Spdk/test/lib/nvme/reset/reset.c
Daniel Verkamp fcb00f3780 nvme: expand probe information to a struct
spdk_nvme_probe() will now provide a struct spdk_nvme_probe_info to the
probe and attach callbacks in place of the PCI device pointer.

This struct contains the useful information that could be retrieved from
the PCI device during probe.

The goal of this change is to allow expansion of the probe information
in the future when other transports (specifically, NVMe over Fabrics)
are added that do not necessarily use PCI addressing or device IDs.

Change-Id: I59a2a9e874e248ce5fa1d7f4b57c8056962ff3cd
Signed-off-by: Daniel Verkamp <daniel.verkamp@intel.com>
2016-11-02 14:15:02 -07:00

676 lines
15 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <rte_config.h>
#include <rte_mempool.h>
#include <rte_lcore.h>
#include "spdk/nvme.h"
#include "spdk/env.h"
#include "spdk/string.h"
struct ctrlr_entry {
struct spdk_nvme_ctrlr *ctrlr;
struct ctrlr_entry *next;
char name[1024];
};
struct ns_entry {
struct spdk_nvme_ns *ns;
struct spdk_nvme_ctrlr *ctrlr;
struct ns_entry *next;
uint32_t io_size_blocks;
uint64_t size_in_ios;
char name[1024];
};
struct ns_worker_ctx {
struct ns_entry *entry;
struct spdk_nvme_qpair *qpair;
uint64_t io_completed;
uint64_t io_completed_error;
uint64_t io_submitted;
uint64_t current_queue_depth;
uint64_t offset_in_ios;
bool is_draining;
struct ns_worker_ctx *next;
};
struct reset_task {
struct ns_worker_ctx *ns_ctx;
void *buf;
};
struct worker_thread {
struct ns_worker_ctx *ns_ctx;
unsigned lcore;
};
static struct rte_mempool *task_pool;
static struct ctrlr_entry *g_controllers = NULL;
static struct ns_entry *g_namespaces = NULL;
static int g_num_namespaces = 0;
static struct worker_thread *g_workers = NULL;
static uint64_t g_tsc_rate;
static int g_io_size_bytes;
static int g_rw_percentage;
static int g_is_random;
static int g_queue_depth;
static int g_time_in_sec;
static void
register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
{
struct ns_entry *entry;
const struct spdk_nvme_ctrlr_data *cdata;
if (!spdk_nvme_ns_is_active(ns)) {
printf("Skipping inactive NS %u\n", spdk_nvme_ns_get_id(ns));
return;
}
entry = malloc(sizeof(struct ns_entry));
if (entry == NULL) {
perror("ns_entry malloc");
exit(1);
}
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
entry->ns = ns;
entry->ctrlr = ctrlr;
entry->size_in_ios = spdk_nvme_ns_get_size(ns) /
g_io_size_bytes;
entry->io_size_blocks = g_io_size_bytes / spdk_nvme_ns_get_sector_size(ns);
snprintf(entry->name, 44, "%-20.20s (%-20.20s)", cdata->mn, cdata->sn);
g_num_namespaces++;
entry->next = g_namespaces;
g_namespaces = entry;
}
static void
register_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
{
int nsid, num_ns;
struct ctrlr_entry *entry = malloc(sizeof(struct ctrlr_entry));
if (entry == NULL) {
perror("ctrlr_entry malloc");
exit(1);
}
entry->ctrlr = ctrlr;
entry->next = g_controllers;
g_controllers = entry;
num_ns = spdk_nvme_ctrlr_get_num_ns(ctrlr);
for (nsid = 1; nsid <= num_ns; nsid++) {
register_ns(ctrlr, spdk_nvme_ctrlr_get_ns(ctrlr, nsid));
}
}
static void task_ctor(struct rte_mempool *mp, void *arg, void *__task, unsigned id)
{
struct reset_task *task = __task;
