Spdk/lib/bdev/virtio/rte_virtio/virtio_pci.c
Dariusz Stojaczyk 1f5316e95c rte_virtio: cleanup feature negotiation
Moved virtio backend specific code out
of common feature negotiation path.

virtio-pci features are stored in PCI
register. Before feature negotiation
they can be considered device (host)
features. They have to be negotiated
with local features and written back
into the very same register.

For virtio-user, the situation is a
bit different - vhost-user protocol
contains two feature-related commands
GET_FEATURES and SET_FEATURES. While
SET_ sends already negotiated features,
GET_ always returns device (host)
features.

Previously, we used to store native
device (host) features in local
variables to (ineptly) make the
negotiation path the same for
virtio-pci and virtio-user.

Instead of fixing this functionality,
it has been removed. Now, the
vtpci->get_features might be either
negotiated or not. This is now stated
in this function's doc.

This solution doesn't have any
drawbacks and simplifies the code.

Change-Id: I270e9cad8baaeae61b58992ee06e9069eac10aaf
Signed-off-by: Dariusz Stojaczyk <dariuszx.stojaczyk@intel.com>
Reviewed-on: https://review.gerrithub.io/381472
Tested-by: SPDK Automated Test System <sys_sgsw@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com>
2017-10-06 17:15:19 -04:00

816 lines
21 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#ifdef RTE_EXEC_ENV_LINUXAPP
#include <dirent.h>
#include <fcntl.h>
#endif
#include <linux/virtio_scsi.h>
#include <rte_io.h>
#include "virtio_pci.h"
#include "virtio_logs.h"
#include "virtio_queue.h"
struct virtio_driver g_virtio_driver = {
.init_ctrlrs = TAILQ_HEAD_INITIALIZER(g_virtio_driver.init_ctrlrs),
.attached_ctrlrs = TAILQ_HEAD_INITIALIZER(g_virtio_driver.attached_ctrlrs),
};
/*
* Following macros are derived from linux/pci_regs.h, however,
* we can't simply include that header here, as there is no such
* file for non-Linux platform.
*/
#define PCI_CAPABILITY_LIST 0x34
#define PCI_CAP_ID_VNDR 0x09
#define PCI_CAP_ID_MSIX 0x11
/*
* The remaining space is defined by each driver as the per-driver
* configuration space.
*/
#define VIRTIO_PCI_CONFIG(hw) (((hw)->use_msix) ? 24 : 20)
#define virtio_dev_get_hw(hw) \
((struct virtio_hw *)((uintptr_t)(hw) - offsetof(struct virtio_hw, vdev)))
static inline int
check_vq_phys_addr_ok(struct virtqueue *vq)
{
/* Virtio PCI device VIRTIO_PCI_QUEUE_PF register is 32bit,
* and only accepts 32 bit page frame number.
* Check if the allocated physical memory exceeds 16TB.
*/
if ((vq->vq_ring_mem + vq->vq_ring_size - 1) >>
(VIRTIO_PCI_QUEUE_ADDR_SHIFT + 32)) {
PMD_INIT_LOG(ERR, "vring address shouldn't be above 16TB!");
return 0;
}
return 1;
}
static struct rte_pci_ioport *
vtpci_io(struct virtio_dev *vdev)
{
return &g_virtio_driver.internal[vdev->id].io;
}
static void
free_virtio_hw(struct virtio_dev *dev)
{
struct virtio_hw *hw = virtio_dev_get_hw(dev);
unsigned i;
for (i = 0; i < 6; ++i) {
if (hw->pci_bar[i].vaddr == NULL) {
continue;
}
spdk_pci_device_unmap_bar(hw->pci_dev, i, hw->pci_bar[i].vaddr);
}
free(hw);
}
/*
* Since we are in legacy mode:
* http://ozlabs.org/~rusty/virtio-spec/virtio-0.9.5.pdf
*
* "Note that this is possible because while the virtio header is PCI (i.e.
