Spdk/lib/reduce/reduce.c
Jim Harris 383b117309 reduce: implement read and write with data
For write operations, copy data to req->buf and write
to disk.

If chunk already specified in logical map, read the
chunk first into req->buf, and overwrite with data
specified by the write operation.

If chunk not specified in logical map, fill logical
blocks not specified by the write operation with
zeroes.

For read operations, read chunk into req->buf first,
then copy relevant data into the buffers specified
by the read operations.

These operations are all functional, but have room
for future improvement.  For example, this patch
will issue a separate backing read/write operations
for each backing block in the chunk - this could be
optimized to coalesce operations where the backing
blocks are contiguous.

While here, clean up freeing bufspace in one of
the error paths - this needs to be freed using
spdk_dma_free instead.

Signed-off-by: Jim Harris <james.r.harris@intel.com>
Change-Id: I6dbf4fc9a8fdf0f5424b1f1f9178c79891c96d0d

Reviewed-on: https://review.gerrithub.io/434116
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Chandler-Test-Pool: SPDK Automated Test System <sys_sgsw@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
2018-12-13 14:55:39 +00:00

1038 lines
30 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/reduce.h"
#include "spdk/env.h"
#include "spdk/string.h"
#include "spdk/bit_array.h"
#include "spdk_internal/log.h"
#include "libpmem.h"
/* Always round up the size of the PM region to the nearest cacheline. */
#define REDUCE_PM_SIZE_ALIGNMENT 64
#define SPDK_REDUCE_SIGNATURE "SPDKREDU"
/* Offset into the backing device where the persistent memory file's path is stored. */
#define REDUCE_BACKING_DEV_PATH_OFFSET 4096
#define REDUCE_EMPTY_MAP_ENTRY -1ULL
#define REDUCE_NUM_VOL_REQUESTS 256
/* Structure written to offset 0 of both the pm file and the backing device. */
struct spdk_reduce_vol_superblock {
uint8_t signature[8];
struct spdk_reduce_vol_params params;
uint8_t reserved[4048];
};
SPDK_STATIC_ASSERT(sizeof(struct spdk_reduce_vol_superblock) == 4096, "size incorrect");
#define REDUCE_PATH_MAX 4096
/**
* Describes a persistent memory file used to hold metadata associated with a
* compressed volume.
*/
struct spdk_reduce_pm_file {
char path[REDUCE_PATH_MAX];
void *pm_buf;
int pm_is_pmem;
uint64_t size;
};
struct spdk_reduce_vol_request {
uint8_t *buf;
struct iovec *buf_iov;
struct iovec *iov;
struct spdk_reduce_vol *vol;
int reduce_errno;
int iovcnt;
int num_backing_ops;
uint64_t offset;
uint64_t length;
uint64_t chunk_map_index;
uint64_t *chunk;
spdk_reduce_vol_op_complete cb_fn;
void *cb_arg;
TAILQ_ENTRY(spdk_reduce_vol_request) tailq;
struct spdk_reduce_vol_cb_args backing_cb_args;
};
struct spdk_reduce_vol {
struct spdk_reduce_vol_params params;
uint32_t backing_io_units_per_chunk;
uint32_t backing_lba_per_io_unit;
uint32_t logical_blocks_per_chunk;
struct spdk_reduce_pm_file pm_file;
struct spdk_reduce_backing_dev *backing_dev;
struct spdk_reduce_vol_superblock *backing_super;
struct spdk_reduce_vol_superblock *pm_super;
uint64_t *pm_logical_map;
uint64_t *pm_chunk_maps;
struct spdk_bit_array *allocated_chunk_maps;
struct spdk_bit_array *allocated_backing_io_units;
struct spdk_reduce_vol_request *request_mem;
TAILQ_HEAD(, spdk_reduce_vol_request) requests;
uint8_t *bufspace;
struct iovec *buf_iov_mem;
};
/*
* Allocate extra metadata chunks and corresponding backing io units to account for
* outstanding IO in worst case scenario where logical map is completely allocated
* and no data can be compressed. We need extra chunks in this case to handle
* in-flight writes since reduce never writes data in place.
