Spdk/lib/ftl/ftl_core.h
Jim Harris 488570ebd4 Replace most BSD 3-clause license text with SPDX identifier.
Many open source projects have moved to using SPDX identifiers
to specify license information, reducing the amount of
boilerplate code in every source file.  This patch replaces
the bulk of SPDK .c, .cpp and Makefiles with the BSD-3-Clause
identifier.

Almost all of these files share the exact same license text,
and this patch only modifies the files that contain the
most common license text.  There can be slight variations
because the third clause contains company names - most say
"Intel Corporation", but there are instances for Nvidia,
Samsung, Eideticom and even "the copyright holder".

Used a bash script to automate replacement of the license text
with SPDX identifier which is checked into scripts/spdx.sh.

Signed-off-by: Jim Harris <james.r.harris@intel.com>
Change-Id: Iaa88ab5e92ea471691dc298cfe41ebfb5d169780
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/12904
Community-CI: Broadcom CI <spdk-ci.pdl@broadcom.com>
Community-CI: Mellanox Build Bot
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Aleksey Marchuk <alexeymar@nvidia.com>
Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
Reviewed-by: Dong Yi <dongx.yi@intel.com>
Reviewed-by: Konrad Sztyber <konrad.sztyber@intel.com>
Reviewed-by: Paul Luse <paul.e.luse@intel.com>
Reviewed-by: <qun.wan@intel.com>
2022-06-09 07:35:12 +00:00

525 lines
14 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (c) Intel Corporation.
* All rights reserved.
*/
#ifndef FTL_CORE_H
#define FTL_CORE_H
#include "spdk/stdinc.h"
#include "spdk/uuid.h"
#include "spdk/thread.h"
#include "spdk/util.h"
#include "spdk/log.h"
#include "spdk/likely.h"
#include "spdk/queue.h"
#include "spdk/ftl.h"
#include "spdk/bdev.h"
#include "spdk/bdev_zone.h"
#include "ftl_addr.h"
#include "ftl_io.h"
#include "ftl_trace.h"
#ifdef SPDK_CONFIG_PMDK
#include "libpmem.h"
#endif /* SPDK_CONFIG_PMDK */
struct spdk_ftl_dev;
struct ftl_band;
struct ftl_zone;
struct ftl_io;
struct ftl_restore;
struct ftl_wptr;
struct ftl_flush;
struct ftl_reloc;
struct ftl_anm_event;
struct ftl_band_flush;
struct ftl_stats {
/* Number of writes scheduled directly by the user */
uint64_t write_user;
/* Total number of writes */
uint64_t write_total;
/* Traces */
struct ftl_trace trace;
/* Number of limits applied */
uint64_t limits[SPDK_FTL_LIMIT_MAX];
};
struct ftl_global_md {
/* Device instance */
struct spdk_uuid uuid;
/* Size of the l2p table */
uint64_t num_lbas;
};
struct ftl_nv_cache {
/* Write buffer cache bdev */
struct spdk_bdev_desc *bdev_desc;
/* Write pointer */
uint64_t current_addr;
/* Number of available blocks left */
uint64_t num_available;
/* Maximum number of blocks */
uint64_t num_data_blocks;
/*
* Phase of the current cycle of writes. Each time whole cache area is filled, the phase is
* advanced. Current phase is saved in every IO's metadata, as well as in the header saved
* in the first sector. By looking at the phase of each block, it's possible to find the
* oldest block and replay the order of the writes when recovering the data from the cache.