* little) endian, the device-specific region is encoded in the native endian of
* the guest (where such distinction is applicable)."
*
* For powerpc which supports both, qemu supposes that cpu is big endian and
* enforces this for the virtio-net stuff.
*/
static void
legacy_read_dev_config(struct virtio_dev *dev, size_t offset,
void *dst, int length)
{
struct virtio_hw *hw = virtio_dev_get_hw(dev);
#ifdef RTE_ARCH_PPC_64
int size;
while (length > 0) {
if (length >= 4) {
size = 4;
rte_pci_ioport_read(vtpci_io(dev), dst, size,
VIRTIO_PCI_CONFIG(dev) + offset);
*(uint32_t *)dst = rte_be_to_cpu_32(*(uint32_t *)dst);
} else if (length >= 2) {
size = 2;
rte_pci_ioport_read(vtpci_io(dev), dst, size,
VIRTIO_PCI_CONFIG(dev) + offset);
*(uint16_t *)dst = rte_be_to_cpu_16(*(uint16_t *)dst);
} else {
size = 1;
rte_pci_ioport_read(vtpci_io(dev), dst, size,
VIRTIO_PCI_CONFIG(dev) + offset);
}
dst = (char *)dst + size;
offset += size;
length -= size;
}
#else
rte_pci_ioport_read(vtpci_io(dev), dst, length,
VIRTIO_PCI_CONFIG(hw) + offset);
#endif
}
static void
legacy_write_dev_config(struct virtio_dev *dev, size_t offset,
const void *src, int length)
{
struct virtio_hw *hw = virtio_dev_get_hw(dev);
#ifdef RTE_ARCH_PPC_64
union {
uint32_t u32;
uint16_t u16;
} tmp;
int size;
while (length > 0) {
if (length >= 4) {
size = 4;
tmp.u32 = rte_cpu_to_be_32(*(const uint32_t *)src);
rte_pci_ioport_write(vtpci_io(hw), &tmp.u32, size,
VIRTIO_PCI_CONFIG(hw) + offset);
} else if (length >= 2) {
size = 2;
tmp.u16 = rte_cpu_to_be_16(*(const uint16_t *)src);
rte_pci_ioport_write(vtpci_io(hw), &tmp.u16, size,
VIRTIO_PCI_CONFIG(hw) + offset);
} else {
size = 1;
rte_pci_ioport_write(vtpci_io(hw), src, size,
VIRTIO_PCI_CONFIG(hw) + offset);
}
src = (const char *)src + size;
offset += size;
length -= size;
}
#else
rte_pci_ioport_write(vtpci_io(dev), src, length,
VIRTIO_PCI_CONFIG(hw) + offset);
#endif
}
static uint64_t
legacy_get_features(struct virtio_dev *dev)
{
uint32_t dst;
rte_pci_ioport_read(vtpci_io(dev), &dst, 4, VIRTIO_PCI_HOST_FEATURES);
return dst;
}
static int
legacy_set_features(struct virtio_dev *dev, uint64_t features)
{
if ((features >> 32) != 0) {
PMD_DRV_LOG(ERR,
"only 32 bit features are allowed for legacy virtio!");
return -1;
}
rte_pci_ioport_write(vtpci_io(dev), &features, 4,
VIRTIO_PCI_GUEST_FEATURES);
dev->negotiated_features = features;
return 0;
}
static uint8_t
legacy_get_status(struct virtio_dev *dev)
{
uint8_t dst;
rte_pci_ioport_read(vtpci_io(dev), &dst, 1, VIRTIO_PCI_STATUS);
return dst;
}
static void
legacy_set_status(struct virtio_dev *dev, uint8_t status)
{
rte_pci_ioport_write(vtpci_io(dev), &status, 1, VIRTIO_PCI_STATUS);
}
static uint8_t
legacy_get_isr(struct virtio_dev *dev)
{
uint8_t dst;
