Spdk/test/nvme/deallocated_value/deallocated_value.c
Jim Harris 488570ebd4 Replace most BSD 3-clause license text with SPDX identifier.
Many open source projects have moved to using SPDX identifiers
to specify license information, reducing the amount of
boilerplate code in every source file.  This patch replaces
the bulk of SPDK .c, .cpp and Makefiles with the BSD-3-Clause
identifier.

Almost all of these files share the exact same license text,
and this patch only modifies the files that contain the
most common license text.  There can be slight variations
because the third clause contains company names - most say
"Intel Corporation", but there are instances for Nvidia,
Samsung, Eideticom and even "the copyright holder".

Used a bash script to automate replacement of the license text
with SPDX identifier which is checked into scripts/spdx.sh.

Signed-off-by: Jim Harris <james.r.harris@intel.com>
Change-Id: Iaa88ab5e92ea471691dc298cfe41ebfb5d169780
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/12904
Community-CI: Broadcom CI <spdk-ci.pdl@broadcom.com>
Community-CI: Mellanox Build Bot
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Aleksey Marchuk <alexeymar@nvidia.com>
Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
Reviewed-by: Dong Yi <dongx.yi@intel.com>
Reviewed-by: Konrad Sztyber <konrad.sztyber@intel.com>
Reviewed-by: Paul Luse <paul.e.luse@intel.com>
Reviewed-by: <qun.wan@intel.com>
2022-06-09 07:35:12 +00:00

499 lines
13 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (c) Intel Corporation.
* All rights reserved.
*/
#include "spdk/stdinc.h"
#include "spdk/log.h"
#include "spdk/nvme.h"
#include "spdk/env.h"
#include "spdk/string.h"
#define NUM_BLOCKS 100
/*
* The purpose of this sample app is to determine the read value of deallocated logical blocks
* from a given NVMe Controller. The NVMe 1.3 spec requires the controller to list this value,
* but controllers adhering to the NVMe 1.2 spec may not report this value. According to the spec,
* "The values read from a deallocated logical block and its metadata (excluding protection information) shall
* be all bytes set to 00h, all bytes set to FFh, or the last data written to the associated logical block".
*/
struct ns_entry {
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_ns *ns;
struct ns_entry *next;
struct spdk_nvme_qpair *qpair;
};
struct deallocate_context {
struct ns_entry *ns_entry;
char **write_buf;
char **read_buf;
char *zero_buf;
char *FFh_buf;
int writes_completed;
int reads_completed;
int deallocate_completed;
int flush_complete;
int matches_zeroes;
int matches_previous_data;
int matches_FFh;
};
static struct ns_entry *g_namespaces = NULL;
static struct spdk_nvme_transport_id g_trid = {};
static void cleanup(struct deallocate_context *context);
static void
usage(const char *program_name)
{
printf("%s [options]", program_name);
printf("\t\n");
printf("options:\n");
printf("\t[-d DPDK huge memory size in MB]\n");
printf("\t[-g use single file descriptor for DPDK memory segments]\n");
printf("\t[-i shared memory group ID]\n");
printf("\t[-r remote NVMe over Fabrics target address]\n");
#ifdef DEBUG
printf("\t[-L enable debug logging]\n");
#else
printf("\t[-L enable debug logging (flag disabled, must reconfigure with --enable-debug)\n");
#endif
spdk_log_usage(stdout, "\t\t-L");
}
static int
parse_args(int argc, char **argv, struct spdk_env_opts *env_opts)
{
