Spdk/test/lib/nvme/overhead/overhead.c
Daniel Verkamp fcb00f3780 nvme: expand probe information to a struct
spdk_nvme_probe() will now provide a struct spdk_nvme_probe_info to the
probe and attach callbacks in place of the PCI device pointer.

This struct contains the useful information that could be retrieved from
the PCI device during probe.

The goal of this change is to allow expansion of the probe information
in the future when other transports (specifically, NVMe over Fabrics)
are added that do not necessarily use PCI addressing or device IDs.

Change-Id: I59a2a9e874e248ce5fa1d7f4b57c8056962ff3cd
Signed-off-by: Daniel Verkamp <daniel.verkamp@intel.com>
2016-11-02 14:15:02 -07:00

655 lines
15 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <errno.h>
#include <inttypes.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <rte_config.h>
#include <rte_lcore.h>
#include "spdk/barrier.h"
#include "spdk/fd.h"
#include "spdk/nvme.h"
#include "spdk/env.h"
#include "spdk/string.h"
#include "spdk/nvme_intel.h"
#if HAVE_LIBAIO
#include <libaio.h>
#include <sys/stat.h>
#include <fcntl.h>
#endif
struct ctrlr_entry {
struct spdk_nvme_ctrlr *ctrlr;
struct ctrlr_entry *next;
char name[1024];
};
enum entry_type {
ENTRY_TYPE_NVME_NS,
ENTRY_TYPE_AIO_FILE,
};
struct ns_entry {
enum entry_type type;
union {
struct {
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_ns *ns;
struct spdk_nvme_qpair *qpair;
} nvme;
#if HAVE_LIBAIO
struct {
int fd;
struct io_event *events;
io_context_t ctx;
} aio;
#endif
} u;
uint32_t io_size_blocks;
uint64_t size_in_ios;
bool is_draining;
uint32_t current_queue_depth;
char name[1024];
};
struct perf_task {
void *buf;
uint64_t submit_tsc;
#if HAVE_LIBAIO
struct iocb iocb;
#endif
};
static struct ctrlr_entry *g_ctrlr = NULL;
static struct ns_entry *g_ns = NULL;
static uint64_t g_tsc_rate;
static uint32_t g_io_size_bytes;
static int g_time_in_sec;
static int g_aio_optind; /* Index of first AIO filename in argv */
struct perf_task *g_task;
uint64_t g_tsc_submit = 0;
uint64_t g_tsc_submit_min = UINT64_MAX;
uint64_t g_tsc_submit_max = 0;
uint64_t g_tsc_complete = 0;
uint64_t g_tsc_complete_min = UINT64_MAX;
uint64_t g_tsc_complete_max = 0;
uint64_t g_io_completed = 0;
static void
register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
{
struct ns_entry *entry;
const struct spdk_nvme_ctrlr_data *cdata;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (!spdk_nvme_ns_is_active(ns)) {
printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n",
cdata->mn, cdata->sn,
spdk_nvme_ns_get_id(ns));
return;
}
if (spdk_nvme_ns_get_size(ns) < g_io_size_bytes ||
spdk_nvme_ns_get_sector_size(ns) > g_io_size_bytes) {
printf("WARNING: controller %-20.20s (%-20.20s) ns %u has invalid "
"ns size %" PRIu64 " / block size %u for I/O size %u\n",
cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns),
spdk_nvme_ns_get_size(ns), spdk_nvme_ns_get_sector_size(ns), g_io_size_bytes);
return;
}
entry = calloc(1, sizeof(struct ns_entry));
if (entry == NULL) {
perror("ns_entry malloc");
exit(1);
}
entry->type = ENTRY_TYPE_NVME_NS;
entry->u.nvme.ctrlr = ctrlr;
entry->u.nvme.ns = ns;
entry->size_in_ios = spdk_nvme_ns_get_size(ns) /
g_io_size_bytes;
entry->io_size_blocks = g_io_size_bytes / spdk_nvme_ns_get_sector_size(ns);
snprintf(entry->name, 44, "%-20.20s (%-20.20s)", cdata->mn, cdata->sn);
g_ns = entry;
}
static void
register_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
{
int num_ns;
struct ctrlr_entry *entry = malloc(sizeof(struct ctrlr_entry));
const struct spdk_nvme_ctrlr_data *cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (entry == NULL) {
perror("ctrlr_entry malloc");
exit(1);
}
snprintf(entry->name, sizeof(entry->name), "%-20.20s (%-20.20s)", cdata->mn, cdata->sn);
entry->ctrlr = ctrlr;
g_ctrlr = entry;
num_ns = spdk_nvme_ctrlr_get_num_ns(ctrlr);
/* Only register the first namespace. */
if (num_ns < 1) {
fprintf(stderr, "controller found with no namespaces\n");
exit(1);
}
register_ns(ctrlr, spdk_nvme_ctrlr_get_ns(ctrlr, 1));
}
#if HAVE_LIBAIO
static int
register_aio_file(const char *path)
{
struct ns_entry *entry;
int fd;
uint64_t size;
uint32_t blklen;
fd = open(path, O_RDWR | O_DIRECT);
if (fd < 0) {
fprintf(stderr, "Could not open AIO device %s: %s\n", path, strerror(errno));
return -1;
}
size = spdk_fd_get_size(fd);
if (size == 0) {
fprintf(stderr, "Could not determine size of AIO device %s\n", path);
close(fd);