rte_pci_ioport_read(vtpci_io(dev), &dst, 1, VIRTIO_PCI_ISR);
return dst;
}
/* Enable one vector (0) for Link State Intrerrupt */
static uint16_t
legacy_set_config_irq(struct virtio_dev *dev, uint16_t vec)
{
uint16_t dst;
rte_pci_ioport_write(vtpci_io(dev), &vec, 2, VIRTIO_MSI_CONFIG_VECTOR);
rte_pci_ioport_read(vtpci_io(dev), &dst, 2, VIRTIO_MSI_CONFIG_VECTOR);
return dst;
}
static uint16_t
legacy_set_queue_irq(struct virtio_dev *dev, struct virtqueue *vq, uint16_t vec)
{
uint16_t dst;
rte_pci_ioport_write(vtpci_io(dev), &vq->vq_queue_index, 2,
VIRTIO_PCI_QUEUE_SEL);
rte_pci_ioport_write(vtpci_io(dev), &vec, 2, VIRTIO_MSI_QUEUE_VECTOR);
rte_pci_ioport_read(vtpci_io(dev), &dst, 2, VIRTIO_MSI_QUEUE_VECTOR);
return dst;
}
static uint16_t
legacy_get_queue_num(struct virtio_dev *dev, uint16_t queue_id)
{
uint16_t dst;
rte_pci_ioport_write(vtpci_io(dev), &queue_id, 2, VIRTIO_PCI_QUEUE_SEL);
rte_pci_ioport_read(vtpci_io(dev), &dst, 2, VIRTIO_PCI_QUEUE_NUM);
return dst;
}
static int
legacy_setup_queue(struct virtio_dev *dev, struct virtqueue *vq)
{
uint32_t src;
if (!check_vq_phys_addr_ok(vq))
return -1;
rte_pci_ioport_write(vtpci_io(dev), &vq->vq_queue_index, 2,
VIRTIO_PCI_QUEUE_SEL);
src = vq->vq_ring_mem >> VIRTIO_PCI_QUEUE_ADDR_SHIFT;
rte_pci_ioport_write(vtpci_io(dev), &src, 4, VIRTIO_PCI_QUEUE_PFN);
return 0;
}
static void
legacy_del_queue(struct virtio_dev *dev, struct virtqueue *vq)
{
uint32_t src = 0;
rte_pci_ioport_write(vtpci_io(dev), &vq->vq_queue_index, 2,
VIRTIO_PCI_QUEUE_SEL);
rte_pci_ioport_write(vtpci_io(dev), &src, 4, VIRTIO_PCI_QUEUE_PFN);
}
static void
legacy_notify_queue(struct virtio_dev *dev, struct virtqueue *vq)
{
rte_pci_ioport_write(vtpci_io(dev), &vq->vq_queue_index, 2,
VIRTIO_PCI_QUEUE_NOTIFY);
}
const struct virtio_pci_ops legacy_ops = {
.read_dev_cfg = legacy_read_dev_config,
.write_dev_cfg = legacy_write_dev_config,
.get_status = legacy_get_status,
.set_status = legacy_set_status,
.get_features = legacy_get_features,
.set_features = legacy_set_features,
.get_isr = legacy_get_isr,
.set_config_irq = legacy_set_config_irq,
.free_vdev = free_virtio_hw,
.set_queue_irq = legacy_set_queue_irq,
.get_queue_num = legacy_get_queue_num,
.setup_queue = legacy_setup_queue,
.del_queue = legacy_del_queue,
.notify_queue = legacy_notify_queue,
};
static inline void
io_write64_twopart(uint64_t val, uint32_t *lo, uint32_t *hi)
{
rte_write32(val & ((1ULL << 32) - 1), lo);
rte_write32(val >> 32, hi);
}
static void
modern_read_dev_config(struct virtio_dev *dev, size_t offset,
void *dst, int length)
{
struct virtio_hw *hw = virtio_dev_get_hw(dev);
int i;
uint8_t *p;
uint8_t old_gen, new_gen;
do {
old_gen = rte_read8(&hw->common_cfg->config_generation);
p = dst;
for (i = 0; i < length; i++)
*p++ = rte_read8((uint8_t *)hw->dev_cfg + offset + i);
