Some data cannot be compresssed and if there is not room in the output buffer for the uncompressed data and whatever info the compress back end needs it will error out. Signed-off-by: paul luse <paul.e.luse@intel.com> Change-Id: I4cb47e6cdb3facd3867d5dc4fb6f9352a307e33c Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/16098 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@nvidia.com> Reviewed-by: Jim Harris <james.r.harris@intel.com>
1135 lines
30 KiB
C
1135 lines
30 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright (C) 2020 Intel Corporation.
|
|
* All rights reserved.
|
|
*/
|
|
|
|
#include "spdk/stdinc.h"
|
|
#include "spdk/thread.h"
|
|
#include "spdk/env.h"
|
|
#include "spdk/event.h"
|
|
#include "spdk/log.h"
|
|
#include "spdk/string.h"
|
|
#include "spdk/accel.h"
|
|
#include "spdk/crc32.h"
|
|
#include "spdk/util.h"
|
|
|
|
#define DATA_PATTERN 0x5a
|
|
#define ALIGN_4K 0x1000
|
|
#define COMP_BUF_PAD_PERCENTAGE 1.1L
|
|
|
|
static uint64_t g_tsc_rate;
|
|
static uint64_t g_tsc_end;
|
|
static int g_rc;
|
|
static int g_xfer_size_bytes = 4096;
|
|
static int g_queue_depth = 32;
|
|
/* g_allocate_depth indicates how many tasks we allocate per worker. It will
|
|
* be at least as much as the queue depth.
|
|
*/
|
|
static int g_allocate_depth = 0;
|
|
static int g_threads_per_core = 1;
|
|
static int g_time_in_sec = 5;
|
|
static uint32_t g_crc32c_seed = 0;
|
|
static uint32_t g_chained_count = 1;
|
|
static int g_fail_percent_goal = 0;
|
|
static uint8_t g_fill_pattern = 255;
|
|
static bool g_verify = false;
|
|
static const char *g_workload_type = NULL;
|
|
static enum accel_opcode g_workload_selection;
|
|
static struct worker_thread *g_workers = NULL;
|
|
static int g_num_workers = 0;
|
|
static char *g_cd_file_in_name = NULL;
|
|
static pthread_mutex_t g_workers_lock = PTHREAD_MUTEX_INITIALIZER;
|
|
static struct spdk_app_opts g_opts = {};
|
|
|
|
struct ap_compress_seg {
|
|
void *uncompressed_data;
|
|
uint32_t uncompressed_len;
|
|
struct iovec *uncompressed_iovs;
|
|
uint32_t uncompressed_iovcnt;
|
|
|
|
void *compressed_data;
|
|
uint32_t compressed_len;
|
|
uint32_t compressed_len_padded;
|
|
struct iovec *compressed_iovs;
|
|
uint32_t compressed_iovcnt;
|
|
|
|
STAILQ_ENTRY(ap_compress_seg) link;
|
|
};
|
|
|
|
static STAILQ_HEAD(, ap_compress_seg) g_compress_segs = STAILQ_HEAD_INITIALIZER(g_compress_segs);
|
|
|
|
struct worker_thread;
|
|
static void accel_done(void *ref, int status);
|
|
|
|
struct display_info {
|
|
int core;
|
|
int thread;
|
|
};
|
|
|
|
struct ap_task {
|
|
void *src;
|
|
struct iovec *src_iovs;
|
|
uint32_t src_iovcnt;
|
|
struct iovec *dst_iovs;
|
|
uint32_t dst_iovcnt;
|
|
void *dst;
|
|
void *dst2;
|
|
uint32_t crc_dst;
|
|
uint32_t compressed_sz;
|
|
struct ap_compress_seg *cur_seg;
|
|
struct worker_thread *worker;
|
|
int expected_status; /* used for the compare operation */
|
|
TAILQ_ENTRY(ap_task) link;
|
|
};
|
|
|
|
struct worker_thread {
|
|
struct spdk_io_channel *ch;
|
|
uint64_t xfer_completed;
|
|
uint64_t xfer_failed;
|
|
uint64_t injected_miscompares;
|
|
uint64_t current_queue_depth;
|
|
TAILQ_HEAD(, ap_task) tasks_pool;
|
|
struct worker_thread *next;
|
|
unsigned core;
|
|
struct spdk_thread *thread;
|
|
bool is_draining;
|
|
struct spdk_poller *is_draining_poller;
|
|
struct spdk_poller *stop_poller;
|
|
void *task_base;
|
|
struct display_info display;
|
|
enum accel_opcode workload;
|
|
};
|
|
|
|
static void
|
|
dump_user_config(void)
|
|
{
|
|
const char *module_name = NULL;
|
|
int rc;
|
|
|
|
rc = spdk_accel_get_opc_module_name(g_workload_selection, &module_name);
|
|
if (rc) {
|
|
printf("error getting module name (%d)\n", rc);
|
|
}
|
|
|
|
printf("\nSPDK Configuration:\n");
|
|
printf("Core mask: %s\n\n", g_opts.reactor_mask);
|
|
printf("Accel Perf Configuration:\n");
|
|
printf("Workload Type: %s\n", g_workload_type);
|
|
if (g_workload_selection == ACCEL_OPC_CRC32C || g_workload_selection == ACCEL_OPC_COPY_CRC32C) {
|
|
printf("CRC-32C seed: %u\n", g_crc32c_seed);
|
|
} else if (g_workload_selection == ACCEL_OPC_FILL) {
|
|
printf("Fill pattern: 0x%x\n", g_fill_pattern);
|
|
} else if ((g_workload_selection == ACCEL_OPC_COMPARE) && g_fail_percent_goal > 0) {
|
|
printf("Failure inject: %u percent\n", g_fail_percent_goal);
|
|
}
|
|
if (g_workload_selection == ACCEL_OPC_COPY_CRC32C) {
|
|
printf("Vector size: %u bytes\n", g_xfer_size_bytes);
|
|
printf("Transfer size: %u bytes\n", g_xfer_size_bytes * g_chained_count);
|
|
} else {
|
|
printf("Transfer size: %u bytes\n", g_xfer_size_bytes);
|
|
}
|
|
printf("vector count %u\n", g_chained_count);
|
|
printf("Module: %s\n", module_name);
|
|
if (g_workload_selection == ACCEL_OPC_COMPRESS || g_workload_selection == ACCEL_OPC_DECOMPRESS) {
|
|
printf("File Name: %s\n", g_cd_file_in_name);
|
|
}
|
|
