Spdk/lib/env_ocf/ocf_env.c
Sebastian Brzezinka 3a14cb3a0f lib/env_ocf: place allocator variable on hugepages
When using `__lsan_do_recoverable_leak_check` (e.g when fuzzing),
to check for leaks during runtime. Leak sanitizer can not follow
reference of memory that is allocated on heap (e.g. calloc)
and then stored on hugepage causing lsan to incorrectly report
direct leak.

Fixes #2967

Signed-off-by: Sebastian Brzezinka <sebastian.brzezinka@intel.com>
Change-Id: I3511e117a07ca8daa96f19bf1437c0d788b64cb1
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/17682
Reviewed-by: Konrad Sztyber <konrad.sztyber@intel.com>
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Amir Haroush <amir.haroush@huawei.com>
2023-05-09 17:58:11 +08:00

178 lines
4.2 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2018 Intel Corporation.
* All rights reserved.
*/
#include "ocf/ocf_def.h"
#include "ocf_env.h"
#include "spdk/crc32.h"
#include "spdk/env.h"
#include "spdk/log.h"
/* Number of buffers for mempool
* Need to be power of two - 1 for better memory utilization
* It depends on memory usage of OCF which
* in itself depends on the workload
* It is a big number because OCF uses allocators
* for every request it sends and receives
*
* The value of 16383 is tested to work on 24 caches
* running IO of io_size=512 and io_depth=512, which
* should be more than enough for any real life scenario.
* Increase this value if needed. It will result in
* more memory being used initially on SPDK app start,
* when compiled with OCF support.
*/
#define ENV_ALLOCATOR_NBUFS 16383
#define GET_ELEMENTS_COUNT(_limit) (_limit < 0 ? ENV_ALLOCATOR_NBUFS : _limit)
/* Use unique index for env allocators */
static env_atomic g_env_allocator_index = 0;
void *
env_allocator_new(env_allocator *allocator)
{
void *mem = spdk_mempool_get(allocator->mempool);
if (spdk_unlikely(!mem)) {
return NULL;
}
if (allocator->zero) {
memset(mem, 0, allocator->element_size);
}
return mem;
}
env_allocator *
env_allocator_create(uint32_t size, const char *name, bool zero)
{
return env_allocator_create_extended(size, name, -1, zero);
}
env_allocator *
env_allocator_create_extended(uint32_t size, const char *name, int limit, bool zero)
{
env_allocator *allocator;
char qualified_name[OCF_ALLOCATOR_NAME_MAX] = {0};
snprintf(qualified_name, OCF_ALLOCATOR_NAME_MAX, "ocf_env_%d:%s",
env_atomic_inc_return(&g_env_allocator_index), name);
allocator = env_zalloc(sizeof(*allocator), ENV_MEM_NOIO);
if (!allocator) {
return NULL;
}
allocator->mempool = spdk_mempool_create(qualified_name,
GET_ELEMENTS_COUNT(limit), size,
SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
SPDK_ENV_SOCKET_ID_ANY);
if (!allocator->mempool) {
SPDK_ERRLOG("mempool creation failed\n");
free(allocator);
return NULL;
}
allocator->element_size = size;
allocator->element_count = GET_ELEMENTS_COUNT(limit);
allocator->zero = zero;
return allocator;
}
void
env_allocator_del(env_allocator *allocator, void *item)
{
spdk_mempool_put(allocator->mempool, item);
}
void
env_allocator_destroy(env_allocator *allocator)
{
if (allocator) {
if (allocator->element_count - spdk_mempool_count(allocator->mempool)) {
SPDK_ERRLOG("Not all objects deallocated\n");
assert(false);
}
spdk_mempool_free(allocator->mempool);
env_free(allocator);
}
}
/* *** CRC *** */
uint32_t
env_crc32(uint32_t crc, uint8_t const *message, size_t len)
{
return spdk_crc32_ieee_update(message, len, crc);
}
/* EXECUTION CONTEXTS */
pthread_mutex_t *exec_context_mutex;
static void
__attribute__((constructor)) init_execution_context(void)
{
unsigned count = env_get_execution_context_count();
unsigned i;
ENV_BUG_ON(count == 0);
exec_context_mutex = malloc(count * sizeof(exec_context_mutex[0]));
ENV_BUG_ON(exec_context_mutex == NULL);
for (i = 0; i < count; i++) {
ENV_BUG_ON(pthread_mutex_init(&exec_context_mutex[i], NULL));
}
}
static void
__attribute__((destructor)) deinit_execution_context(void)
{
unsigned count = env_get_execution_context_count();
unsigned i;
ENV_BUG_ON(count == 0);
ENV_BUG_ON(exec_context_mutex == NULL);
for (i = 0; i < count; i++) {
ENV_BUG_ON(pthread_mutex_destroy(&exec_context_mutex[i]));
}
free(exec_context_mutex);
}
/* get_execution_context must assure that after the call finishes, the caller
* will not get preempted from current execution context. For userspace env
* we simulate this behavior by acquiring per execution context mutex. As a
* result the caller might actually get preempted, but no other thread will
* execute in this context by the time the caller puts current execution ctx. */
unsigned
env_get_execution_context(void)
{
unsigned cpu;
cpu = sched_getcpu();
cpu = (cpu == -1) ? 0 : cpu;
ENV_BUG_ON(pthread_mutex_lock(&exec_context_mutex[cpu]));
return cpu;
}
void
env_put_execution_context(unsigned ctx)
{
pthread_mutex_unlock(&exec_context_mutex[ctx]);
}
unsigned
env_get_execution_context_count(void)
{
int num = sysconf(_SC_NPROCESSORS_ONLN);
return (num == -1) ? 0 : num;
}