task->buf = spdk_zmalloc(g_io_size_bytes, 0x200, NULL);
if (task->buf == NULL) {
fprintf(stderr, "task->buf spdk_zmalloc failed\n");
exit(1);
}
}
static void io_complete(void *ctx, const struct spdk_nvme_cpl *completion);
static __thread unsigned int seed = 0;
static void
submit_single_io(struct ns_worker_ctx *ns_ctx)
{
struct reset_task *task = NULL;
uint64_t offset_in_ios;
int rc;
struct ns_entry *entry = ns_ctx->entry;
if (rte_mempool_get(task_pool, (void **)&task) != 0) {
fprintf(stderr, "task_pool rte_mempool_get failed\n");
exit(1);
}
task->ns_ctx = ns_ctx;
task->ns_ctx->io_submitted++;
if (g_is_random) {
offset_in_ios = rand_r(&seed) % entry->size_in_ios;
} else {
offset_in_ios = ns_ctx->offset_in_ios++;
if (ns_ctx->offset_in_ios == entry->size_in_ios) {
ns_ctx->offset_in_ios = 0;
}
}
if ((g_rw_percentage == 100) ||
(g_rw_percentage != 0 && ((rand_r(&seed) % 100) < g_rw_percentage))) {
rc = spdk_nvme_ns_cmd_read(entry->ns, ns_ctx->qpair, task->buf,
offset_in_ios * entry->io_size_blocks,
entry->io_size_blocks, io_complete, task, 0);
} else {
rc = spdk_nvme_ns_cmd_write(entry->ns, ns_ctx->qpair, task->buf,
offset_in_ios * entry->io_size_blocks,
entry->io_size_blocks, io_complete, task, 0);
}
if (rc != 0) {
fprintf(stderr, "starting I/O failed\n");
}
ns_ctx->current_queue_depth++;
}
static void
task_complete(struct reset_task *task, const struct spdk_nvme_cpl *completion)
{
struct ns_worker_ctx *ns_ctx;
ns_ctx = task->ns_ctx;
ns_ctx->current_queue_depth--;
if (spdk_nvme_cpl_is_error(completion)) {
ns_ctx->io_completed_error++;
} else {
ns_ctx->io_completed++;
}
rte_mempool_put(task_pool, task);
/*
* is_draining indicates when time has expired for the test run
* and we are just waiting for the previously submitted I/O
* to complete. In this case, do not submit a new I/O to replace
* the one just completed.
*/
if (!ns_ctx->is_draining) {
submit_single_io(ns_ctx);
}
}
static void
io_complete(void *ctx, const struct spdk_nvme_cpl *completion)
{
task_complete((struct reset_task *)ctx, completion);
}
static void
check_io(struct ns_worker_ctx *ns_ctx)
{
spdk_nvme_qpair_process_completions(ns_ctx->qpair, 0);
}
static void
submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth)
{
while (queue_depth-- > 0) {
submit_single_io(ns_ctx);
}
}
static void
drain_io(struct ns_worker_ctx *ns_ctx)
{
ns_ctx->is_draining = true;
while (ns_ctx->current_queue_depth > 0) {
check_io(ns_ctx);
}
}
static int
work_fn(void *arg)
{
uint64_t tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate;
struct worker_thread *worker = (struct worker_thread *)arg;
struct ns_worker_ctx *ns_ctx = NULL;
bool did_reset = false;
printf("Starting thread on core %u\n", worker->lcore);
/* Submit initial I/O for each namespace. */
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
ns_ctx->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ns_ctx->entry->ctrlr, 0);
if (ns_ctx->qpair == NULL) {
fprintf(stderr, "spdk_nvme_ctrlr_alloc_io_qpair() failed on core %u\n", worker->lcore);
return -1;
}
submit_io(ns_ctx, g_queue_depth);
ns_ctx = ns_ctx->next;
}
while (1) {
/*
* Check for completed I/O for each controller. A new
* I/O will be submitted in the io_complete callback
* to replace each I/O that is completed.