printf("Queue depth: %u\n", g_queue_depth);
|
|
printf("Allocate depth: %u\n", g_allocate_depth);
|
|
printf("# threads/core: %u\n", g_threads_per_core);
|
|
printf("Run time: %u seconds\n", g_time_in_sec);
|
|
printf("Verify: %s\n\n", g_verify ? "Yes" : "No");
|
|
}
|
|
|
|
static void
|
|
usage(void)
|
|
{
|
|
printf("accel_perf options:\n");
|
|
printf("\t[-h help message]\n");
|
|
printf("\t[-q queue depth per core]\n");
|
|
printf("\t[-C for supported workloads, use this value to configure the io vector size to test (default 1)\n");
|
|
printf("\t[-T number of threads per core\n");
|
|
printf("\t[-n number of channels]\n");
|
|
printf("\t[-o transfer size in bytes (default: 4KiB. For compress/decompress, 0 means the input file size)]\n");
|
|
printf("\t[-t time in seconds]\n");
|
|
printf("\t[-w workload type must be one of these: copy, fill, crc32c, copy_crc32c, compare, compress, decompress, dualcast\n");
|
|
printf("\t[-l for compress/decompress workloads, name of uncompressed input file\n");
|
|
printf("\t[-s for crc32c workload, use this seed value (default 0)\n");
|
|
printf("\t[-P for compare workload, percentage of operations that should miscompare (percent, default 0)\n");
|
|
printf("\t[-f for fill workload, use this BYTE value (default 255)\n");
|
|
printf("\t[-y verify result if this switch is on]\n");
|
|
printf("\t[-a tasks to allocate per core (default: same value as -q)]\n");
|
|
printf("\t\tCan be used to spread operations across a wider range of memory.\n");
|
|
}
|
|
|
|
static int
|
|
parse_args(int argc, char *argv)
|
|
{
|
|
int argval = 0;
|
|
|
|
switch (argc) {
|
|
case 'a':
|
|
case 'C':
|
|
case 'f':
|
|
case 'T':
|
|
case 'o':
|
|
case 'P':
|
|
case 'q':
|
|
case 's':
|
|
case 't':
|
|
argval = spdk_strtol(optarg, 10);
|
|
if (argval < 0) {
|
|
fprintf(stderr, "-%c option must be non-negative.\n", argc);
|
|
usage();
|
|
return 1;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
};
|
|
|
|
switch (argc) {
|
|
case 'a':
|
|
g_allocate_depth = argval;
|
|
break;
|
|
case 'C':
|
|
g_chained_count = argval;
|
|
break;
|
|
case 'l':
|
|
g_cd_file_in_name = optarg;
|
|
break;
|
|
case 'f':
|
|
g_fill_pattern = (uint8_t)argval;
|
|
break;
|
|
case 'T':
|
|
g_threads_per_core = argval;
|
|
break;
|
|
case 'o':
|
|
g_xfer_size_bytes = argval;
|
|
break;
|
|
case 'P':
|
|
g_fail_percent_goal = argval;
|
|
break;
|
|
case 'q':
|
|
g_queue_depth = argval;
|
|
break;
|
|
case 's':
|
|
g_crc32c_seed = argval;
|
|
break;
|
|
case 't':
|
|
g_time_in_sec = argval;
|
|
break;
|
|
case 'y':
|
|
g_verify = true;
|
|
break;
|
|
case 'w':
|
|
g_workload_type = optarg;
|
|
if (!strcmp(g_workload_type, "copy")) {
|
|
g_workload_selection = ACCEL_OPC_COPY;
|
|
} else if (!strcmp(g_workload_type, "fill")) {
|
|
g_workload_selection = ACCEL_OPC_FILL;
|
|
} else if (!strcmp(g_workload_type, "crc32c")) {
|
|
g_workload_selection = ACCEL_OPC_CRC32C;
|
|
} else if (!strcmp(g_workload_type, "copy_crc32c")) {
|
|
g_workload_selection = ACCEL_OPC_COPY_CRC32C;
|
|
} else if (!strcmp(g_workload_type, "compare")) {
|
|
g_workload_selection = ACCEL_OPC_COMPARE;
|
|
} else if (!strcmp(g_workload_type, "dualcast")) {
|
|
g_workload_selection = ACCEL_OPC_DUALCAST;
|
|
} else if (!strcmp(g_workload_type, "compress")) {
|
|
g_workload_selection = ACCEL_OPC_COMPRESS;
|
|
} else if (!strcmp(g_workload_type, "decompress")) {
|
|
g_workload_selection = ACCEL_OPC_DECOMPRESS;
|
|
} else {
|
|
usage();
|
|
return 1;
|
|
}
|
|
break;
|
|
default:
|
|
usage();
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dump_result(void);
|
|
static void
|
|
unregister_worker(void *arg1)
|
|
{
|
|
struct worker_thread *worker = arg1;
|
|
|
|
free(worker->task_base);
|
|
spdk_put_io_channel(worker->ch);
|
|
spdk_thread_exit(spdk_get_thread());
|
|
pthread_mutex_lock(&g_workers_lock);
|
|
assert(g_num_workers >= 1);
|
|
if (--g_num_workers == 0) {
|
|
pthread_mutex_unlock(&g_workers_lock);
|
|
g_rc = dump_result();
|
|
spdk_app_stop(0);
|
|
} else {
|
|
pthread_mutex_unlock(&g_workers_lock);
|
|
}
|
|
}
|
|
|
|
static void
|
|
accel_perf_construct_iovs(void *buf, uint64_t sz, struct iovec *iovs, uint32_t iovcnt)
|
|
{
|
|
uint64_t ele_size;
|
|
uint8_t *data;
|
|
uint32_t i;
|
|
|
|
ele_size = spdk_divide_round_up(sz, iovcnt);
|
|
|
|
data = buf;
|
|
for (i = 0; i < iovcnt; i++) {
|
|
ele_size = spdk_min(ele_size, sz);
|
|
assert(ele_size > 0);
|
|
|
|
iovs[i].iov_base = data;
|
|
iovs[i].iov_len = ele_size;
|
|
|
|
data += ele_size;
|
|
sz -= ele_size;
|
|
}
|
|
assert(sz == 0);
|
|
}
|
|
|
|
static int
|
|
_get_task_data_bufs(struct ap_task *task)
|
|
{
|
|
uint32_t align = 0;
|
|
uint32_t i = 0;
|
|
int dst_buff_len = g_xfer_size_bytes;
|
|
|
|
/* For dualcast, the DSA HW requires 4K alignment on destination addresses but
|
|
* we do this for all modules to keep it simple.
