Spdk/module/sock/uring/uring.c
Ziye Yang a10baa808e uring: Add the feature to cancel the active pollin task.
We should add the cancel task feature in uring if
sock is removed from the group.

This issue is detected after the group polling
feature is added in NVMe tcp initiatator side. Before
the patch, SPDK NVMe initiator side will not use
group polling feature. After the group polling
feature added in the iniatiator side, we should add this
patch.

Signed-off-by: Ziye Yang <ziye.yang@intel.com>
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/2049 (master)

(cherry picked from commit f5d63dfa44)
Change-Id: I012b403a9f57a5a8ee96c83471b775f0d99b9eb6
Signed-off-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/2116
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
2020-04-30 17:02:07 +00:00

1325 lines
31 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/config.h"
#include <sys/epoll.h>
#include <liburing.h>
#include "spdk/barrier.h"
#include "spdk/likely.h"
#include "spdk/log.h"
#include "spdk/pipe.h"
#include "spdk/sock.h"
#include "spdk/string.h"
#include "spdk/util.h"
#include "spdk_internal/sock.h"
#include "spdk_internal/assert.h"
#define MAX_TMPBUF 1024
#define PORTNUMLEN 32
#define SO_RCVBUF_SIZE (2 * 1024 * 1024)
#define SO_SNDBUF_SIZE (2 * 1024 * 1024)
#define SPDK_SOCK_GROUP_QUEUE_DEPTH 4096
#define IOV_BATCH_SIZE 64
enum spdk_sock_task_type {
SPDK_SOCK_TASK_POLLIN = 0,
SPDK_SOCK_TASK_WRITE,
SPDK_SOCK_TASK_CANCEL,
};
enum spdk_uring_sock_task_status {
SPDK_URING_SOCK_TASK_NOT_IN_USE = 0,
SPDK_URING_SOCK_TASK_IN_PROCESS,
};
struct spdk_uring_task {
enum spdk_uring_sock_task_status status;
enum spdk_sock_task_type type;
struct spdk_uring_sock *sock;
struct msghdr msg;
struct iovec iovs[IOV_BATCH_SIZE];
int iov_cnt;
struct spdk_sock_request *last_req;
STAILQ_ENTRY(spdk_uring_task) link;
};
struct spdk_uring_sock {
struct spdk_sock base;
int fd;
struct spdk_uring_sock_group_impl *group;
struct spdk_uring_task write_task;
struct spdk_uring_task pollin_task;
struct spdk_uring_task cancel_task;
int outstanding_io;
struct spdk_pipe *recv_pipe;
void *recv_buf;
int recv_buf_sz;
bool pending_recv;
TAILQ_ENTRY(spdk_uring_sock) link;
};
struct spdk_uring_sock_group_impl {
struct spdk_sock_group_impl base;
struct io_uring uring;
uint32_t io_inflight;
uint32_t io_queued;
uint32_t io_avail;
TAILQ_HEAD(, spdk_uring_sock) pending_recv;
};
#define SPDK_URING_SOCK_REQUEST_IOV(req) ((struct iovec *)((uint8_t *)req + sizeof(struct spdk_sock_request)))
static int
get_addr_str(struct sockaddr *sa, char *host, size_t hlen)
{
const char *result = NULL;
if (sa == NULL || host == NULL) {
return -1;
}
switch (sa->sa_family) {
case AF_INET:
result = inet_ntop(AF_INET, &(((struct sockaddr_in *)sa)->sin_addr),
host, hlen);
break;
case AF_INET6:
result = inet_ntop(AF_INET6, &(((struct sockaddr_in6 *)sa)->sin6_addr),
host, hlen);
break;
default:
break;
}
if (result != NULL) {
return 0;
} else {
return -1;
}
}
#define __uring_sock(sock) (struct spdk_uring_sock *)sock
#define __uring_group_impl(group) (struct spdk_uring_sock_group_impl *)group
static int
spdk_uring_sock_getaddr(struct spdk_sock *_sock, char *saddr, int slen, uint16_t *sport,
char *caddr, int clen, uint16_t *cport)
{
struct spdk_uring_sock *sock = __uring_sock(_sock);
struct sockaddr_storage sa;
socklen_t salen;
int rc;
assert(sock != NULL);
memset(&sa, 0, sizeof sa);
salen = sizeof sa;
rc = getsockname(sock->fd, (struct sockaddr *) &sa, &salen);
if (rc != 0) {
SPDK_ERRLOG("getsockname() failed (errno=%d)\n", errno);
return -1;
}
switch (sa.ss_family) {
case AF_UNIX:
/* Acceptable connection types that don't have IPs */
return 0;