*/
unsigned int phase;
/* Indicates that the data can be written to the cache */
bool ready;
/* Metadata pool */
struct spdk_mempool *md_pool;
/* DMA buffer for writing the header */
void *dma_buf;
/* Cache lock */
pthread_spinlock_t lock;
};
struct ftl_batch {
/* Queue of write buffer entries, can reach up to xfer_size entries */
TAILQ_HEAD(, ftl_wbuf_entry) entries;
/* Number of entries in the queue above */
uint32_t num_entries;
/* Index within spdk_ftl_dev.batch_array */
uint32_t index;
struct iovec *iov;
void *metadata;
TAILQ_ENTRY(ftl_batch) tailq;
};
struct spdk_ftl_dev {
/* Device instance */
struct spdk_uuid uuid;
/* Device name */
char *name;
/* Configuration */
struct spdk_ftl_conf conf;
/* Indicates the device is fully initialized */
int initialized;
/* Indicates the device is about to be stopped */
int halt;
/* Indicates the device is about to start stopping - use to handle multiple stop request */
bool halt_started;
/* Underlying device */
struct spdk_bdev_desc *base_bdev_desc;
/* Non-volatile write buffer cache */
struct ftl_nv_cache nv_cache;
/* LBA map memory pool */
struct spdk_mempool *lba_pool;
/* LBA map requests pool */
struct spdk_mempool *lba_request_pool;
/* Media management events pool */
struct spdk_mempool *media_events_pool;
/* Statistics */
struct ftl_stats stats;
/* Current sequence number */
uint64_t seq;
/* Array of bands */
struct ftl_band *bands;
/* Number of operational bands */
size_t num_bands;
/* Next write band */
struct ftl_band *next_band;
/* Free band list */
LIST_HEAD(, ftl_band) free_bands;
/* Closed bands list */
LIST_HEAD(, ftl_band) shut_bands;
/* Number of free bands */
size_t num_free;
/* List of write pointers */
LIST_HEAD(, ftl_wptr) wptr_list;
/* Logical -> physical table */
void *l2p;
/* Size of the l2p table */
uint64_t num_lbas;
/* Size of pages mmapped for l2p, valid only for mapping on persistent memory */
size_t l2p_pmem_len;
/* Address size */
size_t addr_len;
/* Flush list */
LIST_HEAD(, ftl_flush) flush_list;
/* List of band flush requests */
LIST_HEAD(, ftl_band_flush) band_flush_list;
/* Device specific md buffer */
struct ftl_global_md global_md;
/* Metadata size */
size_t md_size;
void *md_buf;
/* Transfer unit size */
size_t xfer_size;
/* Current user write limit */
int limit;
/* Inflight IO operations */
uint32_t num_inflight;
/* Manages data relocation */
struct ftl_reloc *reloc;
/* Thread on which the poller is running */
struct spdk_thread *core_thread;
/* IO channel */
struct spdk_io_channel *ioch;
/* Poller */
struct spdk_poller *core_poller;
/* IO channel array provides means for retrieving write buffer entries
* from their address stored in L2P. The address is divided into two
* parts - IO channel offset poining at specific IO channel (within this
* array) and entry offset pointing at specific entry within that IO
* channel.
*/
struct ftl_io_channel **ioch_array;
TAILQ_HEAD(, ftl_io_channel) ioch_queue;
uint64_t num_io_channels;
/* Value required to shift address of a write buffer entry to retrieve
* the IO channel it's part of. The other part of the address describes
* the offset of an entry within the IO channel's entry array.
*/
uint64_t ioch_shift;
/* Write buffer batches */
#define FTL_BATCH_COUNT 4096
struct ftl_batch batch_array[FTL_BATCH_COUNT];
/* Iovec buffer used by batches */
struct iovec *iov_buf;
/* Batch currently being filled */
struct ftl_batch *current_batch;
/* Full and ready to be sent batches. A batch is put on this queue in
* case it's already filled, but cannot be sent.