|
|
*/
|
|
if (g_workload_selection == ACCEL_OPC_DUALCAST) {
|
|
align = ALIGN_4K;
|
|
}
|
|
|
|
if (g_workload_selection == ACCEL_OPC_COMPRESS ||
|
|
g_workload_selection == ACCEL_OPC_DECOMPRESS) {
|
|
task->cur_seg = STAILQ_FIRST(&g_compress_segs);
|
|
|
|
if (g_workload_selection == ACCEL_OPC_COMPRESS) {
|
|
dst_buff_len = task->cur_seg->compressed_len_padded;
|
|
}
|
|
|
|
task->dst = spdk_dma_zmalloc(dst_buff_len, align, NULL);
|
|
if (task->dst == NULL) {
|
|
fprintf(stderr, "Unable to alloc dst buffer\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
task->dst_iovs = calloc(g_chained_count, sizeof(struct iovec));
|
|
if (!task->dst_iovs) {
|
|
fprintf(stderr, "cannot allocate task->dst_iovs for task=%p\n", task);
|
|
return -ENOMEM;
|
|
}
|
|
task->dst_iovcnt = g_chained_count;
|
|
accel_perf_construct_iovs(task->dst, dst_buff_len, task->dst_iovs, task->dst_iovcnt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (g_workload_selection == ACCEL_OPC_CRC32C ||
|
|
g_workload_selection == ACCEL_OPC_COPY_CRC32C) {
|
|
assert(g_chained_count > 0);
|
|
task->src_iovcnt = g_chained_count;
|
|
task->src_iovs = calloc(task->src_iovcnt, sizeof(struct iovec));
|
|
if (!task->src_iovs) {
|
|
fprintf(stderr, "cannot allocated task->src_iovs fot task=%p\n", task);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (g_workload_selection == ACCEL_OPC_COPY_CRC32C) {
|
|
dst_buff_len = g_xfer_size_bytes * g_chained_count;
|
|
}
|
|
|
|
for (i = 0; i < task->src_iovcnt; i++) {
|
|
task->src_iovs[i].iov_base = spdk_dma_zmalloc(g_xfer_size_bytes, 0, NULL);
|
|
if (task->src_iovs[i].iov_base == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
memset(task->src_iovs[i].iov_base, DATA_PATTERN, g_xfer_size_bytes);
|
|
task->src_iovs[i].iov_len = g_xfer_size_bytes;
|
|
}
|
|
|
|
} else {
|
|
task->src = spdk_dma_zmalloc(g_xfer_size_bytes, 0, NULL);
|
|
if (task->src == NULL) {
|
|
fprintf(stderr, "Unable to alloc src buffer\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* For fill, set the entire src buffer so we can check if verify is enabled. */
|
|
if (g_workload_selection == ACCEL_OPC_FILL) {
|
|
memset(task->src, g_fill_pattern, g_xfer_size_bytes);
|
|
} else {
|
|
memset(task->src, DATA_PATTERN, g_xfer_size_bytes);
|
|
}
|
|
}
|
|
|
|
if (g_workload_selection != ACCEL_OPC_CRC32C) {
|
|
task->dst = spdk_dma_zmalloc(dst_buff_len, align, NULL);
|
|
if (task->dst == NULL) {
|
|
fprintf(stderr, "Unable to alloc dst buffer\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* For compare we want the buffers to match, otherwise not. */
|
|
if (g_workload_selection == ACCEL_OPC_COMPARE) {
|
|
memset(task->dst, DATA_PATTERN, dst_buff_len);
|
|
} else {
|
|
memset(task->dst, ~DATA_PATTERN, dst_buff_len);
|
|
}
|
|
}
|
|
|
|
/* For dualcast 2 buffers are needed for the operation. */
|
|
if (g_workload_selection == ACCEL_OPC_DUALCAST) {
|
|
task->dst2 = spdk_dma_zmalloc(g_xfer_size_bytes, align, NULL);
|
|
if (task->dst2 == NULL) {
|
|
fprintf(stderr, "Unable to alloc dst buffer\n");
|
|
return -ENOMEM;
|
|
}
|
|
memset(task->dst2, ~DATA_PATTERN, g_xfer_size_bytes);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
inline static struct ap_task *
|
|
_get_task(struct worker_thread *worker)
|
|
{
|
|
struct ap_task *task;
|
|
|
|
if (!TAILQ_EMPTY(&worker->tasks_pool)) {
|
|
task = TAILQ_FIRST(&worker->tasks_pool);
|
|
TAILQ_REMOVE(&worker->tasks_pool, task, link);
|
|
} else {
|
|
fprintf(stderr, "Unable to get ap_task\n");
|
|
return NULL;
|
|
}
|
|
|
|
return task;
|
|
}
|
|
|
|
/* Submit one operation using the same ap task that just completed. */
|
|
static void
|
|
_submit_single(struct worker_thread *worker, struct ap_task *task)
|
|
{
|
|
int random_num;
|
|
int rc = 0;
|
|
int flags = 0;
|
|
|
|
assert(worker);
|
|
|
|
switch (worker->workload) {
|
|
case ACCEL_OPC_COPY:
|
|
rc = spdk_accel_submit_copy(worker->ch, task->dst, task->src,
|
|
g_xfer_size_bytes, flags, accel_done, task);
|
|
break;
|
|
case ACCEL_OPC_FILL:
|
|
/* For fill use the first byte of the task->dst buffer */
|
|
rc = spdk_accel_submit_fill(worker->ch, task->dst, *(uint8_t *)task->src,