int op, rc;
spdk_nvme_trid_populate_transport(&g_trid, SPDK_NVME_TRANSPORT_PCIE);
snprintf(g_trid.subnqn, sizeof(g_trid.subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
while ((op = getopt(argc, argv, "d:gi:r:L:")) != -1) {
switch (op) {
case 'd':
env_opts->mem_size = spdk_strtol(optarg, 10);
if (env_opts->mem_size < 0) {
fprintf(stderr, "Invalid DPDK memory size\n");
return env_opts->mem_size;
}
break;
case 'g':
env_opts->hugepage_single_segments = true;
break;
case 'i':
env_opts->shm_id = spdk_strtol(optarg, 10);
if (env_opts->shm_id < 0) {
fprintf(stderr, "Invalid shared memory ID\n");
return env_opts->shm_id;
}
break;
case 'r':
if (spdk_nvme_transport_id_parse(&g_trid, optarg) != 0) {
fprintf(stderr, "Error parsing transport address\n");
return 1;
}
break;
case 'L':
rc = spdk_log_set_flag(optarg);
if (rc < 0) {
fprintf(stderr, "unknown flag\n");
usage(argv[0]);
exit(EXIT_FAILURE);
}
#ifdef DEBUG
spdk_log_set_print_level(SPDK_LOG_DEBUG);
#endif
break;
default:
usage(argv[0]);
return 1;
}
}
return 0;
}
static void
fill_random(char *buf, size_t num_bytes)
{
size_t i;
srand((unsigned) time(NULL));
for (i = 0; i < num_bytes; i++) {
buf[i] = rand() % 0x100;
}
}
static void
register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
{
struct ns_entry *entry;
const struct spdk_nvme_ctrlr_data *cdata;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (!spdk_nvme_ns_is_active(ns)) {
printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n",
cdata->mn, cdata->sn,
spdk_nvme_ns_get_id(ns));
return;
}
entry = malloc(sizeof(struct ns_entry));
if (entry == NULL) {
perror("ns_entry malloc");
exit(1);
}
entry->ctrlr = ctrlr;
entry->ns = ns;
entry->next = g_namespaces;
g_namespaces = entry;
printf(" Namespace ID: %d size: %juGB\n", spdk_nvme_ns_get_id(ns),
spdk_nvme_ns_get_size(ns) / 1000000000);
}
static uint32_t
get_max_block_size(void)
{
struct ns_entry *ns;
uint32_t max_block_size, temp_block_size;
ns = g_namespaces;
max_block_size = 0;
while (ns != NULL) {
temp_block_size = spdk_nvme_ns_get_sector_size(ns->ns);
max_block_size = temp_block_size > max_block_size ? temp_block_size : max_block_size;
ns = ns->next;
}
return max_block_size;
}
static void
write_complete(void *arg, const struct spdk_nvme_cpl *completion)
{
struct deallocate_context *context = arg;
context->writes_completed++;
}
static void
read_complete(void *arg, const struct spdk_nvme_cpl *completion)
{
struct deallocate_context *context = arg;
struct ns_entry *ns_entry = context->ns_entry;
int rc;
rc = memcmp(context->write_buf[context->reads_completed],
context->read_buf[context->reads_completed], spdk_nvme_ns_get_sector_size(ns_entry->ns));
if (rc == 0) {
context->matches_previous_data++;
}
rc = memcmp(context->zero_buf, context->read_buf[context->reads_completed],
spdk_nvme_ns_get_sector_size(ns_entry->ns));
if (rc == 0) {
context->matches_zeroes++;
}
rc = memcmp(context->FFh_buf, context->read_buf[context->reads_completed],
spdk_nvme_ns_get_sector_size(ns_entry->ns));
if (rc == 0) {
context->matches_FFh++;
}
context->reads_completed++;
}
static void
deallocate_complete(void *arg, const struct spdk_nvme_cpl *completion)
{
struct deallocate_context *context = arg;
printf("blocks matching previous data: %d\n", context->matches_previous_data);
printf("blocks matching zeroes: %d\n", context->matches_zeroes);
printf("blocks matching 0xFF: %d\n", context->matches_FFh);