*/
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
check_io(ns_ctx);
ns_ctx = ns_ctx->next;
}
if (!did_reset && ((tsc_end - spdk_get_ticks()) / g_tsc_rate) > (uint64_t)g_time_in_sec / 2) {
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
if (spdk_nvme_ctrlr_reset(ns_ctx->entry->ctrlr) < 0) {
fprintf(stderr, "nvme reset failed.\n");
return -1;
}
ns_ctx = ns_ctx->next;
}
did_reset = true;
}
if (spdk_get_ticks() > tsc_end) {
break;
}
}
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
drain_io(ns_ctx);
spdk_nvme_ctrlr_free_io_qpair(ns_ctx->qpair);
ns_ctx = ns_ctx->next;
}
return 0;
}
static void usage(char *program_name)
{
printf("%s options", program_name);
printf("\n");
printf("\t[-q io depth]\n");
printf("\t[-s io size in bytes]\n");
printf("\t[-w io pattern type, must be one of\n");
printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n");
printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n");
printf("\t[-t time in seconds(should be larger than 15 seconds)]\n");
printf("\t[-m max completions per poll]\n");
printf("\t\t(default:0 - unlimited)\n");
}
static int
print_stats(void)
{
uint64_t io_completed, io_submitted, io_completed_error;
uint64_t total_completed_io, total_submitted_io, total_completed_err_io;
struct worker_thread *worker;
struct ns_worker_ctx *ns_ctx;
total_completed_io = 0;
total_submitted_io = 0;
total_completed_err_io = 0;
worker = g_workers;
ns_ctx = worker->ns_ctx;
while (ns_ctx) {
io_completed = ns_ctx->io_completed;
io_submitted = ns_ctx->io_submitted;
io_completed_error = ns_ctx->io_completed_error;
total_completed_io += io_completed;
total_submitted_io += io_submitted;
total_completed_err_io += io_completed_error;
ns_ctx = ns_ctx->next;
}
printf("========================================================\n");
printf("%16lu IO completed successfully\n", total_completed_io);
printf("%16lu IO completed with error\n", total_completed_err_io);
printf("--------------------------------------------------------\n");
printf("%16lu IO completed total\n", total_completed_io + total_completed_err_io);
printf("%16lu IO submitted\n", total_submitted_io);
if (total_submitted_io != (total_completed_io + total_completed_err_io)) {
fprintf(stderr, "Some IO are missing......\n");
return -1;
}
return 0;
}
static int
parse_args(int argc, char **argv)
{
const char *workload_type;
int op;
bool mix_specified = false;
/* default value*/
g_queue_depth = 0;
g_io_size_bytes = 0;
workload_type = NULL;
g_time_in_sec = 0;
g_rw_percentage = -1;
while ((op = getopt(argc, argv, "m:q:s:t:w:M:")) != -1) {
switch (op) {
case 'q':
g_queue_depth = atoi(optarg);
break;
case 's':
g_io_size_bytes = atoi(optarg);
break;
case 't':
g_time_in_sec = atoi(optarg);
break;
case 'w':
workload_type = optarg;
break;
case 'M':
g_rw_percentage = atoi(optarg);
mix_specified = true;
break;
default:
usage(argv[0]);
return 1;
}
}
if (!g_queue_depth) {
usage(argv[0]);
return 1;
}
if (!g_io_size_bytes) {
usage(argv[0]);
return 1;
}
if (!workload_type) {
usage(argv[0]);
return 1;
}
if (!g_time_in_sec) {
usage(argv[0]);
return 1;
}
if (strcmp(workload_type, "read") &&
strcmp(workload_type, "write") &&
strcmp(workload_type, "randread") &&
strcmp(workload_type, "randwrite") &&
strcmp(workload_type, "rw") &&
strcmp(workload_type, "randrw")) {
fprintf(stderr,
"io pattern type must be one of\n"
"(read, write, randread, randwrite, rw, randrw)\n");
return 1;
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "randread")) {
g_rw_percentage = 100;
}
if (!strcmp(workload_type, "write") ||
!strcmp(workload_type, "randwrite")) {
g_rw_percentage = 0;