new_gen = rte_read8(&hw->common_cfg->config_generation);
} while (old_gen != new_gen);
}
static void
modern_write_dev_config(struct virtio_dev *dev, size_t offset,
const void *src, int length)
{
struct virtio_hw *hw = virtio_dev_get_hw(dev);
int i;
const uint8_t *p = src;
for (i = 0; i < length; i++)
rte_write8((*p++), (((uint8_t *)hw->dev_cfg) + offset + i));
}
static uint64_t
modern_get_features(struct virtio_dev *dev)
{
struct virtio_hw *hw = virtio_dev_get_hw(dev);
uint32_t features_lo, features_hi;
rte_write32(0, &hw->common_cfg->device_feature_select);
features_lo = rte_read32(&hw->common_cfg->device_feature);
rte_write32(1, &hw->common_cfg->device_feature_select);
features_hi = rte_read32(&hw->common_cfg->device_feature);
return ((uint64_t)features_hi << 32) | features_lo;
}
static int
modern_set_features(struct virtio_dev *dev, uint64_t features)
{
struct virtio_hw *hw = virtio_dev_get_hw(dev);
if ((features & (1ULL << VIRTIO_F_VERSION_1)) == 0) {
PMD_INIT_LOG(ERR,
"VIRTIO_F_VERSION_1 feature is not enabled.");
return -1;
}
rte_write32(0, &hw->common_cfg->guest_feature_select);
rte_write32(features & ((1ULL << 32) - 1),
&hw->common_cfg->guest_feature);
rte_write32(1, &hw->common_cfg->guest_feature_select);
rte_write32(features >> 32,
&hw->common_cfg->guest_feature);
dev->negotiated_features = features;
return 0;
}
static uint8_t
modern_get_status(struct virtio_dev *dev)
{
struct virtio_hw *hw = virtio_dev_get_hw(dev);
return rte_read8(&hw->common_cfg->device_status);
}
static void
modern_set_status(struct virtio_dev *dev, uint8_t status)
{
struct virtio_hw *hw = virtio_dev_get_hw(dev);
rte_write8(status, &hw->common_cfg->device_status);
}
static uint8_t
modern_get_isr(struct virtio_dev *dev)
{
struct virtio_hw *hw = virtio_dev_get_hw(dev);
return rte_read8(hw->isr);
}
static uint16_t
modern_set_config_irq(struct virtio_dev *dev, uint16_t vec)
{
struct virtio_hw *hw = virtio_dev_get_hw(dev);
rte_write16(vec, &hw->common_cfg->msix_config);
return rte_read16(&hw->common_cfg->msix_config);
}
static uint16_t
modern_set_queue_irq(struct virtio_dev *dev, struct virtqueue *vq, uint16_t vec)
{
struct virtio_hw *hw = virtio_dev_get_hw(dev);
rte_write16(vq->vq_queue_index, &hw->common_cfg->queue_select);
rte_write16(vec, &hw->common_cfg->queue_msix_vector);
return rte_read16(&hw->common_cfg->queue_msix_vector);
}
static uint16_t
modern_get_queue_num(struct virtio_dev *dev, uint16_t queue_id)
{
struct virtio_hw *hw = virtio_dev_get_hw(dev);
rte_write16(queue_id, &hw->common_cfg->queue_select);
return rte_read16(&hw->common_cfg->queue_size);
}
static int
modern_setup_queue(struct virtio_dev *dev, struct virtqueue *vq)
{
struct virtio_hw *hw = virtio_dev_get_hw(dev);
