Spdk/test/unit/lib/nvme/nvme_ctrlr.c/nvme_ctrlr_ut.c
paul luse a6dbe3721e update Intel copyright notices
per Intel policy to include file commit date using git cmd
below.  The policy does not apply to non-Intel (C) notices.

git log --follow -C90% --format=%ad --date default <file> | tail -1

and then pull just the 4 digit year from the result.

Intel copyrights were not added to files where Intel either had
no contribution ot the contribution lacked substance (ie license
header updates, formatting changes, etc).  Contribution date used
"--follow -C95%" to get the most accurate date.

Note that several files in this patch didn't end the license/(c)
block with a blank comment line so these were added as the vast
majority of files do have this last blank line.  Simply there for
consistency.

Signed-off-by: paul luse <paul.e.luse@intel.com>
Change-Id: Id5b7ce4f658fe87132f14139ead58d6e285c04d4
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/15192
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Community-CI: Mellanox Build Bot
2022-11-10 08:28:53 +00:00

3394 lines
103 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2015 Intel Corporation. All rights reserved.
* Copyright (c) 2020, 2021 Mellanox Technologies LTD. All rights reserved.
* Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*/
#include "spdk/stdinc.h"
#include "spdk_cunit.h"
#include "spdk/log.h"
#include "common/lib/test_env.c"
#include "nvme/nvme_ctrlr.c"
#include "nvme/nvme_quirks.c"
SPDK_LOG_REGISTER_COMPONENT(nvme)
pid_t g_spdk_nvme_pid;
struct nvme_driver _g_nvme_driver = {
.lock = PTHREAD_MUTEX_INITIALIZER,
};
struct nvme_driver *g_spdk_nvme_driver = &_g_nvme_driver;
struct spdk_nvme_registers g_ut_nvme_regs = {};
typedef void (*set_reg_cb)(void);
set_reg_cb g_set_reg_cb;
__thread int nvme_thread_ioq_index = -1;
uint32_t set_size = 1;
int set_status_cpl = -1;
DEFINE_STUB(nvme_ctrlr_cmd_set_host_id, int,
(struct spdk_nvme_ctrlr *ctrlr, void *host_id, uint32_t host_id_size,
spdk_nvme_cmd_cb cb_fn, void *cb_arg), 0);
DEFINE_STUB_V(nvme_ns_set_identify_data, (struct spdk_nvme_ns *ns));
DEFINE_STUB_V(nvme_ns_set_id_desc_list_data, (struct spdk_nvme_ns *ns));
DEFINE_STUB_V(nvme_ns_free_iocs_specific_data, (struct spdk_nvme_ns *ns));
DEFINE_STUB_V(nvme_qpair_abort_all_queued_reqs, (struct spdk_nvme_qpair *qpair, uint32_t dnr));
DEFINE_STUB(spdk_nvme_poll_group_remove, int, (struct spdk_nvme_poll_group *group,
struct spdk_nvme_qpair *qpair), 0);
DEFINE_STUB_V(nvme_io_msg_ctrlr_update, (struct spdk_nvme_ctrlr *ctrlr));
DEFINE_STUB(nvme_io_msg_process, int, (struct spdk_nvme_ctrlr *ctrlr), 0);
DEFINE_STUB(nvme_transport_ctrlr_reserve_cmb, int, (struct spdk_nvme_ctrlr *ctrlr), 0);
DEFINE_STUB(spdk_nvme_ctrlr_cmd_security_receive, int, (struct spdk_nvme_ctrlr *ctrlr,
uint8_t secp, uint16_t spsp, uint8_t nssf, void *payload,
uint32_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg), 0);
DEFINE_STUB(spdk_nvme_ctrlr_cmd_security_send, int, (struct spdk_nvme_ctrlr *ctrlr,
uint8_t secp, uint16_t spsp, uint8_t nssf, void *payload,
uint32_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg), 0);
DEFINE_STUB_V(nvme_qpair_abort_queued_reqs, (struct spdk_nvme_qpair *qpair, uint32_t dnr));
DEFINE_RETURN_MOCK(nvme_transport_ctrlr_get_memory_domains, int);
int
nvme_transport_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
struct spdk_memory_domain **domains, int array_size)
{
HANDLE_RETURN_MOCK(nvme_transport_ctrlr_get_memory_domains);
return 0;
}
DEFINE_RETURN_MOCK(nvme_transport_ctrlr_ready, int);
int
nvme_transport_ctrlr_ready(struct spdk_nvme_ctrlr *ctrlr)
{
HANDLE_RETURN_MOCK(nvme_transport_ctrlr_ready);
return 0;
}
struct spdk_nvme_ctrlr *nvme_transport_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
const struct spdk_nvme_ctrlr_opts *opts,
void *devhandle)
{
return NULL;
}
int
nvme_transport_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
{
nvme_ctrlr_destruct_finish(ctrlr);
return 0;
}
int
nvme_transport_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
{
return 0;
}
int
nvme_transport_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
{
SPDK_CU_ASSERT_FATAL(offset <= sizeof(struct spdk_nvme_registers) - 4);
*(uint32_t *)((uintptr_t)&g_ut_nvme_regs + offset) = value;
if (g_set_reg_cb) {
g_set_reg_cb();
}
return 0;
}
int
nvme_transport_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
{
SPDK_CU_ASSERT_FATAL(offset <= sizeof(struct spdk_nvme_registers) - 8);
*(uint64_t *)((uintptr_t)&g_ut_nvme_regs + offset) = value;
if (g_set_reg_cb) {
g_set_reg_cb();
}
return 0;
}
int
nvme_transport_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
{
SPDK_CU_ASSERT_FATAL(offset <= sizeof(struct spdk_nvme_registers) - 4);
*value = *(uint32_t *)((uintptr_t)&g_ut_nvme_regs + offset);
return 0;
}
int
nvme_transport_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
{
SPDK_CU_ASSERT_FATAL(offset <= sizeof(struct spdk_nvme_registers) - 8);
*value = *(uint64_t *)((uintptr_t)&g_ut_nvme_regs + offset);
return 0;
}
int
nvme_transport_ctrlr_set_reg_4_async(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset,
uint32_t value, spdk_nvme_reg_cb cb_fn, void *cb_arg)
{
struct spdk_nvme_cpl cpl = {};
cpl.status.sct = SPDK_NVME_SCT_GENERIC;
cpl.status.sc = SPDK_NVME_SC_SUCCESS;
nvme_transport_ctrlr_set_reg_4(ctrlr, offset, value);
cb_fn(cb_arg, value, &cpl);
return 0;
}
int
nvme_transport_ctrlr_set_reg_8_async(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset,
uint64_t value, spdk_nvme_reg_cb cb_fn, void *cb_arg)
{
struct spdk_nvme_cpl cpl = {};
cpl.status.sct = SPDK_NVME_SCT_GENERIC;
cpl.status.sc = SPDK_NVME_SC_SUCCESS;
nvme_transport_ctrlr_set_reg_8(ctrlr, offset, value);
cb_fn(cb_arg, value, &cpl);
return 0;
}
int
nvme_transport_ctrlr_get_reg_4_async(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset,
spdk_nvme_reg_cb cb_fn, void *cb_arg)
{
struct spdk_nvme_cpl cpl = {};
uint32_t value;
cpl.status.sct = SPDK_NVME_SCT_GENERIC;
cpl.status.sc = SPDK_NVME_SC_SUCCESS;
nvme_transport_ctrlr_get_reg_4(ctrlr, offset, &value);
cb_fn(cb_arg, value, &cpl);
return 0;
}
int
nvme_transport_ctrlr_get_reg_8_async(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset,
spdk_nvme_reg_cb cb_fn, void *cb_arg)
{
struct spdk_nvme_cpl cpl = {};
uint64_t value;
cpl.status.sct = SPDK_NVME_SCT_GENERIC;
cpl.status.sc = SPDK_NVME_SC_SUCCESS;
nvme_transport_ctrlr_get_reg_8(ctrlr, offset, &value);
cb_fn(cb_arg, value, &cpl);
return 0;
}
uint32_t
nvme_transport_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
{
return UINT32_MAX;
}
uint16_t
nvme_transport_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
{
return 1;
}
void *
nvme_transport_ctrlr_map_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
{
return NULL;
}
int
nvme_transport_ctrlr_unmap_cmb(struct spdk_nvme_ctrlr *ctrlr)
{
return 0;
}
int
nvme_transport_ctrlr_enable_pmr(struct spdk_nvme_ctrlr *ctrlr)
{
return 0;
}
int
nvme_transport_ctrlr_disable_pmr(struct spdk_nvme_ctrlr *ctrlr)
{
return 0;
}
void *
nvme_transport_ctrlr_map_pmr(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
{
return NULL;
}
int
nvme_transport_ctrlr_unmap_pmr(struct spdk_nvme_ctrlr *ctrlr)
{
return 0;
}
struct spdk_nvme_qpair *
nvme_transport_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
const struct spdk_nvme_io_qpair_opts *opts)
{
struct spdk_nvme_qpair *qpair;
qpair = calloc(1, sizeof(*qpair));
SPDK_CU_ASSERT_FATAL(qpair != NULL);
qpair->ctrlr = ctrlr;
qpair->id = qid;
qpair->qprio = opts->qprio;
return qpair;
}
void
nvme_transport_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
free(qpair);
}
void
nvme_transport_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
}
int
nvme_transport_qpair_reset(struct spdk_nvme_qpair *qpair)
{
return 0;
}
void
nvme_transport_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
{
}
void
nvme_transport_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
{
}
int
nvme_driver_init(void)
{
return 0;
}
int
nvme_qpair_init(struct spdk_nvme_qpair *qpair, uint16_t id,
struct spdk_nvme_ctrlr *ctrlr,
enum spdk_nvme_qprio qprio,
uint32_t num_requests, bool async)
{
qpair->id = id;
qpair->qprio = qprio;
qpair->ctrlr = ctrlr;
qpair->async = async;
return 0;
}
static struct spdk_nvme_cpl fake_cpl = {};
static enum spdk_nvme_generic_command_status_code set_status_code = SPDK_NVME_SC_SUCCESS;
static void
fake_cpl_sc(spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
fake_cpl.status.sc = set_status_code;
cb_fn(cb_arg, &fake_cpl);
}
static uint32_t g_ut_cdw11;
int
spdk_nvme_ctrlr_cmd_set_feature(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature,
uint32_t cdw11, uint32_t cdw12, void *payload, uint32_t payload_size,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
g_ut_cdw11 = cdw11;
return 0;
}
int
spdk_nvme_ctrlr_cmd_get_feature(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature,
uint32_t cdw11, void *payload, uint32_t payload_size,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
fake_cpl_sc(cb_fn, cb_arg);
return 0;
}
struct spdk_nvme_ana_page *g_ana_hdr;
struct spdk_nvme_ana_group_descriptor **g_ana_descs;
int
spdk_nvme_ctrlr_cmd_get_log_page(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page,
uint32_t nsid, void *payload, uint32_t payload_size,
uint64_t offset, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
if ((log_page == SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS) && g_ana_hdr) {
uint32_t i;
uint8_t *ptr = payload;
memset(payload, 0, payload_size);
memcpy(ptr, g_ana_hdr, sizeof(*g_ana_hdr));
ptr += sizeof(*g_ana_hdr);
for (i = 0; i < g_ana_hdr->num_ana_group_desc; ++i) {
uint32_t desc_size = sizeof(**g_ana_descs) +
g_ana_descs[i]->num_of_nsid * sizeof(uint32_t);
memcpy(ptr, g_ana_descs[i], desc_size);
ptr += desc_size;
}
} else if (log_page == SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY) {
struct spdk_nvme_intel_log_page_directory *log_page_directory = payload;
log_page_directory->read_latency_log_len = true;
log_page_directory->write_latency_log_len = true;
log_page_directory->temperature_statistics_log_len = true;
log_page_directory->smart_log_len = true;
log_page_directory->marketing_description_log_len = true;
}
fake_cpl_sc(cb_fn, cb_arg);
return 0;
}
int
spdk_nvme_ctrlr_cmd_get_log_page_ext(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page,
uint32_t nsid, void *payload, uint32_t payload_size,
uint64_t offset, uint32_t cdw10, uint32_t cdw11,
uint32_t cdw14, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
fake_cpl_sc(cb_fn, cb_arg);
return 0;
}
int
nvme_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
{
CU_ASSERT(req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST);
STAILQ_INSERT_HEAD(&qpair->free_req, req, stailq);
/*
* For the purposes of this unit test, we don't need to bother emulating request submission.