*/
#define REDUCE_NUM_EXTRA_CHUNKS 128
static void
_reduce_persist(struct spdk_reduce_vol *vol, const void *addr, size_t len)
{
if (vol->pm_file.pm_is_pmem) {
pmem_persist(addr, len);
} else {
pmem_msync(addr, len);
}
}
static inline uint64_t
divide_round_up(uint64_t num, uint64_t divisor)
{
return (num + divisor - 1) / divisor;
}
static uint64_t
_get_pm_logical_map_size(uint64_t vol_size, uint64_t chunk_size)
{
uint64_t chunks_in_logical_map, logical_map_size;
chunks_in_logical_map = vol_size / chunk_size;
logical_map_size = chunks_in_logical_map * sizeof(uint64_t);
/* Round up to next cacheline. */
return divide_round_up(logical_map_size, REDUCE_PM_SIZE_ALIGNMENT) * REDUCE_PM_SIZE_ALIGNMENT;
}
static uint64_t
_get_total_chunks(uint64_t vol_size, uint64_t chunk_size)
{
uint64_t num_chunks;
num_chunks = vol_size / chunk_size;
num_chunks += REDUCE_NUM_EXTRA_CHUNKS;
return num_chunks;
}
static uint64_t
_get_pm_total_chunks_size(uint64_t vol_size, uint64_t chunk_size, uint64_t backing_io_unit_size)
{
uint64_t io_units_per_chunk, num_chunks, total_chunks_size;
num_chunks = _get_total_chunks(vol_size, chunk_size);
io_units_per_chunk = chunk_size / backing_io_unit_size;
total_chunks_size = num_chunks * io_units_per_chunk * sizeof(uint64_t);
return divide_round_up(total_chunks_size, REDUCE_PM_SIZE_ALIGNMENT) * REDUCE_PM_SIZE_ALIGNMENT;
}
static uint64_t *
_reduce_vol_get_chunk_map(struct spdk_reduce_vol *vol, uint64_t chunk_map_index)
{
return vol->pm_chunk_maps + (chunk_map_index * vol->backing_io_units_per_chunk);
}
static int
_validate_vol_params(struct spdk_reduce_vol_params *params)
{
if (params->vol_size == 0 || params->chunk_size == 0 ||
params->backing_io_unit_size == 0 || params->logical_block_size == 0) {
return -EINVAL;
}
/* Chunk size must be an even multiple of the backing io unit size. */
if ((params->chunk_size % params->backing_io_unit_size) != 0) {
return -EINVAL;
}
/* Chunk size must be an even multiple of the logical block size. */
if ((params->chunk_size % params->logical_block_size) != 0) {
return -1;
}
/* Volume size must be an even multiple of the chunk size. */
if ((params->vol_size % params->chunk_size) != 0) {
return -EINVAL;
}
return 0;
}
int64_t
spdk_reduce_get_pm_file_size(struct spdk_reduce_vol_params *params)
{
uint64_t total_pm_size;
int rc;
rc = _validate_vol_params(params);
if (rc != 0) {
return rc;
}
total_pm_size = sizeof(struct spdk_reduce_vol_superblock);
total_pm_size += _get_pm_logical_map_size(params->vol_size, params->chunk_size);
total_pm_size += _get_pm_total_chunks_size(params->vol_size, params->chunk_size,
params->backing_io_unit_size);
return total_pm_size;
}
int64_t
spdk_reduce_get_backing_device_size(struct spdk_reduce_vol_params *params)
{
uint64_t total_backing_size, num_chunks;
int rc;
rc = _validate_vol_params(params);
if (rc != 0) {
return rc;
}
num_chunks = _get_total_chunks(params->vol_size, params->chunk_size);
total_backing_size = num_chunks * params->chunk_size;
total_backing_size += sizeof(struct spdk_reduce_vol_superblock);
return total_backing_size;
}
const struct spdk_uuid *
spdk_reduce_vol_get_uuid(struct spdk_reduce_vol *vol)
{
return &vol->params.uuid;
}
static void
_initialize_vol_pm_pointers(struct spdk_reduce_vol *vol)
{
/* Superblock is at the beginning of the pm file. */
vol->pm_super = (struct spdk_reduce_vol_superblock *)vol->pm_file.pm_buf;
/* Logical map immediately follows the super block. */
vol->pm_logical_map = (uint64_t *)(vol->pm_super + 1);
/* Chunks maps follow the logical map. */
vol->pm_chunk_maps = vol->pm_logical_map + (vol->params.vol_size / vol->params.chunk_size);
}
/* We need 2 iovs during load - one for the superblock, another for the path */
#define LOAD_IOV_COUNT 2
struct reduce_init_load_ctx {
struct spdk_reduce_vol *vol;