|
|
g_xfer_size_bytes, flags, accel_done, task);
|
|
break;
|
|
case ACCEL_OPC_CRC32C:
|
|
rc = spdk_accel_submit_crc32cv(worker->ch, &task->crc_dst,
|
|
task->src_iovs, task->src_iovcnt, g_crc32c_seed,
|
|
accel_done, task);
|
|
break;
|
|
case ACCEL_OPC_COPY_CRC32C:
|
|
rc = spdk_accel_submit_copy_crc32cv(worker->ch, task->dst, task->src_iovs, task->src_iovcnt,
|
|
&task->crc_dst, g_crc32c_seed, flags, accel_done, task);
|
|
break;
|
|
case ACCEL_OPC_COMPARE:
|
|
random_num = rand() % 100;
|
|
if (random_num < g_fail_percent_goal) {
|
|
task->expected_status = -EILSEQ;
|
|
*(uint8_t *)task->dst = ~DATA_PATTERN;
|
|
} else {
|
|
task->expected_status = 0;
|
|
*(uint8_t *)task->dst = DATA_PATTERN;
|
|
}
|
|
rc = spdk_accel_submit_compare(worker->ch, task->dst, task->src,
|
|
g_xfer_size_bytes, accel_done, task);
|
|
break;
|
|
case ACCEL_OPC_DUALCAST:
|
|
rc = spdk_accel_submit_dualcast(worker->ch, task->dst, task->dst2,
|
|
task->src, g_xfer_size_bytes, flags, accel_done, task);
|
|
break;
|
|
case ACCEL_OPC_COMPRESS:
|
|
task->src_iovs = task->cur_seg->uncompressed_iovs;
|
|
task->src_iovcnt = task->cur_seg->uncompressed_iovcnt;
|
|
rc = spdk_accel_submit_compress(worker->ch, task->dst, task->cur_seg->compressed_len_padded,
|
|
task->src_iovs,
|
|
task->src_iovcnt, &task->compressed_sz, flags, accel_done, task);
|
|
break;
|
|
case ACCEL_OPC_DECOMPRESS:
|
|
task->src_iovs = task->cur_seg->compressed_iovs;
|
|
task->src_iovcnt = task->cur_seg->compressed_iovcnt;
|
|
rc = spdk_accel_submit_decompress(worker->ch, task->dst_iovs, task->dst_iovcnt, task->src_iovs,
|
|
task->src_iovcnt, NULL, flags, accel_done, task);
|
|
break;
|
|
default:
|
|
assert(false);
|
|
break;
|
|
|
|
}
|
|
|
|
worker->current_queue_depth++;
|
|
if (rc) {
|
|
accel_done(task, rc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
_free_task_buffers(struct ap_task *task)
|
|
{
|
|
uint32_t i;
|
|
|
|
if (g_workload_selection == ACCEL_OPC_DECOMPRESS || g_workload_selection == ACCEL_OPC_COMPRESS) {
|
|
free(task->dst_iovs);
|
|
} else if (g_workload_selection == ACCEL_OPC_CRC32C ||
|
|
g_workload_selection == ACCEL_OPC_COPY_CRC32C) {
|
|
if (task->src_iovs) {
|
|
for (i = 0; i < task->src_iovcnt; i++) {
|
|
if (task->src_iovs[i].iov_base) {
|
|
spdk_dma_free(task->src_iovs[i].iov_base);
|
|
}
|
|
}
|
|
free(task->src_iovs);
|
|
}
|
|
} else {
|
|
spdk_dma_free(task->src);
|
|
}
|
|
|
|
spdk_dma_free(task->dst);
|
|
if (g_workload_selection == ACCEL_OPC_DUALCAST) {
|
|
spdk_dma_free(task->dst2);
|
|
}
|
|
}
|
|
|
|
static int
|
|
_vector_memcmp(void *_dst, struct iovec *src_src_iovs, uint32_t iovcnt)
|
|
{
|
|
uint32_t i;
|
|
uint32_t ttl_len = 0;
|
|
uint8_t *dst = (uint8_t *)_dst;
|
|
|
|
for (i = 0; i < iovcnt; i++) {
|
|
if (memcmp(dst, src_src_iovs[i].iov_base, src_src_iovs[i].iov_len)) {
|
|
return -1;
|
|
}
|
|
dst += src_src_iovs[i].iov_len;
|
|
ttl_len += src_src_iovs[i].iov_len;
|
|
}
|
|
|
|
if (ttl_len != iovcnt * g_xfer_size_bytes) {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _worker_stop(void *arg);
|
|
|
|
static void
|
|
accel_done(void *arg1, int status)
|
|
{
|
|
struct ap_task *task = arg1;
|
|
struct worker_thread *worker = task->worker;
|
|
uint32_t sw_crc32c;
|
|
|
|
assert(worker);
|
|
assert(worker->current_queue_depth > 0);
|
|
|
|
if (g_verify && status == 0) {
|
|
switch (worker->workload) {
|
|
case ACCEL_OPC_COPY_CRC32C:
|
|
sw_crc32c = spdk_crc32c_iov_update(task->src_iovs, task->src_iovcnt, ~g_crc32c_seed);
|
|
if (task->crc_dst != sw_crc32c) {
|
|
SPDK_NOTICELOG("CRC-32C miscompare\n");
|
|
worker->xfer_failed++;
|
|
}
|
|
if (_vector_memcmp(task->dst, task->src_iovs, task->src_iovcnt)) {
|
|
SPDK_NOTICELOG("Data miscompare\n");
|
|
worker->xfer_failed++;
|
|
}
|
|
break;
|
|
case ACCEL_OPC_CRC32C:
|
|
sw_crc32c = spdk_crc32c_iov_update(task->src_iovs, task->src_iovcnt, ~g_crc32c_seed);
|
|
if (task->crc_dst != sw_crc32c) {
|
|
SPDK_NOTICELOG("CRC-32C miscompare\n");
|
|
worker->xfer_failed++;
|
|
}
|
|
break;
|
|
case ACCEL_OPC_COPY:
|
|
if (memcmp(task->src, task->dst, g_xfer_size_bytes)) {
