|
|
*/
|
|
static int
|
|
crypto_bdev_ch_create_cb(void *io_device, void *ctx_buf)
|
|
{
|
|
struct crypto_io_channel *crypto_ch = ctx_buf;
|
|
struct vbdev_crypto *crypto_bdev = io_device;
|
|
struct device_qp *device_qp = NULL;
|
|
|
|
crypto_ch->base_ch = spdk_bdev_get_io_channel(crypto_bdev->base_desc);
|
|
crypto_ch->poller = SPDK_POLLER_REGISTER(crypto_dev_poller, crypto_ch, 0);
|
|
crypto_ch->device_qp = NULL;
|
|
|
|
/* Assign a device/qp combination that is unique per channel per PMD. */
|
|
_assign_device_qp(crypto_bdev, device_qp, crypto_ch);
|
|
assert(crypto_ch->device_qp);
|
|
|
|
/* We use this queue to track outstanding IO in our layer. */
|
|
TAILQ_INIT(&crypto_ch->pending_cry_ios);
|
|
|
|
/* We use this to queue up crypto ops when the device is busy. */
|
|
TAILQ_INIT(&crypto_ch->queued_cry_ops);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* We provide this callback for the SPDK channel code to destroy a channel
|
|
* created with our create callback. We just need to undo anything we did
|
|
* when we created.
|
|
*/
|
|
static void
|
|
crypto_bdev_ch_destroy_cb(void *io_device, void *ctx_buf)
|
|
{
|
|
struct crypto_io_channel *crypto_ch = ctx_buf;
|
|
|
|
pthread_mutex_lock(&g_device_qp_lock);
|
|
crypto_ch->device_qp->in_use = false;
|
|
pthread_mutex_unlock(&g_device_qp_lock);
|
|
|
|
spdk_poller_unregister(&crypto_ch->poller);
|
|
spdk_put_io_channel(crypto_ch->base_ch);
|
|
}
|
|
|
|
/* Create the association from the bdev and vbdev name and insert
|
|
* on the global list. */
|
|
static int
|
|
vbdev_crypto_insert_name(struct vbdev_crypto_opts *opts, struct bdev_names **out)
|
|
{
|
|
struct bdev_names *name;
|
|
bool found = false;
|
|
int j;
|
|
|
|
assert(opts);
|
|
assert(out);
|
|
|
|
TAILQ_FOREACH(name, &g_bdev_names, link) {
|
|
if (strcmp(opts->vbdev_name, name->opts->vbdev_name) == 0) {
|
|
SPDK_ERRLOG("Crypto bdev %s already exists\n", opts->vbdev_name);
|
|
return -EEXIST;
|
|
}
|
|
}
|
|
|
|
for (j = 0; j < MAX_NUM_DRV_TYPES ; j++) {
|
|
if (strcmp(opts->drv_name, g_driver_names[j]) == 0) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
SPDK_ERRLOG("Crypto PMD type %s is not supported.\n", opts->drv_name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
name = calloc(1, sizeof(struct bdev_names));
|
|
if (!name) {
|
|
SPDK_ERRLOG("Failed to allocate memory for bdev_names.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
name->opts = opts;
|
|
TAILQ_INSERT_TAIL(&g_bdev_names, name, link);
|
|
*out = name;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
free_crypto_opts(struct vbdev_crypto_opts *opts)
|
|
{
|
|
free(opts->bdev_name);
|
|
free(opts->vbdev_name);
|
|
free(opts->drv_name);
|
|
if (opts->xts_key) {
|
|
memset(opts->xts_key, 0,
|
|
opts->key_size + opts->key2_size);
|
|
free(opts->xts_key);
|
|
}
|
|
memset(opts->key, 0, opts->key_size);
|
|
free(opts->key);
|
|
opts->key_size = 0;
|
|
if (opts->key2) {
|
|
memset(opts->key2, 0, opts->key2_size);
|
|
free(opts->key2);
|
|
}
|
|
opts->key2_size = 0;
|
|
free(opts);
|
|
}
|
|
|
|
static void
|
|
vbdev_crypto_delete_name(struct bdev_names *name)
|
|
{
|
|
TAILQ_REMOVE(&g_bdev_names, name, link);
|
|
if (name->opts) {
|
|
free_crypto_opts(name->opts);
|
|
name->opts = NULL;
|
|
}
|
|
free(name);
|
|
}
|
|
|
|
/* RPC entry point for crypto creation. */
|
|
int
|
|
create_crypto_disk(struct vbdev_crypto_opts *opts)
|
|
{
|
|
struct bdev_names *name = NULL;
|
|
int rc;
|
|
|
|
rc = vbdev_crypto_insert_name(opts, &name);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
|
|
rc = vbdev_crypto_claim(opts->bdev_name);
|
|
if (rc == -ENODEV) {
|
|
SPDK_NOTICELOG("vbdev creation deferred pending base bdev arrival\n");
|
|
rc = 0;
|
|
}
|
|
|
|
if (rc) {
|
|
assert(name != NULL);
|
|
/* In case of error we let the caller function to deallocate @opts
|
|
* since it is its responsibiltiy. Setting name->opts = NULL let's
|
|
* vbdev_crypto_delete_name() know it does not have to do anything
|
|
* about @opts.
