Spdk/test/unit/lib/reduce/reduce.c/reduce_ut.c
paul luse a6dbe3721e update Intel copyright notices
per Intel policy to include file commit date using git cmd
below.  The policy does not apply to non-Intel (C) notices.

git log --follow -C90% --format=%ad --date default <file> | tail -1

and then pull just the 4 digit year from the result.

Intel copyrights were not added to files where Intel either had
no contribution ot the contribution lacked substance (ie license
header updates, formatting changes, etc).  Contribution date used
"--follow -C95%" to get the most accurate date.

Note that several files in this patch didn't end the license/(c)
block with a blank comment line so these were added as the vast
majority of files do have this last blank line.  Simply there for
consistency.

Signed-off-by: paul luse <paul.e.luse@intel.com>
Change-Id: Id5b7ce4f658fe87132f14139ead58d6e285c04d4
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/15192
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Community-CI: Mellanox Build Bot
2022-11-10 08:28:53 +00:00

1853 lines
58 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2016 Intel Corporation.
* All rights reserved.
* Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*/
#include "spdk/stdinc.h"
#include "spdk_cunit.h"
#include "reduce/reduce.c"
#include "spdk_internal/mock.h"
#define UNIT_TEST_NO_VTOPHYS
#include "common/lib/test_env.c"
#undef UNIT_TEST_NO_VTOPHYS
static struct spdk_reduce_vol *g_vol;
static int g_reduce_errno;
static char *g_volatile_pm_buf;
static size_t g_volatile_pm_buf_len;
static char *g_persistent_pm_buf;
static size_t g_persistent_pm_buf_len;
static char *g_backing_dev_buf;
static char g_path[REDUCE_PATH_MAX];
static char *g_decomp_buf;
static int g_decompressed_len;
#define TEST_MD_PATH "/tmp"
uint64_t
spdk_vtophys(const void *buf, uint64_t *size)
{
/* add + 1 to buf addr for cases where buf is the start of the page, that will give us correct end of the page */
const uint8_t *page_2mb_end = (const uint8_t *)SPDK_ALIGN_CEIL((uintptr_t)buf + 1, VALUE_2MB);
uint64_t bytes_to_page_end = page_2mb_end - (const uint8_t *)buf;
uint64_t _size;
if (*size) {
_size = *size;
_size = spdk_min(_size, bytes_to_page_end);
*size = _size;
}
return (uintptr_t)buf;
}
enum ut_reduce_bdev_io_type {
UT_REDUCE_IO_READV = 1,
UT_REDUCE_IO_WRITEV = 2,
UT_REDUCE_IO_UNMAP = 3,
};
struct ut_reduce_bdev_io {
enum ut_reduce_bdev_io_type type;
struct spdk_reduce_backing_dev *backing_dev;
struct iovec *iov;
int iovcnt;
uint64_t lba;
uint32_t lba_count;
struct spdk_reduce_vol_cb_args *args;
TAILQ_ENTRY(ut_reduce_bdev_io) link;
};
static bool g_defer_bdev_io = false;
static TAILQ_HEAD(, ut_reduce_bdev_io) g_pending_bdev_io =
TAILQ_HEAD_INITIALIZER(g_pending_bdev_io);
static uint32_t g_pending_bdev_io_count = 0;
static void
sync_pm_buf(const void *addr, size_t length)
{
uint64_t offset = (char *)addr - g_volatile_pm_buf;
memcpy(&g_persistent_pm_buf[offset], addr, length);
}
int
pmem_msync(const void *addr, size_t length)
{
sync_pm_buf(addr, length);
return 0;
}
void
pmem_persist(const void *addr, size_t len)
{
sync_pm_buf(addr, len);
}
static void
get_pm_file_size(void)
{
struct spdk_reduce_vol_params params;
uint64_t pm_size, expected_pm_size;
params.backing_io_unit_size = 4096;
params.chunk_size = 4096 * 4;
params.vol_size = 4096 * 4 * 100;
pm_size = _get_pm_file_size(&params);
expected_pm_size = sizeof(struct spdk_reduce_vol_superblock);
/* 100 chunks in logical map * 8 bytes per chunk */
expected_pm_size += 100 * sizeof(uint64_t);
/* 100 chunks * (chunk struct size + 4 backing io units per chunk * 8 bytes per backing io unit) */
expected_pm_size += 100 * (sizeof(struct spdk_reduce_chunk_map) + 4 * sizeof(uint64_t));
/* reduce allocates some extra chunks too for in-flight writes when logical map
* is full. REDUCE_EXTRA_CHUNKS is a private #ifdef in reduce.c Here we need the num chunks
* times (chunk struct size + 4 backing io units per chunk * 8 bytes per backing io unit).
*/
expected_pm_size += REDUCE_NUM_EXTRA_CHUNKS *
(sizeof(struct spdk_reduce_chunk_map) + 4 * sizeof(uint64_t));
/* reduce will add some padding so numbers may not match exactly. Make sure
* they are close though.
*/
CU_ASSERT((pm_size - expected_pm_size) <= REDUCE_PM_SIZE_ALIGNMENT);
}
static void
get_vol_size(void)
{
uint64_t chunk_size, backing_dev_size;
chunk_size = 16 * 1024;
backing_dev_size = 16 * 1024 * 1000;
CU_ASSERT(_get_vol_size(chunk_size, backing_dev_size) < backing_dev_size);
}
void *
pmem_map_file(const char *path, size_t len, int flags, mode_t mode,
size_t *mapped_lenp, int *is_pmemp)
{
CU_ASSERT(g_volatile_pm_buf == NULL);
snprintf(g_path, sizeof(g_path), "%s", path);
*is_pmemp = 1;
if (g_persistent_pm_buf == NULL) {
g_persistent_pm_buf = calloc(1, len);
g_persistent_pm_buf_len = len;
SPDK_CU_ASSERT_FATAL(g_persistent_pm_buf != NULL);
}
*mapped_lenp = g_persistent_pm_buf_len;
g_volatile_pm_buf = calloc(1, g_persistent_pm_buf_len);
SPDK_CU_ASSERT_FATAL(g_volatile_pm_buf != NULL);
memcpy(g_volatile_pm_buf, g_persistent_pm_buf, g_persistent_pm_buf_len);
g_volatile_pm_buf_len = g_persistent_pm_buf_len;
return g_volatile_pm_buf;
}
int
pmem_unmap(void *addr, size_t len)
{
CU_ASSERT(addr == g_volatile_pm_buf);
CU_ASSERT(len == g_volatile_pm_buf_len);
free(g_volatile_pm_buf);
g_volatile_pm_buf = NULL;
g_volatile_pm_buf_len = 0;
return 0;
}
static void
persistent_pm_buf_destroy(void)
{
CU_ASSERT(g_persistent_pm_buf != NULL);
free(g_persistent_pm_buf);
g_persistent_pm_buf = NULL;
g_persistent_pm_buf_len = 0;
}
static void
unlink_cb(void)
{
persistent_pm_buf_destroy();
}
static void
init_cb(void *cb_arg, struct spdk_reduce_vol *vol, int reduce_errno)
{
g_vol = vol;
g_reduce_errno = reduce_errno;
}
static void
load_cb(void *cb_arg, struct spdk_reduce_vol *vol, int reduce_errno)
{
g_vol = vol;
g_reduce_errno = reduce_errno;
}
static void
unload_cb(void *cb_arg, int reduce_errno)
{
g_reduce_errno = reduce_errno;
}
static void
init_failure(void)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
backing_dev.blocklen = 512;
/* This blockcnt is too small for a reduce vol - there needs to be
* enough space for at least REDUCE_NUM_EXTRA_CHUNKS + 1 chunks.
*/
backing_dev.blockcnt = 20;
params.vol_size = 0;
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = backing_dev.blocklen;
params.logical_block_size = 512;
/* backing_dev has an invalid size. This should fail. */
g_vol = NULL;
g_reduce_errno = 0;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == -EINVAL);
SPDK_CU_ASSERT_FATAL(g_vol == NULL);
/* backing_dev now has valid size, but backing_dev still has null
* function pointers. This should fail.