|
|
SPDK_NOTICELOG("Data miscompare\n");
|
|
worker->xfer_failed++;
|
|
}
|
|
break;
|
|
case ACCEL_OPC_DUALCAST:
|
|
if (memcmp(task->src, task->dst, g_xfer_size_bytes)) {
|
|
SPDK_NOTICELOG("Data miscompare, first destination\n");
|
|
worker->xfer_failed++;
|
|
}
|
|
if (memcmp(task->src, task->dst2, g_xfer_size_bytes)) {
|
|
SPDK_NOTICELOG("Data miscompare, second destination\n");
|
|
worker->xfer_failed++;
|
|
}
|
|
break;
|
|
case ACCEL_OPC_FILL:
|
|
if (memcmp(task->dst, task->src, g_xfer_size_bytes)) {
|
|
SPDK_NOTICELOG("Data miscompare\n");
|
|
worker->xfer_failed++;
|
|
}
|
|
break;
|
|
case ACCEL_OPC_COMPARE:
|
|
break;
|
|
case ACCEL_OPC_COMPRESS:
|
|
break;
|
|
case ACCEL_OPC_DECOMPRESS:
|
|
if (memcmp(task->dst, task->cur_seg->uncompressed_data, task->cur_seg->uncompressed_len)) {
|
|
SPDK_NOTICELOG("Data miscompare on decompression\n");
|
|
worker->xfer_failed++;
|
|
}
|
|
break;
|
|
default:
|
|
assert(false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (worker->workload == ACCEL_OPC_COMPRESS || g_workload_selection == ACCEL_OPC_DECOMPRESS) {
|
|
/* Advance the task to the next segment */
|
|
task->cur_seg = STAILQ_NEXT(task->cur_seg, link);
|
|
if (task->cur_seg == NULL) {
|
|
task->cur_seg = STAILQ_FIRST(&g_compress_segs);
|
|
}
|
|
}
|
|
|
|
if (task->expected_status == -EILSEQ) {
|
|
assert(status != 0);
|
|
worker->injected_miscompares++;
|
|
status = 0;
|
|
} else if (status) {
|
|
/* Expected to pass but the accel module reported an error (ex: COMPARE operation). */
|
|
worker->xfer_failed++;
|
|
}
|
|
|
|
worker->xfer_completed++;
|
|
worker->current_queue_depth--;
|
|
|
|
if (!worker->is_draining && status == 0) {
|
|
TAILQ_INSERT_TAIL(&worker->tasks_pool, task, link);
|
|
task = _get_task(worker);
|
|
_submit_single(worker, task);
|
|
} else {
|
|
TAILQ_INSERT_TAIL(&worker->tasks_pool, task, link);
|
|
}
|
|
}
|
|
|
|
static int
|
|
dump_result(void)
|
|
{
|
|
uint64_t total_completed = 0;
|
|
uint64_t total_failed = 0;
|
|
uint64_t total_miscompared = 0;
|
|
uint64_t total_xfer_per_sec, total_bw_in_MiBps;
|
|
struct worker_thread *worker = g_workers;
|
|
|
|
printf("\nCore,Thread Transfers Bandwidth Failed Miscompares\n");
|
|
printf("------------------------------------------------------------------------\n");
|
|
while (worker != NULL) {
|
|
|
|
uint64_t xfer_per_sec = worker->xfer_completed / g_time_in_sec;
|
|
uint64_t bw_in_MiBps = (worker->xfer_completed * g_xfer_size_bytes) /
|
|
(g_time_in_sec * 1024 * 1024);
|
|
|
|
total_completed += worker->xfer_completed;
|
|
total_failed += worker->xfer_failed;
|
|
total_miscompared += worker->injected_miscompares;
|
|
|
|
if (xfer_per_sec) {
|
|
printf("%u,%u%17" PRIu64 "/s%9" PRIu64 " MiB/s%7" PRIu64 " %11" PRIu64 "\n",
|
|
worker->display.core, worker->display.thread, xfer_per_sec,
|
|
bw_in_MiBps, worker->xfer_failed, worker->injected_miscompares);
|
|
}
|
|
|
|
worker = worker->next;
|
|
}
|
|
|
|
total_xfer_per_sec = total_completed / g_time_in_sec;
|
|
total_bw_in_MiBps = (total_completed * g_xfer_size_bytes) /
|
|
(g_time_in_sec * 1024 * 1024);
|
|
|
|
printf("=========================================================================\n");
|
|
printf("Total:%15" PRIu64 "/s%9" PRIu64 " MiB/s%6" PRIu64 " %11" PRIu64"\n\n",
|
|
total_xfer_per_sec, total_bw_in_MiBps, total_failed, total_miscompared);
|
|
|
|
return total_failed ? 1 : 0;
|
|
}
|
|
|
|
static inline void
|
|
_free_task_buffers_in_pool(struct worker_thread *worker)
|
|
{
|
|
struct ap_task *task;
|
|
|
|
assert(worker);
|
|
while ((task = TAILQ_FIRST(&worker->tasks_pool))) {
|
|
TAILQ_REMOVE(&worker->tasks_pool, task, link);
|
|
_free_task_buffers(task);
|
|
}
|
|
}
|
|
|
|
static int
|
|
_check_draining(void *arg)
|
|
{
|
|
struct worker_thread *worker = arg;
|
|
|
|
assert(worker);
|
|
|
|
if (worker->current_queue_depth == 0) {
|
|
_free_task_buffers_in_pool(worker);
|
|
spdk_poller_unregister(&worker->is_draining_poller);
|
|
unregister_worker(worker);
|
|
}
|
|
|
|
return SPDK_POLLER_BUSY;
|
|
}
|
|
|
|
static int
|
|
_worker_stop(void *arg)
|
|
{
|
|
struct worker_thread *worker = arg;