|
|
*/
|
|
name->opts = NULL;
|
|
vbdev_crypto_delete_name(name);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* Called at driver init time, parses config file to prepare for examine calls,
|
|
* also fully initializes the crypto drivers.
|
|
*/
|
|
static int
|
|
vbdev_crypto_init(void)
|
|
{
|
|
int rc = 0;
|
|
|
|
/* Fully configure both SW and HW drivers. */
|
|
rc = vbdev_crypto_init_crypto_drivers();
|
|
if (rc) {
|
|
SPDK_ERRLOG("Error setting up crypto devices\n");
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Called when the entire module is being torn down. */
|
|
static void
|
|
vbdev_crypto_finish(void)
|
|
{
|
|
struct bdev_names *name;
|
|
struct vbdev_dev *device;
|
|
|
|
while ((name = TAILQ_FIRST(&g_bdev_names))) {
|
|
vbdev_crypto_delete_name(name);
|
|
}
|
|
|
|
while ((device = TAILQ_FIRST(&g_vbdev_devs))) {
|
|
TAILQ_REMOVE(&g_vbdev_devs, device, link);
|
|
release_vbdev_dev(device);
|
|
}
|
|
rte_vdev_uninit(AESNI_MB);
|
|
|
|
/* These are removed in release_vbdev_dev() */
|
|
assert(TAILQ_EMPTY(&g_device_qp_qat));
|
|
assert(TAILQ_EMPTY(&g_device_qp_aesni_mb));
|
|
assert(TAILQ_EMPTY(&g_device_qp_mlx5));
|
|
|
|
rte_mempool_free(g_crypto_op_mp);
|
|
rte_mempool_free(g_mbuf_mp);
|
|
rte_mempool_free(g_session_mp);
|
|
if (g_session_mp_priv != NULL) {
|
|
rte_mempool_free(g_session_mp_priv);
|
|
}
|
|
}
|
|
|
|
/* During init we'll be asked how much memory we'd like passed to us
|
|
* in bev_io structures as context. Here's where we specify how
|
|
* much context we want per IO.