case AF_INET:
case AF_INET6:
/* Code below will get IP addresses */
break;
default:
/* Unsupported socket family */
return -1;
}
rc = get_addr_str((struct sockaddr *)&sa, saddr, slen);
if (rc != 0) {
SPDK_ERRLOG("getnameinfo() failed (errno=%d)\n", errno);
return -1;
}
if (sport) {
if (sa.ss_family == AF_INET) {
*sport = ntohs(((struct sockaddr_in *) &sa)->sin_port);
} else if (sa.ss_family == AF_INET6) {
*sport = ntohs(((struct sockaddr_in6 *) &sa)->sin6_port);
}
}
memset(&sa, 0, sizeof sa);
salen = sizeof sa;
rc = getpeername(sock->fd, (struct sockaddr *) &sa, &salen);
if (rc != 0) {
SPDK_ERRLOG("getpeername() failed (errno=%d)\n", errno);
return -1;
}
rc = get_addr_str((struct sockaddr *)&sa, caddr, clen);
if (rc != 0) {
SPDK_ERRLOG("getnameinfo() failed (errno=%d)\n", errno);
return -1;
}
if (cport) {
if (sa.ss_family == AF_INET) {
*cport = ntohs(((struct sockaddr_in *) &sa)->sin_port);
} else if (sa.ss_family == AF_INET6) {
*cport = ntohs(((struct sockaddr_in6 *) &sa)->sin6_port);
}
}
return 0;
}
enum spdk_uring_sock_create_type {
SPDK_SOCK_CREATE_LISTEN,
SPDK_SOCK_CREATE_CONNECT,
};
static int
spdk_uring_sock_alloc_pipe(struct spdk_uring_sock *sock, int sz)
{
uint8_t *new_buf;
struct spdk_pipe *new_pipe;
struct iovec siov[2];
struct iovec diov[2];
int sbytes;
ssize_t bytes;
if (sock->recv_buf_sz == sz) {
return 0;
}
/* If the new size is 0, just free the pipe */
if (sz == 0) {
spdk_pipe_destroy(sock->recv_pipe);
free(sock->recv_buf);
sock->recv_pipe = NULL;
sock->recv_buf = NULL;
return 0;
}
/* Round up to next 64 byte multiple */
new_buf = calloc(SPDK_ALIGN_CEIL(sz + 1, 64), sizeof(uint8_t));
if (!new_buf) {
SPDK_ERRLOG("socket recv buf allocation failed\n");
return -ENOMEM;
}
new_pipe = spdk_pipe_create(new_buf, sz + 1);
if (new_pipe == NULL) {
SPDK_ERRLOG("socket pipe allocation failed\n");
free(new_buf);
return -ENOMEM;
}
if (sock->recv_pipe != NULL) {
/* Pull all of the data out of the old pipe */
sbytes = spdk_pipe_reader_get_buffer(sock->recv_pipe, sock->recv_buf_sz, siov);
if (sbytes > sz) {
/* Too much data to fit into the new pipe size */
spdk_pipe_destroy(new_pipe);
free(new_buf);
return -EINVAL;
}
sbytes = spdk_pipe_writer_get_buffer(new_pipe, sz, diov);
assert(sbytes == sz);
bytes = spdk_iovcpy(siov, 2, diov, 2);
spdk_pipe_writer_advance(new_pipe, bytes);
spdk_pipe_destroy(sock->recv_pipe);
free(sock->recv_buf);
}
sock->recv_buf_sz = sz;
sock->recv_buf = new_buf;
sock->recv_pipe = new_pipe;
return 0;
}
static int
spdk_uring_sock_set_recvbuf(struct spdk_sock *_sock, int sz)
{
struct spdk_uring_sock *sock = __uring_sock(_sock);
int rc;
assert(sock != NULL);
#ifndef __aarch64__
/* On ARM systems, this buffering does not help. Skip it. */
/* The size of the pipe is purely derived from benchmarks. It seems to work well. */
rc = spdk_uring_sock_alloc_pipe(sock, sz);
if (rc) {
SPDK_ERRLOG("unable to allocate sufficient recvbuf with sz=%d on sock=%p\n", sz, _sock);
return rc;
}
#endif
if (sz < SO_RCVBUF_SIZE) {
sz = SO_RCVBUF_SIZE;
}
rc = setsockopt(sock->fd, SOL_SOCKET, SO_RCVBUF, &sz, sizeof(sz));
if (rc < 0) {
return rc;
}
return 0;
}
static int
spdk_uring_sock_set_sendbuf(struct spdk_sock *_sock, int sz)
{
struct spdk_uring_sock *sock = __uring_sock(_sock);
int rc;
assert(sock != NULL);
if (sz < SO_SNDBUF_SIZE) {
sz = SO_SNDBUF_SIZE;
}
rc = setsockopt(sock->fd, SOL_SOCKET, SO_SNDBUF, &sz, sizeof(sz));
if (rc < 0) {
return rc;
}
return 0;
}
static struct spdk_uring_sock *
_spdk_uring_sock_alloc(int fd)
{
struct spdk_uring_sock *sock;
sock = calloc(1, sizeof(*sock));
if (sock == NULL) {
SPDK_ERRLOG("sock allocation failed\n");
return NULL;
}
sock->fd = fd;
return sock;