|
|
|
|
assert(worker);
|
|
|
|
spdk_poller_unregister(&worker->stop_poller);
|
|
|
|
/* now let the worker drain and check it's outstanding IO with a poller */
|
|
worker->is_draining = true;
|
|
worker->is_draining_poller = SPDK_POLLER_REGISTER(_check_draining, worker, 0);
|
|
|
|
return SPDK_POLLER_BUSY;
|
|
}
|
|
|
|
static void
|
|
_init_thread(void *arg1)
|
|
{
|
|
struct worker_thread *worker;
|
|
struct ap_task *task;
|
|
int i, num_tasks = g_allocate_depth;
|
|
struct display_info *display = arg1;
|
|
|
|
worker = calloc(1, sizeof(*worker));
|
|
if (worker == NULL) {
|
|
fprintf(stderr, "Unable to allocate worker\n");
|
|
free(display);
|
|
return;
|
|
}
|
|
|
|
worker->workload = g_workload_selection;
|
|
worker->display.core = display->core;
|
|
worker->display.thread = display->thread;
|
|
free(display);
|
|
worker->core = spdk_env_get_current_core();
|
|
worker->thread = spdk_get_thread();
|
|
pthread_mutex_lock(&g_workers_lock);
|
|
g_num_workers++;
|
|
worker->next = g_workers;
|
|
g_workers = worker;
|
|
pthread_mutex_unlock(&g_workers_lock);
|
|
worker->ch = spdk_accel_get_io_channel();
|
|
if (worker->ch == NULL) {
|
|
fprintf(stderr, "Unable to get an accel channel\n");
|
|
goto error;
|
|
}
|
|
|
|
TAILQ_INIT(&worker->tasks_pool);
|
|
|
|
worker->task_base = calloc(num_tasks, sizeof(struct ap_task));
|
|
if (worker->task_base == NULL) {
|
|
fprintf(stderr, "Could not allocate task base.\n");
|
|
goto error;
|
|
}
|
|
|
|
task = worker->task_base;
|
|
for (i = 0; i < num_tasks; i++) {
|
|
TAILQ_INSERT_TAIL(&worker->tasks_pool, task, link);
|
|
task->worker = worker;
|
|
if (_get_task_data_bufs(task)) {
|
|
fprintf(stderr, "Unable to get data bufs\n");
|
|
goto error;
|
|
}
|
|
task++;
|
|
}
|
|
|
|
/* Register a poller that will stop the worker at time elapsed */
|
|
worker->stop_poller = SPDK_POLLER_REGISTER(_worker_stop, worker,
|
|
g_time_in_sec * 1000000ULL);
|
|
|
|
/* Load up queue depth worth of operations. */
|
|
for (i = 0; i < g_queue_depth; i++) {
|
|
task = _get_task(worker);
|
|
if (task == NULL) {
|
|
goto error;
|
|
}
|
|
|
|
_submit_single(worker, task);
|
|
}
|
|
return;
|
|
error:
|
|
|
|
_free_task_buffers_in_pool(worker);
|
|
free(worker->task_base);
|
|
spdk_app_stop(-1);
|
|
}
|
|
|
|
static void
|
|
accel_perf_start(void *arg1)
|
|
{
|
|
struct spdk_cpuset tmp_cpumask = {};
|
|
char thread_name[32];
|
|
uint32_t i;
|
|
int j;
|
|
struct spdk_thread *thread;
|
|
struct display_info *display;
|
|
|
|
g_tsc_rate = spdk_get_ticks_hz();
|
|
g_tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate;
|
|
|
|
dump_user_config();
|
|
|
|
printf("Running for %d seconds...\n", g_time_in_sec);
|
|
fflush(stdout);
|
|
|
|
/* Create worker threads for each core that was specified. */
|
|
SPDK_ENV_FOREACH_CORE(i) {
|
|
for (j = 0; j < g_threads_per_core; j++) {
|
|
snprintf(thread_name, sizeof(thread_name), "ap_worker_%u_%u", i, j);
|
|
spdk_cpuset_zero(&tmp_cpumask);
|
|
spdk_cpuset_set_cpu(&tmp_cpumask, i, true);
|
|
thread = spdk_thread_create(thread_name, &tmp_cpumask);
|
|
display = calloc(1, sizeof(*display));
|
|
if (display == NULL) {
|
|
fprintf(stderr, "Unable to allocate memory\n");
|
|
spdk_app_stop(-1);
|
|
return;
|
|
}
|
|
display->core = i;
|
|
display->thread = j;
|
|
spdk_thread_send_msg(thread, _init_thread, display);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
accel_perf_free_compress_segs(void)
|
|
{
|
|
struct ap_compress_seg *seg, *tmp;
|
|
|
|
STAILQ_FOREACH_SAFE(seg, &g_compress_segs, link, tmp) {
|
|
free(seg->uncompressed_iovs);
|
|
free(seg->compressed_iovs);
|
|
spdk_dma_free(seg->compressed_data);
|
|
spdk_dma_free(seg->uncompressed_data);
|
|
STAILQ_REMOVE_HEAD(&g_compress_segs, link);
|
|
free(seg);
|
|
}
|
|
}
|
|
|
|
struct accel_perf_prep_ctx {
|
|
FILE *file;
|
|
long remaining;
|
|
struct spdk_io_channel *ch;
|
|
struct ap_compress_seg *cur_seg;
|
|
};
|
|
|
|
static void accel_perf_prep_process_seg(struct accel_perf_prep_ctx *ctx);
|
|
|
|
static void
|
|
accel_perf_prep_process_seg_cpl(void *ref, int status)
|
|
{
|
|
struct accel_perf_prep_ctx *ctx = ref;