struct spdk_reduce_vol_cb_args backing_cb_args;
spdk_reduce_vol_op_with_handle_complete cb_fn;
void *cb_arg;
struct iovec iov[LOAD_IOV_COUNT];
void *path;
};
static int
_allocate_vol_requests(struct spdk_reduce_vol *vol)
{
struct spdk_reduce_vol_request *req;
int i;
vol->bufspace = spdk_dma_malloc(REDUCE_NUM_VOL_REQUESTS * vol->params.chunk_size, 64, NULL);
if (vol->bufspace == NULL) {
return -ENOMEM;
}
vol->request_mem = calloc(REDUCE_NUM_VOL_REQUESTS, sizeof(*req));
if (vol->request_mem == NULL) {
spdk_dma_free(vol->bufspace);
return -ENOMEM;
}
vol->buf_iov_mem = calloc(REDUCE_NUM_VOL_REQUESTS,
sizeof(struct iovec) * vol->backing_io_units_per_chunk);
if (vol->buf_iov_mem == NULL) {
free(vol->request_mem);
spdk_dma_free(vol->bufspace);
return -ENOMEM;
}
for (i = 0; i < REDUCE_NUM_VOL_REQUESTS; i++) {
req = &vol->request_mem[i];
TAILQ_INSERT_HEAD(&vol->requests, req, tailq);
req->buf_iov = &vol->buf_iov_mem[i * vol->backing_io_units_per_chunk];
req->buf = vol->bufspace + i * vol->params.chunk_size;
}
return 0;
}
static void
_init_load_cleanup(struct spdk_reduce_vol *vol, struct reduce_init_load_ctx *ctx)
{
if (ctx != NULL) {
spdk_dma_free(ctx->path);
free(ctx);
}
if (vol != NULL) {
spdk_dma_free(vol->backing_super);
spdk_bit_array_free(&vol->allocated_chunk_maps);
spdk_bit_array_free(&vol->allocated_backing_io_units);
free(vol->request_mem);
free(vol->buf_iov_mem);
spdk_dma_free(vol->bufspace);
free(vol);
}
}
static void
_init_write_super_cpl(void *cb_arg, int reduce_errno)
{
struct reduce_init_load_ctx *init_ctx = cb_arg;
int rc;
rc = _allocate_vol_requests(init_ctx->vol);
if (rc != 0) {
init_ctx->cb_fn(init_ctx->cb_arg, NULL, rc);
_init_load_cleanup(init_ctx->vol, init_ctx);
return;
}
init_ctx->cb_fn(init_ctx->cb_arg, init_ctx->vol, reduce_errno);
/* Only clean up the ctx - the vol has been passed to the application
* for use now that initialization was successful.
*/
_init_load_cleanup(NULL, init_ctx);
}
static void
_init_write_path_cpl(void *cb_arg, int reduce_errno)
{
struct reduce_init_load_ctx *init_ctx = cb_arg;
struct spdk_reduce_vol *vol = init_ctx->vol;
init_ctx->iov[0].iov_base = vol->backing_super;
init_ctx->iov[0].iov_len = sizeof(*vol->backing_super);
init_ctx->backing_cb_args.cb_fn = _init_write_super_cpl;
init_ctx->backing_cb_args.cb_arg = init_ctx;
vol->backing_dev->writev(vol->backing_dev, init_ctx->iov, 1,
0, sizeof(*vol->backing_super) / vol->backing_dev->blocklen,
&init_ctx->backing_cb_args);
}
static int
_allocate_bit_arrays(struct spdk_reduce_vol *vol)
{
uint64_t total_chunks, total_backing_io_units;
total_chunks = _get_total_chunks(vol->params.vol_size, vol->params.chunk_size);
vol->allocated_chunk_maps = spdk_bit_array_create(total_chunks);
total_backing_io_units = total_chunks * (vol->params.chunk_size / vol->params.backing_io_unit_size);
vol->allocated_backing_io_units = spdk_bit_array_create(total_backing_io_units);
if (vol->allocated_chunk_maps == NULL || vol->allocated_backing_io_units == NULL) {
return -ENOMEM;
}
/* Set backing io unit bits associated with metadata. */
spdk_bit_array_set(vol->allocated_backing_io_units, 0);
spdk_bit_array_set(vol->allocated_backing_io_units, 1);
return 0;
}
void
spdk_reduce_vol_init(struct spdk_reduce_vol_params *params,
struct spdk_reduce_backing_dev *backing_dev,
const char *pm_file_dir,
spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg)
{
struct spdk_reduce_vol *vol;
struct reduce_init_load_ctx *init_ctx;
int64_t size, size_needed;
size_t mapped_len;
int dir_len, max_dir_len, rc;
/* We need to append a path separator and the UUID to the supplied
* path.
*/
max_dir_len = REDUCE_PATH_MAX - SPDK_UUID_STRING_LEN - 1;
dir_len = strnlen(pm_file_dir, max_dir_len);
/* Strip trailing slash if the user provided one - we will add it back
* later when appending the filename.