*/
return 0;
}
static int32_t g_wait_for_completion_return_val;
int32_t
spdk_nvme_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
{
return g_wait_for_completion_return_val;
}
void
nvme_qpair_complete_error_reqs(struct spdk_nvme_qpair *qpair)
{
}
void
nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct nvme_completion_poll_status *status = arg;
/* This should not happen it test env since this callback is always called
* before wait_for_completion_* while this field can only be set to true in
* wait_for_completion_* functions */
CU_ASSERT(status->timed_out == false);
status->cpl = *cpl;
status->done = true;
}
static struct nvme_completion_poll_status *g_failed_status;
int
nvme_wait_for_completion_robust_lock_timeout(
struct spdk_nvme_qpair *qpair,
struct nvme_completion_poll_status *status,
pthread_mutex_t *robust_mutex,
uint64_t timeout_in_usecs)
{
if (spdk_nvme_qpair_process_completions(qpair, 0) < 0) {
g_failed_status = status;
status->timed_out = true;
return -1;
}
status->done = true;
if (set_status_cpl == 1) {
status->cpl.status.sc = 1;
}
return spdk_nvme_cpl_is_error(&status->cpl) ? -EIO : 0;
}
int
nvme_wait_for_completion_robust_lock(
struct spdk_nvme_qpair *qpair,
struct nvme_completion_poll_status *status,
pthread_mutex_t *robust_mutex)
{
return nvme_wait_for_completion_robust_lock_timeout(qpair, status, robust_mutex, 0);
}
int
nvme_wait_for_completion(struct spdk_nvme_qpair *qpair,
struct nvme_completion_poll_status *status)
{
return nvme_wait_for_completion_robust_lock_timeout(qpair, status, NULL, 0);
}
int
nvme_wait_for_completion_timeout(struct spdk_nvme_qpair *qpair,
struct nvme_completion_poll_status *status,
uint64_t timeout_in_usecs)
{
return nvme_wait_for_completion_robust_lock_timeout(qpair, status, NULL, timeout_in_usecs);
}
int
nvme_ctrlr_cmd_set_async_event_config(struct spdk_nvme_ctrlr *ctrlr,
union spdk_nvme_feat_async_event_configuration config, spdk_nvme_cmd_cb cb_fn,
void *cb_arg)
{
fake_cpl_sc(cb_fn, cb_arg);
return 0;
}
static uint32_t *g_active_ns_list = NULL;
static uint32_t g_active_ns_list_length = 0;
static struct spdk_nvme_ctrlr_data *g_cdata = NULL;
static bool g_fail_next_identify = false;
int
nvme_ctrlr_cmd_identify(struct spdk_nvme_ctrlr *ctrlr, uint8_t cns, uint16_t cntid, uint32_t nsid,
uint8_t csi, void *payload, size_t payload_size,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
if (g_fail_next_identify) {
g_fail_next_identify = false;
return 1;
}
memset(payload, 0, payload_size);
if (cns == SPDK_NVME_IDENTIFY_ACTIVE_NS_LIST) {
uint32_t count = 0;
uint32_t i = 0;
struct spdk_nvme_ns_list *ns_list = (struct spdk_nvme_ns_list *)payload;
if (g_active_ns_list == NULL) {
for (i = 1; i <= ctrlr->cdata.nn; i++) {
if (i <= nsid) {
continue;
}
ns_list->ns_list[count++] = i;
if (count == SPDK_COUNTOF(ns_list->ns_list)) {
break;
}
}
} else {
for (i = 0; i < g_active_ns_list_length; i++) {
uint32_t cur_nsid = g_active_ns_list[i];
if (cur_nsid <= nsid) {
continue;
}
ns_list->ns_list[count++] = cur_nsid;
if (count == SPDK_COUNTOF(ns_list->ns_list)) {
break;
}
}
}
} else if (cns == SPDK_NVME_IDENTIFY_CTRLR) {
if (g_cdata) {
memcpy(payload, g_cdata, sizeof(*g_cdata));
}
} else if (cns == SPDK_NVME_IDENTIFY_NS_IOCS) {
return 0;
}
fake_cpl_sc(cb_fn, cb_arg);
return 0;
}
int
nvme_ctrlr_cmd_set_num_queues(struct spdk_nvme_ctrlr *ctrlr,
uint32_t num_queues, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
fake_cpl_sc(cb_fn, cb_arg);
return 0;
}
int
nvme_ctrlr_cmd_get_num_queues(struct spdk_nvme_ctrlr *ctrlr,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
CU_ASSERT(0);
return -1;
}
int
nvme_ctrlr_cmd_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
struct spdk_nvme_ctrlr_list *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
return 0;
}
int
nvme_ctrlr_cmd_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
struct spdk_nvme_ctrlr_list *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
return 0;
}
int
nvme_ctrlr_cmd_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
fake_cpl_sc(cb_fn, cb_arg);
return 0;
}
int
nvme_ctrlr_cmd_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, spdk_nvme_cmd_cb cb_fn,
void *cb_arg)
{
return 0;
}
int
nvme_ctrlr_cmd_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, struct spdk_nvme_format *format,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
return 0;
}
int
spdk_nvme_ctrlr_cmd_directive_send(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
uint32_t doper, uint32_t dtype, uint32_t dspec,
void *payload, uint32_t payload_size, uint32_t cdw12,
uint32_t cdw13, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
return 0;
}
int
spdk_nvme_ctrlr_cmd_directive_receive(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
uint32_t doper, uint32_t dtype, uint32_t dspec,
void *payload, uint32_t payload_size, uint32_t cdw12,
uint32_t cdw13, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
return 0;
}
int
nvme_ctrlr_cmd_fw_commit(struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_fw_commit *fw_commit,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
CU_ASSERT(fw_commit->ca == SPDK_NVME_FW_COMMIT_REPLACE_IMG);
if (fw_commit->fs == 0) {
return -1;
}
set_status_cpl = 1;
if (ctrlr->is_resetting == true) {
set_status_cpl = 0;
}
return 0;
}
int
nvme_ctrlr_cmd_fw_image_download(struct spdk_nvme_ctrlr *ctrlr,
uint32_t size, uint32_t offset, void *payload,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
if ((size != 0 && payload == NULL) || (size == 0 && payload != NULL)) {
return -1;
}
CU_ASSERT(offset == 0);
return 0;
}
bool
nvme_ns_has_supported_iocs_specific_data(struct spdk_nvme_ns *ns)
{
switch (ns->csi) {
case SPDK_NVME_CSI_NVM:
/*
* NVM Command Set Specific Identify Namespace data structure
* is currently all-zeroes, reserved for future use.
*/
return false;
case SPDK_NVME_CSI_ZNS:
return true;
default:
SPDK_WARNLOG("Unsupported CSI: %u for NSID: %u\n", ns->csi, ns->id);
return false;
}
}
void
nvme_ns_free_zns_specific_data(struct spdk_nvme_ns *ns)
{
if (!ns->id) {
return;
}
if (ns->nsdata_zns) {
spdk_free(ns->nsdata_zns);
ns->nsdata_zns = NULL;
}
}
void
nvme_ns_destruct(struct spdk_nvme_ns *ns)
{
}
int
nvme_ns_construct(struct spdk_nvme_ns *ns, uint32_t id,
struct spdk_nvme_ctrlr *ctrlr)
{
return 0;
}
void
spdk_pci_device_detach(struct spdk_pci_device *device)
{
}
#define DECLARE_AND_CONSTRUCT_CTRLR() \
struct spdk_nvme_ctrlr ctrlr = {}; \
struct spdk_nvme_qpair adminq = {}; \
struct nvme_request req; \
\
STAILQ_INIT(&adminq.free_req); \
STAILQ_INSERT_HEAD(&adminq.free_req, &req, stailq); \
ctrlr.adminq = &adminq; \
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_CUSTOM;
static void
test_nvme_ctrlr_init_en_1_rdy_0(void)
{
DECLARE_AND_CONSTRUCT_CTRLR();
memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs));
/*
* Initial state: CC.EN = 1, CSTS.RDY = 0
*/
g_ut_nvme_regs.cc.bits.en = 1;
g_ut_nvme_regs.csts.bits.rdy = 0;
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.cdata.nn = 1;
ctrlr.page_size = 0x1000;
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1);
/*
* Transition to CSTS.RDY = 1.
* init() should set CC.EN = 0.
*/
g_ut_nvme_regs.csts.bits.rdy = 1;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_EN_0);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0);
/*
* Transition to CSTS.RDY = 0.
*/
g_ut_nvme_regs.csts.bits.rdy = 0;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED);
/*
* Start enabling the controller.
*/
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
/*
* Transition to CC.EN = 1
*/
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
/*
* Transition to CSTS.RDY = 1.
*/
g_ut_nvme_regs.csts.bits.rdy = 1;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE);
/*
* Transition to READY.
*/
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
nvme_ctrlr_process_init(&ctrlr);
}
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
nvme_ctrlr_destruct(&ctrlr);
}
static void
test_nvme_ctrlr_init_en_1_rdy_1(void)
{
DECLARE_AND_CONSTRUCT_CTRLR();
memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs));
/*
* Initial state: CC.EN = 1, CSTS.RDY = 1
* init() should set CC.EN = 0.
*/
g_ut_nvme_regs.cc.bits.en = 1;
g_ut_nvme_regs.csts.bits.rdy = 1;
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.cdata.nn = 1;
ctrlr.page_size = 0x1000;
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
while (ctrlr.state != NVME_CTRLR_STATE_SET_EN_0) {
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0);
/*
* Transition to CSTS.RDY = 0.
*/
g_ut_nvme_regs.csts.bits.rdy = 0;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED);
/*
* Start enabling the controller.
*/
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
/*
* Transition to CC.EN = 1
*/
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
/*
* Transition to CSTS.RDY = 1.
*/
g_ut_nvme_regs.csts.bits.rdy = 1;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE);
/*
* Transition to READY.
*/
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
nvme_ctrlr_process_init(&ctrlr);
}
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
nvme_ctrlr_destruct(&ctrlr);
}
static void
test_nvme_ctrlr_init_en_0_rdy_0_ams_rr(void)
{
DECLARE_AND_CONSTRUCT_CTRLR();
memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs));
/*
* Initial state: CC.EN = 0, CSTS.RDY = 0
* init() should set CC.EN = 1.
*/
g_ut_nvme_regs.cc.bits.en = 0;
g_ut_nvme_regs.csts.bits.rdy = 0;
/*
* Default round robin enabled
*/
g_ut_nvme_regs.cap.bits.ams = 0x0;
ctrlr.cap = g_ut_nvme_regs.cap;
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.cdata.nn = 1;
ctrlr.page_size = 0x1000;
/*
* Case 1: default round robin arbitration mechanism selected
*/
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_RR;
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_RR);
CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_RR);
/*
* Complete and destroy the controller
*/
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
nvme_ctrlr_destruct(&ctrlr);
/*
* Reset to initial state
*/
g_ut_nvme_regs.cc.bits.en = 0;
g_ut_nvme_regs.csts.bits.rdy = 0;
/*
* Case 2: weighted round robin arbitration mechanism selected
*/
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.cdata.nn = 1;
ctrlr.page_size = 0x1000;
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_WRR;
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0);
/*
* Complete and destroy the controller
*/
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
nvme_ctrlr_destruct(&ctrlr);
/*
* Reset to initial state
*/
g_ut_nvme_regs.cc.bits.en = 0;
g_ut_nvme_regs.csts.bits.rdy = 0;
/*
* Case 3: vendor specific arbitration mechanism selected
*/
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.cdata.nn = 1;
ctrlr.page_size = 0x1000;
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS;
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0);
/*
* Complete and destroy the controller
*/
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
nvme_ctrlr_destruct(&ctrlr);
/*
* Reset to initial state
*/
g_ut_nvme_regs.cc.bits.en = 0;
g_ut_nvme_regs.csts.bits.rdy = 0;
/*
* Case 4: invalid arbitration mechanism selected
*/
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.cdata.nn = 1;
ctrlr.page_size = 0x1000;
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS + 1;
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0);
/*
* Complete and destroy the controller
*/
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
nvme_ctrlr_destruct(&ctrlr);
/*
* Reset to initial state
*/
g_ut_nvme_regs.cc.bits.en = 0;
g_ut_nvme_regs.csts.bits.rdy = 0;
/*
* Case 5: reset to default round robin arbitration mechanism
*/
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.cdata.nn = 1;
ctrlr.page_size = 0x1000;
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_RR;
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_RR);
CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_RR);
/*
* Transition to CSTS.RDY = 1.
*/
g_ut_nvme_regs.csts.bits.rdy = 1;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE);
/*
* Transition to READY.