*/
backing_dev.blockcnt = 20000;
g_vol = NULL;
g_reduce_errno = 0;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == -EINVAL);
SPDK_CU_ASSERT_FATAL(g_vol == NULL);
}
static void
backing_dev_readv_execute(struct spdk_reduce_backing_dev *backing_dev,
struct iovec *iov, int iovcnt,
uint64_t lba, uint32_t lba_count,
struct spdk_reduce_vol_cb_args *args)
{
char *offset;
int i;
offset = g_backing_dev_buf + lba * backing_dev->blocklen;
for (i = 0; i < iovcnt; i++) {
memcpy(iov[i].iov_base, offset, iov[i].iov_len);
offset += iov[i].iov_len;
}
args->cb_fn(args->cb_arg, 0);
}
static void
backing_dev_insert_io(enum ut_reduce_bdev_io_type type, struct spdk_reduce_backing_dev *backing_dev,
struct iovec *iov, int iovcnt, uint64_t lba, uint32_t lba_count,
struct spdk_reduce_vol_cb_args *args)
{
struct ut_reduce_bdev_io *ut_bdev_io;
ut_bdev_io = calloc(1, sizeof(*ut_bdev_io));
SPDK_CU_ASSERT_FATAL(ut_bdev_io != NULL);
ut_bdev_io->type = type;
ut_bdev_io->backing_dev = backing_dev;
ut_bdev_io->iov = iov;
ut_bdev_io->iovcnt = iovcnt;
ut_bdev_io->lba = lba;
ut_bdev_io->lba_count = lba_count;
ut_bdev_io->args = args;
TAILQ_INSERT_TAIL(&g_pending_bdev_io, ut_bdev_io, link);
g_pending_bdev_io_count++;
}
static void
backing_dev_readv(struct spdk_reduce_backing_dev *backing_dev, struct iovec *iov, int iovcnt,
uint64_t lba, uint32_t lba_count, struct spdk_reduce_vol_cb_args *args)
{
if (g_defer_bdev_io == false) {
CU_ASSERT(g_pending_bdev_io_count == 0);
CU_ASSERT(TAILQ_EMPTY(&g_pending_bdev_io));
backing_dev_readv_execute(backing_dev, iov, iovcnt, lba, lba_count, args);
return;
}
backing_dev_insert_io(UT_REDUCE_IO_READV, backing_dev, iov, iovcnt, lba, lba_count, args);
}
static void
backing_dev_writev_execute(struct spdk_reduce_backing_dev *backing_dev,
struct iovec *iov, int iovcnt,
uint64_t lba, uint32_t lba_count,
struct spdk_reduce_vol_cb_args *args)
{
char *offset;
int i;
offset = g_backing_dev_buf + lba * backing_dev->blocklen;
for (i = 0; i < iovcnt; i++) {
memcpy(offset, iov[i].iov_base, iov[i].iov_len);
offset += iov[i].iov_len;
}
args->cb_fn(args->cb_arg, 0);
}
static void
backing_dev_writev(struct spdk_reduce_backing_dev *backing_dev, struct iovec *iov, int iovcnt,
uint64_t lba, uint32_t lba_count, struct spdk_reduce_vol_cb_args *args)
{
if (g_defer_bdev_io == false) {
CU_ASSERT(g_pending_bdev_io_count == 0);
CU_ASSERT(TAILQ_EMPTY(&g_pending_bdev_io));
backing_dev_writev_execute(backing_dev, iov, iovcnt, lba, lba_count, args);
return;
}
backing_dev_insert_io(UT_REDUCE_IO_WRITEV, backing_dev, iov, iovcnt, lba, lba_count, args);
}
static void
backing_dev_unmap_execute(struct spdk_reduce_backing_dev *backing_dev,
uint64_t lba, uint32_t lba_count,
struct spdk_reduce_vol_cb_args *args)
{
char *offset;
offset = g_backing_dev_buf + lba * backing_dev->blocklen;
memset(offset, 0, lba_count * backing_dev->blocklen);
args->cb_fn(args->cb_arg, 0);
}
static void
backing_dev_unmap(struct spdk_reduce_backing_dev *backing_dev,
uint64_t lba, uint32_t lba_count, struct spdk_reduce_vol_cb_args *args)
{
if (g_defer_bdev_io == false) {
CU_ASSERT(g_pending_bdev_io_count == 0);
CU_ASSERT(TAILQ_EMPTY(&g_pending_bdev_io));
backing_dev_unmap_execute(backing_dev, lba, lba_count, args);
return;
}
backing_dev_insert_io(UT_REDUCE_IO_UNMAP, backing_dev, NULL, 0, lba, lba_count, args);
}
static void
backing_dev_io_execute(uint32_t count)
{
struct ut_reduce_bdev_io *ut_bdev_io;
uint32_t done = 0;
CU_ASSERT(g_defer_bdev_io == true);
while (!TAILQ_EMPTY(&g_pending_bdev_io) && (count == 0 || done < count)) {
ut_bdev_io = TAILQ_FIRST(&g_pending_bdev_io);
TAILQ_REMOVE(&g_pending_bdev_io, ut_bdev_io, link);
g_pending_bdev_io_count--;
switch (ut_bdev_io->type) {
case UT_REDUCE_IO_READV:
backing_dev_readv_execute(ut_bdev_io->backing_dev,
ut_bdev_io->iov, ut_bdev_io->iovcnt,
ut_bdev_io->lba, ut_bdev_io->lba_count,
ut_bdev_io->args);
break;
case UT_REDUCE_IO_WRITEV:
backing_dev_writev_execute(ut_bdev_io->backing_dev,
ut_bdev_io->iov, ut_bdev_io->iovcnt,
ut_bdev_io->lba, ut_bdev_io->lba_count,
ut_bdev_io->args);
break;
case UT_REDUCE_IO_UNMAP:
backing_dev_unmap_execute(ut_bdev_io->backing_dev,
ut_bdev_io->lba, ut_bdev_io->lba_count,
ut_bdev_io->args);
break;
default:
CU_ASSERT(false);
break;
}
free(ut_bdev_io);
done++;
}
}
static int
ut_compress(char *outbuf, uint32_t *compressed_len, char *inbuf, uint32_t inbuflen)
{
uint32_t len = 0;
uint8_t count;
char last;
while (true) {
if (inbuflen == 0) {
*compressed_len = len;
return 0;
}
if (*compressed_len < (len + 2)) {
return -ENOSPC;
}
last = *inbuf;
count = 1;
inbuflen--;
inbuf++;
while (inbuflen > 0 && *inbuf == last && count < UINT8_MAX) {
count++;
inbuflen--;
inbuf++;
}
outbuf[len] = count;
outbuf[len + 1] = last;
len += 2;
}
}
static int
ut_decompress(uint8_t *outbuf, uint32_t *compressed_len, uint8_t *inbuf, uint32_t inbuflen)
{
uint32_t len = 0;
SPDK_CU_ASSERT_FATAL(inbuflen % 2 == 0);
while (true) {
if (inbuflen == 0) {
*compressed_len = len;
return 0;
}
if ((len + inbuf[0]) > *compressed_len) {
return -ENOSPC;
}
memset(outbuf, inbuf[1], inbuf[0]);
outbuf += inbuf[0];
len += inbuf[0];
inbuflen -= 2;
inbuf += 2;
}
}
static void
ut_build_data_buffer(uint8_t *data, uint32_t data_len, uint8_t init_val, uint32_t repeat)
{
uint32_t _repeat = repeat;
SPDK_CU_ASSERT_FATAL(repeat > 0);
while (data_len > 0) {
*data = init_val;
data++;
data_len--;
_repeat--;
if (_repeat == 0) {
init_val++;
_repeat = repeat;
}
}
}
static void
backing_dev_compress(struct spdk_reduce_backing_dev *backing_dev,
struct iovec *src_iov, int src_iovcnt,
struct iovec *dst_iov, int dst_iovcnt,
struct spdk_reduce_vol_cb_args *args)
{
uint32_t compressed_len;
uint64_t total_length = 0;
char *buf = g_decomp_buf;
int rc, i;
CU_ASSERT(dst_iovcnt == 1);
for (i = 0; i < src_iovcnt; i++) {
memcpy(buf, src_iov[i].iov_base, src_iov[i].iov_len);
buf += src_iov[i].iov_len;
total_length += src_iov[i].iov_len;
}
compressed_len = dst_iov[0].iov_len;
rc = ut_compress(dst_iov[0].iov_base, &compressed_len,
g_decomp_buf, total_length);
args->cb_fn(args->cb_arg, rc ? rc : (int)compressed_len);
}
static void
backing_dev_decompress(struct spdk_reduce_backing_dev *backing_dev,
struct iovec *src_iov, int src_iovcnt,
struct iovec *dst_iov, int dst_iovcnt,
struct spdk_reduce_vol_cb_args *args)
{
uint32_t decompressed_len = 0;
char *buf = g_decomp_buf;
int rc, i;
CU_ASSERT(src_iovcnt == 1);
for (i = 0; i < dst_iovcnt; i++) {
decompressed_len += dst_iov[i].iov_len;
}
rc = ut_decompress(g_decomp_buf, &decompressed_len,
src_iov[0].iov_base, src_iov[0].iov_len);
for (i = 0; i < dst_iovcnt; i++) {
memcpy(dst_iov[i].iov_base, buf, dst_iov[i].iov_len);
buf += dst_iov[i].iov_len;
}
args->cb_fn(args->cb_arg, rc ? rc : (int)decompressed_len);
}
static void
backing_dev_destroy(struct spdk_reduce_backing_dev *backing_dev)
{
/* We don't free this during backing_dev_close so that we can test init/unload/load
* scenarios.