}
static struct spdk_sock *
spdk_uring_sock_create(const char *ip, int port,
enum spdk_uring_sock_create_type type,
struct spdk_sock_opts *opts)
{
struct spdk_uring_sock *sock;
char buf[MAX_TMPBUF];
char portnum[PORTNUMLEN];
char *p;
struct addrinfo hints, *res, *res0;
int fd, flag;
int val = 1;
int rc;
if (ip == NULL) {
return NULL;
}
if (ip[0] == '[') {
snprintf(buf, sizeof(buf), "%s", ip + 1);
p = strchr(buf, ']');
if (p != NULL) {
*p = '\0';
}
ip = (const char *) &buf[0];
}
snprintf(portnum, sizeof portnum, "%d", port);
memset(&hints, 0, sizeof hints);
hints.ai_family = PF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_NUMERICSERV;
hints.ai_flags |= AI_PASSIVE;
hints.ai_flags |= AI_NUMERICHOST;
rc = getaddrinfo(ip, portnum, &hints, &res0);
if (rc != 0) {
SPDK_ERRLOG("getaddrinfo() failed (errno=%d)\n", errno);
return NULL;
}
/* try listen */
fd = -1;
for (res = res0; res != NULL; res = res->ai_next) {
retry:
fd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
if (fd < 0) {
/* error */
continue;
}
val = SO_RCVBUF_SIZE;
rc = setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &val, sizeof val);
if (rc) {
/* Not fatal */
}
val = SO_SNDBUF_SIZE;
rc = setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &val, sizeof val);
if (rc) {
/* Not fatal */
}
rc = setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &val, sizeof val);
if (rc != 0) {
close(fd);
/* error */
continue;
}
rc = setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, &val, sizeof val);
if (rc != 0) {
close(fd);
/* error */
continue;
}
#if defined(SO_PRIORITY)
if (opts != NULL && opts->priority) {
rc = setsockopt(fd, SOL_SOCKET, SO_PRIORITY, &opts->priority, sizeof val);
if (rc != 0) {
close(fd);
/* error */
continue;
}
}
#endif
if (res->ai_family == AF_INET6) {
rc = setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &val, sizeof val);
if (rc != 0) {
close(fd);
/* error */
continue;
}
}
if (type == SPDK_SOCK_CREATE_LISTEN) {
rc = bind(fd, res->ai_addr, res->ai_addrlen);
if (rc != 0) {
SPDK_ERRLOG("bind() failed at port %d, errno = %d\n", port, errno);
switch (errno) {
case EINTR:
/* interrupted? */
close(fd);
goto retry;
case EADDRNOTAVAIL:
SPDK_ERRLOG("IP address %s not available. "
"Verify IP address in config file "
"and make sure setup script is "
"run before starting spdk app.\n", ip);
/* FALLTHROUGH */
default:
/* try next family */
close(fd);
fd = -1;
continue;
}
}
/* bind OK */
rc = listen(fd, 512);
if (rc != 0) {
SPDK_ERRLOG("listen() failed, errno = %d\n", errno);
close(fd);
fd = -1;
break;
}
} else if (type == SPDK_SOCK_CREATE_CONNECT) {
rc = connect(fd, res->ai_addr, res->ai_addrlen);
if (rc != 0) {
SPDK_ERRLOG("connect() failed, errno = %d\n", errno);
/* try next family */
close(fd);
fd = -1;
continue;
}
}
flag = fcntl(fd, F_GETFL);
if (fcntl(fd, F_SETFL, flag | O_NONBLOCK) < 0) {
SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%d)\n", fd, errno);
close(fd);
fd = -1;
break;
}
break;
}
freeaddrinfo(res0);
if (fd < 0) {
return NULL;
}
sock = _spdk_uring_sock_alloc(fd);
if (sock == NULL) {
SPDK_ERRLOG("sock allocation failed\n");
close(fd);
return NULL;
}
return &sock->base;
}
static struct spdk_sock *
spdk_uring_sock_listen(const char *ip, int port, struct spdk_sock_opts *opts)
{
return spdk_uring_sock_create(ip, port, SPDK_SOCK_CREATE_LISTEN, opts);
}
static struct spdk_sock *
spdk_uring_sock_connect(const char *ip, int port, struct spdk_sock_opts *opts)
{
return spdk_uring_sock_create(ip, port, SPDK_SOCK_CREATE_CONNECT, opts);
}
static struct spdk_sock *
spdk_uring_sock_accept(struct spdk_sock *_sock)
{
struct spdk_uring_sock *sock = __uring_sock(_sock);
struct sockaddr_storage sa;