*/
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
nvme_ctrlr_process_init(&ctrlr);
}
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
nvme_ctrlr_destruct(&ctrlr);
}
static void
test_nvme_ctrlr_init_en_0_rdy_0_ams_wrr(void)
{
DECLARE_AND_CONSTRUCT_CTRLR();
memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs));
/*
* Initial state: CC.EN = 0, CSTS.RDY = 0
* init() should set CC.EN = 1.
*/
g_ut_nvme_regs.cc.bits.en = 0;
g_ut_nvme_regs.csts.bits.rdy = 0;
/*
* Weighted round robin enabled
*/
g_ut_nvme_regs.cap.bits.ams = SPDK_NVME_CAP_AMS_WRR;
ctrlr.cap = g_ut_nvme_regs.cap;
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.cdata.nn = 1;
ctrlr.page_size = 0x1000;
/*
* Case 1: default round robin arbitration mechanism selected
*/
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_RR;
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_RR);
CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_RR);
/*
* Complete and destroy the controller
*/
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
nvme_ctrlr_destruct(&ctrlr);
/*
* Reset to initial state
*/
g_ut_nvme_regs.cc.bits.en = 0;
g_ut_nvme_regs.csts.bits.rdy = 0;
/*
* Case 2: weighted round robin arbitration mechanism selected
*/
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.cdata.nn = 1;
ctrlr.page_size = 0x1000;
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_WRR;
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_WRR);
CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_WRR);
/*
* Complete and destroy the controller
*/
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
nvme_ctrlr_destruct(&ctrlr);
/*
* Reset to initial state
*/
g_ut_nvme_regs.cc.bits.en = 0;
g_ut_nvme_regs.csts.bits.rdy = 0;
/*
* Case 3: vendor specific arbitration mechanism selected
*/
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.cdata.nn = 1;
ctrlr.page_size = 0x1000;
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS;
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0);
/*
* Complete and destroy the controller
*/
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
nvme_ctrlr_destruct(&ctrlr);
/*
* Reset to initial state
*/
g_ut_nvme_regs.cc.bits.en = 0;
g_ut_nvme_regs.csts.bits.rdy = 0;
/*
* Case 4: invalid arbitration mechanism selected
*/
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.cdata.nn = 1;
ctrlr.page_size = 0x1000;
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS + 1;
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0);
/*
* Complete and destroy the controller
*/
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
nvme_ctrlr_destruct(&ctrlr);
/*
* Reset to initial state
*/
g_ut_nvme_regs.cc.bits.en = 0;
g_ut_nvme_regs.csts.bits.rdy = 0;
/*
* Case 5: reset to weighted round robin arbitration mechanism
*/
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.cdata.nn = 1;
ctrlr.page_size = 0x1000;
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_WRR;
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_WRR);
CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_WRR);
/*
* Transition to CSTS.RDY = 1.
*/
g_ut_nvme_regs.csts.bits.rdy = 1;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE);
/*
* Transition to READY.
*/
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
nvme_ctrlr_process_init(&ctrlr);
}
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
nvme_ctrlr_destruct(&ctrlr);
}
static void
test_nvme_ctrlr_init_en_0_rdy_0_ams_vs(void)
{
DECLARE_AND_CONSTRUCT_CTRLR();
memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs));
/*
* Initial state: CC.EN = 0, CSTS.RDY = 0
* init() should set CC.EN = 1.
*/
g_ut_nvme_regs.cc.bits.en = 0;
g_ut_nvme_regs.csts.bits.rdy = 0;
/*
* Default round robin enabled
*/
g_ut_nvme_regs.cap.bits.ams = SPDK_NVME_CAP_AMS_VS;
ctrlr.cap = g_ut_nvme_regs.cap;
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.cdata.nn = 1;
ctrlr.page_size = 0x1000;
/*
* Case 1: default round robin arbitration mechanism selected
*/
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_RR;
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_RR);
CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_RR);
/*
* Complete and destroy the controller
*/
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
nvme_ctrlr_destruct(&ctrlr);
/*
* Reset to initial state
*/
g_ut_nvme_regs.cc.bits.en = 0;
g_ut_nvme_regs.csts.bits.rdy = 0;
/*
* Case 2: weighted round robin arbitration mechanism selected
*/
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.cdata.nn = 1;
ctrlr.page_size = 0x1000;
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_WRR;
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0);
/*
* Complete and destroy the controller
*/
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
nvme_ctrlr_destruct(&ctrlr);
/*
* Reset to initial state
*/
g_ut_nvme_regs.cc.bits.en = 0;
g_ut_nvme_regs.csts.bits.rdy = 0;
/*
* Case 3: vendor specific arbitration mechanism selected
*/
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.cdata.nn = 1;
ctrlr.page_size = 0x1000;
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS;
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_VS);
CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_VS);
/*
* Complete and destroy the controller
*/
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
nvme_ctrlr_destruct(&ctrlr);
/*
* Reset to initial state
*/
g_ut_nvme_regs.cc.bits.en = 0;
g_ut_nvme_regs.csts.bits.rdy = 0;
/*
* Case 4: invalid arbitration mechanism selected
*/
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.cdata.nn = 1;
ctrlr.page_size = 0x1000;
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS + 1;
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0);
/*
* Complete and destroy the controller
*/
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
nvme_ctrlr_destruct(&ctrlr);
/*
* Reset to initial state
*/
g_ut_nvme_regs.cc.bits.en = 0;
g_ut_nvme_regs.csts.bits.rdy = 0;
/*
* Case 5: reset to vendor specific arbitration mechanism
*/
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.cdata.nn = 1;
ctrlr.page_size = 0x1000;
ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS;
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_VS);
CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_VS);
/*
* Transition to CSTS.RDY = 1.
*/
g_ut_nvme_regs.csts.bits.rdy = 1;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE);
/*
* Transition to READY.
*/
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
nvme_ctrlr_process_init(&ctrlr);
}
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
nvme_ctrlr_destruct(&ctrlr);
}
static void
test_nvme_ctrlr_init_en_0_rdy_0(void)
{
DECLARE_AND_CONSTRUCT_CTRLR();
memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs));
/*
* Initial state: CC.EN = 0, CSTS.RDY = 0
* init() should set CC.EN = 1.
*/
g_ut_nvme_regs.cc.bits.en = 0;
g_ut_nvme_regs.csts.bits.rdy = 0;
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.cdata.nn = 1;
ctrlr.page_size = 0x1000;
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
/*
* Transition to CSTS.RDY = 1.
*/
g_ut_nvme_regs.csts.bits.rdy = 1;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE);
/*
* Transition to READY.
*/
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
nvme_ctrlr_process_init(&ctrlr);
}
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
nvme_ctrlr_destruct(&ctrlr);
}
static void
test_nvme_ctrlr_init_en_0_rdy_1(void)
{
DECLARE_AND_CONSTRUCT_CTRLR();
memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs));
/*
* Initial state: CC.EN = 0, CSTS.RDY = 1
*/
g_ut_nvme_regs.cc.bits.en = 0;
g_ut_nvme_regs.csts.bits.rdy = 1;
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.cdata.nn = 1;
ctrlr.page_size = 0x1000;
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
/*
* Transition to CSTS.RDY = 0.
*/
g_ut_nvme_regs.csts.bits.rdy = 0;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED);
/*
* Start enabling the controller.
*/
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
/*
* Transition to CC.EN = 1
*/
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
/*
* Transition to CSTS.RDY = 1.
*/
g_ut_nvme_regs.csts.bits.rdy = 1;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE);
/*
* Transition to READY.
*/
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
nvme_ctrlr_process_init(&ctrlr);
}
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
nvme_ctrlr_destruct(&ctrlr);
}
static void
setup_qpairs(struct spdk_nvme_ctrlr *ctrlr, uint32_t num_io_queues)
{
uint32_t i;
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(ctrlr) == 0);
ctrlr->page_size = 0x1000;
ctrlr->opts.num_io_queues = num_io_queues;
ctrlr->free_io_qids = spdk_bit_array_create(num_io_queues + 1);
ctrlr->state = NVME_CTRLR_STATE_READY;
SPDK_CU_ASSERT_FATAL(ctrlr->free_io_qids != NULL);
spdk_bit_array_clear(ctrlr->free_io_qids, 0);
for (i = 1; i <= num_io_queues; i++) {
spdk_bit_array_set(ctrlr->free_io_qids, i);
}
}
static void
cleanup_qpairs(struct spdk_nvme_ctrlr *ctrlr)
{
nvme_ctrlr_destruct(ctrlr);
}
static void
test_alloc_io_qpair_rr_1(void)
{
struct spdk_nvme_io_qpair_opts opts;
struct spdk_nvme_ctrlr ctrlr = {};
struct spdk_nvme_qpair *q0;
setup_qpairs(&ctrlr, 1);
/*
* Fake to simulate the controller with default round robin
* arbitration mechanism.
*/
g_ut_nvme_regs.cc.bits.ams = SPDK_NVME_CC_AMS_RR;
spdk_nvme_ctrlr_get_default_io_qpair_opts(&ctrlr, &opts, sizeof(opts));
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, NULL, 0);
SPDK_CU_ASSERT_FATAL(q0 != NULL);
SPDK_CU_ASSERT_FATAL(q0->qprio == 0);
/* Only 1 I/O qpair was allocated, so this should fail */
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, NULL, 0) == NULL);
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0);
/*
* Now that the qpair has been returned to the free list,
* we should be able to allocate it again.
*/
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, NULL, 0);
SPDK_CU_ASSERT_FATAL(q0 != NULL);
SPDK_CU_ASSERT_FATAL(q0->qprio == 0);
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0);
/* Only 0 qprio is acceptable for default round robin arbitration mechanism */
opts.qprio = 1;
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
SPDK_CU_ASSERT_FATAL(q0 == NULL);
opts.qprio = 2;
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
SPDK_CU_ASSERT_FATAL(q0 == NULL);
opts.qprio = 3;
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
SPDK_CU_ASSERT_FATAL(q0 == NULL);
/* Only 0 ~ 3 qprio is acceptable */
opts.qprio = 4;
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)) == NULL);
opts.qprio = 0;
/* IO qpair can only be created when ctrlr is in READY state */
ctrlr.state = NVME_CTRLR_STATE_ENABLE;
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
SPDK_CU_ASSERT_FATAL(q0 == NULL);
ctrlr.state = NVME_CTRLR_STATE_READY;
cleanup_qpairs(&ctrlr);
}
static void
test_alloc_io_qpair_wrr_1(void)
{
struct spdk_nvme_io_qpair_opts opts;
struct spdk_nvme_ctrlr ctrlr = {};
struct spdk_nvme_qpair *q0, *q1;
setup_qpairs(&ctrlr, 2);
/*
* Fake to simulate the controller with weighted round robin
* arbitration mechanism.
*/
ctrlr.process_init_cc.bits.ams = SPDK_NVME_CC_AMS_WRR;
spdk_nvme_ctrlr_get_default_io_qpair_opts(&ctrlr, &opts, sizeof(opts));
/*
* Allocate 2 qpairs and free them
*/
opts.qprio = 0;
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
SPDK_CU_ASSERT_FATAL(q0 != NULL);
SPDK_CU_ASSERT_FATAL(q0->qprio == 0);
opts.qprio = 1;
q1 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
SPDK_CU_ASSERT_FATAL(q1 != NULL);
SPDK_CU_ASSERT_FATAL(q1->qprio == 1);
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q1) == 0);
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0);
/*
* Allocate 2 qpairs and free them in the reverse order
*/
opts.qprio = 2;
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
SPDK_CU_ASSERT_FATAL(q0 != NULL);
SPDK_CU_ASSERT_FATAL(q0->qprio == 2);
opts.qprio = 3;
q1 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
SPDK_CU_ASSERT_FATAL(q1 != NULL);
SPDK_CU_ASSERT_FATAL(q1->qprio == 3);
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0);
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q1) == 0);
/* Only 0 ~ 3 qprio is acceptable */
opts.qprio = 4;
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)) == NULL);
cleanup_qpairs(&ctrlr);
}
static void
test_alloc_io_qpair_wrr_2(void)
{
struct spdk_nvme_io_qpair_opts opts;
struct spdk_nvme_ctrlr ctrlr = {};
struct spdk_nvme_qpair *q0, *q1, *q2, *q3;
setup_qpairs(&ctrlr, 4);
/*
* Fake to simulate the controller with weighted round robin
* arbitration mechanism.