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "randread") ||
!strcmp(workload_type, "write") ||
!strcmp(workload_type, "randwrite")) {
if (mix_specified) {
fprintf(stderr, "Ignoring -M option... Please use -M option"
" only when using rw or randrw.\n");
}
}
if (!strcmp(workload_type, "rw") ||
!strcmp(workload_type, "randrw")) {
if (g_rw_percentage < 0 || g_rw_percentage > 100) {
fprintf(stderr,
"-M must be specified to value from 0 to 100 "
"for rw or randrw.\n");
return 1;
}
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "write") ||
!strcmp(workload_type, "rw")) {
g_is_random = 0;
} else {
g_is_random = 1;
}
optind = 1;
return 0;
}
static int
register_workers(void)
{
struct worker_thread *worker;
worker = malloc(sizeof(struct worker_thread));
if (worker == NULL) {
perror("worker_thread malloc");
return -1;
}
memset(worker, 0, sizeof(struct worker_thread));
worker->lcore = rte_get_master_lcore();
g_workers = worker;
return 0;
}
static bool
probe_cb(void *cb_ctx, const struct spdk_nvme_probe_info *probe_info,
struct spdk_nvme_ctrlr_opts *opts)
{
return true;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_probe_info *probe_info,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
register_ctrlr(ctrlr);
}
static int
register_controllers(void)
{
printf("Initializing NVMe Controllers\n");
if (spdk_nvme_probe(NULL, probe_cb, attach_cb, NULL) != 0) {
fprintf(stderr, "spdk_nvme_probe() failed\n");
return 1;
}
return 0;
}
static void
unregister_controllers(void)
{
struct ctrlr_entry *entry = g_controllers;
while (entry) {
struct ctrlr_entry *next = entry->next;
spdk_nvme_detach(entry->ctrlr);
free(entry);
entry = next;
}
}
static int
associate_workers_with_ns(void)
{
struct ns_entry *entry = g_namespaces;
struct worker_thread *worker = g_workers;
struct ns_worker_ctx *ns_ctx;
int i, count;
count = g_num_namespaces;
for (i = 0; i < count; i++) {
if (entry == NULL) {
break;
}
ns_ctx = malloc(sizeof(struct ns_worker_ctx));
if (!ns_ctx) {
return -1;
}
memset(ns_ctx, 0, sizeof(*ns_ctx));
printf("Associating %s with lcore %d\n", entry->name, worker->lcore);
ns_ctx->entry = entry;
ns_ctx->next = worker->ns_ctx;
worker->ns_ctx = ns_ctx;
worker = g_workers;
entry = entry->next;
if (entry == NULL) {
entry = g_namespaces;
}
}
return 0;
}
static int
run_nvme_reset_cycle(int retry_count)
{
struct worker_thread *worker;
struct ns_worker_ctx *ns_ctx;
spdk_nvme_retry_count = retry_count;
if (work_fn(g_workers) != 0) {
return -1;
}
if (print_stats() != 0) {
return -1;
}
worker = g_workers;
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
ns_ctx->io_completed = 0;
ns_ctx->io_completed_error = 0;
ns_ctx->io_submitted = 0;
ns_ctx->is_draining = false;
ns_ctx = ns_ctx->next;
}
return 0;
}
static char *ealargs[] = {
"reset",
"-c 0x1",
"-n 4",
};
int main(int argc, char **argv)
{
int rc;
int i;
rc = parse_args(argc, argv);
if (rc != 0) {
return rc;
}
rc = rte_eal_init(sizeof(ealargs) / sizeof(ealargs[0]), ealargs);
if (rc < 0) {
fprintf(stderr, "could not initialize dpdk\n");
return 1;
}
task_pool = rte_mempool_create("task_pool", 8192,
sizeof(struct reset_task),
64, 0, NULL, NULL, task_ctor, NULL,
SOCKET_ID_ANY, 0);
g_tsc_rate = spdk_get_ticks_hz();
if (register_workers() != 0) {
return 1;
}
if (register_controllers() != 0) {
return 1;
}
if (associate_workers_with_ns() != 0) {
rc = 1;
goto cleanup;
}
printf("Initialization complete. Launching workers.\n");
for (i = 2; i >= 0; i--) {
rc = run_nvme_reset_cycle(i);
if (rc != 0) {
goto cleanup;
}
}
cleanup:
unregister_controllers();
if (rc != 0) {
fprintf(stderr, "%s: errors occured\n", argv[0]);
}
return rc;
}