*/
free(g_backing_dev_buf);
free(g_decomp_buf);
g_backing_dev_buf = NULL;
}
static void
backing_dev_init(struct spdk_reduce_backing_dev *backing_dev, struct spdk_reduce_vol_params *params,
uint32_t backing_blocklen)
{
int64_t size;
size = 4 * 1024 * 1024;
backing_dev->blocklen = backing_blocklen;
backing_dev->blockcnt = size / backing_dev->blocklen;
backing_dev->readv = backing_dev_readv;
backing_dev->writev = backing_dev_writev;
backing_dev->unmap = backing_dev_unmap;
backing_dev->compress = backing_dev_compress;
backing_dev->decompress = backing_dev_decompress;
backing_dev->sgl_in = true;
backing_dev->sgl_out = true;
g_decomp_buf = calloc(1, params->chunk_size);
SPDK_CU_ASSERT_FATAL(g_decomp_buf != NULL);
g_backing_dev_buf = calloc(1, size);
SPDK_CU_ASSERT_FATAL(g_backing_dev_buf != NULL);
}
static void
init_md(void)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_vol_params *persistent_params;
struct spdk_reduce_backing_dev backing_dev = {};
struct spdk_uuid uuid;
uint64_t *entry;
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 512;
params.logical_block_size = 512;
backing_dev_init(&backing_dev, &params, 512);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
/* Confirm that reduce persisted the params to metadata. */
CU_ASSERT(memcmp(g_persistent_pm_buf, SPDK_REDUCE_SIGNATURE, 8) == 0);
persistent_params = (struct spdk_reduce_vol_params *)(g_persistent_pm_buf + 8);
CU_ASSERT(memcmp(persistent_params, &params, sizeof(params)) == 0);
/* Now confirm that contents of pm_file after the superblock have been initialized
* to REDUCE_EMPTY_MAP_ENTRY.
*/
entry = (uint64_t *)(g_persistent_pm_buf + sizeof(struct spdk_reduce_vol_superblock));
while (entry != (uint64_t *)(g_persistent_pm_buf + g_vol->pm_file.size)) {
CU_ASSERT(*entry == REDUCE_EMPTY_MAP_ENTRY);
entry++;
}
/* Check that the pm file path was constructed correctly. It should be in
* the form:
* TEST_MD_PATH + "/" + <uuid string>
*/
CU_ASSERT(strncmp(&g_path[0], TEST_MD_PATH, strlen(TEST_MD_PATH)) == 0);
CU_ASSERT(g_path[strlen(TEST_MD_PATH)] == '/');
CU_ASSERT(spdk_uuid_parse(&uuid, &g_path[strlen(TEST_MD_PATH) + 1]) == 0);
CU_ASSERT(spdk_uuid_compare(&uuid, spdk_reduce_vol_get_uuid(g_vol)) == 0);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
CU_ASSERT(g_volatile_pm_buf == NULL);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
static void
_init_backing_dev(uint32_t backing_blocklen)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_vol_params *persistent_params;
struct spdk_reduce_backing_dev backing_dev = {};
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 512;
params.logical_block_size = 512;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, backing_blocklen);
g_vol = NULL;
memset(g_path, 0, sizeof(g_path));
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
CU_ASSERT(strncmp(TEST_MD_PATH, g_path, strlen(TEST_MD_PATH)) == 0);
/* Confirm that libreduce persisted the params to the backing device. */
CU_ASSERT(memcmp(g_backing_dev_buf, SPDK_REDUCE_SIGNATURE, 8) == 0);
persistent_params = (struct spdk_reduce_vol_params *)(g_backing_dev_buf + 8);
CU_ASSERT(memcmp(persistent_params, &params, sizeof(params)) == 0);
/* Confirm that the path to the persistent memory metadata file was persisted to
* the backing device.
*/
CU_ASSERT(strncmp(g_path,
g_backing_dev_buf + REDUCE_BACKING_DEV_PATH_OFFSET,
REDUCE_PATH_MAX) == 0);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
static void
init_backing_dev(void)
{
_init_backing_dev(512);
_init_backing_dev(4096);
}
static void
_load(uint32_t backing_blocklen)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
char pmem_file_path[REDUCE_PATH_MAX];
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 512;
params.logical_block_size = 512;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, backing_blocklen);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
CU_ASSERT(strncmp(TEST_MD_PATH, g_path, strlen(TEST_MD_PATH)) == 0);
memcpy(pmem_file_path, g_path, sizeof(pmem_file_path));
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
g_vol = NULL;
memset(g_path, 0, sizeof(g_path));
g_reduce_errno = -1;
spdk_reduce_vol_load(&backing_dev, load_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
CU_ASSERT(strncmp(g_path, pmem_file_path, sizeof(pmem_file_path)) == 0);
CU_ASSERT(g_vol->params.vol_size == params.vol_size);
CU_ASSERT(g_vol->params.chunk_size == params.chunk_size);
CU_ASSERT(g_vol->params.backing_io_unit_size == params.backing_io_unit_size);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
static void
load(void)
{
_load(512);
_load(4096);
}
static uint64_t
_vol_get_chunk_map_index(struct spdk_reduce_vol *vol, uint64_t offset)
{
uint64_t logical_map_index = offset / vol->logical_blocks_per_chunk;
return vol->pm_logical_map[logical_map_index];
}
static void
write_cb(void *arg, int reduce_errno)
{
g_reduce_errno = reduce_errno;
}
static void
read_cb(void *arg, int reduce_errno)
{
g_reduce_errno = reduce_errno;
}
static void
_write_maps(uint32_t backing_blocklen)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
struct iovec iov;
const int bufsize = 16 * 1024; /* chunk size */
char buf[bufsize];
uint32_t num_lbas, i;
uint64_t old_chunk0_map_index, new_chunk0_map_index;
struct spdk_reduce_chunk_map *old_chunk0_map, *new_chunk0_map;
params.chunk_size = bufsize;
params.backing_io_unit_size = 4096;
params.logical_block_size = 512;
num_lbas = bufsize / params.logical_block_size;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, backing_blocklen);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
for (i = 0; i < g_vol->params.vol_size / g_vol->params.chunk_size; i++) {
CU_ASSERT(_vol_get_chunk_map_index(g_vol, i) == REDUCE_EMPTY_MAP_ENTRY);
}
ut_build_data_buffer(buf, bufsize, 0x00, 1);
iov.iov_base = buf;
iov.iov_len = bufsize;
g_reduce_errno = -1;
spdk_reduce_vol_writev(g_vol, &iov, 1, 0, num_lbas, write_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
old_chunk0_map_index = _vol_get_chunk_map_index(g_vol, 0);
CU_ASSERT(old_chunk0_map_index != REDUCE_EMPTY_MAP_ENTRY);
CU_ASSERT(spdk_bit_array_get(g_vol->allocated_chunk_maps, old_chunk0_map_index) == true);
old_chunk0_map = _reduce_vol_get_chunk_map(g_vol, old_chunk0_map_index);
for (i = 0; i < g_vol->backing_io_units_per_chunk; i++) {
CU_ASSERT(old_chunk0_map->io_unit_index[i] != REDUCE_EMPTY_MAP_ENTRY);
CU_ASSERT(spdk_bit_array_get(g_vol->allocated_backing_io_units,
old_chunk0_map->io_unit_index[i]) == true);
}
g_reduce_errno = -1;
spdk_reduce_vol_writev(g_vol, &iov, 1, 0, num_lbas, write_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
new_chunk0_map_index = _vol_get_chunk_map_index(g_vol, 0);
CU_ASSERT(new_chunk0_map_index != REDUCE_EMPTY_MAP_ENTRY);
CU_ASSERT(new_chunk0_map_index != old_chunk0_map_index);
CU_ASSERT(spdk_bit_array_get(g_vol->allocated_chunk_maps, new_chunk0_map_index) == true);
CU_ASSERT(spdk_bit_array_get(g_vol->allocated_chunk_maps, old_chunk0_map_index) == false);
for (i = 0; i < g_vol->backing_io_units_per_chunk; i++) {
CU_ASSERT(spdk_bit_array_get(g_vol->allocated_backing_io_units,
old_chunk0_map->io_unit_index[i]) == false);
}
new_chunk0_map = _reduce_vol_get_chunk_map(g_vol, new_chunk0_map_index);
for (i = 0; i < g_vol->backing_io_units_per_chunk; i++) {
CU_ASSERT(new_chunk0_map->io_unit_index[i] != REDUCE_EMPTY_MAP_ENTRY);
CU_ASSERT(spdk_bit_array_get(g_vol->allocated_backing_io_units,
new_chunk0_map->io_unit_index[i]) == true);
}
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_load(&backing_dev, load_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
CU_ASSERT(g_vol->params.vol_size == params.vol_size);
CU_ASSERT(g_vol->params.chunk_size == params.chunk_size);
CU_ASSERT(g_vol->params.backing_io_unit_size == params.backing_io_unit_size);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
static void
write_maps(void)
{
_write_maps(512);
_write_maps(4096);
}
static void
_read_write(uint32_t backing_blocklen)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
struct iovec iov;
char buf[16 * 1024]; /* chunk size */
char compare_buf[16 * 1024];
uint32_t i;
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 4096;
params.logical_block_size = 512;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, backing_blocklen);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