socklen_t salen;
int rc, fd;
struct spdk_uring_sock *new_sock;
int flag;
memset(&sa, 0, sizeof(sa));
salen = sizeof(sa);
assert(sock != NULL);
rc = accept(sock->fd, (struct sockaddr *)&sa, &salen);
if (rc == -1) {
return NULL;
}
fd = rc;
flag = fcntl(fd, F_GETFL);
if ((!(flag & O_NONBLOCK)) && (fcntl(fd, F_SETFL, flag | O_NONBLOCK) < 0)) {
SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%d)\n", fd, errno);
close(fd);
return NULL;
}
#if defined(SO_PRIORITY)
/* The priority is not inherited, so call this function again */
if (sock->base.opts.priority) {
rc = setsockopt(fd, SOL_SOCKET, SO_PRIORITY, &sock->base.opts.priority, sizeof(int));
if (rc != 0) {
close(fd);
return NULL;
}
}
#endif
new_sock = _spdk_uring_sock_alloc(fd);
if (new_sock == NULL) {
close(fd);
return NULL;
}
return &new_sock->base;
}
static int
spdk_uring_sock_close(struct spdk_sock *_sock)
{
struct spdk_uring_sock *sock = __uring_sock(_sock);
int rc;
/* defer the socket close if there is outstanding I/O */
if (sock->outstanding_io) {
return 0;
}
assert(TAILQ_EMPTY(&_sock->pending_reqs));
assert(sock->group == NULL);
spdk_pipe_destroy(sock->recv_pipe);
free(sock->recv_buf);
rc = close(sock->fd);
if (rc == 0) {
free(sock);
}
return rc;
}
static ssize_t
spdk_uring_sock_recv_from_pipe(struct spdk_uring_sock *sock, struct iovec *diov, int diovcnt)
{
struct iovec siov[2];
int sbytes;
ssize_t bytes;
struct spdk_uring_sock_group_impl *group;
sbytes = spdk_pipe_reader_get_buffer(sock->recv_pipe, sock->recv_buf_sz, siov);
if (sbytes < 0) {
errno = EINVAL;
return -1;
} else if (sbytes == 0) {
errno = EAGAIN;
return -1;
}
bytes = spdk_iovcpy(siov, 2, diov, diovcnt);
if (bytes == 0) {
/* The only way this happens is if diov is 0 length */
errno = EINVAL;
return -1;
}
spdk_pipe_reader_advance(sock->recv_pipe, bytes);
/* If we drained the pipe, take it off the level-triggered list */
if (sock->base.group_impl && spdk_pipe_reader_bytes_available(sock->recv_pipe) == 0) {
group = __uring_group_impl(sock->base.group_impl);
TAILQ_REMOVE(&group->pending_recv, sock, link);
sock->pending_recv = false;
}
return bytes;
}
static inline ssize_t
_spdk_uring_sock_read(struct spdk_uring_sock *sock)
{
struct iovec iov[2];
int bytes;
struct spdk_uring_sock_group_impl *group;
bytes = spdk_pipe_writer_get_buffer(sock->recv_pipe, sock->recv_buf_sz, iov);
if (bytes > 0) {
bytes = readv(sock->fd, iov, 2);
if (bytes > 0) {
spdk_pipe_writer_advance(sock->recv_pipe, bytes);
if (sock->base.group_impl) {
group = __uring_group_impl(sock->base.group_impl);
TAILQ_INSERT_TAIL(&group->pending_recv, sock, link);
sock->pending_recv = true;
}
}
}
return bytes;
}
static ssize_t
spdk_uring_sock_readv(struct spdk_sock *_sock, struct iovec *iov, int iovcnt)
{
struct spdk_uring_sock *sock = __uring_sock(_sock);
int rc, i;
size_t len;
if (sock->recv_pipe == NULL) {
return readv(sock->fd, iov, iovcnt);
}
len = 0;
for (i = 0; i < iovcnt; i++) {
len += iov[i].iov_len;
}
if (spdk_pipe_reader_bytes_available(sock->recv_pipe) == 0) {
/* If the user is receiving a sufficiently large amount of data,
* receive directly to their buffers. */
if (len >= 1024) {
return readv(sock->fd, iov, iovcnt);
}
/* Otherwise, do a big read into our pipe */
rc = _spdk_uring_sock_read(sock);
if (rc <= 0) {
return rc;
}
}
return spdk_uring_sock_recv_from_pipe(sock, iov, iovcnt);
}
static ssize_t
spdk_uring_sock_recv(struct spdk_sock *sock, void *buf, size_t len)
{
struct iovec iov[1];
iov[0].iov_base = buf;
iov[0].iov_len = len;
return spdk_uring_sock_readv(sock, iov, 1);
}
static ssize_t
spdk_uring_sock_writev(struct spdk_sock *_sock, struct iovec *iov, int iovcnt)
{
