Spdk/examples/ioat/verify/verify.c
paul luse a6dbe3721e update Intel copyright notices
per Intel policy to include file commit date using git cmd
below.  The policy does not apply to non-Intel (C) notices.

git log --follow -C90% --format=%ad --date default <file> | tail -1

and then pull just the 4 digit year from the result.

Intel copyrights were not added to files where Intel either had
no contribution ot the contribution lacked substance (ie license
header updates, formatting changes, etc).  Contribution date used
"--follow -C95%" to get the most accurate date.

Note that several files in this patch didn't end the license/(c)
block with a blank comment line so these were added as the vast
majority of files do have this last blank line.  Simply there for
consistency.

Signed-off-by: paul luse <paul.e.luse@intel.com>
Change-Id: Id5b7ce4f658fe87132f14139ead58d6e285c04d4
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/15192
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Community-CI: Mellanox Build Bot
2022-11-10 08:28:53 +00:00

497 lines
11 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2015 Intel Corporation.
* All rights reserved.
*/
#include "spdk/stdinc.h"
#include "spdk/ioat.h"
#include "spdk/env.h"
#include "spdk/queue.h"
#include "spdk/string.h"
#include "spdk/util.h"
#define SRC_BUFFER_SIZE (512*1024)
enum ioat_task_type {
IOAT_COPY_TYPE,
IOAT_FILL_TYPE,
};
struct user_config {
int queue_depth;
int time_in_sec;
char *core_mask;
};
struct ioat_device {
struct spdk_ioat_chan *ioat;
TAILQ_ENTRY(ioat_device) tailq;
};
static TAILQ_HEAD(, ioat_device) g_devices = TAILQ_HEAD_INITIALIZER(g_devices);
static struct ioat_device *g_next_device;
static struct user_config g_user_config;
struct thread_entry {
struct spdk_ioat_chan *chan;
uint64_t xfer_completed;
uint64_t xfer_failed;
uint64_t fill_completed;
uint64_t fill_failed;
uint64_t current_queue_depth;
unsigned lcore_id;
bool is_draining;
bool init_failed;
struct spdk_mempool *data_pool;
struct spdk_mempool *task_pool;
};
struct ioat_task {
enum ioat_task_type type;
struct thread_entry *thread_entry;
void *buffer;
int len;
uint64_t fill_pattern;
void *src;
void *dst;
};
static __thread unsigned int seed = 0;
static unsigned char *g_src;
static void submit_single_xfer(struct ioat_task *ioat_task);
static void
construct_user_config(struct user_config *self)
{
self->queue_depth = 32;
self->time_in_sec = 10;
self->core_mask = "0x1";
}
static void
dump_user_config(struct user_config *self)
{
printf("User configuration:\n");
printf("Run time: %u seconds\n", self->time_in_sec);
printf("Core mask: %s\n", self->core_mask);
printf("Queue depth: %u\n", self->queue_depth);
}
static void
ioat_exit(void)
{
struct ioat_device *dev;
while (!TAILQ_EMPTY(&g_devices)) {
dev = TAILQ_FIRST(&g_devices);
TAILQ_REMOVE(&g_devices, dev, tailq);
if (dev->ioat) {
spdk_ioat_detach(dev->ioat);
}
free(dev);
}
}
static void
prepare_ioat_task(struct thread_entry *thread_entry, struct ioat_task *ioat_task)
{
int len;
uintptr_t src_offset;
uintptr_t dst_offset;
uint64_t fill_pattern;
if (ioat_task->type == IOAT_FILL_TYPE) {
fill_pattern = rand_r(&seed);
fill_pattern = fill_pattern << 32 | rand_r(&seed);
/* Ensure that the length of memset block is 8 Bytes aligned.
* In case the buffer crosses hugepage boundary and must be split,
* we also need to ensure 8 byte address alignment. We do it
* unconditionally to keep things simple.
*/
len = 8 + ((rand_r(&seed) % (SRC_BUFFER_SIZE - 16)) & ~0x7);
dst_offset = 8 + rand_r(&seed) % (SRC_BUFFER_SIZE - 8 - len);
ioat_task->fill_pattern = fill_pattern;
ioat_task->dst = (void *)(((uintptr_t)ioat_task->buffer + dst_offset) & ~0x7);
} else {
src_offset = rand_r(&seed) % SRC_BUFFER_SIZE;
len = rand_r(&seed) % (SRC_BUFFER_SIZE - src_offset);
dst_offset = rand_r(&seed) % (SRC_BUFFER_SIZE - len);
memset(ioat_task->buffer, 0, SRC_BUFFER_SIZE);
ioat_task->src = (void *)((uintptr_t)g_src + src_offset);