*/
ctrlr.process_init_cc.bits.ams = SPDK_NVME_CC_AMS_WRR;
spdk_nvme_ctrlr_get_default_io_qpair_opts(&ctrlr, &opts, sizeof(opts));
opts.qprio = 0;
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
SPDK_CU_ASSERT_FATAL(q0 != NULL);
SPDK_CU_ASSERT_FATAL(q0->qprio == 0);
opts.qprio = 1;
q1 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
SPDK_CU_ASSERT_FATAL(q1 != NULL);
SPDK_CU_ASSERT_FATAL(q1->qprio == 1);
opts.qprio = 2;
q2 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
SPDK_CU_ASSERT_FATAL(q2 != NULL);
SPDK_CU_ASSERT_FATAL(q2->qprio == 2);
opts.qprio = 3;
q3 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
SPDK_CU_ASSERT_FATAL(q3 != NULL);
SPDK_CU_ASSERT_FATAL(q3->qprio == 3);
/* Only 4 I/O qpairs was allocated, so this should fail */
opts.qprio = 0;
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)) == NULL);
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q3) == 0);
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q2) == 0);
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q1) == 0);
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0);
/*
* Now that the qpair has been returned to the free list,
* we should be able to allocate it again.
*
* Allocate 4 I/O qpairs and half of them with same qprio.
*/
opts.qprio = 1;
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
SPDK_CU_ASSERT_FATAL(q0 != NULL);
SPDK_CU_ASSERT_FATAL(q0->qprio == 1);
opts.qprio = 1;
q1 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
SPDK_CU_ASSERT_FATAL(q1 != NULL);
SPDK_CU_ASSERT_FATAL(q1->qprio == 1);
opts.qprio = 3;
q2 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
SPDK_CU_ASSERT_FATAL(q2 != NULL);
SPDK_CU_ASSERT_FATAL(q2->qprio == 3);
opts.qprio = 3;
q3 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts));
SPDK_CU_ASSERT_FATAL(q3 != NULL);
SPDK_CU_ASSERT_FATAL(q3->qprio == 3);
/*
* Free all I/O qpairs in reverse order
*/
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0);
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q1) == 0);
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q2) == 0);
SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q3) == 0);
cleanup_qpairs(&ctrlr);
}
bool g_connect_qpair_called = false;
int g_connect_qpair_return_code = 0;
int
nvme_transport_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
g_connect_qpair_called = true;
qpair->state = NVME_QPAIR_CONNECTED;
return g_connect_qpair_return_code;
}
static void
test_spdk_nvme_ctrlr_reconnect_io_qpair(void)
{
struct spdk_nvme_ctrlr ctrlr = {};
struct spdk_nvme_qpair qpair = {};
int rc;
CU_ASSERT(pthread_mutex_init(&ctrlr.ctrlr_lock, NULL) == 0);
/* Various states of controller disconnect. */
qpair.id = 1;
qpair.ctrlr = &ctrlr;
ctrlr.is_removed = 1;
ctrlr.is_failed = 0;
ctrlr.is_resetting = 0;
rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair);
CU_ASSERT(rc == -ENODEV)
ctrlr.is_removed = 0;
ctrlr.is_failed = 1;
rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair);
CU_ASSERT(rc == -ENXIO)
ctrlr.is_failed = 0;
ctrlr.is_resetting = 1;
rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair);
CU_ASSERT(rc == -EAGAIN)
/* Confirm precedence for controller states: removed > resetting > failed */
ctrlr.is_removed = 1;
ctrlr.is_failed = 1;
rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair);
CU_ASSERT(rc == -ENODEV)
ctrlr.is_removed = 0;
rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair);
CU_ASSERT(rc == -EAGAIN)
ctrlr.is_resetting = 0;
rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair);
CU_ASSERT(rc == -ENXIO)
/* qpair not failed. Make sure we don't call down to the transport */
ctrlr.is_failed = 0;
qpair.state = NVME_QPAIR_CONNECTED;
g_connect_qpair_called = false;
rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair);
CU_ASSERT(g_connect_qpair_called == false);
CU_ASSERT(rc == 0)
/* transport qpair is failed. make sure we call down to the transport */
qpair.state = NVME_QPAIR_DISCONNECTED;
rc = spdk_nvme_ctrlr_reconnect_io_qpair(&qpair);
CU_ASSERT(g_connect_qpair_called == true);
CU_ASSERT(rc == 0)
CU_ASSERT(pthread_mutex_destroy(&ctrlr.ctrlr_lock) == 0);
}
static void
test_nvme_ctrlr_fail(void)
{
struct spdk_nvme_ctrlr ctrlr = {};
ctrlr.opts.num_io_queues = 0;
nvme_ctrlr_fail(&ctrlr, false);
CU_ASSERT(ctrlr.is_failed == true);
}
static void
test_nvme_ctrlr_construct_intel_support_log_page_list(void)
{
bool res;
struct spdk_nvme_ctrlr ctrlr = {};
struct spdk_nvme_intel_log_page_directory payload = {};
struct spdk_pci_id pci_id = {};
/* Get quirks for a device with all 0 vendor/device id */
ctrlr.quirks = nvme_get_quirks(&pci_id);
CU_ASSERT(ctrlr.quirks == 0);
/* Set the vendor to Intel, but provide no device id */
pci_id.class_id = SPDK_PCI_CLASS_NVME;
ctrlr.cdata.vid = pci_id.vendor_id = SPDK_PCI_VID_INTEL;
payload.temperature_statistics_log_len = 1;
ctrlr.quirks = nvme_get_quirks(&pci_id);
memset(ctrlr.log_page_supported, 0, sizeof(ctrlr.log_page_supported));
nvme_ctrlr_construct_intel_support_log_page_list(&ctrlr, &payload);
res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY);
CU_ASSERT(res == true);
res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_TEMPERATURE);
CU_ASSERT(res == true);
res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY);
CU_ASSERT(res == false);
res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_SMART);
CU_ASSERT(res == false);
/* set valid vendor id, device id and sub device id */
ctrlr.cdata.vid = SPDK_PCI_VID_INTEL;
payload.temperature_statistics_log_len = 0;
pci_id.vendor_id = SPDK_PCI_VID_INTEL;
pci_id.device_id = 0x0953;
pci_id.subvendor_id = SPDK_PCI_VID_INTEL;
pci_id.subdevice_id = 0x3702;
ctrlr.quirks = nvme_get_quirks(&pci_id);
memset(ctrlr.log_page_supported, 0, sizeof(ctrlr.log_page_supported));
nvme_ctrlr_construct_intel_support_log_page_list(&ctrlr, &payload);
res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY);
CU_ASSERT(res == true);
res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_TEMPERATURE);
CU_ASSERT(res == false);
res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY);
CU_ASSERT(res == true);
res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_SMART);
CU_ASSERT(res == false);
}
static void
test_nvme_ctrlr_set_supported_features(void)
{
bool res;
struct spdk_nvme_ctrlr ctrlr = {};
/* set a invalid vendor id */
ctrlr.cdata.vid = 0xFFFF;
nvme_ctrlr_set_supported_features(&ctrlr);
res = spdk_nvme_ctrlr_is_feature_supported(&ctrlr, SPDK_NVME_FEAT_ARBITRATION);
CU_ASSERT(res == true);
res = spdk_nvme_ctrlr_is_feature_supported(&ctrlr, SPDK_NVME_INTEL_FEAT_MAX_LBA);
CU_ASSERT(res == false);
ctrlr.cdata.vid = SPDK_PCI_VID_INTEL;
nvme_ctrlr_set_supported_features(&ctrlr);
res = spdk_nvme_ctrlr_is_feature_supported(&ctrlr, SPDK_NVME_FEAT_ARBITRATION);
CU_ASSERT(res == true);
res = spdk_nvme_ctrlr_is_feature_supported(&ctrlr, SPDK_NVME_INTEL_FEAT_MAX_LBA);
CU_ASSERT(res == true);
}
static void
test_ctrlr_get_default_ctrlr_opts(void)
{
struct spdk_nvme_ctrlr_opts opts = {};
CU_ASSERT(spdk_uuid_parse(&g_spdk_nvme_driver->default_extended_host_id,
"e53e9258-c93b-48b5-be1a-f025af6d232a") == 0);
memset(&opts, 0, sizeof(opts));
/* set a smaller opts_size */
CU_ASSERT(sizeof(opts) > 8);
spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, 8);
CU_ASSERT_EQUAL(opts.num_io_queues, DEFAULT_MAX_IO_QUEUES);
CU_ASSERT_FALSE(opts.use_cmb_sqs);
/* check below fields are not initialized by default value */
CU_ASSERT_EQUAL(opts.arb_mechanism, 0);
CU_ASSERT_EQUAL(opts.keep_alive_timeout_ms, 0);
CU_ASSERT_EQUAL(opts.io_queue_size, 0);
CU_ASSERT_EQUAL(opts.io_queue_requests, 0);
for (int i = 0; i < 8; i++) {
CU_ASSERT(opts.host_id[i] == 0);
}
for (int i = 0; i < 16; i++) {
CU_ASSERT(opts.extended_host_id[i] == 0);
}
CU_ASSERT(strlen(opts.hostnqn) == 0);
CU_ASSERT(strlen(opts.src_addr) == 0);
CU_ASSERT(strlen(opts.src_svcid) == 0);
CU_ASSERT_EQUAL(opts.admin_timeout_ms, 0);
/* set a consistent opts_size */
spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, sizeof(opts));
CU_ASSERT_EQUAL(opts.num_io_queues, DEFAULT_MAX_IO_QUEUES);
CU_ASSERT_FALSE(opts.use_cmb_sqs);
CU_ASSERT_EQUAL(opts.arb_mechanism, SPDK_NVME_CC_AMS_RR);
CU_ASSERT_EQUAL(opts.keep_alive_timeout_ms, 10 * 1000);
CU_ASSERT_EQUAL(opts.io_queue_size, DEFAULT_IO_QUEUE_SIZE);
CU_ASSERT_EQUAL(opts.io_queue_requests, DEFAULT_IO_QUEUE_REQUESTS);
for (int i = 0; i < 8; i++) {
CU_ASSERT(opts.host_id[i] == 0);
}
CU_ASSERT_STRING_EQUAL(opts.hostnqn,
"nqn.2014-08.org.nvmexpress:uuid:e53e9258-c93b-48b5-be1a-f025af6d232a");
CU_ASSERT(memcmp(opts.extended_host_id, &g_spdk_nvme_driver->default_extended_host_id,
sizeof(opts.extended_host_id)) == 0);
CU_ASSERT(strlen(opts.src_addr) == 0);
CU_ASSERT(strlen(opts.src_svcid) == 0);
CU_ASSERT_EQUAL(opts.admin_timeout_ms, NVME_MAX_ADMIN_TIMEOUT_IN_SECS * 1000);
}
static void
test_ctrlr_get_default_io_qpair_opts(void)
{
struct spdk_nvme_ctrlr ctrlr = {};
struct spdk_nvme_io_qpair_opts opts = {};
memset(&opts, 0, sizeof(opts));
/* set a smaller opts_size */
ctrlr.opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE;
CU_ASSERT(sizeof(opts) > 8);
spdk_nvme_ctrlr_get_default_io_qpair_opts(&ctrlr, &opts, 8);
CU_ASSERT_EQUAL(opts.qprio, SPDK_NVME_QPRIO_URGENT);
CU_ASSERT_EQUAL(opts.io_queue_size, DEFAULT_IO_QUEUE_SIZE);
/* check below field is not initialized by default value */
CU_ASSERT_EQUAL(opts.io_queue_requests, 0);
/* set a consistent opts_size */
ctrlr.opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE;
ctrlr.opts.io_queue_requests = DEFAULT_IO_QUEUE_REQUESTS;
spdk_nvme_ctrlr_get_default_io_qpair_opts(&ctrlr, &opts, sizeof(opts));
CU_ASSERT_EQUAL(opts.qprio, SPDK_NVME_QPRIO_URGENT);
CU_ASSERT_EQUAL(opts.io_queue_size, DEFAULT_IO_QUEUE_SIZE);
CU_ASSERT_EQUAL(opts.io_queue_requests, DEFAULT_IO_QUEUE_REQUESTS);
}
#if 0 /* TODO: move to PCIe-specific unit test */
static void
test_nvme_ctrlr_alloc_cmb(void)
{
int rc;
uint64_t offset;
struct spdk_nvme_ctrlr ctrlr = {};
ctrlr.cmb_size = 0x1000000;
ctrlr.cmb_current_offset = 0x100;
rc = nvme_ctrlr_alloc_cmb(&ctrlr, 0x200, 0x1000, &offset);
CU_ASSERT(rc == 0);
CU_ASSERT(offset == 0x1000);
CU_ASSERT(ctrlr.cmb_current_offset == 0x1200);
rc = nvme_ctrlr_alloc_cmb(&ctrlr, 0x800, 0x1000, &offset);
CU_ASSERT(rc == 0);
CU_ASSERT(offset == 0x2000);
CU_ASSERT(ctrlr.cmb_current_offset == 0x2800);
rc = nvme_ctrlr_alloc_cmb(&ctrlr, 0x800000, 0x100000, &offset);
CU_ASSERT(rc == 0);
CU_ASSERT(offset == 0x100000);
CU_ASSERT(ctrlr.cmb_current_offset == 0x900000);
rc = nvme_ctrlr_alloc_cmb(&ctrlr, 0x8000000, 0x1000, &offset);
CU_ASSERT(rc == -1);
}
#endif
static void
test_spdk_nvme_ctrlr_update_firmware(void)
{
struct spdk_nvme_ctrlr ctrlr = {};
void *payload = NULL;
int point_payload = 1;
int slot = 0;
int ret = 0;
struct spdk_nvme_status status;
enum spdk_nvme_fw_commit_action commit_action = SPDK_NVME_FW_COMMIT_REPLACE_IMG;
CU_ASSERT(pthread_mutex_init(&ctrlr.ctrlr_lock, NULL) == 0);
/* Set invalid size check function return value */
set_size = 5;
ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status);
CU_ASSERT(ret == -1);
/* When payload is NULL but set_size < min_page_size */
set_size = 4;
ctrlr.min_page_size = 5;
ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status);
CU_ASSERT(ret == -1);
/* When payload not NULL but min_page_size is 0 */
set_size = 4;
ctrlr.min_page_size = 0;
payload = &point_payload;
ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status);
CU_ASSERT(ret == -1);
/* Check firmware image download when payload not NULL and min_page_size not 0 , status.cpl value is 1 */
set_status_cpl = 1;
set_size = 4;
ctrlr.min_page_size = 5;
payload = &point_payload;
ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status);
CU_ASSERT(ret == -ENXIO);
/* Check firmware image download and set status.cpl value is 0 */
set_status_cpl = 0;
set_size = 4;
ctrlr.min_page_size = 5;
payload = &point_payload;
ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status);
CU_ASSERT(ret == -1);
/* Check firmware commit */
ctrlr.is_resetting = false;
set_status_cpl = 0;
slot = 1;
set_size = 4;
ctrlr.min_page_size = 5;
payload = &point_payload;
ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status);
CU_ASSERT(ret == -ENXIO);
/* Set size check firmware download and firmware commit */
ctrlr.is_resetting = true;
set_status_cpl = 0;
slot = 1;
set_size = 4;
ctrlr.min_page_size = 5;
payload = &point_payload;
ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status);
CU_ASSERT(ret == 0);
/* nvme_wait_for_completion returns an error */
g_wait_for_completion_return_val = -1;
ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status);
CU_ASSERT(ret == -ENXIO);
CU_ASSERT(g_failed_status != NULL);
CU_ASSERT(g_failed_status->timed_out == true);
/* status should be freed by callback, which is not triggered in test env.