struct spdk_uring_sock *sock = __uring_sock(_sock);
if (sock->write_task.status != SPDK_URING_SOCK_TASK_NOT_IN_USE) {
errno = EAGAIN;
return -1;
}
return writev(sock->fd, iov, iovcnt);
}
static int
spdk_sock_prep_reqs(struct spdk_sock *_sock, struct iovec *iovs, int index,
struct spdk_sock_request **last_req)
{
int iovcnt, i;
struct spdk_sock_request *req;
unsigned int offset;
/* Gather an iov */
iovcnt = index;
if (spdk_unlikely(iovcnt >= IOV_BATCH_SIZE)) {
goto end;
}
if (last_req != NULL && *last_req != NULL) {
req = TAILQ_NEXT(*last_req, internal.link);
} else {
req = TAILQ_FIRST(&_sock->queued_reqs);
}
while (req) {
offset = req->internal.offset;
for (i = 0; i < req->iovcnt; i++) {
/* Consume any offset first */
if (offset >= SPDK_SOCK_REQUEST_IOV(req, i)->iov_len) {
offset -= SPDK_SOCK_REQUEST_IOV(req, i)->iov_len;
continue;
}
iovs[iovcnt].iov_base = SPDK_SOCK_REQUEST_IOV(req, i)->iov_base + offset;
iovs[iovcnt].iov_len = SPDK_SOCK_REQUEST_IOV(req, i)->iov_len - offset;
iovcnt++;
offset = 0;
if (iovcnt >= IOV_BATCH_SIZE) {
break;
}
}
if (iovcnt >= IOV_BATCH_SIZE) {
break;
}
if (last_req != NULL) {
*last_req = req;
}
req = TAILQ_NEXT(req, internal.link);
}
end:
return iovcnt;
}
static int
spdk_sock_complete_reqs(struct spdk_sock *_sock, ssize_t rc)
{
struct spdk_sock_request *req;
int i, retval;
unsigned int offset;
size_t len;
/* Consume the requests that were actually written */
req = TAILQ_FIRST(&_sock->queued_reqs);
while (req) {
offset = req->internal.offset;
for (i = 0; i < req->iovcnt; i++) {
/* Advance by the offset first */
if (offset >= SPDK_SOCK_REQUEST_IOV(req, i)->iov_len) {
offset -= SPDK_SOCK_REQUEST_IOV(req, i)->iov_len;
continue;
}
/* Calculate the remaining length of this element */
len = SPDK_SOCK_REQUEST_IOV(req, i)->iov_len - offset;
if (len > (size_t)rc) {
/* This element was partially sent. */
req->internal.offset += rc;
return 0;
}
offset = 0;
req->internal.offset += len;
rc -= len;
}
/* Handled a full request. */
spdk_sock_request_pend(_sock, req);
retval = spdk_sock_request_put(_sock, req, 0);
if (retval) {
return retval;
}
if (rc == 0) {
break;
}
req = TAILQ_FIRST(&_sock->queued_reqs);
}
return 0;
}
static void
_sock_flush(struct spdk_sock *_sock)
{
struct spdk_uring_sock *sock = __uring_sock(_sock);
struct spdk_uring_task *task = &sock->write_task;
uint32_t iovcnt;
struct io_uring_sqe *sqe;
if (task->status == SPDK_URING_SOCK_TASK_IN_PROCESS) {
return;
}
iovcnt = spdk_sock_prep_reqs(&sock->base, task->iovs, task->iov_cnt, &task->last_req);
if (!iovcnt) {
return;
}
task->iov_cnt = iovcnt;
assert(sock->group != NULL);
task->msg.msg_iov = task->iovs;
task->msg.msg_iovlen = task->iov_cnt;
sock->group->io_queued++;
sqe = io_uring_get_sqe(&sock->group->uring);
io_uring_prep_sendmsg(sqe, sock->fd, &sock->write_task.msg, 0);
io_uring_sqe_set_data(sqe, task);
task->status = SPDK_URING_SOCK_TASK_IN_PROCESS;
}
static void
_sock_prep_pollin(struct spdk_sock *_sock)
{
struct spdk_uring_sock *sock = __uring_sock(_sock);
struct spdk_uring_task *task = &sock->pollin_task;
struct io_uring_sqe *sqe;
/* Do not prepare pollin event */
if (task->status == SPDK_URING_SOCK_TASK_IN_PROCESS || sock->pending_recv) {
return;
}
assert(sock->group != NULL);
sock->group->io_queued++;
sqe = io_uring_get_sqe(&sock->group->uring);
io_uring_prep_poll_add(sqe, sock->fd, POLLIN);
io_uring_sqe_set_data(sqe, task);
task->status = SPDK_URING_SOCK_TASK_IN_PROCESS;
}
static void
_sock_prep_cancel_task(struct spdk_sock *_sock, void *user_data)
{
struct spdk_uring_sock *sock = __uring_sock(_sock);
struct spdk_uring_task *task = &sock->cancel_task;
struct io_uring_sqe *sqe;
if (task->status == SPDK_URING_SOCK_TASK_IN_PROCESS) {