ioat_task->dst = (void *)((uintptr_t)ioat_task->buffer + dst_offset);
}
ioat_task->len = len;
ioat_task->thread_entry = thread_entry;
}
static void
ioat_done(void *cb_arg)
{
char *value;
int i, failed = 0;
struct ioat_task *ioat_task = (struct ioat_task *)cb_arg;
struct thread_entry *thread_entry = ioat_task->thread_entry;
if (ioat_task->type == IOAT_FILL_TYPE) {
value = ioat_task->dst;
for (i = 0; i < ioat_task->len / 8; i++) {
if (memcmp(value, &ioat_task->fill_pattern, 8) != 0) {
thread_entry->fill_failed++;
failed = 1;
break;
}
value += 8;
}
if (!failed) {
thread_entry->fill_completed++;
}
} else {
if (memcmp(ioat_task->src, ioat_task->dst, ioat_task->len)) {
thread_entry->xfer_failed++;
} else {
thread_entry->xfer_completed++;
}
}
thread_entry->current_queue_depth--;
if (thread_entry->is_draining) {
spdk_mempool_put(thread_entry->data_pool, ioat_task->buffer);
spdk_mempool_put(thread_entry->task_pool, ioat_task);
} else {
prepare_ioat_task(thread_entry, ioat_task);
submit_single_xfer(ioat_task);
}
}
static bool
probe_cb(void *cb_ctx, struct spdk_pci_device *pci_dev)
{
printf(" Found matching device at %04x:%02x:%02x.%x "
"vendor:0x%04x device:0x%04x\n",
spdk_pci_device_get_domain(pci_dev),
spdk_pci_device_get_bus(pci_dev), spdk_pci_device_get_dev(pci_dev),
spdk_pci_device_get_func(pci_dev),
spdk_pci_device_get_vendor_id(pci_dev), spdk_pci_device_get_device_id(pci_dev));
return true;
}
static void
attach_cb(void *cb_ctx, struct spdk_pci_device *pci_dev, struct spdk_ioat_chan *ioat)
{
struct ioat_device *dev;
dev = malloc(sizeof(*dev));
if (dev == NULL) {
printf("Failed to allocate device struct\n");
return;
}
memset(dev, 0, sizeof(*dev));
dev->ioat = ioat;
TAILQ_INSERT_TAIL(&g_devices, dev, tailq);
}
static int
ioat_init(void)
{
if (spdk_ioat_probe(NULL, probe_cb, attach_cb) != 0) {
fprintf(stderr, "ioat_probe() failed\n");
return 1;
}
return 0;
}
static void
usage(char *program_name)
{
printf("%s options\n", program_name);
printf("\t[-h help message]\n");
printf("\t[-c core mask for distributing I/O submission/completion work]\n");
printf("\t[-t time in seconds]\n");
printf("\t[-q queue depth]\n");
}
static int
parse_args(int argc, char **argv)
{
int op;
construct_user_config(&g_user_config);
while ((op = getopt(argc, argv, "c:ht:q:")) != -1) {
switch (op) {
case 't':
g_user_config.time_in_sec = spdk_strtol(optarg, 10);
break;
case 'c':
g_user_config.core_mask = optarg;
break;
case 'q':
g_user_config.queue_depth = spdk_strtol(optarg, 10);
break;
case 'h':
usage(argv[0]);
exit(0);
default:
usage(argv[0]);
return 1;
}
}
if (g_user_config.time_in_sec <= 0 || !g_user_config.core_mask ||
g_user_config.queue_depth <= 0) {
usage(argv[0]);
return 1;
}
return 0;
}
static void
drain_xfers(struct thread_entry *thread_entry)
{
while (thread_entry->current_queue_depth > 0) {
spdk_ioat_process_events(thread_entry->chan);
}
}
static void
submit_single_xfer(struct ioat_task *ioat_task)
{
if (ioat_task->type == IOAT_FILL_TYPE)
spdk_ioat_submit_fill(ioat_task->thread_entry->chan, ioat_task, ioat_done,
ioat_task->dst, ioat_task->fill_pattern, ioat_task->len);
else
spdk_ioat_submit_copy(ioat_task->thread_entry->chan, ioat_task, ioat_done,
ioat_task->dst, ioat_task->src, ioat_task->len);
ioat_task->thread_entry->current_queue_depth++;
}
static void
submit_xfers(struct thread_entry *thread_entry, uint64_t queue_depth)
{
while (queue_depth-- > 0) {
struct ioat_task *ioat_task = NULL;
ioat_task = spdk_mempool_get(thread_entry->task_pool);
assert(ioat_task != NULL);
ioat_task->buffer = spdk_mempool_get(thread_entry->data_pool);
assert(ioat_task->buffer != NULL);
ioat_task->type = IOAT_COPY_TYPE;
if (spdk_ioat_get_dma_capabilities(thread_entry->chan) & SPDK_IOAT_ENGINE_FILL_SUPPORTED) {
if (queue_depth % 2) {
ioat_task->type = IOAT_FILL_TYPE;
}
}
prepare_ioat_task(thread_entry, ioat_task);
submit_single_xfer(ioat_task);
}
}
static int
work_fn(void *arg)
{
uint64_t tsc_end;