*/
TAILQ_HEAD(, ftl_batch) pending_batches;
TAILQ_HEAD(, ftl_batch) free_batches;
/* Devices' list */
STAILQ_ENTRY(spdk_ftl_dev) stailq;
};
struct ftl_nv_cache_header {
/* Version of the header */
uint32_t version;
/* UUID of the FTL device */
struct spdk_uuid uuid;
/* Size of the non-volatile cache (in blocks) */
uint64_t size;
/* Contains the next address to be written after clean shutdown, invalid LBA otherwise */
uint64_t current_addr;
/* Current phase */
uint8_t phase;
/* Checksum of the header, needs to be last element */
uint32_t checksum;
} __attribute__((packed));
struct ftl_media_event {
/* Owner */
struct spdk_ftl_dev *dev;
/* Media event */
struct spdk_bdev_media_event event;
};
typedef void (*ftl_restore_fn)(struct ftl_restore *, int, void *cb_arg);
void ftl_apply_limits(struct spdk_ftl_dev *dev);
void ftl_io_read(struct ftl_io *io);
void ftl_io_write(struct ftl_io *io);
int ftl_flush_wbuf(struct spdk_ftl_dev *dev, spdk_ftl_fn cb_fn, void *cb_arg);
int ftl_current_limit(const struct spdk_ftl_dev *dev);
int ftl_invalidate_addr(struct spdk_ftl_dev *dev, struct ftl_addr addr);
int ftl_task_core(void *ctx);
int ftl_task_read(void *ctx);
void ftl_process_anm_event(struct ftl_anm_event *event);
size_t ftl_tail_md_num_blocks(const struct spdk_ftl_dev *dev);
size_t ftl_tail_md_hdr_num_blocks(void);
size_t ftl_vld_map_num_blocks(const struct spdk_ftl_dev *dev);
size_t ftl_lba_map_num_blocks(const struct spdk_ftl_dev *dev);
size_t ftl_head_md_num_blocks(const struct spdk_ftl_dev *dev);
int ftl_restore_md(struct spdk_ftl_dev *dev, ftl_restore_fn cb, void *cb_arg);
int ftl_restore_device(struct ftl_restore *restore, ftl_restore_fn cb, void *cb_arg);
void ftl_restore_nv_cache(struct ftl_restore *restore, ftl_restore_fn cb, void *cb_arg);
int ftl_band_set_direct_access(struct ftl_band *band, bool access);
bool ftl_addr_is_written(struct ftl_band *band, struct ftl_addr addr);
int ftl_flush_active_bands(struct spdk_ftl_dev *dev, spdk_ftl_fn cb_fn, void *cb_arg);
int ftl_nv_cache_write_header(struct ftl_nv_cache *nv_cache, bool shutdown,
spdk_bdev_io_completion_cb cb_fn, void *cb_arg);
int ftl_nv_cache_scrub(struct ftl_nv_cache *nv_cache, spdk_bdev_io_completion_cb cb_fn,
void *cb_arg);
void ftl_get_media_events(struct spdk_ftl_dev *dev);
int ftl_io_channel_poll(void *arg);
void ftl_evict_cache_entry(struct spdk_ftl_dev *dev, struct ftl_wbuf_entry *entry);
struct spdk_io_channel *ftl_get_io_channel(const struct spdk_ftl_dev *dev);
struct ftl_io_channel *ftl_io_channel_get_ctx(struct spdk_io_channel *ioch);
#define ftl_to_addr(address) \
(struct ftl_addr) { .offset = (uint64_t)(address) }
#define ftl_to_addr_packed(address) \
(struct ftl_addr) { .pack.offset = (uint32_t)(address) }
static inline struct spdk_thread *
ftl_get_core_thread(const struct spdk_ftl_dev *dev)
{
return dev->core_thread;
}
static inline size_t
ftl_get_num_bands(const struct spdk_ftl_dev *dev)