|
|
*/
|
|
static int
|
|
vbdev_crypto_get_ctx_size(void)
|
|
{
|
|
return sizeof(struct crypto_bdev_io);
|
|
}
|
|
|
|
static void
|
|
vbdev_crypto_base_bdev_hotremove_cb(struct spdk_bdev *bdev_find)
|
|
{
|
|
struct vbdev_crypto *crypto_bdev, *tmp;
|
|
|
|
TAILQ_FOREACH_SAFE(crypto_bdev, &g_vbdev_crypto, link, tmp) {
|
|
if (bdev_find == crypto_bdev->base_bdev) {
|
|
spdk_bdev_unregister(&crypto_bdev->crypto_bdev, NULL, NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Called when the underlying base bdev triggers asynchronous event such as bdev removal. */
|
|
static void
|
|
vbdev_crypto_base_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev,
|
|
void *event_ctx)
|
|
{
|
|
switch (type) {
|
|
case SPDK_BDEV_EVENT_REMOVE:
|
|
vbdev_crypto_base_bdev_hotremove_cb(bdev);
|
|
break;
|
|
default:
|
|
SPDK_NOTICELOG("Unsupported bdev event: type %d\n", type);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
vbdev_crypto_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
|
|
{
|
|
/* No config per bdev needed */
|
|
}
|
|
|
|
/* When we register our bdev this is how we specify our entry points. */
|
|
static const struct spdk_bdev_fn_table vbdev_crypto_fn_table = {
|
|
.destruct = vbdev_crypto_destruct,
|
|
.submit_request = vbdev_crypto_submit_request,
|
|
.io_type_supported = vbdev_crypto_io_type_supported,
|
|
.get_io_channel = vbdev_crypto_get_io_channel,
|
|
.dump_info_json = vbdev_crypto_dump_info_json,
|
|
.write_config_json = vbdev_crypto_write_config_json
|
|
};
|
|
|
|
static struct spdk_bdev_module crypto_if = {
|
|
.name = "crypto",
|
|
.module_init = vbdev_crypto_init,
|
|
.get_ctx_size = vbdev_crypto_get_ctx_size,
|
|
.examine_config = vbdev_crypto_examine,
|
|
.module_fini = vbdev_crypto_finish,
|
|
.config_json = vbdev_crypto_config_json
|
|
};
|
|
|
|
SPDK_BDEV_MODULE_REGISTER(crypto, &crypto_if)
|
|
|
|
static int
|
|
vbdev_crypto_claim(const char *bdev_name)
|
|
{
|
|
struct bdev_names *name;
|
|
struct vbdev_crypto *vbdev;
|
|
struct spdk_bdev *bdev;
|
|
uint8_t key_size;
|
|
int rc = 0;
|
|
|
|
if (g_number_of_claimed_volumes >= MAX_CRYPTO_VOLUMES) {
|
|
SPDK_DEBUGLOG(vbdev_crypto, "Reached max number of claimed volumes\n");
|
|
return -EINVAL;
|
|
}
|
|
g_number_of_claimed_volumes++;
|
|
|
|
/* Check our list of names from config versus this bdev and if
|
|
* there's a match, create the crypto_bdev & bdev accordingly.
|
|
*/
|
|
TAILQ_FOREACH(name, &g_bdev_names, link) {
|
|
if (strcmp(name->opts->bdev_name, bdev_name) != 0) {
|
|
continue;
|
|
}
|
|
SPDK_DEBUGLOG(vbdev_crypto, "Match on %s\n", bdev_name);
|
|
|
|
vbdev = calloc(1, sizeof(struct vbdev_crypto));
|
|
if (!vbdev) {
|
|
SPDK_ERRLOG("Failed to allocate memory for crypto_bdev.\n");
|
|
rc = -ENOMEM;
|
|
goto error_vbdev_alloc;
|
|
}
|
|
vbdev->crypto_bdev.product_name = "crypto";
|
|
|
|
vbdev->crypto_bdev.name = strdup(name->opts->vbdev_name);
|
|
if (!vbdev->crypto_bdev.name) {
|
|
SPDK_ERRLOG("Failed to allocate memory for crypto_bdev name.\n");
|
|
rc = -ENOMEM;
|
|
goto error_bdev_name;
|
|
}
|
|
|
|
rc = spdk_bdev_open_ext(bdev_name, true, vbdev_crypto_base_bdev_event_cb,
|
|
NULL, &vbdev->base_desc);
|
|
if (rc) {
|
|
if (rc != -ENODEV) {
|
|
SPDK_ERRLOG("Failed to open bdev %s: error %d\n", bdev_name, rc);
|
|
}
|
|
goto error_open;
|
|
}
|
|
|
|
bdev = spdk_bdev_desc_get_bdev(vbdev->base_desc);
|
|
vbdev->base_bdev = bdev;
|
|
|
|
if (strcmp(name->opts->drv_name, MLX5) == 0) {
|
|
vbdev->qp_desc_nr = CRYPTO_QP_DESCRIPTORS_MLX5;
|
|
} else {
|
|
vbdev->qp_desc_nr = CRYPTO_QP_DESCRIPTORS;
|
|
}
|
|
|
|
vbdev->crypto_bdev.write_cache = bdev->write_cache;
|
|
if (strcmp(name->opts->drv_name, QAT) == 0) {
|
|
vbdev->crypto_bdev.required_alignment =
|
|
spdk_max(spdk_u32log2(bdev->blocklen), bdev->required_alignment);
|
|
SPDK_NOTICELOG("QAT in use: Required alignment set to %u\n",
|
|
vbdev->crypto_bdev.required_alignment);
|
|
SPDK_NOTICELOG("QAT using cipher: %s\n", name->opts->cipher);
|
|
} else if (strcmp(name->opts->drv_name, MLX5) == 0) {
|
|
vbdev->crypto_bdev.required_alignment = bdev->required_alignment;
|
|
SPDK_NOTICELOG("MLX5 using cipher: %s\n", name->opts->cipher);
|
|
} else {
|
|
vbdev->crypto_bdev.required_alignment = bdev->required_alignment;
|
|
SPDK_NOTICELOG("AESNI_MB using cipher: %s\n", name->opts->cipher);
|
|
}
|
|
vbdev->cipher_xform.cipher.iv.length = IV_LENGTH;
|
|
|
|
/* Note: CRYPTO_MAX_IO is in units of bytes, optimal_io_boundary is
|
|
* in units of blocks.