/* Write 0xAA to 2 512-byte logical blocks, starting at LBA 2. */
memset(buf, 0xAA, 2 * params.logical_block_size);
iov.iov_base = buf;
iov.iov_len = 2 * params.logical_block_size;
g_reduce_errno = -1;
spdk_reduce_vol_writev(g_vol, &iov, 1, 2, 2, write_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
memset(compare_buf, 0xAA, sizeof(compare_buf));
for (i = 0; i < params.chunk_size / params.logical_block_size; i++) {
memset(buf, 0xFF, params.logical_block_size);
iov.iov_base = buf;
iov.iov_len = params.logical_block_size;
g_reduce_errno = -1;
spdk_reduce_vol_readv(g_vol, &iov, 1, i, 1, read_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
switch (i) {
case 2:
case 3:
CU_ASSERT(memcmp(buf, compare_buf, params.logical_block_size) == 0);
break;
default:
CU_ASSERT(spdk_mem_all_zero(buf, params.logical_block_size));
break;
}
}
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
/* Overwrite what we just wrote with 0xCC */
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_load(&backing_dev, load_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
CU_ASSERT(g_vol->params.vol_size == params.vol_size);
CU_ASSERT(g_vol->params.chunk_size == params.chunk_size);
CU_ASSERT(g_vol->params.backing_io_unit_size == params.backing_io_unit_size);
memset(buf, 0xCC, 2 * params.logical_block_size);
iov.iov_base = buf;
iov.iov_len = 2 * params.logical_block_size;
g_reduce_errno = -1;
spdk_reduce_vol_writev(g_vol, &iov, 1, 2, 2, write_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
memset(compare_buf, 0xCC, sizeof(compare_buf));
for (i = 0; i < params.chunk_size / params.logical_block_size; i++) {
memset(buf, 0xFF, params.logical_block_size);
iov.iov_base = buf;
iov.iov_len = params.logical_block_size;
g_reduce_errno = -1;
spdk_reduce_vol_readv(g_vol, &iov, 1, i, 1, read_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
switch (i) {
case 2:
case 3:
CU_ASSERT(memcmp(buf, compare_buf, params.logical_block_size) == 0);
break;
default:
CU_ASSERT(spdk_mem_all_zero(buf, params.logical_block_size));
break;
}
}
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_load(&backing_dev, load_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
CU_ASSERT(g_vol->params.vol_size == params.vol_size);
CU_ASSERT(g_vol->params.chunk_size == params.chunk_size);
CU_ASSERT(g_vol->params.backing_io_unit_size == params.backing_io_unit_size);
g_reduce_errno = -1;
/* Write 0xBB to 2 512-byte logical blocks, starting at LBA 37.
* This is writing into the second chunk of the volume. This also
* enables implicitly checking that we reloaded the bit arrays
* correctly - making sure we don't use the first chunk map again
* for this new write - the first chunk map was already used by the
* write from before we unloaded and reloaded.
*/
memset(buf, 0xBB, 2 * params.logical_block_size);
iov.iov_base = buf;
iov.iov_len = 2 * params.logical_block_size;
g_reduce_errno = -1;
spdk_reduce_vol_writev(g_vol, &iov, 1, 37, 2, write_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
for (i = 0; i < 2 * params.chunk_size / params.logical_block_size; i++) {
memset(buf, 0xFF, params.logical_block_size);
iov.iov_base = buf;
iov.iov_len = params.logical_block_size;
g_reduce_errno = -1;
spdk_reduce_vol_readv(g_vol, &iov, 1, i, 1, read_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
switch (i) {
case 2:
case 3:
memset(compare_buf, 0xCC, sizeof(compare_buf));
CU_ASSERT(memcmp(buf, compare_buf, params.logical_block_size) == 0);
break;
case 37:
case 38:
memset(compare_buf, 0xBB, sizeof(compare_buf));
CU_ASSERT(memcmp(buf, compare_buf, params.logical_block_size) == 0);
break;
default:
CU_ASSERT(spdk_mem_all_zero(buf, params.logical_block_size));
break;
}
}
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
static void
read_write(void)
{
_read_write(512);
_read_write(4096);
}
static void
_readv_writev(uint32_t backing_blocklen)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
struct iovec iov[REDUCE_MAX_IOVECS + 1];
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 4096;
params.logical_block_size = 512;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, backing_blocklen);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
g_reduce_errno = -1;
spdk_reduce_vol_writev(g_vol, iov, REDUCE_MAX_IOVECS + 1, 2, REDUCE_MAX_IOVECS + 1, write_cb, NULL);
CU_ASSERT(g_reduce_errno == -EINVAL);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
static void
readv_writev(void)
{
_readv_writev(512);
_readv_writev(4096);
}
static void
destroy_cb(void *ctx, int reduce_errno)
{
g_reduce_errno = reduce_errno;
}
static void
destroy(void)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 512;
params.logical_block_size = 512;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, 512);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_load(&backing_dev, load_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
g_reduce_errno = -1;
MOCK_CLEAR(spdk_malloc);
MOCK_CLEAR(spdk_zmalloc);
spdk_reduce_vol_destroy(&backing_dev, destroy_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
g_reduce_errno = 0;
spdk_reduce_vol_load(&backing_dev, load_cb, NULL);
CU_ASSERT(g_reduce_errno == -EILSEQ);
backing_dev_destroy(&backing_dev);
}
/* This test primarily checks that the reduce unit test infrastructure for asynchronous
* backing device I/O operations is working correctly.
*/
static void
defer_bdev_io(void)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
const uint32_t logical_block_size = 512;
struct iovec iov;
char buf[logical_block_size];
char compare_buf[logical_block_size];
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 4096;
params.logical_block_size = logical_block_size;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, 512);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
/* Write 0xAA to 1 512-byte logical block. */
memset(buf, 0xAA, params.logical_block_size);
iov.iov_base = buf;
iov.iov_len = params.logical_block_size;
g_reduce_errno = -100;
g_defer_bdev_io = true;
spdk_reduce_vol_writev(g_vol, &iov, 1, 0, 1, write_cb, NULL);
/* Callback should not have executed, so this should still equal -100. */
CU_ASSERT(g_reduce_errno == -100);
CU_ASSERT(!TAILQ_EMPTY(&g_pending_bdev_io));
/* We wrote to just 512 bytes of one chunk which was previously unallocated. This
* should result in 1 pending I/O since the rest of this chunk will be zeroes and
* very compressible.
*/
CU_ASSERT(g_pending_bdev_io_count == 1);
backing_dev_io_execute(0);
CU_ASSERT(TAILQ_EMPTY(&g_pending_bdev_io));
CU_ASSERT(g_reduce_errno == 0);
g_defer_bdev_io = false;
memset(compare_buf, 0xAA, sizeof(compare_buf));
memset(buf, 0xFF, sizeof(buf));
iov.iov_base = buf;
iov.iov_len = params.logical_block_size;
g_reduce_errno = -100;
spdk_reduce_vol_readv(g_vol, &iov, 1, 0, 1, read_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
CU_ASSERT(memcmp(buf, compare_buf, sizeof(buf)) == 0);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
static void
overlapped(void)
{
struct spdk_reduce_vol_params params = {};
struct spdk_reduce_backing_dev backing_dev = {};
const uint32_t logical_block_size = 512;
struct iovec iov;
char buf[2 * logical_block_size];
char compare_buf[2 * logical_block_size];
params.chunk_size = 16 * 1024;
params.backing_io_unit_size = 4096;
params.logical_block_size = logical_block_size;
spdk_uuid_generate(&params.uuid);
backing_dev_init(&backing_dev, &params, 512);
g_vol = NULL;
g_reduce_errno = -1;
spdk_reduce_vol_init(&params, &backing_dev, TEST_MD_PATH, init_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
SPDK_CU_ASSERT_FATAL(g_vol != NULL);
/* Write 0xAA to 1 512-byte logical block. */
memset(buf, 0xAA, logical_block_size);
iov.iov_base = buf;
iov.iov_len = logical_block_size;
g_reduce_errno = -100;
g_defer_bdev_io = true;
spdk_reduce_vol_writev(g_vol, &iov, 1, 0, 1, write_cb, NULL);
/* Callback should not have executed, so this should still equal -100. */
CU_ASSERT(g_reduce_errno == -100);
CU_ASSERT(!TAILQ_EMPTY(&g_pending_bdev_io));
/* We wrote to just 512 bytes of one chunk which was previously unallocated. This
* should result in 1 pending I/O since the rest of this chunk will be zeroes and
* very compressible.