char buf_pool_name[20], task_pool_name[20];
struct thread_entry *t = (struct thread_entry *)arg;
if (!t->chan) {
return 1;
}
t->lcore_id = spdk_env_get_current_core();
snprintf(buf_pool_name, sizeof(buf_pool_name), "buf_pool_%u", t->lcore_id);
snprintf(task_pool_name, sizeof(task_pool_name), "task_pool_%u", t->lcore_id);
t->data_pool = spdk_mempool_create(buf_pool_name, g_user_config.queue_depth, SRC_BUFFER_SIZE,
SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
SPDK_ENV_SOCKET_ID_ANY);
t->task_pool = spdk_mempool_create(task_pool_name, g_user_config.queue_depth,
sizeof(struct ioat_task),
SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
SPDK_ENV_SOCKET_ID_ANY);
if (!t->data_pool || !t->task_pool) {
fprintf(stderr, "Could not allocate buffer pool.\n");
t->init_failed = true;
return 1;
}
tsc_end = spdk_get_ticks() + g_user_config.time_in_sec * spdk_get_ticks_hz();
submit_xfers(t, g_user_config.queue_depth);
while (spdk_get_ticks() < tsc_end) {
spdk_ioat_process_events(t->chan);
}
t->is_draining = true;
drain_xfers(t);
return 0;
}
static int
init_src_buffer(void)
{
int i;
g_src = spdk_dma_zmalloc(SRC_BUFFER_SIZE, 512, NULL);
if (g_src == NULL) {
fprintf(stderr, "Allocate src buffer failed\n");
return 1;
}
for (i = 0; i < SRC_BUFFER_SIZE / 4; i++) {
memset((g_src + (4 * i)), i, 4);
}
return 0;
}
static int
init(void)
{
struct spdk_env_opts opts;
spdk_env_opts_init(&opts);
opts.name = "verify";
opts.core_mask = g_user_config.core_mask;
if (spdk_env_init(&opts) < 0) {
fprintf(stderr, "Unable to initialize SPDK env\n");
return 1;
}
if (init_src_buffer() != 0) {
fprintf(stderr, "Could not init src buffer\n");
return 1;
}
if (ioat_init() != 0) {
fprintf(stderr, "Could not init ioat\n");
return 1;
}
return 0;
}
static int
dump_result(struct thread_entry *threads, uint32_t num_threads)
{
uint32_t i;
uint64_t total_completed = 0;
uint64_t total_failed = 0;
for (i = 0; i < num_threads; i++) {
struct thread_entry *t = &threads[i];
if (!t->chan) {
continue;
}
if (t->init_failed) {
total_failed++;
continue;
}
total_completed += t->xfer_completed;
total_completed += t->fill_completed;
total_failed += t->xfer_failed;
total_failed += t->fill_failed;
if (total_completed || total_failed)
printf("lcore = %d, copy success = %" PRIu64 ", copy failed = %" PRIu64 ", fill success = %" PRIu64
", fill failed = %" PRIu64 "\n",
t->lcore_id, t->xfer_completed, t->xfer_failed, t->fill_completed, t->fill_failed);
}
return total_failed ? 1 : 0;
}
static struct spdk_ioat_chan *
get_next_chan(void)
{
struct spdk_ioat_chan *chan;
if (g_next_device == NULL) {
fprintf(stderr, "Not enough ioat channels found. Check that ioat channels are bound\n");
fprintf(stderr, "to uio_pci_generic or vfio-pci. scripts/setup.sh can help with this.\n");
return NULL;
}
chan = g_next_device->ioat;
g_next_device = TAILQ_NEXT(g_next_device, tailq);
return chan;
}
static uint32_t
get_max_core(void)
{
uint32_t i;
uint32_t max_core = 0;
SPDK_ENV_FOREACH_CORE(i) {
if (i > max_core) {
max_core = i;
}
}
return max_core;
}
int
main(int argc, char **argv)
{
uint32_t i, current_core;
struct thread_entry *threads;
uint32_t num_threads;
int rc;
if (parse_args(argc, argv) != 0) {
return 1;
}
if (init() != 0) {
return 1;
}
dump_user_config(&g_user_config);
g_next_device = TAILQ_FIRST(&g_devices);
num_threads = get_max_core() + 1;
threads = calloc(num_threads, sizeof(*threads));
if (!threads) {
fprintf(stderr, "Thread memory allocation failed\n");
rc = 1;
goto cleanup;
}
current_core = spdk_env_get_current_core();
SPDK_ENV_FOREACH_CORE(i) {
if (i != current_core) {
threads[i].chan = get_next_chan();
spdk_env_thread_launch_pinned(i, work_fn, &threads[i]);
}
}
threads[current_core].chan = get_next_chan();
if (work_fn(&threads[current_core]) != 0) {
rc = 1;
goto cleanup;
}
spdk_env_thread_wait_all();
rc = dump_result(threads, num_threads);
cleanup:
spdk_dma_free(g_src);
ioat_exit();
free(threads);
spdk_env_fini();
return rc;
}