return;
}
assert(sock->group != NULL);
sock->group->io_queued++;
sqe = io_uring_get_sqe(&sock->group->uring);
io_uring_prep_cancel(sqe, user_data, 0);
io_uring_sqe_set_data(sqe, task);
task->status = SPDK_URING_SOCK_TASK_IN_PROCESS;
}
static int
spdk_sock_uring_group_reap(struct spdk_uring_sock_group_impl *group, int max, int max_read_events,
struct spdk_sock **socks)
{
int i, count, ret;
struct io_uring_cqe *cqe;
struct spdk_uring_sock *sock, *tmp;
struct spdk_uring_task *task;
int status;
for (i = 0; i < max; i++) {
ret = io_uring_peek_cqe(&group->uring, &cqe);
if (ret != 0) {
break;
}
if (cqe == NULL) {
break;
}
task = (struct spdk_uring_task *)cqe->user_data;
assert(task != NULL);
sock = task->sock;
assert(sock != NULL);
assert(sock->group != NULL);
assert(sock->group == group);
sock->group->io_inflight--;
sock->group->io_avail++;
status = cqe->res;
io_uring_cqe_seen(&group->uring, cqe);
task->status = SPDK_URING_SOCK_TASK_NOT_IN_USE;
if (spdk_unlikely(status <= 0)) {
if (status == -EAGAIN || status == -EWOULDBLOCK) {
continue;
}
}
switch (task->type) {
case SPDK_SOCK_TASK_POLLIN:
if ((status & POLLIN) == POLLIN) {
if ((socks != NULL) && (sock->base.cb_fn != NULL)) {
assert(sock->pending_recv == false);
sock->pending_recv = true;
TAILQ_INSERT_TAIL(&group->pending_recv, sock, link);
}
} else {
SPDK_UNREACHABLE();
}
break;
case SPDK_SOCK_TASK_WRITE:
assert(TAILQ_EMPTY(&sock->base.pending_reqs));
task->last_req = NULL;
task->iov_cnt = 0;
spdk_sock_complete_reqs(&sock->base, status);
/* For socket is removed from the group but having outstanding I/O */
if (spdk_unlikely(task->sock->outstanding_io > 0 &&
TAILQ_EMPTY(&sock->base.pending_reqs))) {
if (--sock->outstanding_io == 0) {
/* Just for sock close case */
if (sock->base.flags.closed) {
spdk_uring_sock_close(&sock->base);
}
}
}
break;
case SPDK_SOCK_TASK_CANCEL:
if ((status == 0) && (sock->outstanding_io > 0)) {
sock->outstanding_io--;
}
break;
default:
SPDK_UNREACHABLE();
}
}
count = 0;
TAILQ_FOREACH_SAFE(sock, &group->pending_recv, link, tmp) {
if (count == max_read_events) {
break;
}
socks[count++] = &sock->base;
}
/* Cycle the pending_recv list so that each time we poll things aren't
* in the same order. */
for (i = 0; i < count; i++) {
sock = __uring_sock(socks[i]);
TAILQ_REMOVE(&group->pending_recv, sock, link);
if (sock->recv_pipe == NULL || spdk_pipe_reader_bytes_available(sock->recv_pipe) == 0) {
sock->pending_recv = false;
} else {
TAILQ_INSERT_TAIL(&group->pending_recv, sock, link);
}
}
return count;
}
static int
_sock_flush_client(struct spdk_sock *_sock)
{
struct spdk_uring_sock *sock = __uring_sock(_sock);
struct msghdr msg = {};
struct iovec iovs[IOV_BATCH_SIZE];
int iovcnt;
ssize_t rc;
/* Can't flush from within a callback or we end up with recursive calls */
if (_sock->cb_cnt > 0) {
return 0;
}
/* Gather an iov */
iovcnt = spdk_sock_prep_reqs(_sock, iovs, 0, NULL);
if (iovcnt == 0) {
return 0;
}
/* Perform the vectored write */
msg.msg_iov = iovs;
msg.msg_iovlen = iovcnt;
rc = sendmsg(sock->fd, &msg, 0);
if (rc <= 0) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
return 0;
}
return rc;
}
spdk_sock_complete_reqs(_sock, rc);
return 0;
}
static void
spdk_uring_sock_writev_async(struct spdk_sock *_sock, struct spdk_sock_request *req)
{
struct spdk_uring_sock *sock = __uring_sock(_sock);
int rc;
spdk_sock_request_queue(_sock, req);
if (!sock->group) {
if (_sock->queued_iovcnt >= IOV_BATCH_SIZE) {
rc = _sock_flush_client(_sock);
if (rc) {
spdk_sock_abort_requests(_sock);
}
}
}
}
static int
spdk_uring_sock_set_recvlowat(struct spdk_sock *_sock, int nbytes)
{
struct spdk_uring_sock *sock = __uring_sock(_sock);
