Convert the number parsing function into a linear sequence with a goto label for each state, rather than a single loop with a state variable. This makes the code easier to read and also improves speed (better branch prediction and smaller inner loops for the common case). On my test system, jsoncat citylots.json > /dev/null improves from ~1.7s to ~1.2s. This changes behavior of some number parsing test cases: inputs matching the number grammar as defined by JSON will be returned even if there is trailing garbage, consistent with the rest of the parser. For example, the input 01 will be parsed as a valid number 0 followed by trailing 1. This only makes any difference when the full input is a single number value, since if the value was nested in an object or array, the trailing garbage will not match the expected syntax and the whole parse will fail with SPDK_JSON_PARSE_INVALID (e.g. [00 will parse the first 0 as a number and then fail on the second 0, since only a comma or right square bracket would be accepted). Change-Id: Ifabfaed611219b3e0a06c8677190a28b87e8a13b Signed-off-by: Daniel Verkamp <daniel.verkamp@intel.com> |
||
---|---|---|
app | ||
build/lib | ||
doc | ||
etc/spdk | ||
examples | ||
include | ||
lib | ||
mk | ||
scripts | ||
test | ||
.astylerc | ||
.gitignore | ||
.travis.yml | ||
autobuild.sh | ||
autopackage.sh | ||
autorun.sh | ||
autotest.sh | ||
CHANGELOG.md | ||
CONFIG | ||
LICENSE | ||
Makefile | ||
PORTING.md | ||
README.md | ||
unittest.sh |
Storage Performance Development Kit
The Storage Performance Development Kit (SPDK) provides a set of tools and libraries for writing high performance, scalable, user-mode storage applications. It achieves high performance by moving all of the necessary drivers into userspace and operating in a polled mode instead of relying on interrupts, which avoids kernel context switches and eliminates interrupt handling overhead.
The development kit currently includes:
Documentation
Doxygen API documentation is available, as well as a Porting Guide for porting SPDK to different frameworks and operating systems.
Many examples are available in the examples
directory.
Prerequisites
To build SPDK, some dependencies must be installed.
Fedora/CentOS:
sudo dnf install -y gcc gcc-c++ CUnit-devel libaio-devel openssl-devel
# Additional dependencies for NVMe over Fabrics:
sudo dnf install -y libibverbs-devel librdmacm-devel
Ubuntu/Debian:
sudo apt-get install -y gcc g++ make libcunit1-dev libaio-dev libssl-dev
# Additional dependencies for NVMe over Fabrics:
sudo apt-get install -y libibverbs-dev librdmacm-dev
FreeBSD:
- gcc
- gmake
- cunit
- openssl
Additionally, DPDK is required.
1) cd /path/to/spdk
2) wget http://fast.dpdk.org/rel/dpdk-16.11.tar.xz
3) tar xf dpdk-16.11.tar.xz
Linux:
4) (cd dpdk-16.11 && make install T=x86_64-native-linuxapp-gcc DESTDIR=.)
FreeBSD:
4) (cd dpdk-16.11 && gmake install T=x86_64-native-bsdapp-clang DESTDIR=.)
Building
Once the prerequisites are installed, run 'make' within the SPDK directory to build the SPDK libraries and examples.
make DPDK_DIR=/path/to/dpdk
If you followed the instructions above for building DPDK:
Linux:
make DPDK_DIR=./dpdk-16.11/x86_64-native-linuxapp-gcc
FreeBSD:
gmake DPDK_DIR=./dpdk-16.11/x86_64-native-bsdapp-clang
Hugepages and Device Binding
Before running an SPDK application, some hugepages must be allocated and any NVMe and I/OAT devices must be unbound from the native kernel drivers. SPDK includes a script to automate this process on both Linux and FreeBSD. This script should be run as root.
sudo scripts/setup.sh
Examples
Example code is located in the examples directory. The examples are compiled automatically as part of the build process. Simply call any of the examples with no arguments to see the help output. You'll likely need to run the examples as a privileged user (root) unless you've done additional configuration to grant your user permission to allocate huge pages and map devices through vfio.