*/
CU_ASSERT(g_pending_bdev_io_count == 1);
/* Now do an overlapped I/O to the same chunk. */
spdk_reduce_vol_writev(g_vol, &iov, 1, 1, 1, write_cb, NULL);
/* Callback should not have executed, so this should still equal -100. */
CU_ASSERT(g_reduce_errno == -100);
CU_ASSERT(!TAILQ_EMPTY(&g_pending_bdev_io));
/* The second I/O overlaps with the first one. So we should only see pending bdev_io
* related to the first I/O here - the second one won't start until the first one is completed.
*/
CU_ASSERT(g_pending_bdev_io_count == 1);
backing_dev_io_execute(0);
CU_ASSERT(g_reduce_errno == 0);
g_defer_bdev_io = false;
memset(compare_buf, 0xAA, sizeof(compare_buf));
memset(buf, 0xFF, sizeof(buf));
iov.iov_base = buf;
iov.iov_len = 2 * logical_block_size;
g_reduce_errno = -100;
spdk_reduce_vol_readv(g_vol, &iov, 1, 0, 2, read_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
CU_ASSERT(memcmp(buf, compare_buf, 2 * logical_block_size) == 0);
g_reduce_errno = -1;
spdk_reduce_vol_unload(g_vol, unload_cb, NULL);
CU_ASSERT(g_reduce_errno == 0);
persistent_pm_buf_destroy();
backing_dev_destroy(&backing_dev);
}
#define BUFSIZE 4096
static void
compress_algorithm(void)
{
uint8_t original_data[BUFSIZE];
uint8_t compressed_data[BUFSIZE];
uint8_t decompressed_data[BUFSIZE];
uint32_t compressed_len, decompressed_len;
int rc;
ut_build_data_buffer(original_data, BUFSIZE, 0xAA, BUFSIZE);
compressed_len = sizeof(compressed_data);
rc = ut_compress(compressed_data, &compressed_len, original_data, UINT8_MAX);
CU_ASSERT(rc == 0);
CU_ASSERT(compressed_len == 2);
CU_ASSERT(compressed_data[0] == UINT8_MAX);
CU_ASSERT(compressed_data[1] == 0xAA);
decompressed_len = sizeof(decompressed_data);
rc = ut_decompress(decompressed_data, &decompressed_len, compressed_data, compressed_len);
CU_ASSERT(rc == 0);
CU_ASSERT(decompressed_len == UINT8_MAX);
CU_ASSERT(memcmp(original_data, decompressed_data, decompressed_len) == 0);
compressed_len = sizeof(compressed_data);
rc = ut_compress(compressed_data, &compressed_len, original_data, UINT8_MAX + 1);
CU_ASSERT(rc == 0);
CU_ASSERT(compressed_len == 4);
CU_ASSERT(compressed_data[0] == UINT8_MAX);
CU_ASSERT(compressed_data[1] == 0xAA);
CU_ASSERT(compressed_data[2] == 1);
CU_ASSERT(compressed_data[3] == 0xAA);
decompressed_len = sizeof(decompressed_data);
rc = ut_decompress(decompressed_data, &decompressed_len, compressed_data, compressed_len);
CU_ASSERT(rc == 0);
CU_ASSERT(decompressed_len == UINT8_MAX + 1);
CU_ASSERT(memcmp(original_data, decompressed_data, decompressed_len) == 0);
ut_build_data_buffer(original_data, BUFSIZE, 0x00, 1);
compressed_len = sizeof(compressed_data);
rc = ut_compress(compressed_data, &compressed_len, original_data, 2048);
CU_ASSERT(rc == 0);
CU_ASSERT(compressed_len == 4096);
CU_ASSERT(compressed_data[0] == 1);
CU_ASSERT(compressed_data[1] == 0);
CU_ASSERT(compressed_data[4094] == 1);
CU_ASSERT(compressed_data[4095] == 0xFF);
decompressed_len = sizeof(decompressed_data);
rc = ut_decompress(decompressed_data, &decompressed_len, compressed_data, compressed_len);
CU_ASSERT(rc == 0);
CU_ASSERT(decompressed_len == 2048);
CU_ASSERT(memcmp(original_data, decompressed_data, decompressed_len) == 0);
compressed_len = sizeof(compressed_data);
rc = ut_compress(compressed_data, &compressed_len, original_data, 2049);
CU_ASSERT(rc == -ENOSPC);
}
static void
test_prepare_compress_chunk(void)
{
struct spdk_reduce_vol vol = {};
struct spdk_reduce_backing_dev backing_dev = {};
struct spdk_reduce_vol_request req = {};
void *buf;
char *buffer_end, *aligned_user_buffer, *unaligned_user_buffer;
char decomp_buffer[16 * 1024] = {};
char comp_buffer[16 * 1024] = {};
struct iovec user_iov[2] = {};
size_t user_buffer_iov_len = 8192;
size_t remainder_bytes;
size_t offset_bytes;
size_t memcmp_offset;
uint32_t i;
vol.params.chunk_size = 16 * 1024;
vol.params.backing_io_unit_size = 4096;
vol.params.logical_block_size = 512;
backing_dev_init(&backing_dev, &vol.params, 512);
vol.backing_dev = &backing_dev;
vol.logical_blocks_per_chunk = vol.params.chunk_size / vol.params.logical_block_size;
/* Allocate 1 extra byte to test a case when buffer crosses huge page boundary */
SPDK_CU_ASSERT_FATAL(posix_memalign(&buf, VALUE_2MB, VALUE_2MB + 1) == 0);
buffer_end = (char *)buf + VALUE_2MB + 1;
aligned_user_buffer = (char *)buf;
memset(aligned_user_buffer, 0xc, vol.params.chunk_size);
unaligned_user_buffer = buffer_end - vol.params.chunk_size;
memset(unaligned_user_buffer, 0xc, vol.params.chunk_size);
req.vol = &vol;
req.decomp_buf = decomp_buffer;
req.comp_buf = comp_buffer;
req.iov = user_iov;
req.iovcnt = 2;
req.offset = 0;
/* Part 1 - backing dev supports sgl_in */
/* Test 1 - user's buffers length equals to chunk_size */
for (i = 0; i < 2; i++) {
req.iov[i].iov_base = aligned_user_buffer + i * user_buffer_iov_len;
req.iov[i].iov_len = user_buffer_iov_len;
}
_prepare_compress_chunk(&req, false);
CU_ASSERT(req.decomp_iovcnt == 2);
for (i = 0; i < 2; i++) {
CU_ASSERT(req.decomp_iov[i].iov_base == req.iov[i].iov_base);
CU_ASSERT(req.decomp_iov[i].iov_len == req.iov[i].iov_len);
}
_prepare_compress_chunk(&req, true);
CU_ASSERT(req.decomp_iovcnt == 2);
for (i = 0; i < 2; i++) {
CU_ASSERT(req.decomp_iov[i].iov_base == req.iov[i].iov_base);
CU_ASSERT(req.decomp_iov[i].iov_len == req.iov[i].iov_len);
}
/* Test 2 - user's buffer less than chunk_size, without offset */
user_buffer_iov_len = 4096;
remainder_bytes = vol.params.chunk_size - user_buffer_iov_len * 2;
for (i = 0; i < 2; i++) {
req.iov[i].iov_base = aligned_user_buffer + i * user_buffer_iov_len;
req.iov[i].iov_len = user_buffer_iov_len;
}
_prepare_compress_chunk(&req, false);
CU_ASSERT(req.decomp_iovcnt == 3);
for (i = 0; i < 2; i++) {
CU_ASSERT(req.decomp_iov[i].iov_base == req.iov[i].iov_base);
CU_ASSERT(req.decomp_iov[i].iov_len == req.iov[i].iov_len);
}
CU_ASSERT(req.decomp_iov[i].iov_base == req.decomp_buf + user_buffer_iov_len * 2);
CU_ASSERT(req.decomp_iov[i].iov_len == remainder_bytes);
_prepare_compress_chunk(&req, true);
CU_ASSERT(req.decomp_iovcnt == 3);
for (i = 0; i < 2; i++) {
CU_ASSERT(req.decomp_iov[i].iov_base == req.iov[i].iov_base);
CU_ASSERT(req.decomp_iov[i].iov_len == req.iov[i].iov_len);
}
CU_ASSERT(req.decomp_iov[i].iov_base == g_zero_buf + user_buffer_iov_len * 2);
CU_ASSERT(req.decomp_iov[i].iov_len == remainder_bytes);
/* Test 3 - user's buffer less than chunk_size, non zero offset */
user_buffer_iov_len = 4096;
req.offset = 3;