Store status to global variable and free it manually.
If spdk_nvme_ctrlr_update_firmware changes its behaviour and frees the status
itself, we'll get a double free here.. */
free(g_failed_status);
g_failed_status = NULL;
g_wait_for_completion_return_val = 0;
CU_ASSERT(pthread_mutex_destroy(&ctrlr.ctrlr_lock) == 0);
set_status_cpl = 0;
}
int
nvme_ctrlr_cmd_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr, uint64_t prp1, uint64_t prp2,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
fake_cpl_sc(cb_fn, cb_arg);
return 0;
}
static void
test_spdk_nvme_ctrlr_doorbell_buffer_config(void)
{
struct spdk_nvme_ctrlr ctrlr = {};
int ret = -1;
ctrlr.cdata.oacs.doorbell_buffer_config = 1;
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
ctrlr.page_size = 0x1000;
MOCK_CLEAR(spdk_malloc);
MOCK_CLEAR(spdk_zmalloc);
ret = nvme_ctrlr_set_doorbell_buffer_config(&ctrlr);
CU_ASSERT(ret == 0);
nvme_ctrlr_free_doorbell_buffer(&ctrlr);
}
static void
test_nvme_ctrlr_test_active_ns(void)
{
uint32_t nsid, minor;
size_t ns_id_count;
struct spdk_nvme_ctrlr ctrlr = {};
uint32_t active_ns_list[1531];
for (nsid = 1; nsid <= 1531; nsid++) {
active_ns_list[nsid - 1] = nsid;
}
g_active_ns_list = active_ns_list;
ctrlr.page_size = 0x1000;
for (minor = 0; minor <= 2; minor++) {
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.state = NVME_CTRLR_STATE_READY;
ctrlr.vs.bits.mjr = 1;
ctrlr.vs.bits.mnr = minor;
ctrlr.vs.bits.ter = 0;
ctrlr.cdata.nn = 1531;
RB_INIT(&ctrlr.ns);
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list);
nvme_ctrlr_identify_active_ns(&ctrlr);
for (nsid = 1; nsid <= ctrlr.cdata.nn; nsid++) {
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, nsid) == true);
}
for (; nsid <= 1559; nsid++) {
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, nsid) == false);
}
g_active_ns_list_length = 0;
if (minor <= 1) {
ctrlr.cdata.nn = 0;
}
nvme_ctrlr_identify_active_ns(&ctrlr);
CU_ASSERT(spdk_nvme_ctrlr_get_first_active_ns(&ctrlr) == 0);
g_active_ns_list_length = 1;
if (minor <= 1) {
ctrlr.cdata.nn = 1;
}
nvme_ctrlr_identify_active_ns(&ctrlr);
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1) == true);
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 2) == false);
nsid = spdk_nvme_ctrlr_get_first_active_ns(&ctrlr);
CU_ASSERT(nsid == 1);
if (minor >= 2) {
/* For NVMe 1.2 and newer, the namespace list can have "holes" where
* some namespaces are not active. Test this. */
g_active_ns_list_length = 2;
g_active_ns_list[1] = 3;
nvme_ctrlr_identify_active_ns(&ctrlr);
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1) == true);
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 2) == false);
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 3) == true);
nsid = spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, nsid);
CU_ASSERT(nsid == 3);
nsid = spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, nsid);
CU_ASSERT(nsid == 0);
/* Reset the active namespace list array */
g_active_ns_list[1] = 2;
}
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list);
if (minor <= 1) {
ctrlr.cdata.nn = 1531;
}
nvme_ctrlr_identify_active_ns(&ctrlr);
ns_id_count = 0;
for (nsid = spdk_nvme_ctrlr_get_first_active_ns(&ctrlr);
nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, nsid)) {
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, nsid) == true);
ns_id_count++;
}
CU_ASSERT(ns_id_count == ctrlr.cdata.nn);
nvme_ctrlr_destruct(&ctrlr);
}
g_active_ns_list = NULL;
g_active_ns_list_length = 0;
}
static void
test_nvme_ctrlr_test_active_ns_error_case(void)
{
int rc;
struct spdk_nvme_ctrlr ctrlr = {.state = NVME_CTRLR_STATE_READY};
ctrlr.page_size = 0x1000;
ctrlr.vs.bits.mjr = 1;
ctrlr.vs.bits.mnr = 2;
ctrlr.vs.bits.ter = 0;
ctrlr.cdata.nn = 2;
set_status_code = SPDK_NVME_SC_INVALID_FIELD;
rc = nvme_ctrlr_identify_active_ns(&ctrlr);
CU_ASSERT(rc == -ENXIO);
set_status_code = SPDK_NVME_SC_SUCCESS;
}
static void
test_nvme_ctrlr_init_delay(void)
{
DECLARE_AND_CONSTRUCT_CTRLR();
memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs));
/*
* Initial state: CC.EN = 0, CSTS.RDY = 0
* init() should set CC.EN = 1.
*/
g_ut_nvme_regs.cc.bits.en = 0;
g_ut_nvme_regs.csts.bits.rdy = 0;
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
/* Test that the initialization delay works correctly. We only
* do the initialization delay on SSDs that require it, so
* set that quirk here.
*/
ctrlr.quirks = NVME_QUIRK_DELAY_BEFORE_INIT;
ctrlr.cdata.nn = 1;
ctrlr.page_size = 0x1000;
ctrlr.state = NVME_CTRLR_STATE_INIT_DELAY;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
CU_ASSERT(ctrlr.sleep_timeout_tsc != 0);
/* delay 1s, just return as sleep time isn't enough */
spdk_delay_us(1 * spdk_get_ticks_hz());
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT);
CU_ASSERT(ctrlr.sleep_timeout_tsc != 0);
/* sleep timeout, start to initialize */
spdk_delay_us(2 * spdk_get_ticks_hz());
while (ctrlr.state != NVME_CTRLR_STATE_CHECK_EN) {
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLED);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1);
CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1);
/*
* Transition to CSTS.RDY = 1.
*/
g_ut_nvme_regs.csts.bits.rdy = 1;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_RESET_ADMIN_QUEUE);
/*
* Transition to READY.