uint64_t desc_addr, avail_addr, used_addr;
uint16_t notify_off;
if (!check_vq_phys_addr_ok(vq))
return -1;
desc_addr = vq->vq_ring_mem;
avail_addr = desc_addr + vq->vq_nentries * sizeof(struct vring_desc);
used_addr = RTE_ALIGN_CEIL(avail_addr + offsetof(struct vring_avail,
ring[vq->vq_nentries]),
VIRTIO_PCI_VRING_ALIGN);
rte_write16(vq->vq_queue_index, &hw->common_cfg->queue_select);
io_write64_twopart(desc_addr, &hw->common_cfg->queue_desc_lo,
&hw->common_cfg->queue_desc_hi);
io_write64_twopart(avail_addr, &hw->common_cfg->queue_avail_lo,
&hw->common_cfg->queue_avail_hi);
io_write64_twopart(used_addr, &hw->common_cfg->queue_used_lo,
&hw->common_cfg->queue_used_hi);
notify_off = rte_read16(&hw->common_cfg->queue_notify_off);
vq->notify_addr = (void *)((uint8_t *)hw->notify_base +
notify_off * hw->notify_off_multiplier);
rte_write16(1, &hw->common_cfg->queue_enable);
PMD_INIT_LOG(DEBUG, "queue %u addresses:", vq->vq_queue_index);
PMD_INIT_LOG(DEBUG, "\t desc_addr: %" PRIx64, desc_addr);
PMD_INIT_LOG(DEBUG, "\t aval_addr: %" PRIx64, avail_addr);
PMD_INIT_LOG(DEBUG, "\t used_addr: %" PRIx64, used_addr);
PMD_INIT_LOG(DEBUG, "\t notify addr: %p (notify offset: %u)",
vq->notify_addr, notify_off);
return 0;
}
static void
modern_del_queue(struct virtio_dev *dev, struct virtqueue *vq)
{
struct virtio_hw *hw = virtio_dev_get_hw(dev);
rte_write16(vq->vq_queue_index, &hw->common_cfg->queue_select);
io_write64_twopart(0, &hw->common_cfg->queue_desc_lo,
&hw->common_cfg->queue_desc_hi);
io_write64_twopart(0, &hw->common_cfg->queue_avail_lo,
&hw->common_cfg->queue_avail_hi);
io_write64_twopart(0, &hw->common_cfg->queue_used_lo,
&hw->common_cfg->queue_used_hi);
rte_write16(0, &hw->common_cfg->queue_enable);
}
static void
modern_notify_queue(struct virtio_dev *dev __rte_unused, struct virtqueue *vq)
{
rte_write16(vq->vq_queue_index, vq->notify_addr);
}
const struct virtio_pci_ops modern_ops = {
.read_dev_cfg = modern_read_dev_config,
.write_dev_cfg = modern_write_dev_config,
.get_status = modern_get_status,
.set_status = modern_set_status,
.get_features = modern_get_features,
.set_features = modern_set_features,
.get_isr = modern_get_isr,
.set_config_irq = modern_set_config_irq,
.free_vdev = free_virtio_hw,
.set_queue_irq = modern_set_queue_irq,
.get_queue_num = modern_get_queue_num,
.setup_queue = modern_setup_queue,
.del_queue = modern_del_queue,
.notify_queue = modern_notify_queue,
};
void
vtpci_read_dev_config(struct virtio_dev *dev, size_t offset,
void *dst, int length)
{
vtpci_ops(dev)->read_dev_cfg(dev, offset, dst, length);
}
void
vtpci_write_dev_config(struct virtio_dev *dev, size_t offset,
const void *src, int length)
{
vtpci_ops(dev)->write_dev_cfg(dev, offset, src, length);
}
void
vtpci_reset(struct virtio_dev *dev)
{