*/
if (pm_file_dir[dir_len - 1] == '/') {
dir_len--;
}
if (dir_len == max_dir_len) {
SPDK_ERRLOG("pm_file_dir (%s) too long\n", pm_file_dir);
cb_fn(cb_arg, NULL, -EINVAL);
return;
}
rc = _validate_vol_params(params);
if (rc != 0) {
SPDK_ERRLOG("invalid vol params\n");
cb_fn(cb_arg, NULL, rc);
return;
}
size_needed = spdk_reduce_get_backing_device_size(params);
size = backing_dev->blockcnt * backing_dev->blocklen;
if (size_needed > size) {
SPDK_ERRLOG("backing device size %" PRIi64 " but %" PRIi64 " needed\n",
size, size_needed);
cb_fn(cb_arg, NULL, -EINVAL);
return;
}
if (size_needed > size) {
SPDK_ERRLOG("pm file size %" PRIi64 " but %" PRIi64 " needed\n",
size, size_needed);
cb_fn(cb_arg, NULL, -EINVAL);
return;
}
if (backing_dev->close == NULL || backing_dev->readv == NULL ||
backing_dev->writev == NULL || backing_dev->unmap == NULL) {
SPDK_ERRLOG("backing_dev function pointer not specified\n");
cb_fn(cb_arg, NULL, -EINVAL);
return;
}
vol = calloc(1, sizeof(*vol));
if (vol == NULL) {
cb_fn(cb_arg, NULL, -ENOMEM);
return;
}
vol->backing_super = spdk_dma_zmalloc(sizeof(*vol->backing_super), 0, NULL);
if (vol->backing_super == NULL) {
cb_fn(cb_arg, NULL, -ENOMEM);
_init_load_cleanup(vol, NULL);
return;
}
init_ctx = calloc(1, sizeof(*init_ctx));
if (init_ctx == NULL) {
cb_fn(cb_arg, NULL, -ENOMEM);
_init_load_cleanup(vol, NULL);
return;
}
init_ctx->path = spdk_dma_zmalloc(REDUCE_PATH_MAX, 0, NULL);
if (init_ctx->path == NULL) {
cb_fn(cb_arg, NULL, -ENOMEM);
_init_load_cleanup(vol, init_ctx);
return;
}
if (spdk_mem_all_zero(&params->uuid, sizeof(params->uuid))) {
spdk_uuid_generate(&params->uuid);
}
memcpy(vol->pm_file.path, pm_file_dir, dir_len);
vol->pm_file.path[dir_len] = '/';
spdk_uuid_fmt_lower(&vol->pm_file.path[dir_len + 1], SPDK_UUID_STRING_LEN,
&params->uuid);
vol->pm_file.size = spdk_reduce_get_pm_file_size(params);
vol->pm_file.pm_buf = pmem_map_file(vol->pm_file.path, vol->pm_file.size,
PMEM_FILE_CREATE | PMEM_FILE_EXCL, 0600,
&mapped_len, &vol->pm_file.pm_is_pmem);
if (vol->pm_file.pm_buf == NULL) {
SPDK_ERRLOG("could not pmem_map_file(%s): %s\n",
vol->pm_file.path, strerror(errno));
cb_fn(cb_arg, NULL, -errno);
_init_load_cleanup(vol, init_ctx);
return;
}
if (vol->pm_file.size != mapped_len) {
SPDK_ERRLOG("could not map entire pmem file (size=%" PRIu64 " mapped=%" PRIu64 ")\n",
vol->pm_file.size, mapped_len);
cb_fn(cb_arg, NULL, -ENOMEM);
_init_load_cleanup(vol, init_ctx);
return;
}
vol->backing_io_units_per_chunk = params->chunk_size / params->backing_io_unit_size;
vol->logical_blocks_per_chunk = params->chunk_size / params->logical_block_size;
vol->backing_lba_per_io_unit = params->backing_io_unit_size / backing_dev->blocklen;
memcpy(&vol->params, params, sizeof(*params));
rc = _allocate_bit_arrays(vol);
if (rc != 0) {
cb_fn(cb_arg, NULL, rc);
_init_load_cleanup(vol, init_ctx);
return;
}
vol->backing_dev = backing_dev;
memcpy(vol->backing_super->signature, SPDK_REDUCE_SIGNATURE,
sizeof(vol->backing_super->signature));
memcpy(&vol->backing_super->params, params, sizeof(*params));
_initialize_vol_pm_pointers(vol);
memcpy(vol->pm_super, vol->backing_super, sizeof(*vol->backing_super));
/* Writing 0xFF's is equivalent of filling it all with SPDK_EMPTY_MAP_ENTRY.