printf("Deallocating Blocks 0 to %d with random data.\n", NUM_BLOCKS - 1);
printf("On next read, read value will match deallocated block read value.\n");
context->deallocate_completed = 1;
context->reads_completed = 0;
context->matches_previous_data = 0;
context->matches_zeroes = 0;
context->matches_FFh = 0;
}
static void
flush_complete(void *arg, const struct spdk_nvme_cpl *completion)
{
struct deallocate_context *context = arg;
context->flush_complete = 1;
}
static void
deallocate_test(void)
{
struct ns_entry *ns_entry;
struct spdk_nvme_ctrlr *ctrlr;
const struct spdk_nvme_ctrlr_data *data;
struct deallocate_context context;
struct spdk_nvme_dsm_range range;
uint32_t max_block_size;
int rc, i;
memset(&context, 0, sizeof(struct deallocate_context));
max_block_size = get_max_block_size();
ns_entry = g_namespaces;
if (max_block_size > 0) {
context.zero_buf = malloc(max_block_size);
} else {
printf("Unable to determine max block size.\n");
return;
}
if (context.zero_buf == NULL) {
printf("could not allocate buffer for test.\n");
return;
}
context.FFh_buf = malloc(max_block_size);
if (context.FFh_buf == NULL) {
cleanup(&context);
printf("could not allocate buffer for test.\n");
return;
}
context.write_buf = calloc(NUM_BLOCKS, sizeof(char *));
if (context.write_buf == NULL) {
cleanup(&context);
return;
}
context.read_buf = calloc(NUM_BLOCKS, sizeof(char *));
if (context.read_buf == NULL) {
printf("could not allocate buffer for test.\n");
cleanup(&context);
return;
}
memset(context.zero_buf, 0x00, max_block_size);
memset(context.FFh_buf, 0xFF, max_block_size);
for (i = 0; i < NUM_BLOCKS; i++) {
context.write_buf[i] = spdk_zmalloc(0x1000, max_block_size, NULL, SPDK_ENV_LCORE_ID_ANY,
SPDK_MALLOC_DMA);
if (context.write_buf[i] == NULL) {
printf("could not allocate buffer for test.\n");
cleanup(&context);
return;
}
fill_random(context.write_buf[i], 0x1000);
context.read_buf[i] = spdk_zmalloc(0x1000, max_block_size, NULL, SPDK_ENV_LCORE_ID_ANY,
SPDK_MALLOC_DMA);
if (context.read_buf[i] == NULL) {
printf("could not allocate buffer for test.\n");
cleanup(&context);
return;
}
}
while (ns_entry != NULL) {
ns_entry->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ns_entry->ctrlr, NULL, 0);
if (ns_entry->qpair == NULL) {
printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair() failed.\n");
cleanup(&context);
return;
}
ctrlr = spdk_nvme_ns_get_ctrlr(ns_entry->ns);
data = spdk_nvme_ctrlr_get_data(ctrlr);
printf("\nController %-20.20s (%-20.20s)\n", data->mn, data->sn);
printf("Controller PCI vendor:%u PCI subsystem vendor:%u\n", data->vid, data->ssvid);
printf("Namespace Block Size:%u\n", spdk_nvme_ns_get_sector_size(ns_entry->ns));
printf("Writing Blocks 0 to %d with random data.\n", NUM_BLOCKS - 1);
printf("On next read, read value will match random data.\n");
context.ns_entry = ns_entry;
for (i = 0; i < NUM_BLOCKS; i++) {
rc = spdk_nvme_ns_cmd_write(ns_entry->ns, ns_entry->qpair, context.write_buf[i],
i,
1,
write_complete, &context, 0);
if (rc) {
printf("Error in nvme command completion, values may be inaccurate.\n");
}
}
while (context.writes_completed < NUM_BLOCKS) {
spdk_nvme_qpair_process_completions(ns_entry->qpair, 0);
}
spdk_nvme_ns_cmd_flush(ns_entry->ns, ns_entry->qpair, flush_complete, &context);
while (!context.flush_complete) {
spdk_nvme_qpair_process_completions(ns_entry->qpair, 0);
}
for (i = 0; i < NUM_BLOCKS; i++) {