vtpci_ops(dev)->set_status(dev, VIRTIO_CONFIG_STATUS_RESET);
/* flush status write */
vtpci_ops(dev)->get_status(dev);
}
void
vtpci_reinit_complete(struct virtio_dev *dev)
{
vtpci_set_status(dev, VIRTIO_CONFIG_STATUS_DRIVER_OK);
}
void
vtpci_set_status(struct virtio_dev *dev, uint8_t status)
{
if (status != VIRTIO_CONFIG_STATUS_RESET)
status |= vtpci_ops(dev)->get_status(dev);
vtpci_ops(dev)->set_status(dev, status);
}
uint8_t
vtpci_get_status(struct virtio_dev *dev)
{
return vtpci_ops(dev)->get_status(dev);
}
uint8_t
vtpci_isr(struct virtio_dev *dev)
{
return vtpci_ops(dev)->get_isr(dev);
}
static void *
get_cfg_addr(struct virtio_hw *hw, struct virtio_pci_cap *cap)
{
uint8_t bar = cap->bar;
uint32_t length = cap->length;
uint32_t offset = cap->offset;
if (bar > 5) {
PMD_INIT_LOG(ERR, "invalid bar: %u", bar);
return NULL;
}
if (offset + length < offset) {
PMD_INIT_LOG(ERR, "offset(%u) + length(%u) overflows",
offset, length);
return NULL;
}
if (offset + length > hw->pci_bar[bar].len) {
PMD_INIT_LOG(ERR,
"invalid cap: overflows bar space: %u > %" PRIu64,
offset + length, dev->mem_resource[bar].len);
return NULL;
}
if (hw->pci_bar[bar].vaddr == NULL) {
PMD_INIT_LOG(ERR, "bar %u base addr is NULL", bar);
return NULL;
}
return hw->pci_bar[bar].vaddr + offset;
}
static int
virtio_read_caps(struct virtio_hw *hw)
{
uint8_t pos;
struct virtio_pci_cap cap;
int ret;
ret = spdk_pci_device_cfg_read(hw->pci_dev, &pos, 1, PCI_CAPABILITY_LIST);
if (ret < 0) {
PMD_INIT_LOG(DEBUG, "failed to read pci capability list");
return -1;
}
while (pos) {
ret = spdk_pci_device_cfg_read(hw->pci_dev, &cap, sizeof(cap), pos);
if (ret < 0) {
PMD_INIT_LOG(ERR,
"failed to read pci cap at pos: %x", pos);
break;
}
if (cap.cap_vndr == PCI_CAP_ID_MSIX)
hw->use_msix = 1;
if (cap.cap_vndr != PCI_CAP_ID_VNDR) {
PMD_INIT_LOG(DEBUG,
"[%2x] skipping non VNDR cap id: %02x",
pos, cap.cap_vndr);
goto next;
}
PMD_INIT_LOG(DEBUG,
"[%2x] cfg type: %u, bar: %u, offset: %04x, len: %u",
pos, cap.cfg_type, cap.bar, cap.offset, cap.length);
switch (cap.cfg_type) {
case VIRTIO_PCI_CAP_COMMON_CFG:
hw->common_cfg = get_cfg_addr(hw, &cap);
break;
case VIRTIO_PCI_CAP_NOTIFY_CFG:
spdk_pci_device_cfg_read(hw->pci_dev, &hw->notify_off_multiplier,
4, pos + sizeof(cap));
hw->notify_base = get_cfg_addr(hw, &cap);
break;
case VIRTIO_PCI_CAP_DEVICE_CFG:
hw->dev_cfg = get_cfg_addr(hw, &cap);
break;
case VIRTIO_PCI_CAP_ISR_CFG:
hw->isr = get_cfg_addr(hw, &cap);
break;
}
next:
pos = cap.cap_next;
}
if (hw->common_cfg == NULL || hw->notify_base == NULL ||
hw->dev_cfg == NULL || hw->isr == NULL) {
PMD_INIT_LOG(INFO, "no modern virtio pci device found.");
return -1;
}
PMD_INIT_LOG(INFO, "found modern virtio pci device.");
PMD_INIT_LOG(DEBUG, "common cfg mapped at: %p", hw->common_cfg);