* Note that this writes 0xFF to not just the logical map but the chunk maps as well.
*/
memset(vol->pm_logical_map, 0xFF, vol->pm_file.size - sizeof(*vol->backing_super));
_reduce_persist(vol, vol->pm_file.pm_buf, vol->pm_file.size);
init_ctx->vol = vol;
init_ctx->cb_fn = cb_fn;
init_ctx->cb_arg = cb_arg;
memcpy(init_ctx->path, vol->pm_file.path, REDUCE_PATH_MAX);
init_ctx->iov[0].iov_base = init_ctx->path;
init_ctx->iov[0].iov_len = REDUCE_PATH_MAX;
init_ctx->backing_cb_args.cb_fn = _init_write_path_cpl;
init_ctx->backing_cb_args.cb_arg = init_ctx;
/* Write path to offset 4K on backing device - just after where the super
* block will be written. We wait until this is committed before writing the
* super block to guarantee we don't get the super block written without the
* the path if the system crashed in the middle of a write operation.
*/
vol->backing_dev->writev(vol->backing_dev, init_ctx->iov, 1,
REDUCE_BACKING_DEV_PATH_OFFSET / vol->backing_dev->blocklen,
REDUCE_PATH_MAX / vol->backing_dev->blocklen,
&init_ctx->backing_cb_args);
}
static void
_load_read_super_and_path_cpl(void *cb_arg, int reduce_errno)
{
struct reduce_init_load_ctx *load_ctx = cb_arg;
struct spdk_reduce_vol *vol = load_ctx->vol;
int64_t size, size_needed;
size_t mapped_len;
int rc;
if (memcmp(vol->backing_super->signature,
SPDK_REDUCE_SIGNATURE,
sizeof(vol->backing_super->signature)) != 0) {
/* This backing device isn't a libreduce backing device. */
rc = -EILSEQ;
goto error;
}
memcpy(&vol->params, &vol->backing_super->params, sizeof(vol->params));
vol->backing_io_units_per_chunk = vol->params.chunk_size / vol->params.backing_io_unit_size;
vol->logical_blocks_per_chunk = vol->params.chunk_size / vol->params.logical_block_size;
vol->backing_lba_per_io_unit = vol->params.backing_io_unit_size / vol->backing_dev->blocklen;
rc = _allocate_bit_arrays(vol);
if (rc != 0) {
goto error;
}
size_needed = spdk_reduce_get_backing_device_size(&vol->params);
size = vol->backing_dev->blockcnt * vol->backing_dev->blocklen;
if (size_needed > size) {
SPDK_ERRLOG("backing device size %" PRIi64 " but %" PRIi64 " expected\n",
size, size_needed);
rc = -EILSEQ;
goto error;
}
memcpy(vol->pm_file.path, load_ctx->path, sizeof(vol->pm_file.path));
vol->pm_file.size = spdk_reduce_get_pm_file_size(&vol->params);
vol->pm_file.pm_buf = pmem_map_file(vol->pm_file.path, 0, 0, 0, &mapped_len,
&vol->pm_file.pm_is_pmem);
if (vol->pm_file.pm_buf == NULL) {
SPDK_ERRLOG("could not pmem_map_file(%s): %s\n", vol->pm_file.path, strerror(errno));
rc = -errno;
goto error;
}
if (vol->pm_file.size != mapped_len) {
SPDK_ERRLOG("could not map entire pmem file (size=%" PRIu64 " mapped=%" PRIu64 ")\n",
vol->pm_file.size, mapped_len);
rc = -ENOMEM;
goto error;
}
rc = _allocate_vol_requests(vol);
if (rc != 0) {
goto error;
}
_initialize_vol_pm_pointers(vol);
load_ctx->cb_fn(load_ctx->cb_arg, vol, 0);
/* Only clean up the ctx - the vol has been passed to the application
* for use now that volume load was successful.