{
return dev->num_bands;
}
static inline size_t
ftl_get_num_punits(const struct spdk_ftl_dev *dev)
{
return spdk_bdev_get_optimal_open_zones(spdk_bdev_desc_get_bdev(dev->base_bdev_desc));
}
static inline size_t
ftl_get_num_zones(const struct spdk_ftl_dev *dev)
{
return ftl_get_num_bands(dev) * ftl_get_num_punits(dev);
}
static inline size_t
ftl_get_num_blocks_in_zone(const struct spdk_ftl_dev *dev)
{
return spdk_bdev_get_zone_size(spdk_bdev_desc_get_bdev(dev->base_bdev_desc));
}
static inline uint64_t
ftl_get_num_blocks_in_band(const struct spdk_ftl_dev *dev)
{
return ftl_get_num_punits(dev) * ftl_get_num_blocks_in_zone(dev);
}
static inline uint64_t
ftl_addr_get_zone_slba(const struct spdk_ftl_dev *dev, struct ftl_addr addr)
{
return addr.offset -= (addr.offset % ftl_get_num_blocks_in_zone(dev));
}
static inline uint64_t
ftl_addr_get_band(const struct spdk_ftl_dev *dev, struct ftl_addr addr)
{
return addr.offset / ftl_get_num_blocks_in_band(dev);
}
static inline uint64_t
ftl_addr_get_punit(const struct spdk_ftl_dev *dev, struct ftl_addr addr)
{
return (addr.offset / ftl_get_num_blocks_in_zone(dev)) % ftl_get_num_punits(dev);
}
static inline uint64_t
ftl_addr_get_zone_offset(const struct spdk_ftl_dev *dev, struct ftl_addr addr)
{
return addr.offset % ftl_get_num_blocks_in_zone(dev);
}
static inline size_t
ftl_vld_map_size(const struct spdk_ftl_dev *dev)
{
return (size_t)spdk_divide_round_up(ftl_get_num_blocks_in_band(dev), CHAR_BIT);
}
static inline int
ftl_addr_packed(const struct spdk_ftl_dev *dev)
{
return dev->addr_len < 32;
}
static inline void
ftl_l2p_lba_persist(const struct spdk_ftl_dev *dev, uint64_t lba)
{
#ifdef SPDK_CONFIG_PMDK
size_t ftl_addr_size = ftl_addr_packed(dev) ? 4 : 8;
pmem_persist((char *)dev->l2p + (lba * ftl_addr_size), ftl_addr_size);
#else /* SPDK_CONFIG_PMDK */
SPDK_ERRLOG("Libpmem not available, cannot flush l2p to pmem\n");
assert(0);
#endif /* SPDK_CONFIG_PMDK */
}
static inline int
ftl_addr_invalid(struct ftl_addr addr)
{
return addr.offset == ftl_to_addr(FTL_ADDR_INVALID).offset;
}
static inline int
ftl_addr_cached(struct ftl_addr addr)
{
return !ftl_addr_invalid(addr) && addr.cached;
}
static inline struct ftl_addr
ftl_addr_to_packed(const struct spdk_ftl_dev *dev, struct ftl_addr addr)
{
struct ftl_addr p = {};
if (ftl_addr_invalid(addr)) {
p = ftl_to_addr_packed(FTL_ADDR_INVALID);
} else if (ftl_addr_cached(addr)) {
p.pack.cached = 1;
p.pack.cache_offset = (uint32_t) addr.cache_offset;
} else {
p.pack.offset = (uint32_t) addr.offset;
}
return p;
}
static inline struct ftl_addr
ftl_addr_from_packed(const struct spdk_ftl_dev *dev, struct ftl_addr p)
{
struct ftl_addr addr = {};
if (p.pack.offset == (uint32_t)FTL_ADDR_INVALID) {
addr = ftl_to_addr(FTL_ADDR_INVALID);
} else if (p.pack.cached) {
addr.cached = 1;
addr.cache_offset = p.pack.cache_offset;
} else {
addr = p;
}
return addr;