|
|
struct ap_compress_seg *seg;
|
|
|
|
if (status != 0) {
|
|
fprintf(stderr, "error (%d) on initial compress completion\n", status);
|
|
spdk_dma_free(ctx->cur_seg->compressed_data);
|
|
spdk_dma_free(ctx->cur_seg->uncompressed_data);
|
|
free(ctx->cur_seg);
|
|
spdk_put_io_channel(ctx->ch);
|
|
fclose(ctx->file);
|
|
free(ctx);
|
|
spdk_app_stop(-status);
|
|
return;
|
|
}
|
|
|
|
seg = ctx->cur_seg;
|
|
|
|
if (g_workload_selection == ACCEL_OPC_DECOMPRESS) {
|
|
seg->compressed_iovs = calloc(g_chained_count, sizeof(struct iovec));
|
|
if (seg->compressed_iovs == NULL) {
|
|
fprintf(stderr, "unable to allocate iovec\n");
|
|
spdk_dma_free(seg->compressed_data);
|
|
spdk_dma_free(seg->uncompressed_data);
|
|
free(seg);
|
|
spdk_put_io_channel(ctx->ch);
|
|
fclose(ctx->file);
|
|
free(ctx);
|
|
spdk_app_stop(-ENOMEM);
|
|
return;
|
|
}
|
|
seg->compressed_iovcnt = g_chained_count;
|
|
|
|
accel_perf_construct_iovs(seg->compressed_data, seg->compressed_len, seg->compressed_iovs,
|
|
seg->compressed_iovcnt);
|
|
}
|
|
|
|
STAILQ_INSERT_TAIL(&g_compress_segs, seg, link);
|
|
ctx->remaining -= seg->uncompressed_len;
|
|
|
|
accel_perf_prep_process_seg(ctx);
|
|
}
|
|
|
|
static void
|
|
accel_perf_prep_process_seg(struct accel_perf_prep_ctx *ctx)
|
|
{
|
|
struct ap_compress_seg *seg;
|
|
int sz, sz_read, sz_padded;
|
|
void *ubuf, *cbuf;
|
|
struct iovec iov[1];
|
|
int rc;
|
|
|
|
if (ctx->remaining == 0) {
|
|
spdk_put_io_channel(ctx->ch);
|
|
fclose(ctx->file);
|
|
free(ctx);
|
|
accel_perf_start(NULL);
|
|
return;
|
|
}
|
|
|
|
sz = spdk_min(ctx->remaining, g_xfer_size_bytes);
|
|
/* Add 10% pad to the compress buffer for incompressible data. Note that a real app
|
|
* would likely either deal with the failure of not having a large enough buffer
|
|
* by submitting another operation with a larger one. Or, like the vbdev module
|
|
* does, just accept the error and use the data uncompressed marking it as such in
|
|
* its own metadata so that in the future it doesn't try to decompress uncompressed
|
|
* data, etc.
|
|
*/
|
|
sz_padded = sz * COMP_BUF_PAD_PERCENTAGE;
|
|
|
|
ubuf = spdk_dma_zmalloc(sz, ALIGN_4K, NULL);
|
|
if (!ubuf) {
|
|
fprintf(stderr, "unable to allocate uncompress buffer\n");
|
|
rc = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
cbuf = spdk_dma_malloc(sz_padded, ALIGN_4K, NULL);
|
|
if (!cbuf) {
|
|
fprintf(stderr, "unable to allocate compress buffer\n");
|
|
rc = -ENOMEM;
|
|
spdk_dma_free(ubuf);
|
|
goto error;
|
|
}
|
|
|
|
seg = calloc(1, sizeof(*seg));
|
|
if (!seg) {
|
|
fprintf(stderr, "unable to allocate comp/decomp segment\n");
|
|
spdk_dma_free(ubuf);
|
|
spdk_dma_free(cbuf);
|
|
rc = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
sz_read = fread(ubuf, sizeof(uint8_t), sz, ctx->file);
|
|
if (sz_read != sz) {
|
|
fprintf(stderr, "unable to read input file\n");
|
|
free(seg);
|
|
spdk_dma_free(ubuf);
|
|
spdk_dma_free(cbuf);
|
|
rc = -errno;
|
|
goto error;
|
|
}
|
|
|
|
if (g_workload_selection == ACCEL_OPC_COMPRESS) {
|
|
seg->uncompressed_iovs = calloc(g_chained_count, sizeof(struct iovec));
|
|
if (seg->uncompressed_iovs == NULL) {
|
|
fprintf(stderr, "unable to allocate iovec\n");
|
|
free(seg);
|
|
spdk_dma_free(ubuf);
|
|
spdk_dma_free(cbuf);
|
|
rc = -ENOMEM;
|
|
goto error;
|
|
}
|
|
seg->uncompressed_iovcnt = g_chained_count;
|
|
accel_perf_construct_iovs(ubuf, sz, seg->uncompressed_iovs, seg->uncompressed_iovcnt);
|
|
}
|
|
|
|
seg->uncompressed_data = ubuf;
|
|
seg->uncompressed_len = sz;
|
|
seg->compressed_data = cbuf;
|
|
seg->compressed_len = sz;
|
|
seg->compressed_len_padded = sz_padded;
|
|
|
|
ctx->cur_seg = seg;
|
|
iov[0].iov_base = seg->uncompressed_data;
|
|
iov[0].iov_len = seg->uncompressed_len;
|
|
/* Note that anytime a call is made to spdk_accel_submit_compress() there's a chance
|
|
* it will fail with -ENOMEM in the event that the destination buffer is not large enough
|
|
* to hold the compressed data. This example app simply adds 10% buffer for compressed data
|
|
* but real applications may want to consider a more sophisticated method.