*/
_init_load_cleanup(NULL, load_ctx);
return;
error:
load_ctx->cb_fn(load_ctx->cb_arg, NULL, rc);
_init_load_cleanup(vol, load_ctx);
}
void
spdk_reduce_vol_load(struct spdk_reduce_backing_dev *backing_dev,
spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg)
{
struct spdk_reduce_vol *vol;
struct reduce_init_load_ctx *load_ctx;
if (backing_dev->close == NULL || backing_dev->readv == NULL ||
backing_dev->writev == NULL || backing_dev->unmap == NULL) {
SPDK_ERRLOG("backing_dev function pointer not specified\n");
cb_fn(cb_arg, NULL, -EINVAL);
return;
}
vol = calloc(1, sizeof(*vol));
if (vol == NULL) {
cb_fn(cb_arg, NULL, -ENOMEM);
return;
}
vol->backing_super = spdk_dma_zmalloc(sizeof(*vol->backing_super), 64, NULL);
if (vol->backing_super == NULL) {
_init_load_cleanup(vol, NULL);
cb_fn(cb_arg, NULL, -ENOMEM);
return;
}
vol->backing_dev = backing_dev;
load_ctx = calloc(1, sizeof(*load_ctx));
if (load_ctx == NULL) {
_init_load_cleanup(vol, NULL);
cb_fn(cb_arg, NULL, -ENOMEM);
return;
}
load_ctx->path = spdk_dma_zmalloc(REDUCE_PATH_MAX, 64, NULL);
if (load_ctx->path == NULL) {
_init_load_cleanup(vol, load_ctx);
cb_fn(cb_arg, NULL, -ENOMEM);
return;
}
load_ctx->vol = vol;
load_ctx->cb_fn = cb_fn;
load_ctx->cb_arg = cb_arg;
load_ctx->iov[0].iov_base = vol->backing_super;
load_ctx->iov[0].iov_len = sizeof(*vol->backing_super);
load_ctx->iov[1].iov_base = load_ctx->path;
load_ctx->iov[1].iov_len = REDUCE_PATH_MAX;
load_ctx->backing_cb_args.cb_fn = _load_read_super_and_path_cpl;
load_ctx->backing_cb_args.cb_arg = load_ctx;
vol->backing_dev->readv(vol->backing_dev, load_ctx->iov, LOAD_IOV_COUNT, 0,
(sizeof(*vol->backing_super) + REDUCE_PATH_MAX) /
vol->backing_dev->blocklen,
&load_ctx->backing_cb_args);
}
void
spdk_reduce_vol_unload(struct spdk_reduce_vol *vol,
spdk_reduce_vol_op_complete cb_fn, void *cb_arg)
{
if (vol == NULL) {
/* This indicates a programming error. */
assert(false);
cb_fn(cb_arg, -EINVAL);
return;
}
pmem_unmap(vol->pm_file.pm_buf, vol->pm_file.size);
vol->backing_dev->close(vol->backing_dev);
_init_load_cleanup(vol, NULL);
cb_fn(cb_arg, 0);
}
static bool
_request_spans_chunk_boundary(struct spdk_reduce_vol *vol, uint64_t offset, uint64_t length)
{
uint64_t start_chunk, end_chunk;
start_chunk = offset / vol->logical_blocks_per_chunk;
end_chunk = (offset + length - 1) / vol->logical_blocks_per_chunk;
return (start_chunk != end_chunk);
}
typedef void (*reduce_request_fn)(void *_req, int reduce_errno);
static void
_reduce_vol_complete_req(struct spdk_reduce_vol_request *req, int reduce_errno)
{
req->cb_fn(req->cb_arg, reduce_errno);
TAILQ_INSERT_HEAD(&req->vol->requests, req, tailq);
}
static void
_write_complete_req(void *_req, int reduce_errno)
{
struct spdk_reduce_vol_request *req = _req;
struct spdk_reduce_vol *vol = req->vol;
uint64_t logical_map_index, old_chunk_map_index;
uint64_t *old_chunk;
uint32_t i;
if (reduce_errno != 0) {
req->reduce_errno = reduce_errno;
}
assert(req->num_backing_ops > 0);
if (--req->num_backing_ops > 0) {
return;
}
if (req->reduce_errno != 0) {
_reduce_vol_complete_req(req, req->reduce_errno);
return;
}
logical_map_index = req->offset / vol->logical_blocks_per_chunk;
old_chunk_map_index = vol->pm_logical_map[logical_map_index];
old_chunk = _reduce_vol_get_chunk_map(vol, old_chunk_map_index);
for (i = 0; i < vol->backing_io_units_per_chunk; i++) {
if (old_chunk[i] == REDUCE_EMPTY_MAP_ENTRY) {
break;
}
assert(spdk_bit_array_get(vol->allocated_backing_io_units, old_chunk[i]) == true);
spdk_bit_array_clear(vol->allocated_backing_io_units, old_chunk[i]);
old_chunk[i] = REDUCE_EMPTY_MAP_ENTRY;
}
spdk_bit_array_clear(vol->allocated_chunk_maps, old_chunk_map_index);
/*
* We don't need to persist the clearing of the old chunk map here. The old chunk map
* becomes invalid after we update the logical map, since the old chunk map will no
* longer have a reference to it in the logical map.