offset_bytes = req.offset * vol.params.logical_block_size;
remainder_bytes = vol.params.chunk_size - offset_bytes - user_buffer_iov_len * 2;
_prepare_compress_chunk(&req, false);
CU_ASSERT(req.decomp_iovcnt == 4);
CU_ASSERT(req.decomp_iov[0].iov_base == req.decomp_buf);
CU_ASSERT(req.decomp_iov[0].iov_len == offset_bytes);
for (i = 0; i < 2; i++) {
CU_ASSERT(req.decomp_iov[i + 1].iov_base == req.iov[i].iov_base);
CU_ASSERT(req.decomp_iov[i + 1].iov_len == req.iov[i].iov_len);
}
CU_ASSERT(req.decomp_iov[3].iov_base == req.decomp_buf + offset_bytes + user_buffer_iov_len * 2);
CU_ASSERT(req.decomp_iov[3].iov_len == remainder_bytes);
_prepare_compress_chunk(&req, true);
CU_ASSERT(req.decomp_iovcnt == 4);
CU_ASSERT(req.decomp_iov[0].iov_base == g_zero_buf);
CU_ASSERT(req.decomp_iov[0].iov_len == offset_bytes);
for (i = 0; i < 2; i++) {
CU_ASSERT(req.decomp_iov[i + 1].iov_base == req.iov[i].iov_base);
CU_ASSERT(req.decomp_iov[i + 1].iov_len == req.iov[i].iov_len);
}
CU_ASSERT(req.decomp_iov[3].iov_base == g_zero_buf + offset_bytes + user_buffer_iov_len * 2);
CU_ASSERT(req.decomp_iov[3].iov_len == remainder_bytes);
/* Part 2 - backing dev doesn't support sgl_in */
/* Test 1 - user's buffers length equals to chunk_size
* user's buffers are copied */
vol.backing_dev->sgl_in = false;
req.offset = 0;
user_buffer_iov_len = 8192;
for (i = 0; i < 2; i++) {
req.iov[i].iov_base = aligned_user_buffer + i * user_buffer_iov_len;
req.iov[i].iov_len = user_buffer_iov_len;
memset(req.iov[i].iov_base, 0xb + i, req.iov[i].iov_len);
}
memset(req.decomp_buf, 0xa, vol.params.chunk_size);
_prepare_compress_chunk(&req, false);
CU_ASSERT(req.decomp_iovcnt == 1);
CU_ASSERT(req.decomp_iov[0].iov_base == req.decomp_buf);
CU_ASSERT(req.decomp_iov[0].iov_len == vol.params.chunk_size);
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base, req.iov[0].iov_base, req.iov[0].iov_len) == 0);
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base + req.iov[0].iov_len, req.iov[1].iov_base,
req.iov[1].iov_len) == 0);
memset(req.decomp_buf, 0xa, vol.params.chunk_size);
_prepare_compress_chunk(&req, true);
CU_ASSERT(req.decomp_iovcnt == 1);
CU_ASSERT(req.decomp_iov[0].iov_base == req.decomp_buf);
CU_ASSERT(req.decomp_iov[0].iov_len == vol.params.chunk_size);
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base, req.iov[0].iov_base, req.iov[0].iov_len) == 0);
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base + req.iov[0].iov_len, req.iov[1].iov_base,
req.iov[1].iov_len) == 0);
/* Test 2 - single user's buffer length equals to chunk_size, buffer is not aligned
* User's buffer is copied */
req.iov[0].iov_base = unaligned_user_buffer;
req.iov[0].iov_len = vol.params.chunk_size;
req.iovcnt = 1;
memset(req.decomp_buf, 0xa, vol.params.chunk_size);
_prepare_compress_chunk(&req, false);
CU_ASSERT(req.decomp_iovcnt == 1);
CU_ASSERT(req.decomp_iov[0].iov_base == req.decomp_buf);
CU_ASSERT(req.decomp_iov[0].iov_len == vol.params.chunk_size);
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base, req.iov[0].iov_base,
req.iov[0].iov_len) == 0);
memset(req.decomp_buf, 0xa, vol.params.chunk_size);
_prepare_compress_chunk(&req, true);
CU_ASSERT(req.decomp_iovcnt == 1);
CU_ASSERT(req.decomp_iov[0].iov_base == req.decomp_buf);
CU_ASSERT(req.decomp_iov[0].iov_len == vol.params.chunk_size);
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base, req.iov[0].iov_base,
req.iov[0].iov_len) == 0);
/* Test 3 - single user's buffer length equals to chunk_size
* User's buffer is not copied */
req.iov[0].iov_base = aligned_user_buffer;
req.iov[0].iov_len = vol.params.chunk_size;
req.iovcnt = 1;
memset(req.decomp_buf, 0xa, vol.params.chunk_size);
_prepare_compress_chunk(&req, false);
CU_ASSERT(req.decomp_iovcnt == 1);
CU_ASSERT(req.decomp_iov[0].iov_base == req.iov[0].iov_base);
CU_ASSERT(req.decomp_iov[0].iov_len == vol.params.chunk_size);
memset(req.decomp_buf, 0xa, vol.params.chunk_size);
_prepare_compress_chunk(&req, true);
CU_ASSERT(req.decomp_iovcnt == 1);
CU_ASSERT(req.decomp_iov[0].iov_base == req.iov[0].iov_base);
CU_ASSERT(req.decomp_iov[0].iov_len == vol.params.chunk_size);
/* Test 4 - user's buffer less than chunk_size, without offset
* User's buffers are copied */
memset(req.decomp_buf, 0xa, vol.params.chunk_size);
user_buffer_iov_len = 4096;
req.iovcnt = 2;
remainder_bytes = vol.params.chunk_size - user_buffer_iov_len * 2;
for (i = 0; i < 2; i++) {
req.iov[i].iov_base = aligned_user_buffer + i * user_buffer_iov_len;
req.iov[i].iov_len = user_buffer_iov_len;
}
memset(req.decomp_buf, 0xa, vol.params.chunk_size);
_prepare_compress_chunk(&req, false);
CU_ASSERT(req.decomp_iovcnt == 1);
CU_ASSERT(req.decomp_iov[0].iov_base == req.decomp_buf);
CU_ASSERT(req.decomp_iov[0].iov_len == vol.params.chunk_size);
memcmp_offset = 0;
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base + memcmp_offset, req.iov[0].iov_base,
req.iov[0].iov_len) == 0);
memcmp_offset += req.iov[0].iov_len;
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base + memcmp_offset, req.iov[1].iov_base,
req.iov[1].iov_len) == 0);
memcmp_offset += req.iov[0].iov_len;
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base + memcmp_offset, req.decomp_buf + memcmp_offset,
remainder_bytes) == 0);
memset(req.decomp_buf, 0xa, vol.params.chunk_size);
_prepare_compress_chunk(&req, true);
CU_ASSERT(req.decomp_iovcnt == 1);
CU_ASSERT(req.decomp_iov[0].iov_base == req.decomp_buf);
CU_ASSERT(req.decomp_iov[0].iov_len == vol.params.chunk_size);
memcmp_offset = 0;
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base + memcmp_offset, req.iov[0].iov_base,
req.iov[0].iov_len) == 0);
memcmp_offset += req.iov[0].iov_len;
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base + memcmp_offset, req.iov[1].iov_base,
req.iov[1].iov_len) == 0);
memcmp_offset += req.iov[0].iov_len;
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base + memcmp_offset, g_zero_buf + memcmp_offset,
remainder_bytes) == 0);
/* Test 5 - user's buffer less than chunk_size, non zero offset
* user's buffers are copied */
req.offset = 3;
offset_bytes = req.offset * vol.params.logical_block_size;
remainder_bytes = vol.params.chunk_size - offset_bytes - user_buffer_iov_len * 2;
memset(req.decomp_buf, 0xa, vol.params.chunk_size);
_prepare_compress_chunk(&req, false);
CU_ASSERT(req.decomp_iovcnt == 1);
CU_ASSERT(req.decomp_iov[0].iov_base == req.decomp_buf);
CU_ASSERT(req.decomp_iov[0].iov_len == vol.params.chunk_size);