}
#define _ftl_l2p_set(l2p, off, val, bits) \
__atomic_store_n(((uint##bits##_t *)(l2p)) + (off), val, __ATOMIC_SEQ_CST)
#define _ftl_l2p_set32(l2p, off, val) \
_ftl_l2p_set(l2p, off, val, 32)
#define _ftl_l2p_set64(l2p, off, val) \
_ftl_l2p_set(l2p, off, val, 64)
#define _ftl_l2p_get(l2p, off, bits) \
__atomic_load_n(((uint##bits##_t *)(l2p)) + (off), __ATOMIC_SEQ_CST)
#define _ftl_l2p_get32(l2p, off) \
_ftl_l2p_get(l2p, off, 32)
#define _ftl_l2p_get64(l2p, off) \
_ftl_l2p_get(l2p, off, 64)
#define ftl_addr_cmp(p1, p2) \
((p1).offset == (p2).offset)
static inline void
ftl_l2p_set(struct spdk_ftl_dev *dev, uint64_t lba, struct ftl_addr addr)
{
assert(dev->num_lbas > lba);
if (ftl_addr_packed(dev)) {
_ftl_l2p_set32(dev->l2p, lba, ftl_addr_to_packed(dev, addr).offset);
} else {
_ftl_l2p_set64(dev->l2p, lba, addr.offset);
}
if (dev->l2p_pmem_len != 0) {
ftl_l2p_lba_persist(dev, lba);
}
}
static inline struct ftl_addr
ftl_l2p_get(struct spdk_ftl_dev *dev, uint64_t lba)
{
assert(dev->num_lbas > lba);
if (ftl_addr_packed(dev)) {
return ftl_addr_from_packed(dev, ftl_to_addr_packed(
_ftl_l2p_get32(dev->l2p, lba)));
} else {
return ftl_to_addr(_ftl_l2p_get64(dev->l2p, lba));
}
}
static inline bool
ftl_dev_has_nv_cache(const struct spdk_ftl_dev *dev)
{
return dev->nv_cache.bdev_desc != NULL;
}
#define FTL_NV_CACHE_HEADER_VERSION (1)
#define FTL_NV_CACHE_DATA_OFFSET (1)
#define FTL_NV_CACHE_PHASE_OFFSET (62)
#define FTL_NV_CACHE_PHASE_COUNT (4)
#define FTL_NV_CACHE_PHASE_MASK (3ULL << FTL_NV_CACHE_PHASE_OFFSET)
#define FTL_NV_CACHE_LBA_INVALID (FTL_LBA_INVALID & ~FTL_NV_CACHE_PHASE_MASK)
static inline bool
ftl_nv_cache_phase_is_valid(unsigned int phase)
{
return phase > 0 && phase <= 3;
}
static inline unsigned int
ftl_nv_cache_next_phase(unsigned int current)
{
static const unsigned int phases[] = { 0, 2, 3, 1 };
assert(ftl_nv_cache_phase_is_valid(current));
return phases[current];
}
static inline unsigned int
ftl_nv_cache_prev_phase(unsigned int current)
{
static const unsigned int phases[] = { 0, 3, 1, 2 };
assert(ftl_nv_cache_phase_is_valid(current));
return phases[current];
}
static inline uint64_t
ftl_nv_cache_pack_lba(uint64_t lba, unsigned int phase)
{
assert(ftl_nv_cache_phase_is_valid(phase));
return (lba & ~FTL_NV_CACHE_PHASE_MASK) | ((uint64_t)phase << FTL_NV_CACHE_PHASE_OFFSET);
}
static inline void
ftl_nv_cache_unpack_lba(uint64_t in_lba, uint64_t *out_lba, unsigned int *phase)
{
*out_lba = in_lba & ~FTL_NV_CACHE_PHASE_MASK;
*phase = (in_lba & FTL_NV_CACHE_PHASE_MASK) >> FTL_NV_CACHE_PHASE_OFFSET;
/* If the phase is invalid the block wasn't written yet, so treat the LBA as invalid too */
if (!ftl_nv_cache_phase_is_valid(*phase) || *out_lba == FTL_NV_CACHE_LBA_INVALID) {
*out_lba = FTL_LBA_INVALID;
}
}
static inline bool
ftl_is_append_supported(const struct spdk_ftl_dev *dev)
{
return dev->conf.use_append;
}
#endif /* FTL_CORE_H */