*/
/* Persist the new chunk map. This must be persisted before we update the logical map. */
_reduce_persist(vol, req->chunk, sizeof(uint64_t) * vol->backing_io_units_per_chunk);
vol->pm_logical_map[logical_map_index] = req->chunk_map_index;
_reduce_persist(vol, &vol->pm_logical_map[logical_map_index], sizeof(uint64_t));
_reduce_vol_complete_req(req, 0);
}
static void
_issue_backing_ops(struct spdk_reduce_vol_request *req, struct spdk_reduce_vol *vol,
reduce_request_fn next_fn, bool is_write)
{
uint32_t i;
req->num_backing_ops = vol->backing_io_units_per_chunk;
req->backing_cb_args.cb_fn = next_fn;
req->backing_cb_args.cb_arg = req;
for (i = 0; i < vol->backing_io_units_per_chunk; i++) {
req->buf_iov[i].iov_base = req->buf + i * vol->params.backing_io_unit_size;
req->buf_iov[i].iov_len = vol->params.backing_io_unit_size;
if (is_write) {
vol->backing_dev->writev(vol->backing_dev, &req->buf_iov[i], 1,
req->chunk[i] * vol->backing_lba_per_io_unit,
vol->backing_lba_per_io_unit, &req->backing_cb_args);
} else {
vol->backing_dev->readv(vol->backing_dev, &req->buf_iov[i], 1,
req->chunk[i] * vol->backing_lba_per_io_unit,
vol->backing_lba_per_io_unit, &req->backing_cb_args);
}
}
}
static void
_reduce_vol_write_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn)
{
struct spdk_reduce_vol *vol = req->vol;
uint32_t i;
req->chunk_map_index = spdk_bit_array_find_first_clear(vol->allocated_chunk_maps, 0);
/* TODO: fail if no chunk map found - but really this should not happen if we
* size the number of requests similarly to number of extra chunk maps
*/
assert(req->chunk_map_index != UINT32_MAX);
spdk_bit_array_set(vol->allocated_chunk_maps, req->chunk_map_index);
req->chunk = _reduce_vol_get_chunk_map(vol, req->chunk_map_index);
for (i = 0; i < vol->backing_io_units_per_chunk; i++) {
req->chunk[i] = spdk_bit_array_find_first_clear(vol->allocated_backing_io_units, 0);
/* TODO: fail if no backing block found - but really this should also not
* happen (see comment above).
*/
assert(req->chunk[i] != UINT32_MAX);
spdk_bit_array_set(vol->allocated_backing_io_units, req->chunk[i]);
}
_issue_backing_ops(req, vol, next_fn, true /* write */);
}
static void
_write_read_done(void *_req, int reduce_errno)
{
struct spdk_reduce_vol_request *req = _req;
uint64_t chunk_offset;
uint8_t *buf;
int i;
if (reduce_errno != 0) {
req->reduce_errno = reduce_errno;
}
assert(req->num_backing_ops > 0);
if (--req->num_backing_ops > 0) {
return;
}
if (req->reduce_errno != 0) {
_reduce_vol_complete_req(req, req->reduce_errno);
return;
}
chunk_offset = req->offset % req->vol->logical_blocks_per_chunk;
buf = req->buf + chunk_offset * req->vol->params.logical_block_size;
for (i = 0; i < req->iovcnt; i++) {
memcpy(buf, req->iov[i].iov_base, req->iov[i].iov_len);
buf += req->iov[i].iov_len;
}
_reduce_vol_write_chunk(req, _write_complete_req);
}
static void
_read_read_done(void *_req, int reduce_errno)
{
struct spdk_reduce_vol_request *req = _req;
uint64_t chunk_offset;
uint8_t *buf;
int i;
if (reduce_errno != 0) {
req->reduce_errno = reduce_errno;
}
assert(req->num_backing_ops > 0);
if (--req->num_backing_ops > 0) {
return;
}
if (req->reduce_errno != 0) {
_reduce_vol_complete_req(req, req->reduce_errno);
return;
}
chunk_offset = req->offset % req->vol->logical_blocks_per_chunk;
buf = req->buf + chunk_offset * req->vol->params.logical_block_size;
for (i = 0; i < req->iovcnt; i++) {
memcpy(req->iov[i].iov_base, buf, req->iov[i].iov_len);
buf += req->iov[i].iov_len;
}
_reduce_vol_complete_req(req, 0);
}
static void