memcmp_offset = 0;
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base + memcmp_offset, req.decomp_buf, offset_bytes) == 0);
memcmp_offset += offset_bytes;
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base + memcmp_offset, req.iov[0].iov_base,
req.iov[0].iov_len) == 0);
memcmp_offset += req.iov[0].iov_len;
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base + memcmp_offset, req.iov[1].iov_base,
req.iov[1].iov_len) == 0);
memcmp_offset += req.iov[1].iov_len;
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base + memcmp_offset, req.decomp_buf + memcmp_offset,
remainder_bytes) == 0);
memset(req.decomp_buf, 0xa, vol.params.chunk_size);
_prepare_compress_chunk(&req, true);
CU_ASSERT(req.decomp_iovcnt == 1);
CU_ASSERT(req.decomp_iov[0].iov_base == req.decomp_buf);
CU_ASSERT(req.decomp_iov[0].iov_len == vol.params.chunk_size);
memcmp_offset = 0;
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base + memcmp_offset, g_zero_buf, offset_bytes) == 0);
memcmp_offset += offset_bytes;
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base + memcmp_offset, req.iov[0].iov_base,
req.iov[0].iov_len) == 0);
memcmp_offset += req.iov[0].iov_len;
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base + memcmp_offset, req.iov[1].iov_base,
req.iov[1].iov_len) == 0);
memcmp_offset += req.iov[1].iov_len;
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base + memcmp_offset, g_zero_buf + memcmp_offset,
remainder_bytes) == 0);
free(buf);
}
static void
_reduce_vol_op_complete(void *ctx, int reduce_errno)
{
g_reduce_errno = reduce_errno;
}
static void
dummy_backing_dev_decompress(struct spdk_reduce_backing_dev *backing_dev,
struct iovec *src_iov, int src_iovcnt,
struct iovec *dst_iov, int dst_iovcnt,
struct spdk_reduce_vol_cb_args *args)
{
args->cb_fn(args->cb_arg, g_decompressed_len);
}
static void
test_reduce_decompress_chunk(void)
{
struct spdk_reduce_vol vol = {};
struct spdk_reduce_backing_dev backing_dev = {};
struct spdk_reduce_vol_request req = {};
void *buf;
char *buffer_end, *aligned_user_buffer, *unaligned_user_buffer;
char decomp_buffer[16 * 1024] = {};
char comp_buffer[16 * 1024] = {};
struct iovec user_iov[2] = {};
struct iovec comp_buf_iov = {};
struct spdk_reduce_chunk_map chunk = {};
size_t user_buffer_iov_len = 8192;
size_t remainder_bytes;
size_t offset_bytes;
uint32_t i;
vol.params.chunk_size = 16 * 1024;
vol.params.backing_io_unit_size = 4096;
vol.params.logical_block_size = 512;
backing_dev_init(&backing_dev, &vol.params, 512);
backing_dev.decompress = dummy_backing_dev_decompress;
vol.backing_dev = &backing_dev;
vol.logical_blocks_per_chunk = vol.params.chunk_size / vol.params.logical_block_size;
TAILQ_INIT(&vol.executing_requests);
TAILQ_INIT(&vol.queued_requests);
TAILQ_INIT(&vol.free_requests);
/* Allocate 1 extra byte to test a case when buffer crosses huge page boundary */
SPDK_CU_ASSERT_FATAL(posix_memalign(&buf, VALUE_2MB, VALUE_2MB + 1) == 0);
buffer_end = (char *)buf + VALUE_2MB + 1;
aligned_user_buffer = (char *)buf;
unaligned_user_buffer = buffer_end - vol.params.chunk_size;
chunk.compressed_size = user_buffer_iov_len / 2;
req.chunk = &chunk;
req.vol = &vol;
req.decomp_buf = decomp_buffer;
req.comp_buf = comp_buffer;
req.comp_buf_iov = &comp_buf_iov;
req.iov = user_iov;
req.iovcnt = 2;
req.offset = 0;
req.cb_fn = _reduce_vol_op_complete;
/* Part 1 - backing dev supports sgl_out */
/* Test 1 - user's buffers length equals to chunk_size */
for (i = 0; i < 2; i++) {
req.iov[i].iov_base = aligned_user_buffer + i * user_buffer_iov_len;
req.iov[i].iov_len = user_buffer_iov_len;
memset(req.iov[i].iov_base, 0, req.iov[i].iov_len);
}
TAILQ_INSERT_HEAD(&vol.executing_requests, &req, tailq);
g_reduce_errno = -1;
g_decompressed_len = vol.params.chunk_size;
_reduce_vol_decompress_chunk(&req, _read_decompress_done);
CU_ASSERT(g_reduce_errno == 0);
CU_ASSERT(req.copy_after_decompress == false);
CU_ASSERT(req.decomp_iovcnt == 2);
for (i = 0; i < 2; i++) {
CU_ASSERT(req.decomp_iov[i].iov_base == req.iov[i].iov_base);
CU_ASSERT(req.decomp_iov[i].iov_len == req.iov[i].iov_len);
}
CU_ASSERT(TAILQ_EMPTY(&vol.executing_requests));
CU_ASSERT(TAILQ_FIRST(&vol.free_requests) == &req);
/* Test 2 - user's buffer less than chunk_size, without offset */
TAILQ_INSERT_HEAD(&vol.executing_requests, &req, tailq);
g_reduce_errno = -1;
user_buffer_iov_len = 4096;
for (i = 0; i < 2; i++) {
req.iov[i].iov_base = aligned_user_buffer + i * user_buffer_iov_len;
req.iov[i].iov_len = user_buffer_iov_len;
memset(req.iov[i].iov_base, 0, req.iov[i].iov_len);
}
remainder_bytes = vol.params.chunk_size - user_buffer_iov_len * 2;
_reduce_vol_decompress_chunk(&req, _read_decompress_done);
CU_ASSERT(g_reduce_errno == 0);
CU_ASSERT(req.copy_after_decompress == false);
CU_ASSERT(req.decomp_iovcnt == 3);
for (i = 0; i < 2; i++) {
CU_ASSERT(req.decomp_iov[i].iov_base == req.iov[i].iov_base);
CU_ASSERT(req.decomp_iov[i].iov_len == req.iov[i].iov_len);
}
CU_ASSERT(req.decomp_iov[i].iov_base == req.decomp_buf + user_buffer_iov_len * 2);
CU_ASSERT(req.decomp_iov[i].iov_len == remainder_bytes);
CU_ASSERT(TAILQ_EMPTY(&vol.executing_requests));
CU_ASSERT(TAILQ_FIRST(&vol.free_requests) == &req);
/* Test 3 - user's buffer less than chunk_size, non zero offset */
req.offset = 3;
offset_bytes = req.offset * vol.params.logical_block_size;
remainder_bytes = vol.params.chunk_size - offset_bytes - user_buffer_iov_len * 2;
TAILQ_INSERT_HEAD(&vol.executing_requests, &req, tailq);
g_reduce_errno = -1;
_reduce_vol_decompress_chunk(&req, _read_decompress_done);
CU_ASSERT(g_reduce_errno == 0);
CU_ASSERT(req.copy_after_decompress == false);
CU_ASSERT(req.decomp_iovcnt == 4);
CU_ASSERT(req.decomp_iov[0].iov_base == req.decomp_buf);
CU_ASSERT(req.decomp_iov[0].iov_len == offset_bytes);
for (i = 0; i < 2; i++) {
CU_ASSERT(req.decomp_iov[i + 1].iov_base == req.iov[i].iov_base);
CU_ASSERT(req.decomp_iov[i + 1].iov_len == req.iov[i].iov_len);
}
CU_ASSERT(req.decomp_iov[3].iov_base == req.decomp_buf + offset_bytes + user_buffer_iov_len * 2);
CU_ASSERT(req.decomp_iov[3].iov_len == remainder_bytes);
CU_ASSERT(TAILQ_EMPTY(&vol.executing_requests));
CU_ASSERT(TAILQ_FIRST(&vol.free_requests) == &req);
/* Part 2 - backing dev doesn't support sgl_out */
/* Test 1 - user's buffers length equals to chunk_size
* user's buffers are copied */
vol.backing_dev->sgl_out = false;
req.offset = 0;
user_buffer_iov_len = 8192;
memset(req.decomp_buf, 0xa, vol.params.chunk_size);