PMD_INIT_LOG(DEBUG, "device cfg mapped at: %p", hw->dev_cfg);
PMD_INIT_LOG(DEBUG, "isr cfg mapped at: %p", hw->isr);
PMD_INIT_LOG(DEBUG, "notify base: %p, notify off multiplier: %u",
hw->notify_base, hw->notify_off_multiplier);
return 0;
}
static int
pci_enum_virtio_probe_cb(void *ctx, struct spdk_pci_device *pci_dev)
{
struct virtio_hw *hw;
struct virtio_dev *vdev;
uint8_t *bar_vaddr;
uint64_t bar_paddr, bar_len;
int rc;
unsigned i;
hw = calloc(1, sizeof(*hw));
if (hw == NULL) {
PMD_DRV_LOG(ERR, "calloc failed");
return -1;
}
vdev = &hw->vdev;
vdev->is_hw = 1;
hw->pci_dev = pci_dev;
for (i = 0; i < 6; ++i) {
rc = spdk_pci_device_map_bar(pci_dev, i, (void *) &bar_vaddr, &bar_paddr,
&bar_len);
if (rc != 0) {
PMD_DRV_LOG(ERR, "failed to memmap PCI BAR %d", i);
goto err;
}
hw->pci_bar[i].vaddr = bar_vaddr;
hw->pci_bar[i].len = bar_len;
}
/*
* Try if we can succeed reading virtio pci caps, which exists
* only on modern pci device. If failed, we fallback to legacy
* virtio handling.
*/
if (virtio_read_caps(hw) == 0) {
PMD_INIT_LOG(INFO, "modern virtio pci detected.");
rc = vtpci_init(vdev, &modern_ops);
if (rc != 0) {
goto err;
}
vdev->modern = 1;
TAILQ_INSERT_TAIL(&g_virtio_driver.init_ctrlrs, vdev, tailq);
return 0;
}
#if 0
PMD_INIT_LOG(INFO, "trying with legacy virtio pci.");
if (rte_pci_ioport_map(dev, 0, vtpci_io(hw)) < 0) {
if (dev->kdrv == RTE_KDRV_UNKNOWN &&
(!dev->device.devargs ||
dev->device.devargs->type !=
RTE_DEVTYPE_WHITELISTED_PCI)) {
PMD_INIT_LOG(INFO,
"skip kernel managed virtio device.");
return 1;
}
return -1;
}
#endif
rc = vtpci_init(vdev, &legacy_ops);
if (rc != 0) {
goto err;
}
vdev->modern = 0;
vtpci_read_dev_config(vdev, offsetof(struct virtio_scsi_config, num_queues),
&vdev->max_queues, sizeof(vdev->max_queues));
TAILQ_INSERT_TAIL(&g_virtio_driver.init_ctrlrs, vdev, tailq);
return 0;
err:
free_virtio_hw(vdev);
return -1;
}
int
vtpci_init(struct virtio_dev *vdev, const struct virtio_pci_ops *ops)
{
unsigned vdev_num;
for (vdev_num = 0; vdev_num < VIRTIO_MAX_DEVICES; vdev_num++) {
if (g_virtio_driver.internal[vdev_num].vtpci_ops == NULL) {
break;
}
}
if (vdev_num == VIRTIO_MAX_DEVICES) {
PMD_INIT_LOG(ERR, "Max vhost device limit reached (%d).", VIRTIO_MAX_DEVICES);
return -ENOSPC;
}
vdev->id = vdev_num;
g_virtio_driver.internal[vdev_num].vtpci_ops = ops;
return 0;
}
int
vtpci_enumerate_pci(void)
{
if (!spdk_process_is_primary()) {
PMD_INIT_LOG(INFO, "virtio_pci secondary process support is not implemented yet.");
return 0;
}
return spdk_pci_virtio_enumerate(pci_enum_virtio_probe_cb, NULL);
}
const struct virtio_pci_ops *
vtpci_ops(struct virtio_dev *dev)
{
return g_virtio_driver.internal[dev->id].vtpci_ops;
}
void
vtpci_deinit(uint32_t id)
{
g_virtio_driver.internal[id].vtpci_ops = NULL;
}