_reduce_vol_read_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn)
{
struct spdk_reduce_vol *vol = req->vol;
uint64_t chunk;
chunk = req->offset / vol->logical_blocks_per_chunk;
req->chunk_map_index = vol->pm_logical_map[chunk];
assert(req->chunk_map_index != UINT32_MAX);
req->chunk = _reduce_vol_get_chunk_map(vol, req->chunk_map_index);
_issue_backing_ops(req, vol, next_fn, false /* read */);
}
static bool
_iov_array_is_valid(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt,
uint64_t length)
{
uint64_t size = 0;
int i;
for (i = 0; i < iovcnt; i++) {
size += iov[i].iov_len;
}
return size == (length * vol->params.logical_block_size);
}
void
spdk_reduce_vol_readv(struct spdk_reduce_vol *vol,
struct iovec *iov, int iovcnt, uint64_t offset, uint64_t length,
spdk_reduce_vol_op_complete cb_fn, void *cb_arg)
{
struct spdk_reduce_vol_request *req;
uint64_t chunk;
int i;
if (length == 0) {
cb_fn(cb_arg, 0);
return;
}
if (_request_spans_chunk_boundary(vol, offset, length)) {
cb_fn(cb_arg, -EINVAL);
return;
}
if (!_iov_array_is_valid(vol, iov, iovcnt, length)) {
cb_fn(cb_arg, -EINVAL);
return;
}
chunk = offset / vol->logical_blocks_per_chunk;
if (vol->pm_logical_map[chunk] == REDUCE_EMPTY_MAP_ENTRY) {
/*
* This chunk hasn't been allocated. So treat the data as all
* zeroes for this chunk - do the memset and immediately complete
* the operation.
*/
for (i = 0; i < iovcnt; i++) {
memset(iov[i].iov_base, 0, iov[i].iov_len);
}
cb_fn(cb_arg, 0);
return;
}
req = TAILQ_FIRST(&vol->requests);
if (req == NULL) {
cb_fn(cb_arg, -ENOMEM);
return;
}
TAILQ_REMOVE(&vol->requests, req, tailq);
req->vol = vol;
req->iov = iov;
req->iovcnt = iovcnt;
req->offset = offset;
req->length = length;
req->cb_fn = cb_fn;
req->cb_arg = cb_arg;
_reduce_vol_read_chunk(req, _read_read_done);
}
void
spdk_reduce_vol_writev(struct spdk_reduce_vol *vol,
struct iovec *iov, int iovcnt, uint64_t offset, uint64_t length,
spdk_reduce_vol_op_complete cb_fn, void *cb_arg)
{
struct spdk_reduce_vol_request *req;
uint64_t chunk, chunk_offset;
uint32_t lbsize, lb_per_chunk;
int i;
uint8_t *buf;
if (length == 0) {
cb_fn(cb_arg, 0);
return;
}
if (_request_spans_chunk_boundary(vol, offset, length)) {
cb_fn(cb_arg, -EINVAL);
return;
}
if (!_iov_array_is_valid(vol, iov, iovcnt, length)) {
cb_fn(cb_arg, -EINVAL);
return;
}
req = TAILQ_FIRST(&vol->requests);
if (req == NULL) {
cb_fn(cb_arg, -ENOMEM);
return;
}
TAILQ_REMOVE(&vol->requests, req, tailq);
req->vol = vol;
req->iov = iov;
req->iovcnt = iovcnt;
req->offset = offset;
req->length = length;
req->cb_fn = cb_fn;
req->cb_arg = cb_arg;
chunk = offset / vol->logical_blocks_per_chunk;
if (vol->pm_logical_map[chunk] != REDUCE_EMPTY_MAP_ENTRY) {
/* Read old chunk, then overwrite with data from this write operation.
* TODO: bypass reading old chunk if this write operation overwrites
* the entire chunk.
*/
_reduce_vol_read_chunk(req, _write_read_done);
return;
}
buf = req->buf;
lbsize = vol->params.logical_block_size;
lb_per_chunk = vol->logical_blocks_per_chunk;
/* Note: we must zero out parts of req->buf not specified by this write operation. */
chunk_offset = offset % lb_per_chunk;
if (chunk_offset != 0) {
memset(buf, 0, chunk_offset * lbsize);
buf += chunk_offset * lbsize;
}
for (i = 0; i < iovcnt; i++) {
memcpy(buf, iov[i].iov_base, iov[i].iov_len);
buf += iov[i].iov_len;
}
chunk_offset += length;
if (chunk_offset != lb_per_chunk) {
memset(buf, 0, (lb_per_chunk - chunk_offset) * lbsize);
}
_reduce_vol_write_chunk(req, _write_complete_req);
}
SPDK_LOG_REGISTER_COMPONENT("reduce", SPDK_LOG_REDUCE)