int val;
int rc;
assert(sock != NULL);
val = nbytes;
rc = setsockopt(sock->fd, SOL_SOCKET, SO_RCVLOWAT, &val, sizeof val);
if (rc != 0) {
return -1;
}
return 0;
}
static bool
spdk_uring_sock_is_ipv6(struct spdk_sock *_sock)
{
struct spdk_uring_sock *sock = __uring_sock(_sock);
struct sockaddr_storage sa;
socklen_t salen;
int rc;
assert(sock != NULL);
memset(&sa, 0, sizeof sa);
salen = sizeof sa;
rc = getsockname(sock->fd, (struct sockaddr *) &sa, &salen);
if (rc != 0) {
SPDK_ERRLOG("getsockname() failed (errno=%d)\n", errno);
return false;
}
return (sa.ss_family == AF_INET6);
}
static bool
spdk_uring_sock_is_ipv4(struct spdk_sock *_sock)
{
struct spdk_uring_sock *sock = __uring_sock(_sock);
struct sockaddr_storage sa;
socklen_t salen;
int rc;
assert(sock != NULL);
memset(&sa, 0, sizeof sa);
salen = sizeof sa;
rc = getsockname(sock->fd, (struct sockaddr *) &sa, &salen);
if (rc != 0) {
SPDK_ERRLOG("getsockname() failed (errno=%d)\n", errno);
return false;
}
return (sa.ss_family == AF_INET);
}
static bool
spdk_uring_sock_is_connected(struct spdk_sock *_sock)
{
struct spdk_uring_sock *sock = __uring_sock(_sock);
uint8_t byte;
int rc;
rc = recv(sock->fd, &byte, 1, MSG_PEEK);
if (rc == 0) {
return false;
}
if (rc < 0) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
return true;
}
return false;
}
return true;
}
static int
spdk_uring_sock_get_placement_id(struct spdk_sock *_sock, int *placement_id)
{
int rc = -1;
#if defined(SO_INCOMING_NAPI_ID)
struct spdk_uring_sock *sock = __uring_sock(_sock);
socklen_t salen = sizeof(int);
rc = getsockopt(sock->fd, SOL_SOCKET, SO_INCOMING_NAPI_ID, placement_id, &salen);
if (rc != 0) {
SPDK_ERRLOG("getsockopt() failed (errno=%d)\n", errno);
}
#endif
return rc;
}
static struct spdk_sock_group_impl *
spdk_uring_sock_group_impl_create(void)
{
struct spdk_uring_sock_group_impl *group_impl;
group_impl = calloc(1, sizeof(*group_impl));
if (group_impl == NULL) {
SPDK_ERRLOG("group_impl allocation failed\n");
return NULL;
}
group_impl->io_avail = SPDK_SOCK_GROUP_QUEUE_DEPTH;
if (io_uring_queue_init(SPDK_SOCK_GROUP_QUEUE_DEPTH, &group_impl->uring, 0) < 0) {
SPDK_ERRLOG("uring I/O context setup failure\n");
free(group_impl);
return NULL;
}
TAILQ_INIT(&group_impl->pending_recv);
return &group_impl->base;
}
static int
spdk_uring_sock_group_impl_add_sock(struct spdk_sock_group_impl *_group,
struct spdk_sock *_sock)
{
struct spdk_uring_sock *sock = __uring_sock(_sock);
struct spdk_uring_sock_group_impl *group = __uring_group_impl(_group);
sock->group = group;
sock->write_task.sock = sock;
sock->write_task.type = SPDK_SOCK_TASK_WRITE;
sock->pollin_task.sock = sock;
sock->pollin_task.type = SPDK_SOCK_TASK_POLLIN;
sock->cancel_task.sock = sock;
sock->cancel_task.type = SPDK_SOCK_TASK_CANCEL;
/* switched from another polling group due to scheduling */
if (spdk_unlikely(sock->recv_pipe != NULL &&
(spdk_pipe_reader_bytes_available(sock->recv_pipe) > 0))) {
assert(sock->pending_recv == false);
sock->pending_recv = true;
TAILQ_INSERT_TAIL(&group->pending_recv, sock, link);
}
return 0;
}
static int
spdk_uring_sock_group_impl_poll(struct spdk_sock_group_impl *_group, int max_events,
struct spdk_sock **socks)
{
struct spdk_uring_sock_group_impl *group = __uring_group_impl(_group);
int count, ret;
int to_complete, to_submit;
struct spdk_sock *_sock, *tmp;
TAILQ_FOREACH_SAFE(_sock, &group->base.socks, link, tmp) {
_sock_flush(_sock);
_sock_prep_pollin(_sock);
}
to_submit = group->io_queued;
/* For network I/O, it cannot be set with O_DIRECT, so we do not need to call spdk_io_uring_enter */
if (to_submit > 0) {
/* If there are I/O to submit, use io_uring_submit here.