rc = spdk_nvme_ns_cmd_read(ns_entry->ns, ns_entry->qpair, context.read_buf[i],
i, /* LBA start */
1, /* number of LBAs */
read_complete, &context, 0);
if (rc) {
printf("Error in nvme command completion, values may be inaccurate.\n");
}
/* block after each read command so that we can match the block to the write buffer. */
while (context.reads_completed <= i) {
spdk_nvme_qpair_process_completions(ns_entry->qpair, 0);
}
}
context.flush_complete = 0;
range.length = NUM_BLOCKS;
range.starting_lba = 0;
rc = spdk_nvme_ns_cmd_dataset_management(ns_entry->ns, ns_entry->qpair,
SPDK_NVME_DSM_ATTR_DEALLOCATE, &range, 1, deallocate_complete, &context);
if (rc) {
printf("Error in nvme command completion, values may be inaccurate.\n");
}
while (!context.deallocate_completed) {
spdk_nvme_qpair_process_completions(ns_entry->qpair, 0);
}
for (i = 0; i < NUM_BLOCKS; i++) {
rc = spdk_nvme_ns_cmd_read(ns_entry->ns, ns_entry->qpair, context.read_buf[i],
i, /* LBA start */
1, /* number of LBAs */
read_complete, &context, 0);
if (rc) {
printf("Error in nvme command completion, values may be inaccurate.\n");
}
while (context.reads_completed <= i) {
spdk_nvme_qpair_process_completions(ns_entry->qpair, 0);
}
}
printf("blocks matching previous data: %d\n", context.matches_previous_data);
printf("blocks matching zeroes: %d\n", context.matches_zeroes);
printf("blocks matching FFh: %d\n", context.matches_FFh);
/* reset counters in between each namespace. */
context.matches_previous_data = 0;
context.matches_zeroes = 0;
context.matches_FFh = 0;
context.writes_completed = 0;
context.reads_completed = 0;
context.deallocate_completed = 0;
spdk_nvme_ctrlr_free_io_qpair(ns_entry->qpair);
ns_entry = ns_entry->next;
}
cleanup(&context);
}
static bool
probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
printf("Attaching to %s\n", trid->traddr);
return true;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
int num_ns;
struct spdk_nvme_ns *ns;
printf("Attached to %s\n", trid->traddr);
/*
* Use only the first namespace from each controller since we are testing controller level functionality.
*/
num_ns = spdk_nvme_ctrlr_get_num_ns(ctrlr);
if (num_ns < 1) {
printf("No valid namespaces in controller\n");
} else {
ns = spdk_nvme_ctrlr_get_ns(ctrlr, 1);
register_ns(ctrlr, ns);
}
}
static void
cleanup(struct deallocate_context *context)
{
struct ns_entry *ns_entry = g_namespaces;
int i;
while (ns_entry) {
struct ns_entry *next = ns_entry->next;
free(ns_entry);
ns_entry = next;
}
for (i = 0; i < NUM_BLOCKS; i++) {
if (context->write_buf && context->write_buf[i]) {
spdk_free(context->write_buf[i]);
} else {
break;
}
if (context->read_buf && context->read_buf[i]) {
spdk_free(context->read_buf[i]);
} else {
break;
}
}
free(context->write_buf);
free(context->read_buf);
free(context->zero_buf);
free(context->FFh_buf);
}
int main(int argc, char **argv)
{
int rc;
struct spdk_env_opts opts;
spdk_env_opts_init(&opts);
rc = parse_args(argc, argv, &opts);
if (rc != 0) {
return rc;
}
opts.name = "deallocate_test";
if (spdk_env_init(&opts) < 0) {
fprintf(stderr, "Unable to initialize SPDK env\n");
return 1;
}
printf("Initializing NVMe Controllers\n");
rc = spdk_nvme_probe(&g_trid, NULL, probe_cb, attach_cb, NULL);
if (rc != 0) {
fprintf(stderr, "spdk_nvme_probe() failed\n");
return 1;
}
if (g_namespaces == NULL) {
fprintf(stderr, "no NVMe controllers found\n");
return 1;
}
printf("Initialization complete.\n");
deallocate_test();
return 0;
}