|
|
*/
|
|
if (bdev->optimal_io_boundary > 0) {
|
|
vbdev->crypto_bdev.optimal_io_boundary =
|
|
spdk_min((CRYPTO_MAX_IO / bdev->blocklen), bdev->optimal_io_boundary);
|
|
} else {
|
|
vbdev->crypto_bdev.optimal_io_boundary = (CRYPTO_MAX_IO / bdev->blocklen);
|
|
}
|
|
vbdev->crypto_bdev.split_on_optimal_io_boundary = true;
|
|
vbdev->crypto_bdev.blocklen = bdev->blocklen;
|
|
vbdev->crypto_bdev.blockcnt = bdev->blockcnt;
|
|
|
|
/* This is the context that is passed to us when the bdev
|
|
* layer calls in so we'll save our crypto_bdev node here.
|
|
*/
|
|
vbdev->crypto_bdev.ctxt = vbdev;
|
|
vbdev->crypto_bdev.fn_table = &vbdev_crypto_fn_table;
|
|
vbdev->crypto_bdev.module = &crypto_if;
|
|
|
|
/* Assign crypto opts from the name. The pointer is valid up to the point
|
|
* the module is unloaded and all names removed from the list. */
|
|
vbdev->opts = name->opts;
|
|
|
|
TAILQ_INSERT_TAIL(&g_vbdev_crypto, vbdev, link);
|
|
|
|
spdk_io_device_register(vbdev, crypto_bdev_ch_create_cb, crypto_bdev_ch_destroy_cb,
|
|
sizeof(struct crypto_io_channel), vbdev->crypto_bdev.name);
|
|
|
|
/* Save the thread where the base device is opened */
|
|
vbdev->thread = spdk_get_thread();
|
|
|
|
rc = spdk_bdev_module_claim_bdev(bdev, vbdev->base_desc, vbdev->crypto_bdev.module);
|
|
if (rc) {
|
|
SPDK_ERRLOG("Failed to claim bdev %s\n", spdk_bdev_get_name(bdev));
|
|
goto error_claim;
|
|
}
|
|
|
|
/* Init our per vbdev xform with the desired cipher options. */
|
|
vbdev->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
|
|
vbdev->cipher_xform.cipher.iv.offset = IV_OFFSET;
|
|
if (strcmp(vbdev->opts->cipher, AES_CBC) == 0) {
|
|
vbdev->cipher_xform.cipher.key.data = vbdev->opts->key;
|
|
vbdev->cipher_xform.cipher.key.length = vbdev->opts->key_size;
|
|
vbdev->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
|
|
} else if (strcmp(vbdev->opts->cipher, AES_XTS) == 0) {
|
|
key_size = vbdev->opts->key_size + vbdev->opts->key2_size;
|
|
vbdev->cipher_xform.cipher.key.data = vbdev->opts->xts_key;
|
|
vbdev->cipher_xform.cipher.key.length = key_size;
|
|
vbdev->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_XTS;
|
|
} else {
|
|
SPDK_ERRLOG("Invalid cipher name %s.\n", vbdev->opts->cipher);
|
|
rc = -EINVAL;
|
|
goto error_session_de_create;
|
|
}
|
|
vbdev->cipher_xform.cipher.iv.length = IV_LENGTH;
|
|
|
|
vbdev->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
|
|
vbdev->session_encrypt = _cryptodev_sym_session_create(vbdev, &vbdev->cipher_xform);
|
|
if (NULL == vbdev->session_encrypt) {
|
|
SPDK_ERRLOG("Failed to create encrypt crypto session.\n");
|
|
rc = -EINVAL;
|
|
goto error_session_en_create;
|
|
}
|
|
|
|
vbdev->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