*/
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
nvme_ctrlr_process_init(&ctrlr);
}
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
nvme_ctrlr_destruct(&ctrlr);
}
static void
test_spdk_nvme_ctrlr_set_trid(void)
{
struct spdk_nvme_ctrlr ctrlr = {{0}};
struct spdk_nvme_transport_id new_trid = {{0}};
CU_ASSERT(pthread_mutex_init(&ctrlr.ctrlr_lock, NULL) == 0);
ctrlr.is_failed = false;
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
snprintf(ctrlr.trid.subnqn, SPDK_NVMF_NQN_MAX_LEN, "%s", "nqn.2016-06.io.spdk:cnode1");
snprintf(ctrlr.trid.traddr, SPDK_NVMF_TRADDR_MAX_LEN, "%s", "192.168.100.8");
snprintf(ctrlr.trid.trsvcid, SPDK_NVMF_TRSVCID_MAX_LEN, "%s", "4420");
CU_ASSERT(spdk_nvme_ctrlr_set_trid(&ctrlr, &new_trid) == -EPERM);
ctrlr.is_failed = true;
new_trid.trtype = SPDK_NVME_TRANSPORT_TCP;
CU_ASSERT(spdk_nvme_ctrlr_set_trid(&ctrlr, &new_trid) == -EINVAL);
CU_ASSERT(ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_RDMA);
new_trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
snprintf(new_trid.subnqn, SPDK_NVMF_NQN_MAX_LEN, "%s", "nqn.2016-06.io.spdk:cnode2");
CU_ASSERT(spdk_nvme_ctrlr_set_trid(&ctrlr, &new_trid) == -EINVAL);
CU_ASSERT(strncmp(ctrlr.trid.subnqn, "nqn.2016-06.io.spdk:cnode1", SPDK_NVMF_NQN_MAX_LEN) == 0);
snprintf(new_trid.subnqn, SPDK_NVMF_NQN_MAX_LEN, "%s", "nqn.2016-06.io.spdk:cnode1");
snprintf(new_trid.traddr, SPDK_NVMF_TRADDR_MAX_LEN, "%s", "192.168.100.9");
snprintf(new_trid.trsvcid, SPDK_NVMF_TRSVCID_MAX_LEN, "%s", "4421");
CU_ASSERT(spdk_nvme_ctrlr_set_trid(&ctrlr, &new_trid) == 0);
CU_ASSERT(strncmp(ctrlr.trid.traddr, "192.168.100.9", SPDK_NVMF_TRADDR_MAX_LEN) == 0);
CU_ASSERT(strncmp(ctrlr.trid.trsvcid, "4421", SPDK_NVMF_TRSVCID_MAX_LEN) == 0);
CU_ASSERT(pthread_mutex_destroy(&ctrlr.ctrlr_lock) == 0);
}
static void
test_nvme_ctrlr_init_set_nvmf_ioccsz(void)
{
struct spdk_nvme_ctrlr_data cdata = {};
DECLARE_AND_CONSTRUCT_CTRLR();
/* equivalent of 4096 bytes */
cdata.nvmf_specific.ioccsz = 260;
cdata.nvmf_specific.icdoff = 1;
g_cdata = &cdata;
/* Check PCI trtype, */
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_CONFIGURE_AER);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_NUM_QUEUES);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS);
CU_ASSERT(ctrlr.ioccsz_bytes == 0);
CU_ASSERT(ctrlr.icdoff == 0);
nvme_ctrlr_destruct(&ctrlr);
/* Check RDMA trtype, */
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_CONFIGURE_AER);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_NUM_QUEUES);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS);
CU_ASSERT(ctrlr.ioccsz_bytes == 4096);
CU_ASSERT(ctrlr.icdoff == 1);
ctrlr.ioccsz_bytes = 0;
ctrlr.icdoff = 0;
nvme_ctrlr_destruct(&ctrlr);
/* Check TCP trtype, */
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_TCP;
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_CONFIGURE_AER);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_NUM_QUEUES);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS);
CU_ASSERT(ctrlr.ioccsz_bytes == 4096);
CU_ASSERT(ctrlr.icdoff == 1);
ctrlr.ioccsz_bytes = 0;
ctrlr.icdoff = 0;
nvme_ctrlr_destruct(&ctrlr);
/* Check FC trtype, */
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_FC;
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_CONFIGURE_AER);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_NUM_QUEUES);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS);
CU_ASSERT(ctrlr.ioccsz_bytes == 4096);
CU_ASSERT(ctrlr.icdoff == 1);
ctrlr.ioccsz_bytes = 0;
ctrlr.icdoff = 0;
nvme_ctrlr_destruct(&ctrlr);
/* Check CUSTOM trtype, */
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_CUSTOM;
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_CONFIGURE_AER);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_NUM_QUEUES);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS);
CU_ASSERT(ctrlr.ioccsz_bytes == 0);
CU_ASSERT(ctrlr.icdoff == 0);
nvme_ctrlr_destruct(&ctrlr);
/* Check CUSTOM_FABRICS trtype, */
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_CUSTOM_FABRICS;
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_CONFIGURE_AER);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_NUM_QUEUES);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS);
CU_ASSERT(ctrlr.ioccsz_bytes == 4096);
CU_ASSERT(ctrlr.icdoff == 1);
ctrlr.ioccsz_bytes = 0;
ctrlr.icdoff = 0;
nvme_ctrlr_destruct(&ctrlr);
g_cdata = NULL;
}
static void
test_nvme_ctrlr_init_set_num_queues(void)
{
DECLARE_AND_CONSTRUCT_CTRLR();
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_CONFIGURE_AER);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_NUM_QUEUES);
ctrlr.opts.num_io_queues = 64;
/* Num queues is zero-based. So, use 31 to get 32 queues */
fake_cpl.cdw0 = 31 + (31 << 16);
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); /* -> IDENTIFY_ACTIVE_NS */
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS);
CU_ASSERT(ctrlr.opts.num_io_queues == 32);
fake_cpl.cdw0 = 0;
nvme_ctrlr_destruct(&ctrlr);
}
static void
test_nvme_ctrlr_init_set_keep_alive_timeout(void)
{
DECLARE_AND_CONSTRUCT_CTRLR();
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.opts.keep_alive_timeout_ms = 60000;
ctrlr.cdata.kas = 1;
ctrlr.state = NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT;
fake_cpl.cdw0 = 120000;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); /* -> IDENTIFY_IOCS_SPECIFIC */
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC);
CU_ASSERT(ctrlr.opts.keep_alive_timeout_ms == 120000);
fake_cpl.cdw0 = 0;
/* Target does not support Get Feature "Keep Alive Timer" */
ctrlr.opts.keep_alive_timeout_ms = 60000;
ctrlr.cdata.kas = 1;
ctrlr.state = NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT;
set_status_code = SPDK_NVME_SC_INVALID_FIELD;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); /* -> IDENTIFY_IOCS_SPECIFIC */
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC);
CU_ASSERT(ctrlr.opts.keep_alive_timeout_ms == 60000);
set_status_code = SPDK_NVME_SC_SUCCESS;
/* Target fails Get Feature "Keep Alive Timer" for another reason */
ctrlr.opts.keep_alive_timeout_ms = 60000;
ctrlr.cdata.kas = 1;
ctrlr.state = NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT;
set_status_code = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); /* -> ERROR */
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ERROR);
set_status_code = SPDK_NVME_SC_SUCCESS;
nvme_ctrlr_destruct(&ctrlr);
}
static void
test_alloc_io_qpair_fail(void)
{
struct spdk_nvme_ctrlr ctrlr = {};
struct spdk_nvme_qpair *q0;
setup_qpairs(&ctrlr, 1);
/* Modify the connect_qpair return code to inject a failure */
g_connect_qpair_return_code = 1;
/* Attempt to allocate a qpair, this should fail */
q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, NULL, 0);
SPDK_CU_ASSERT_FATAL(q0 == NULL);
/* Verify that the qpair is removed from the lists */
SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&ctrlr.active_io_qpairs));
g_connect_qpair_return_code = 0;
cleanup_qpairs(&ctrlr);
}
static void
test_nvme_ctrlr_add_remove_process(void)
{
struct spdk_nvme_ctrlr ctrlr = {};
void *devhandle = (void *)0xDEADBEEF;
struct spdk_nvme_ctrlr_process *proc = NULL;
int rc;
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
TAILQ_INIT(&ctrlr.active_procs);
rc = nvme_ctrlr_add_process(&ctrlr, devhandle);
CU_ASSERT(rc == 0);
proc = TAILQ_FIRST(&ctrlr.active_procs);
SPDK_CU_ASSERT_FATAL(proc != NULL);
CU_ASSERT(proc->is_primary == true);
CU_ASSERT(proc->pid == getpid());
CU_ASSERT(proc->devhandle == (void *)0xDEADBEEF);
CU_ASSERT(proc->ref == 0);
nvme_ctrlr_remove_process(&ctrlr, proc);
CU_ASSERT(TAILQ_EMPTY(&ctrlr.active_procs));
}
static void
test_nvme_ctrlr_set_arbitration_feature(void)
{
struct spdk_nvme_ctrlr ctrlr = {};
ctrlr.opts.arbitration_burst = 6;
ctrlr.flags |= SPDK_NVME_CTRLR_WRR_SUPPORTED;
ctrlr.opts.low_priority_weight = 1;
ctrlr.opts.medium_priority_weight = 2;
ctrlr.opts.high_priority_weight = 3;
/* g_ut_cdw11 used to record value command feature set. */
g_ut_cdw11 = 0;
/* arbitration_burst count available. */
nvme_ctrlr_set_arbitration_feature(&ctrlr);
CU_ASSERT((uint8_t)g_ut_cdw11 == 6);
CU_ASSERT((uint8_t)(g_ut_cdw11 >> 8) == 1);
CU_ASSERT((uint8_t)(g_ut_cdw11 >> 16) == 2);
CU_ASSERT((uint8_t)(g_ut_cdw11 >> 24) == 3);
/* arbitration_burst unavailable. */
g_ut_cdw11 = 0;
ctrlr.opts.arbitration_burst = 8;
nvme_ctrlr_set_arbitration_feature(&ctrlr);
CU_ASSERT(g_ut_cdw11 == 0);
}
static void
test_nvme_ctrlr_set_state(void)
{
struct spdk_nvme_ctrlr ctrlr = {};
MOCK_SET(spdk_get_ticks, 0);
nvme_ctrlr_set_state(&ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, 1000);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT);
CU_ASSERT(ctrlr.state_timeout_tsc == 1000000);
nvme_ctrlr_set_state(&ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT);
CU_ASSERT(ctrlr.state_timeout_tsc == NVME_TIMEOUT_INFINITE);
/* Time out ticks causes integer overflow. */
MOCK_SET(spdk_get_ticks, UINT64_MAX);
nvme_ctrlr_set_state(&ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, 1000);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT);
CU_ASSERT(ctrlr.state_timeout_tsc == NVME_TIMEOUT_INFINITE);
MOCK_CLEAR(spdk_get_ticks);
}
static void
test_nvme_ctrlr_active_ns_list_v0(void)
{
DECLARE_AND_CONSTRUCT_CTRLR();
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.vs.bits.mjr = 1;
ctrlr.vs.bits.mnr = 0;
ctrlr.vs.bits.ter = 0;
ctrlr.cdata.nn = 1024;
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS;
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0);
SPDK_CU_ASSERT_FATAL(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS);
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1));
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1024));
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1025));
CU_ASSERT(spdk_nvme_ctrlr_get_first_active_ns(&ctrlr) == 1);
CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1023) == 1024);
CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1024) == 0);
CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1025) == 0);
nvme_ctrlr_destruct(&ctrlr);
}
static void
test_nvme_ctrlr_active_ns_list_v2(void)
{
uint32_t i;
uint32_t active_ns_list[1024];
DECLARE_AND_CONSTRUCT_CTRLR();
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.vs.bits.mjr = 1;
ctrlr.vs.bits.mnr = 2;
ctrlr.vs.bits.ter = 0;
ctrlr.cdata.nn = 4096;
g_active_ns_list = active_ns_list;
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list);
/* No active namespaces */
memset(active_ns_list, 0, sizeof(active_ns_list));
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS;
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0);
SPDK_CU_ASSERT_FATAL(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS);
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1));
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1024));
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1025));
CU_ASSERT(spdk_nvme_ctrlr_get_first_active_ns(&ctrlr) == 0);
CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1024) == 0);
nvme_ctrlr_destruct(&ctrlr);
/* 1024 active namespaces - one full page */
memset(active_ns_list, 0, sizeof(active_ns_list));
for (i = 0; i < 1024; ++i) {
active_ns_list[i] = i + 1;
}
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS;
g_active_ns_list = active_ns_list;
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list);
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0);
SPDK_CU_ASSERT_FATAL(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS);
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1));
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1024));
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1025));
CU_ASSERT(spdk_nvme_ctrlr_get_first_active_ns(&ctrlr) == 1);
CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1023) == 1024);
CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1024) == 0);
CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1025) == 0);
nvme_ctrlr_destruct(&ctrlr);
/* 1023 active namespaces - full page minus one */
memset(active_ns_list, 0, sizeof(active_ns_list));
for (i = 0; i < 1023; ++i) {
active_ns_list[i] = i + 1;
}
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS;
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0);
SPDK_CU_ASSERT_FATAL(ctrlr.state == NVME_CTRLR_STATE_IDENTIFY_NS);
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1));
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1023));
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1024));
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1025));
CU_ASSERT(spdk_nvme_ctrlr_get_first_active_ns(&ctrlr) == 1);
CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1023) == 0);
CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1024) == 0);
CU_ASSERT(spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, 1025) == 0);
nvme_ctrlr_destruct(&ctrlr);
g_active_ns_list = NULL;
g_active_ns_list_length = 0;
}
static void
test_nvme_ctrlr_ns_mgmt(void)
{
DECLARE_AND_CONSTRUCT_CTRLR();
uint32_t active_ns_list[] = { 1, 2, 100, 1024 };
uint32_t active_ns_list2[] = { 1, 2, 3, 100, 1024 };
struct spdk_nvme_ns_data nsdata = {};
struct spdk_nvme_ctrlr_list ctrlr_list = {};
uint32_t nsid;
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.vs.bits.mjr = 1;
ctrlr.vs.bits.mnr = 2;
ctrlr.vs.bits.ter = 0;
ctrlr.cdata.nn = 4096;
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS;
g_active_ns_list = active_ns_list;
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list);
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0);
}
fake_cpl.cdw0 = 3;
nsid = spdk_nvme_ctrlr_create_ns(&ctrlr, &nsdata);
fake_cpl.cdw0 = 0;
CU_ASSERT(nsid == 3);
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 3));
CU_ASSERT(spdk_nvme_ctrlr_get_ns(&ctrlr, 3) != NULL);
g_active_ns_list = active_ns_list2;
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list2);
CU_ASSERT(spdk_nvme_ctrlr_attach_ns(&ctrlr, 3, &ctrlr_list) == 0);
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 3));
CU_ASSERT(spdk_nvme_ctrlr_get_ns(&ctrlr, 3) != NULL);
g_active_ns_list = active_ns_list;
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list);
CU_ASSERT(spdk_nvme_ctrlr_detach_ns(&ctrlr, 3, &ctrlr_list) == 0);
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 3));
CU_ASSERT(spdk_nvme_ctrlr_get_ns(&ctrlr, 3) != NULL);
CU_ASSERT(spdk_nvme_ctrlr_delete_ns(&ctrlr, 3) == 0);
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 3));
CU_ASSERT(spdk_nvme_ctrlr_get_ns(&ctrlr, 3) != NULL);
g_active_ns_list = NULL;
g_active_ns_list_length = 0;
nvme_ctrlr_destruct(&ctrlr);
}
static void
check_en_set_rdy(void)
{
if (g_ut_nvme_regs.cc.bits.en == 1) {
g_ut_nvme_regs.csts.bits.rdy = 1;
}
}
static void
test_nvme_ctrlr_reset(void)
{
DECLARE_AND_CONSTRUCT_CTRLR();
struct spdk_nvme_ctrlr_data cdata = { .nn = 4096 };
uint32_t active_ns_list[] = { 1, 2, 100, 1024 };
uint32_t active_ns_list2[] = { 1, 100, 1024 };
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
g_ut_nvme_regs.vs.bits.mjr = 1;
g_ut_nvme_regs.vs.bits.mnr = 2;
g_ut_nvme_regs.vs.bits.ter = 0;
nvme_ctrlr_get_vs(&ctrlr, &ctrlr.vs);
ctrlr.cdata.nn = 2048;
ctrlr.state = NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS;
g_active_ns_list = active_ns_list;
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list);
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(spdk_nvme_ctrlr_get_num_ns(&ctrlr) == 2048);
CU_ASSERT(spdk_nvme_ctrlr_get_ns(&ctrlr, 2) != NULL);
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 2));
/* Reset controller with changed number of namespaces */
g_cdata = &cdata;
g_active_ns_list = active_ns_list2;
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list2);
STAILQ_INSERT_HEAD(&adminq.free_req, &req, stailq);
g_ut_nvme_regs.cc.raw = 0;
g_ut_nvme_regs.csts.raw = 0;
g_set_reg_cb = check_en_set_rdy;
g_wait_for_completion_return_val = -ENXIO;
CU_ASSERT(spdk_nvme_ctrlr_reset(&ctrlr) == 0);
g_set_reg_cb = NULL;
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_READY);
g_cdata = NULL;
g_active_ns_list = NULL;
g_active_ns_list_length = 0;
CU_ASSERT(spdk_nvme_ctrlr_get_num_ns(&ctrlr) == 4096);
CU_ASSERT(spdk_nvme_ctrlr_get_ns(&ctrlr, 2) != NULL);
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 2));
g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE;
nvme_ctrlr_destruct(&ctrlr);
g_wait_for_completion_return_val = 0;
}
static uint32_t g_aer_cb_counter;
static void
aer_cb(void *aer_cb_arg, const struct spdk_nvme_cpl *cpl)
{
g_aer_cb_counter++;
}
static void
test_nvme_ctrlr_aer_callback(void)
{
DECLARE_AND_CONSTRUCT_CTRLR();
uint32_t active_ns_list[] = { 1, 2, 100, 1024 };
union spdk_nvme_async_event_completion aer_event = {
.bits.async_event_type = SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE,
.bits.async_event_info = SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED
};
struct spdk_nvme_cpl aer_cpl = {
.status.sct = SPDK_NVME_SCT_GENERIC,
.status.sc = SPDK_NVME_SC_SUCCESS,
.cdw0 = aer_event.raw
};
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.vs.bits.mjr = 1;
ctrlr.vs.bits.mnr = 2;
ctrlr.vs.bits.ter = 0;
ctrlr.cdata.nn = 4096;
ctrlr.state = NVME_CTRLR_STATE_CONFIGURE_AER;
g_active_ns_list = active_ns_list;
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list);
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(nvme_ctrlr_add_process(&ctrlr, NULL) == 0);
spdk_nvme_ctrlr_register_aer_callback(&ctrlr, aer_cb, NULL);
/* Async event */
g_aer_cb_counter = 0;
nvme_ctrlr_async_event_cb(&ctrlr.aer[0], &aer_cpl);
nvme_ctrlr_complete_queued_async_events(&ctrlr);
CU_ASSERT(g_aer_cb_counter == 1);
g_active_ns_list = NULL;
g_active_ns_list_length = 0;
nvme_ctrlr_free_processes(&ctrlr);
nvme_ctrlr_destruct(&ctrlr);
}
static void
test_nvme_ctrlr_ns_attr_changed(void)
{
DECLARE_AND_CONSTRUCT_CTRLR();
uint32_t active_ns_list[] = { 1, 2, 100, 1024 };
uint32_t active_ns_list2[] = { 1, 2, 1024 };
uint32_t active_ns_list3[] = { 1, 2, 101, 1024 };
union spdk_nvme_async_event_completion aer_event = {
.bits.async_event_type = SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE,
.bits.async_event_info = SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED
};
struct spdk_nvme_cpl aer_cpl = {
.status.sct = SPDK_NVME_SCT_GENERIC,
.status.sc = SPDK_NVME_SC_SUCCESS,
.cdw0 = aer_event.raw
};
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.vs.bits.mjr = 1;
ctrlr.vs.bits.mnr = 3;
ctrlr.vs.bits.ter = 0;
ctrlr.cap.bits.css |= SPDK_NVME_CAP_CSS_IOCS;
ctrlr.cdata.nn = 4096;
ctrlr.state = NVME_CTRLR_STATE_CONFIGURE_AER;
g_active_ns_list = active_ns_list;
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list);
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0);
}
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 100));
CU_ASSERT(nvme_ctrlr_add_process(&ctrlr, NULL) == 0);
spdk_nvme_ctrlr_register_aer_callback(&ctrlr, aer_cb, NULL);
/* Remove NS 100 */
g_aer_cb_counter = 0;
g_active_ns_list = active_ns_list2;
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list2);
nvme_ctrlr_async_event_cb(&ctrlr.aer[0], &aer_cpl);
nvme_ctrlr_complete_queued_async_events(&ctrlr);
CU_ASSERT(g_aer_cb_counter == 1);
CU_ASSERT(!spdk_nvme_ctrlr_is_active_ns(&ctrlr, 100));
/* Add NS 101 */
g_active_ns_list = active_ns_list3;
g_active_ns_list_length = SPDK_COUNTOF(active_ns_list3);
nvme_ctrlr_async_event_cb(&ctrlr.aer[0], &aer_cpl);
nvme_ctrlr_complete_queued_async_events(&ctrlr);
CU_ASSERT(g_aer_cb_counter == 2);
CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 101));
g_active_ns_list = NULL;
g_active_ns_list_length = 0;
nvme_ctrlr_free_processes(&ctrlr);
nvme_ctrlr_destruct(&ctrlr);
}
static void
test_nvme_ctrlr_identify_namespaces_iocs_specific_next(void)
{
struct spdk_nvme_ctrlr ctrlr = {};
uint32_t prev_nsid;
struct spdk_nvme_ns ns[5] = {};
struct spdk_nvme_ctrlr ns_ctrlr[5] = {};
int rc = 0;
int i;
RB_INIT(&ctrlr.ns);
for (i = 0; i < 5; i++) {
ns[i].id = i + 1;
ns[i].active = true;
}
CU_ASSERT(pthread_mutex_init(&ctrlr.ctrlr_lock, NULL) == 0);
ctrlr.cdata.nn = 5;
/* case 1: No first/next active NS, move on to the next state, expect: pass */
prev_nsid = 0;
ctrlr.active_ns_count = 0;
ctrlr.opts.admin_timeout_ms = NVME_TIMEOUT_INFINITE;
rc = nvme_ctrlr_identify_namespaces_iocs_specific_next(&ctrlr, prev_nsid);
CU_ASSERT(rc == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES);
CU_ASSERT(ctrlr.state_timeout_tsc == NVME_TIMEOUT_INFINITE);
/* case 2: move on to the next active NS, and no namespace with (supported) iocs specific data found , expect: pass */
memset(&ctrlr.state, 0x00, sizeof(ctrlr.state));
memset(&ctrlr.state_timeout_tsc, 0x00, sizeof(ctrlr.state_timeout_tsc));
prev_nsid = 1;
for (i = 0; i < 5; i++) {
RB_INSERT(nvme_ns_tree, &ctrlr.ns, &ns[i]);
}
ctrlr.active_ns_count = 5;
ns[1].csi = SPDK_NVME_CSI_NVM;
ns[1].id = 2;
rc = nvme_ctrlr_identify_namespaces_iocs_specific_next(&ctrlr, prev_nsid);
CU_ASSERT(rc == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES);
CU_ASSERT(ctrlr.state_timeout_tsc == NVME_TIMEOUT_INFINITE);
/* case 3: ns.csi is SPDK_NVME_CSI_ZNS, do not loop, expect: pass */
memset(&ctrlr.state, 0x00, sizeof(ctrlr.state));
memset(&ctrlr.state_timeout_tsc, 0x00, sizeof(ctrlr.state_timeout_tsc));
ctrlr.opts.admin_timeout_ms = NVME_TIMEOUT_INFINITE;
prev_nsid = 0;
ctrlr.active_ns_count = 5;
for (int i = 0; i < 5; i++) {
ns[i].csi = SPDK_NVME_CSI_NVM;
ns[i].id = i + 1;
ns[i].ctrlr = &ns_ctrlr[i];
}
ns[4].csi = SPDK_NVME_CSI_ZNS;
ns_ctrlr[4].opts.admin_timeout_ms = NVME_TIMEOUT_INFINITE;
rc = nvme_ctrlr_identify_namespaces_iocs_specific_next(&ctrlr, prev_nsid);
CU_ASSERT(rc == 0);
CU_ASSERT(ctrlr.state == 0);
CU_ASSERT(ctrlr.state_timeout_tsc == NVME_TIMEOUT_INFINITE);
CU_ASSERT(ns_ctrlr[4].state == NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC);
CU_ASSERT(ns_ctrlr[4].state_timeout_tsc == NVME_TIMEOUT_INFINITE);
for (int i = 0; i < 5; i++) {
nvme_ns_free_zns_specific_data(&ns[i]);
}
/* case 4: nvme_ctrlr_identify_ns_iocs_specific_async return 1, expect: false */
memset(&ctrlr.state, 0x00, sizeof(ctrlr.state));
memset(&ctrlr.state_timeout_tsc, 0x00, sizeof(ctrlr.state_timeout_tsc));
prev_nsid = 1;
ctrlr.active_ns_count = 5;
ns[1].csi = SPDK_NVME_CSI_ZNS;
g_fail_next_identify = true;
rc = nvme_ctrlr_identify_namespaces_iocs_specific_next(&ctrlr, prev_nsid);
CU_ASSERT(rc == 1);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ERROR);
CU_ASSERT(ctrlr.state_timeout_tsc == NVME_TIMEOUT_INFINITE);
CU_ASSERT(pthread_mutex_destroy(&ctrlr.ctrlr_lock) == 0);
}
static void
test_nvme_ctrlr_set_supported_log_pages(void)
{
int rc;
struct spdk_nvme_ctrlr ctrlr = {};
/* ana supported */
memset(&ctrlr, 0, sizeof(ctrlr));
ctrlr.cdata.cmic.ana_reporting = true;
ctrlr.cdata.lpa.celp = 1;
ctrlr.cdata.nanagrpid = 1;
ctrlr.active_ns_count = 1;
rc = nvme_ctrlr_set_supported_log_pages(&ctrlr);
CU_ASSERT(rc == 0);
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_LOG_ERROR] == true);
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] == true);
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] == true);
CU_ASSERT(ctrlr.ana_log_page_size == sizeof(struct spdk_nvme_ana_page) +
sizeof(struct spdk_nvme_ana_group_descriptor) * 1 + sizeof(uint32_t) * 1);
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS] == true);
free(ctrlr.ana_log_page);
free(ctrlr.copied_ana_desc);
}
static void
test_nvme_ctrlr_set_intel_supported_log_pages(void)
{
DECLARE_AND_CONSTRUCT_CTRLR();
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
ctrlr.opts.admin_timeout_ms = NVME_TIMEOUT_INFINITE;
ctrlr.cdata.vid = SPDK_PCI_VID_INTEL;
ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
ctrlr.state = NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES);
set_status_code = SPDK_NVME_SC_SUCCESS;
CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES);
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_LOG_ERROR] == true);
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] == true);
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] == true);
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] == true);
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] == true);
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] == true);
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_INTEL_LOG_SMART] == true);
CU_ASSERT(ctrlr.log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] == true);
nvme_ctrlr_destruct(&ctrlr);
}
#define UT_ANA_DESC_SIZE (sizeof(struct spdk_nvme_ana_group_descriptor) + \
sizeof(uint32_t))
static void
test_nvme_ctrlr_parse_ana_log_page(void)
{
int rc, i;
struct spdk_nvme_ctrlr ctrlr = {};
struct spdk_nvme_ns ns[3] = {};
struct spdk_nvme_ana_page ana_hdr;
char _ana_desc[UT_ANA_DESC_SIZE];
struct spdk_nvme_ana_group_descriptor *ana_desc;
uint32_t offset;
RB_INIT(&ctrlr.ns);
for (i = 0; i < 3; i++) {
ns[i].id = i + 1;
ns[i].active = true;
RB_INSERT(nvme_ns_tree, &ctrlr.ns, &ns[i]);
}
CU_ASSERT(pthread_mutex_init(&ctrlr.ctrlr_lock, NULL) == 0);
ctrlr.cdata.nn = 3;
ctrlr.cdata.nanagrpid = 3;
ctrlr.active_ns_count = 3;
rc = nvme_ctrlr_update_ana_log_page(&ctrlr);
CU_ASSERT(rc == 0);
CU_ASSERT(ctrlr.ana_log_page != NULL);
CU_ASSERT(ctrlr.copied_ana_desc != NULL);
/*
* Create ANA log page data - There are three ANA groups.