* It will automatically call io_uring_enter appropriately. */
ret = io_uring_submit(&group->uring);
if (ret < 0) {
return 1;
}
group->io_queued = 0;
group->io_inflight += to_submit;
group->io_avail -= to_submit;
}
count = 0;
to_complete = group->io_inflight;
if (to_complete > 0) {
count = spdk_sock_uring_group_reap(group, to_complete, max_events, socks);
}
return count;
}
static int
spdk_uring_sock_group_impl_remove_sock(struct spdk_sock_group_impl *_group,
struct spdk_sock *_sock)
{
struct spdk_uring_sock *sock = __uring_sock(_sock);
struct spdk_uring_sock_group_impl *group = __uring_group_impl(_group);
if (sock->write_task.status != SPDK_URING_SOCK_TASK_NOT_IN_USE) {
/* For write, we do not need to cancel it */
sock->outstanding_io++;
}
if (sock->pollin_task.status != SPDK_URING_SOCK_TASK_NOT_IN_USE) {
sock->outstanding_io++;
_sock_prep_cancel_task(_sock, &sock->pollin_task);
}
/* Since spdk_sock_group_remove_sock is not asynchronous interface, so
* currently can use a while loop here. */
while (sock->pollin_task.status != SPDK_URING_SOCK_TASK_NOT_IN_USE) {
spdk_uring_sock_group_impl_poll(_group, 32, NULL);
}
if (sock->recv_pipe != NULL) {
if (spdk_pipe_reader_bytes_available(sock->recv_pipe) > 0) {
TAILQ_REMOVE(&group->pending_recv, sock, link);
sock->pending_recv = false;
}
assert(sock->pending_recv == false);
}
sock->group = NULL;
return 0;
}
static int
spdk_uring_sock_group_impl_close(struct spdk_sock_group_impl *_group)
{
struct spdk_uring_sock_group_impl *group = __uring_group_impl(_group);
/* try to reap all the active I/O */
while (group->io_inflight) {
spdk_uring_sock_group_impl_poll(_group, 32, NULL);
}
assert(group->io_inflight == 0);
assert(group->io_avail == SPDK_SOCK_GROUP_QUEUE_DEPTH);
close(group->uring.ring_fd);
io_uring_queue_exit(&group->uring);
free(group);
return 0;
}
static int
spdk_uring_sock_flush(struct spdk_sock *_sock)
{
struct spdk_uring_sock *sock = __uring_sock(_sock);
if (!sock->group) {
return _sock_flush_client(_sock);
}
return 0;
}
static struct spdk_net_impl g_uring_net_impl = {
.name = "uring",
.getaddr = spdk_uring_sock_getaddr,
.connect = spdk_uring_sock_connect,
.listen = spdk_uring_sock_listen,
.accept = spdk_uring_sock_accept,
.close = spdk_uring_sock_close,
.recv = spdk_uring_sock_recv,
.readv = spdk_uring_sock_readv,
.writev = spdk_uring_sock_writev,
.writev_async = spdk_uring_sock_writev_async,
.flush = spdk_uring_sock_flush,
.set_recvlowat = spdk_uring_sock_set_recvlowat,
.set_recvbuf = spdk_uring_sock_set_recvbuf,
.set_sendbuf = spdk_uring_sock_set_sendbuf,
.is_ipv6 = spdk_uring_sock_is_ipv6,
.is_ipv4 = spdk_uring_sock_is_ipv4,
.is_connected = spdk_uring_sock_is_connected,
.get_placement_id = spdk_uring_sock_get_placement_id,
.group_impl_create = spdk_uring_sock_group_impl_create,
.group_impl_add_sock = spdk_uring_sock_group_impl_add_sock,
.group_impl_remove_sock = spdk_uring_sock_group_impl_remove_sock,
.group_impl_poll = spdk_uring_sock_group_impl_poll,
.group_impl_close = spdk_uring_sock_group_impl_close,
};
SPDK_NET_IMPL_REGISTER(uring, &g_uring_net_impl, DEFAULT_SOCK_PRIORITY + 1);