|
|
*/
|
|
rc = spdk_accel_submit_compress(ctx->ch, seg->compressed_data, seg->compressed_len_padded, iov, 1,
|
|
&seg->compressed_len, 0, accel_perf_prep_process_seg_cpl, ctx);
|
|
if (rc < 0) {
|
|
fprintf(stderr, "error (%d) on initial compress submission\n", rc);
|
|
goto error;
|
|
}
|
|
|
|
return;
|
|
|
|
error:
|
|
spdk_put_io_channel(ctx->ch);
|
|
fclose(ctx->file);
|
|
free(ctx);
|
|
spdk_app_stop(rc);
|
|
}
|
|
|
|
static void
|
|
accel_perf_prep(void *arg1)
|
|
{
|
|
struct accel_perf_prep_ctx *ctx;
|
|
int rc = 0;
|
|
|
|
if (g_workload_selection != ACCEL_OPC_COMPRESS &&
|
|
g_workload_selection != ACCEL_OPC_DECOMPRESS) {
|
|
accel_perf_start(arg1);
|
|
return;
|
|
}
|
|
|
|
if (g_cd_file_in_name == NULL) {
|
|
fprintf(stdout, "A filename is required.\n");
|
|
rc = -EINVAL;
|
|
goto error_end;
|
|
}
|
|
|
|
if (g_workload_selection == ACCEL_OPC_COMPRESS && g_verify) {
|
|
fprintf(stdout, "\nCompression does not support the verify option, aborting.\n");
|
|
rc = -ENOTSUP;
|
|
goto error_end;
|
|
}
|
|
|
|
printf("Preparing input file...\n");
|
|
|
|
ctx = calloc(1, sizeof(*ctx));
|
|
if (ctx == NULL) {
|
|
rc = -ENOMEM;
|
|
goto error_end;
|
|
}
|
|
|
|
ctx->file = fopen(g_cd_file_in_name, "r");
|
|
if (ctx->file == NULL) {
|
|
fprintf(stderr, "Could not open file %s.\n", g_cd_file_in_name);
|
|
rc = -errno;
|
|
goto error_ctx;
|
|
}
|
|
|
|
fseek(ctx->file, 0L, SEEK_END);
|
|
ctx->remaining = ftell(ctx->file);
|
|
fseek(ctx->file, 0L, SEEK_SET);
|
|
|
|
ctx->ch = spdk_accel_get_io_channel();
|
|
if (ctx->ch == NULL) {
|
|
rc = -EAGAIN;
|
|
goto error_file;
|
|
}
|
|
|
|
if (g_xfer_size_bytes == 0) {
|
|
/* size of 0 means "file at a time" */
|
|
g_xfer_size_bytes = ctx->remaining;
|
|
}
|
|
|
|
accel_perf_prep_process_seg(ctx);
|
|
return;
|
|
|
|
error_file:
|
|
fclose(ctx->file);
|
|
error_ctx:
|
|
free(ctx);
|
|
error_end:
|
|
spdk_app_stop(rc);
|
|
}
|
|
|
|
int
|
|
main(int argc, char **argv)
|
|
{
|
|
struct worker_thread *worker, *tmp;
|
|
|
|
pthread_mutex_init(&g_workers_lock, NULL);
|
|
spdk_app_opts_init(&g_opts, sizeof(g_opts));
|
|
g_opts.name = "accel_perf";
|
|
g_opts.reactor_mask = "0x1";
|
|
if (spdk_app_parse_args(argc, argv, &g_opts, "a:C:o:q:t:yw:P:f:T:l:", NULL, parse_args,
|
|
usage) != SPDK_APP_PARSE_ARGS_SUCCESS) {
|
|
g_rc = -1;
|
|
goto cleanup;
|
|
}
|
|
|
|
if ((g_workload_selection != ACCEL_OPC_COPY) &&
|
|
(g_workload_selection != ACCEL_OPC_FILL) &&
|
|
(g_workload_selection != ACCEL_OPC_CRC32C) &&
|
|
(g_workload_selection != ACCEL_OPC_COPY_CRC32C) &&
|
|
(g_workload_selection != ACCEL_OPC_COMPARE) &&
|
|
(g_workload_selection != ACCEL_OPC_COMPRESS) &&
|
|
(g_workload_selection != ACCEL_OPC_DECOMPRESS) &&
|
|
(g_workload_selection != ACCEL_OPC_DUALCAST)) {
|
|
usage();
|
|
g_rc = -1;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (g_allocate_depth > 0 && g_queue_depth > g_allocate_depth) {
|
|
fprintf(stdout, "allocate depth must be at least as big as queue depth\n");
|
|
usage();
|
|
g_rc = -1;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (g_allocate_depth == 0) {
|
|
g_allocate_depth = g_queue_depth;
|
|
}
|
|
|
|
if ((g_workload_selection == ACCEL_OPC_CRC32C || g_workload_selection == ACCEL_OPC_COPY_CRC32C) &&
|
|
g_chained_count == 0) {
|
|
usage();
|
|
g_rc = -1;
|
|
goto cleanup;
|
|
}
|
|
|
|
g_rc = spdk_app_start(&g_opts, accel_perf_prep, NULL);
|
|
if (g_rc) {
|
|
SPDK_ERRLOG("ERROR starting application\n");
|
|
}
|
|
|
|
pthread_mutex_destroy(&g_workers_lock);
|
|
|
|
worker = g_workers;
|
|
while (worker) {
|
|
tmp = worker->next;
|
|
free(worker);
|
|
worker = tmp;
|
|
}
|
|
cleanup:
|
|
accel_perf_free_compress_segs();
|
|
spdk_app_fini();
|
|
return g_rc;
|
|
}
|