for (i = 0; i < 2; i++) {
req.iov[i].iov_base = aligned_user_buffer + i * user_buffer_iov_len;
req.iov[i].iov_len = user_buffer_iov_len;
memset(req.iov[i].iov_base, 0xb + i, req.iov[i].iov_len);
}
TAILQ_INSERT_HEAD(&vol.executing_requests, &req, tailq);
g_reduce_errno = -1;
_reduce_vol_decompress_chunk(&req, _read_decompress_done);
CU_ASSERT(g_reduce_errno == 0);
CU_ASSERT(req.copy_after_decompress == true);
CU_ASSERT(req.decomp_iovcnt == 1);
CU_ASSERT(req.decomp_iov[0].iov_base == req.decomp_buf);
CU_ASSERT(req.decomp_iov[0].iov_len == vol.params.chunk_size);
CU_ASSERT(memcmp(req.iov[0].iov_base, req.decomp_iov[0].iov_base, req.iov[0].iov_len) == 0);
CU_ASSERT(memcmp(req.iov[1].iov_base, req.decomp_iov[0].iov_base + req.iov[0].iov_len,
req.iov[1].iov_len) == 0);
CU_ASSERT(TAILQ_EMPTY(&vol.executing_requests));
CU_ASSERT(TAILQ_FIRST(&vol.free_requests) == &req);
/* Test 2 - single user's buffer length equals to chunk_size, buffer is not aligned
* User's buffer is copied */
memset(unaligned_user_buffer, 0xc, vol.params.chunk_size);
req.iov[0].iov_base = unaligned_user_buffer;
req.iov[0].iov_len = vol.params.chunk_size;
req.iovcnt = 1;
memset(req.decomp_buf, 0xa, vol.params.chunk_size);
TAILQ_INSERT_HEAD(&vol.executing_requests, &req, tailq);
g_reduce_errno = -1;
_reduce_vol_decompress_chunk(&req, _read_decompress_done);
CU_ASSERT(g_reduce_errno == 0);
CU_ASSERT(req.copy_after_decompress == true);
CU_ASSERT(req.decomp_iovcnt == 1);
CU_ASSERT(req.decomp_iov[0].iov_base == req.decomp_buf);
CU_ASSERT(req.decomp_iov[0].iov_len == vol.params.chunk_size);
CU_ASSERT(memcmp(req.iov[0].iov_base, req.decomp_iov[0].iov_base,
req.iov[0].iov_len) == 0);
/* Test 3 - single user's buffer length equals to chunk_size
* User's buffer is not copied */
req.iov[0].iov_base = aligned_user_buffer;
req.iov[0].iov_len = vol.params.chunk_size;
req.iovcnt = 1;
memset(req.decomp_buf, 0xa, vol.params.chunk_size);
TAILQ_INSERT_HEAD(&vol.executing_requests, &req, tailq);
g_reduce_errno = -1;
_reduce_vol_decompress_chunk(&req, _read_decompress_done);
CU_ASSERT(g_reduce_errno == 0);
CU_ASSERT(req.copy_after_decompress == false);
CU_ASSERT(req.decomp_iovcnt == 1);
CU_ASSERT(req.decomp_iov[0].iov_base == req.iov[0].iov_base);
CU_ASSERT(req.decomp_iov[0].iov_len == vol.params.chunk_size);
/* Test 4 - user's buffer less than chunk_size, without offset
* User's buffers are copied */
user_buffer_iov_len = 4096;
req.iovcnt = 2;
remainder_bytes = vol.params.chunk_size - user_buffer_iov_len * 2;
for (i = 0; i < 2; i++) {
req.iov[i].iov_base = aligned_user_buffer + i * user_buffer_iov_len;
req.iov[i].iov_len = user_buffer_iov_len;
memset(req.iov[i].iov_base, 0xb + i, req.iov[i].iov_len);
}
memset(req.decomp_buf, 0xa, vol.params.chunk_size);
TAILQ_INSERT_HEAD(&vol.executing_requests, &req, tailq);
g_reduce_errno = -1;
_reduce_vol_decompress_chunk(&req, _read_decompress_done);
CU_ASSERT(g_reduce_errno == 0);
CU_ASSERT(req.copy_after_decompress == true);
CU_ASSERT(req.decomp_iovcnt == 1);
CU_ASSERT(req.decomp_iov[0].iov_base == req.decomp_buf);
CU_ASSERT(req.decomp_iov[0].iov_len == vol.params.chunk_size);
CU_ASSERT(memcmp(req.iov[0].iov_base, req.decomp_iov[0].iov_base,
req.iov[0].iov_len) == 0);
CU_ASSERT(memcmp(req.iov[1].iov_base, req.decomp_iov[0].iov_base + req.iov[0].iov_len,
req.iov[1].iov_len) == 0);
CU_ASSERT(TAILQ_EMPTY(&vol.executing_requests));
CU_ASSERT(TAILQ_FIRST(&vol.free_requests) == &req);
/* Test 5 - user's buffer less than chunk_size, non zero offset
* user's buffers are copied */
req.offset = 3;
offset_bytes = req.offset * vol.params.logical_block_size;
remainder_bytes = vol.params.chunk_size - offset_bytes - user_buffer_iov_len * 2;
for (i = 0; i < 2; i++) {
req.iov[i].iov_base = aligned_user_buffer + i * user_buffer_iov_len;
req.iov[i].iov_len = user_buffer_iov_len;
memset(req.iov[i].iov_base, 0xb + i, req.iov[i].iov_len);
}
memset(req.decomp_buf, 0xa, vol.params.chunk_size);
TAILQ_INSERT_HEAD(&vol.executing_requests, &req, tailq);
g_reduce_errno = -1;
_prepare_compress_chunk(&req, false);
_reduce_vol_decompress_chunk(&req, _read_decompress_done);
CU_ASSERT(g_reduce_errno == 0);
CU_ASSERT(req.copy_after_decompress == true);
CU_ASSERT(req.decomp_iovcnt == 1);
CU_ASSERT(req.decomp_iov[0].iov_base == req.decomp_buf);
CU_ASSERT(req.decomp_iov[0].iov_len == vol.params.chunk_size);
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base + offset_bytes, req.iov[0].iov_base,
req.iov[0].iov_len) == 0);
CU_ASSERT(memcmp(req.decomp_iov[0].iov_base + offset_bytes + req.iov[0].iov_len,
req.iov[1].iov_base,
req.iov[1].iov_len) == 0);
CU_ASSERT(TAILQ_EMPTY(&vol.executing_requests));
CU_ASSERT(TAILQ_FIRST(&vol.free_requests) == &req);
free(buf);
}
static void
test_allocate_vol_requests(void)
{
struct spdk_reduce_vol *vol;
/* include chunk_sizes which are not power of 2 */
uint32_t chunk_sizes[] = {8192, 8320, 16384, 16416, 32768};
uint32_t io_unit_sizes[] = {512, 520, 4096, 4104, 4096};
uint32_t i;
for (i = 0; i < 4; i++) {
vol = calloc(1, sizeof(*vol));
SPDK_CU_ASSERT_FATAL(vol);
vol->params.chunk_size = chunk_sizes[i];
vol->params.logical_block_size = io_unit_sizes[i];
vol->params.backing_io_unit_size = io_unit_sizes[i];
vol->backing_io_units_per_chunk = vol->params.chunk_size / vol->params.backing_io_unit_size;
vol->logical_blocks_per_chunk = vol->params.chunk_size / vol->params.logical_block_size;
CU_ASSERT(_validate_vol_params(&vol->params) == 0);
CU_ASSERT(_allocate_vol_requests(vol) == 0);
_init_load_cleanup(vol, NULL);
}
}
int
main(int argc, char **argv)
{
CU_pSuite suite = NULL;
unsigned int num_failures;
CU_set_error_action(CUEA_ABORT);
CU_initialize_registry();
suite = CU_add_suite("reduce", NULL, NULL);
CU_ADD_TEST(suite, get_pm_file_size);
CU_ADD_TEST(suite, get_vol_size);
CU_ADD_TEST(suite, init_failure);
CU_ADD_TEST(suite, init_md);
CU_ADD_TEST(suite, init_backing_dev);
CU_ADD_TEST(suite, load);
CU_ADD_TEST(suite, write_maps);
CU_ADD_TEST(suite, read_write);
CU_ADD_TEST(suite, readv_writev);
CU_ADD_TEST(suite, destroy);
CU_ADD_TEST(suite, defer_bdev_io);
CU_ADD_TEST(suite, overlapped);
CU_ADD_TEST(suite, compress_algorithm);
CU_ADD_TEST(suite, test_prepare_compress_chunk);
CU_ADD_TEST(suite, test_reduce_decompress_chunk);
CU_ADD_TEST(suite, test_allocate_vol_requests);
g_unlink_path = g_path;
g_unlink_callback = unlink_cb;
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
return num_failures;
}