|
|
vbdev->session_decrypt = _cryptodev_sym_session_create(vbdev, &vbdev->cipher_xform);
|
|
if (NULL == vbdev->session_decrypt) {
|
|
SPDK_ERRLOG("Failed to create decrypt crypto session.\n");
|
|
rc = -EINVAL;
|
|
goto error_session_de_create;
|
|
}
|
|
|
|
rc = spdk_bdev_register(&vbdev->crypto_bdev);
|
|
if (rc < 0) {
|
|
SPDK_ERRLOG("Failed to register vbdev: error %d\n", rc);
|
|
rc = -EINVAL;
|
|
goto error_bdev_register;
|
|
}
|
|
SPDK_DEBUGLOG(vbdev_crypto, "Registered io_device and virtual bdev for: %s\n",
|
|
vbdev->opts->vbdev_name);
|
|
break;
|
|
}
|
|
|
|
return rc;
|
|
|
|
/* Error cleanup paths. */
|
|
error_bdev_register:
|
|
_cryptodev_sym_session_free(vbdev, vbdev->session_decrypt);
|
|
error_session_de_create:
|
|
_cryptodev_sym_session_free(vbdev, vbdev->session_encrypt);
|
|
error_session_en_create:
|
|
spdk_bdev_module_release_bdev(vbdev->base_bdev);
|
|
error_claim:
|
|
TAILQ_REMOVE(&g_vbdev_crypto, vbdev, link);
|
|
spdk_io_device_unregister(vbdev, NULL);
|
|
spdk_bdev_close(vbdev->base_desc);
|
|
error_open:
|
|
free(vbdev->crypto_bdev.name);
|
|
error_bdev_name:
|
|
free(vbdev);
|
|
error_vbdev_alloc:
|
|
g_number_of_claimed_volumes--;
|
|
return rc;
|
|
}
|
|
|
|
/* RPC entry for deleting a crypto vbdev. */
|
|
void
|
|
delete_crypto_disk(const char *bdev_name, spdk_delete_crypto_complete cb_fn,
|
|
void *cb_arg)
|
|
{
|
|
struct bdev_names *name;
|
|
int rc;
|
|
|
|
/* Some cleanup happens in the destruct callback. */
|
|
rc = spdk_bdev_unregister_by_name(bdev_name, &crypto_if, cb_fn, cb_arg);
|
|
if (rc == 0) {
|
|
/* Remove the association (vbdev, bdev) from g_bdev_names. This is required so that the
|
|
* vbdev does not get re-created if the same bdev is constructed at some other time,
|
|
* unless the underlying bdev was hot-removed.
|
|
*/
|
|
TAILQ_FOREACH(name, &g_bdev_names, link) {
|
|
if (strcmp(name->opts->vbdev_name, bdev_name) == 0) {
|
|
vbdev_crypto_delete_name(name);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
cb_fn(cb_arg, rc);
|
|
}
|
|
}
|
|
|
|
/* Because we specified this function in our crypto bdev function table when we
|
|
* registered our crypto bdev, we'll get this call anytime a new bdev shows up.
|
|
* Here we need to decide if we care about it and if so what to do. We
|
|
* parsed the config file at init so we check the new bdev against the list
|
|
* we built up at that time and if the user configured us to attach to this
|
|
* bdev, here's where we do it.
|
|
*/
|
|
static void
|
|
vbdev_crypto_examine(struct spdk_bdev *bdev)
|
|
{
|
|
vbdev_crypto_claim(spdk_bdev_get_name(bdev));
|
|
spdk_bdev_module_examine_done(&crypto_if);
|
|
}
|
|
|
|
SPDK_LOG_REGISTER_COMPONENT(vbdev_crypto)
|