* Each ANA group has a namespace and has a different ANA state.
*/
memset(&ana_hdr, 0, sizeof(ana_hdr));
ana_hdr.num_ana_group_desc = 3;
SPDK_CU_ASSERT_FATAL(sizeof(ana_hdr) <= ctrlr.ana_log_page_size);
memcpy((char *)ctrlr.ana_log_page, (char *)&ana_hdr, sizeof(ana_hdr));
offset = sizeof(ana_hdr);
ana_desc = (struct spdk_nvme_ana_group_descriptor *)_ana_desc;
memset(ana_desc, 0, UT_ANA_DESC_SIZE);
ana_desc->num_of_nsid = 1;
ana_desc->ana_group_id = 1;
ana_desc->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
ana_desc->nsid[0] = 3;
SPDK_CU_ASSERT_FATAL(offset + UT_ANA_DESC_SIZE <= ctrlr.ana_log_page_size);
memcpy((char *)ctrlr.ana_log_page + offset, (char *)ana_desc, UT_ANA_DESC_SIZE);
offset += UT_ANA_DESC_SIZE;
ana_desc->ana_group_id = 2;
ana_desc->ana_state = SPDK_NVME_ANA_NON_OPTIMIZED_STATE;
ana_desc->nsid[0] = 2;
SPDK_CU_ASSERT_FATAL(offset + UT_ANA_DESC_SIZE <= ctrlr.ana_log_page_size);
memcpy((char *)ctrlr.ana_log_page + offset, (char *)ana_desc, UT_ANA_DESC_SIZE);
offset += UT_ANA_DESC_SIZE;
ana_desc->ana_group_id = 3;
ana_desc->ana_state = SPDK_NVME_ANA_INACCESSIBLE_STATE;
ana_desc->nsid[0] = 1;
SPDK_CU_ASSERT_FATAL(offset + UT_ANA_DESC_SIZE <= ctrlr.ana_log_page_size);
memcpy((char *)ctrlr.ana_log_page + offset, (char *)ana_desc, UT_ANA_DESC_SIZE);
/* Parse the created ANA log page data, and update ANA states. */
rc = nvme_ctrlr_parse_ana_log_page(&ctrlr, nvme_ctrlr_update_ns_ana_states,
&ctrlr);
CU_ASSERT(rc == 0);
CU_ASSERT(ns[0].ana_group_id == 3);
CU_ASSERT(ns[0].ana_state == SPDK_NVME_ANA_INACCESSIBLE_STATE);
CU_ASSERT(ns[1].ana_group_id == 2);
CU_ASSERT(ns[1].ana_state == SPDK_NVME_ANA_NON_OPTIMIZED_STATE);
CU_ASSERT(ns[2].ana_group_id == 1);
CU_ASSERT(ns[2].ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE);
CU_ASSERT(pthread_mutex_destroy(&ctrlr.ctrlr_lock) == 0);
free(ctrlr.ana_log_page);
free(ctrlr.copied_ana_desc);
}
static void
test_nvme_ctrlr_ana_resize(void)
{
DECLARE_AND_CONSTRUCT_CTRLR();
uint32_t active_ns_list[] = { 1, 2, 3, 4 };
struct spdk_nvme_ana_page ana_hdr = {
.change_count = 0,
.num_ana_group_desc = 1
};
uint8_t ana_desc_buf[sizeof(struct spdk_nvme_ana_group_descriptor) + 4 * sizeof(uint32_t)] = {};
struct spdk_nvme_ana_group_descriptor *ana_desc =
(struct spdk_nvme_ana_group_descriptor *)ana_desc_buf;
struct spdk_nvme_ns *ns;
union spdk_nvme_async_event_completion aer_event = {
.bits.async_event_type = SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE,
.bits.async_event_info = SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED
};
struct spdk_nvme_cpl aer_cpl = {
.status.sct = SPDK_NVME_SCT_GENERIC,
.status.sc = SPDK_NVME_SC_SUCCESS,
.cdw0 = aer_event.raw
};
uint32_t i;
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0);
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_add_process(&ctrlr, NULL) == 0);
ctrlr.vs.bits.mjr = 1;
ctrlr.vs.bits.mnr = 4;
ctrlr.vs.bits.ter = 0;
ctrlr.cdata.nn = 4096;
ctrlr.cdata.cmic.ana_reporting = true;
ctrlr.cdata.nanagrpid = 1;
ctrlr.state = NVME_CTRLR_STATE_CONFIGURE_AER;
/* Start with 2 active namespaces */
g_active_ns_list = active_ns_list;
g_active_ns_list_length = 2;
g_ana_hdr = &ana_hdr;
g_ana_descs = &ana_desc;
ana_desc->ana_group_id = 1;
ana_desc->ana_state = SPDK_NVME_ANA_NON_OPTIMIZED_STATE;
ana_desc->num_of_nsid = 2;
for (i = 0; i < ana_desc->num_of_nsid; ++i) {
ana_desc->nsid[i] = i + 1;
}
/* Bring controller to ready state */
while (ctrlr.state != NVME_CTRLR_STATE_READY) {
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0);
}
for (i = 0; i < ana_desc->num_of_nsid; ++i) {
ns = spdk_nvme_ctrlr_get_ns(&ctrlr, i + 1);
CU_ASSERT(ns->ana_state == SPDK_NVME_ANA_NON_OPTIMIZED_STATE);
}
/* Add more namespaces */
g_active_ns_list_length = 4;
nvme_ctrlr_async_event_cb(&ctrlr.aer[0], &aer_cpl);
nvme_ctrlr_complete_queued_async_events(&ctrlr);
/* Update ANA log with new namespaces */
ana_desc->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
ana_desc->num_of_nsid = 4;
for (i = 0; i < ana_desc->num_of_nsid; ++i) {
ana_desc->nsid[i] = i + 1;
}
aer_event.bits.async_event_info = SPDK_NVME_ASYNC_EVENT_ANA_CHANGE;
aer_cpl.cdw0 = aer_event.raw;
nvme_ctrlr_async_event_cb(&ctrlr.aer[0], &aer_cpl);
nvme_ctrlr_complete_queued_async_events(&ctrlr);
for (i = 0; i < ana_desc->num_of_nsid; ++i) {
ns = spdk_nvme_ctrlr_get_ns(&ctrlr, i + 1);
CU_ASSERT(ns->ana_state == SPDK_NVME_ANA_OPTIMIZED_STATE);
}
g_active_ns_list = NULL;
g_active_ns_list_length = 0;
g_ana_hdr = NULL;
g_ana_descs = NULL;
nvme_ctrlr_free_processes(&ctrlr);
nvme_ctrlr_destruct(&ctrlr);
}
static void
test_nvme_ctrlr_get_memory_domains(void)
{
struct spdk_nvme_ctrlr ctrlr = {};
MOCK_SET(nvme_transport_ctrlr_get_memory_domains, 1);
CU_ASSERT(spdk_nvme_ctrlr_get_memory_domains(&ctrlr, NULL, 0) == 1);
MOCK_SET(nvme_transport_ctrlr_get_memory_domains, 0);
CU_ASSERT(spdk_nvme_ctrlr_get_memory_domains(&ctrlr, NULL, 0) == 0);
MOCK_CLEAR(nvme_transport_ctrlr_get_memory_domains);
}
static void
test_nvme_transport_ctrlr_ready(void)
{
DECLARE_AND_CONSTRUCT_CTRLR();
/* Transport init succeeded */
ctrlr.state = NVME_CTRLR_STATE_TRANSPORT_READY;
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == 0);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_READY);
/* Transport init failed */
ctrlr.state = NVME_CTRLR_STATE_TRANSPORT_READY;
MOCK_SET(nvme_transport_ctrlr_ready, -1);
SPDK_CU_ASSERT_FATAL(nvme_ctrlr_process_init(&ctrlr) == -1);
CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ERROR);
MOCK_CLEAR(nvme_transport_ctrlr_ready);
}
int
main(int argc, char **argv)
{
CU_pSuite suite = NULL;
unsigned int num_failures;
CU_set_error_action(CUEA_ABORT);
CU_initialize_registry();
suite = CU_add_suite("nvme_ctrlr", NULL, NULL);
CU_ADD_TEST(suite, test_nvme_ctrlr_init_en_1_rdy_0);
CU_ADD_TEST(suite, test_nvme_ctrlr_init_en_1_rdy_1);
CU_ADD_TEST(suite, test_nvme_ctrlr_init_en_0_rdy_0);
CU_ADD_TEST(suite, test_nvme_ctrlr_init_en_0_rdy_1);
CU_ADD_TEST(suite, test_nvme_ctrlr_init_en_0_rdy_0_ams_rr);
CU_ADD_TEST(suite, test_nvme_ctrlr_init_en_0_rdy_0_ams_wrr);
CU_ADD_TEST(suite, test_nvme_ctrlr_init_en_0_rdy_0_ams_vs);
CU_ADD_TEST(suite, test_nvme_ctrlr_init_delay);
CU_ADD_TEST(suite, test_alloc_io_qpair_rr_1);
CU_ADD_TEST(suite, test_ctrlr_get_default_ctrlr_opts);
CU_ADD_TEST(suite, test_ctrlr_get_default_io_qpair_opts);
CU_ADD_TEST(suite, test_alloc_io_qpair_wrr_1);
CU_ADD_TEST(suite, test_alloc_io_qpair_wrr_2);
CU_ADD_TEST(suite, test_spdk_nvme_ctrlr_update_firmware);
CU_ADD_TEST(suite, test_nvme_ctrlr_fail);
CU_ADD_TEST(suite, test_nvme_ctrlr_construct_intel_support_log_page_list);
CU_ADD_TEST(suite, test_nvme_ctrlr_set_supported_features);
CU_ADD_TEST(suite, test_spdk_nvme_ctrlr_doorbell_buffer_config);
#if 0 /* TODO: move to PCIe-specific unit test */
CU_ADD_TEST(suite, test_nvme_ctrlr_alloc_cmb);
#endif
CU_ADD_TEST(suite, test_nvme_ctrlr_test_active_ns);
CU_ADD_TEST(suite, test_nvme_ctrlr_test_active_ns_error_case);
CU_ADD_TEST(suite, test_spdk_nvme_ctrlr_reconnect_io_qpair);
CU_ADD_TEST(suite, test_spdk_nvme_ctrlr_set_trid);
CU_ADD_TEST(suite, test_nvme_ctrlr_init_set_nvmf_ioccsz);
CU_ADD_TEST(suite, test_nvme_ctrlr_init_set_num_queues);
CU_ADD_TEST(suite, test_nvme_ctrlr_init_set_keep_alive_timeout);
CU_ADD_TEST(suite, test_alloc_io_qpair_fail);
CU_ADD_TEST(suite, test_nvme_ctrlr_add_remove_process);
CU_ADD_TEST(suite, test_nvme_ctrlr_set_arbitration_feature);
CU_ADD_TEST(suite, test_nvme_ctrlr_set_state);
CU_ADD_TEST(suite, test_nvme_ctrlr_active_ns_list_v0);
CU_ADD_TEST(suite, test_nvme_ctrlr_active_ns_list_v2);
CU_ADD_TEST(suite, test_nvme_ctrlr_ns_mgmt);
CU_ADD_TEST(suite, test_nvme_ctrlr_reset);
CU_ADD_TEST(suite, test_nvme_ctrlr_aer_callback);
CU_ADD_TEST(suite, test_nvme_ctrlr_ns_attr_changed);
CU_ADD_TEST(suite, test_nvme_ctrlr_identify_namespaces_iocs_specific_next);
CU_ADD_TEST(suite, test_nvme_ctrlr_set_supported_log_pages);
CU_ADD_TEST(suite, test_nvme_ctrlr_set_intel_supported_log_pages);
CU_ADD_TEST(suite, test_nvme_ctrlr_parse_ana_log_page);
CU_ADD_TEST(suite, test_nvme_ctrlr_ana_resize);
CU_ADD_TEST(suite, test_nvme_ctrlr_get_memory_domains);
CU_ADD_TEST(suite, test_nvme_transport_ctrlr_ready);
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
return num_failures;
}