return -1;
}
blklen = spdk_fd_get_blocklen(fd);
if (blklen == 0) {
fprintf(stderr, "Could not determine block size of AIO device %s\n", path);
close(fd);
return -1;
}
entry = calloc(1, sizeof(struct ns_entry));
if (entry == NULL) {
close(fd);
perror("aio ns_entry malloc");
return -1;
}
entry->type = ENTRY_TYPE_AIO_FILE;
entry->u.aio.fd = fd;
entry->size_in_ios = size / g_io_size_bytes;
entry->io_size_blocks = g_io_size_bytes / blklen;
snprintf(entry->name, sizeof(entry->name), "%s", path);
g_ns = entry;
return 0;
}
static int
aio_submit(io_context_t aio_ctx, struct iocb *iocb, int fd, enum io_iocb_cmd cmd, void *buf,
unsigned long nbytes, uint64_t offset, void *cb_ctx)
{
iocb->aio_fildes = fd;
iocb->aio_reqprio = 0;
iocb->aio_lio_opcode = cmd;
iocb->u.c.buf = buf;
iocb->u.c.nbytes = nbytes;
iocb->u.c.offset = offset;
iocb->data = cb_ctx;
if (io_submit(aio_ctx, 1, &iocb) < 0) {
printf("io_submit");
return -1;
}
return 0;
}
static void
aio_check_io(void)
{
int count, i;
struct timespec timeout;
timeout.tv_sec = 0;
timeout.tv_nsec = 0;
count = io_getevents(g_ns->u.aio.ctx, 1, 1, g_ns->u.aio.events, &timeout);
if (count < 0) {
fprintf(stderr, "io_getevents error\n");
exit(1);
}
for (i = 0; i < count; i++) {
g_ns->current_queue_depth--;
}
}
#endif /* HAVE_LIBAIO */
static void io_complete(void *ctx, const struct spdk_nvme_cpl *completion);
static __thread unsigned int seed = 0;
static void
submit_single_io(void)
{
uint64_t offset_in_ios;
uint64_t start;
int rc;
struct ns_entry *entry = g_ns;
uint64_t tsc_submit;
offset_in_ios = rand_r(&seed) % entry->size_in_ios;
start = spdk_get_ticks();
spdk_mb();
#if HAVE_LIBAIO
if (entry->type == ENTRY_TYPE_AIO_FILE) {
rc = aio_submit(g_ns->u.aio.ctx, &g_task->iocb, entry->u.aio.fd, IO_CMD_PREAD, g_task->buf,
g_io_size_bytes, offset_in_ios * g_io_size_bytes, g_task);
} else
#endif
{
rc = spdk_nvme_ns_cmd_read(entry->u.nvme.ns, g_ns->u.nvme.qpair, g_task->buf,
offset_in_ios * entry->io_size_blocks,
entry->io_size_blocks, io_complete, g_task, 0);
}
spdk_mb();
tsc_submit = spdk_get_ticks() - start;
g_tsc_submit += tsc_submit;
if (tsc_submit < g_tsc_submit_min) {
g_tsc_submit_min = tsc_submit;
}
if (tsc_submit > g_tsc_submit_max) {
g_tsc_submit_max = tsc_submit;
}
if (rc != 0) {
fprintf(stderr, "starting I/O failed\n");
}
g_ns->current_queue_depth++;
}
static void
io_complete(void *ctx, const struct spdk_nvme_cpl *completion)
{
g_ns->current_queue_depth--;
}
uint64_t g_complete_tsc_start;
static void
check_io(void)
{
uint64_t end, tsc_complete;
spdk_mb();
#if HAVE_LIBAIO
if (g_ns->type == ENTRY_TYPE_AIO_FILE) {
aio_check_io();
} else
#endif
{
spdk_nvme_qpair_process_completions(g_ns->u.nvme.qpair, 0);
}
spdk_mb();
end = spdk_get_ticks();
if (g_ns->current_queue_depth == 1) {
/*
* Account for race condition in AIO case where interrupt occurs
* after checking for queue depth. If the timestamp capture
* is too big compared to the last capture, assume that an
* interrupt fired, and do not bump the start tsc forward. This
* will ensure this extra time is accounted for next time through
* when we see current_queue_depth drop to 0.
*/
if (g_ns->type == ENTRY_TYPE_NVME_NS || (end - g_complete_tsc_start) < 500) {
g_complete_tsc_start = end;
}
} else {
tsc_complete = end - g_complete_tsc_start;
g_tsc_complete += tsc_complete;
if (tsc_complete < g_tsc_complete_min) {
g_tsc_complete_min = tsc_complete;
}
if (tsc_complete > g_tsc_complete_max) {
g_tsc_complete_max = tsc_complete;
}
g_io_completed++;
if (!g_ns->is_draining) {
submit_single_io();
}
g_complete_tsc_start = spdk_get_ticks();
}
}
static void
drain_io(void)
{
g_ns->is_draining = true;
while (g_ns->current_queue_depth > 0) {
check_io();
}
}
static int
init_ns_worker_ctx(void)
{
if (g_ns->type == ENTRY_TYPE_AIO_FILE) {
#ifdef HAVE_LIBAIO
g_ns->u.aio.events = calloc(1, sizeof(struct io_event));
if (!g_ns->u.aio.events) {
return -1;
}
g_ns->u.aio.ctx = 0;
if (io_setup(1, &g_ns->u.aio.ctx) < 0) {
free(g_ns->u.aio.events);
perror("io_setup");
return -1;
}
#endif
} else {
/*
* TODO: If a controller has multiple namespaces, they could all use the same queue.
* For now, give each namespace/thread combination its own queue.
*/
g_ns->u.nvme.qpair = spdk_nvme_ctrlr_alloc_io_qpair(g_ns->u.nvme.ctrlr, 0);
if (!g_ns->u.nvme.qpair) {
printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair failed\n");
return -1;
}
}
return 0;
}
static void
cleanup_ns_worker_ctx(void)
{
if (g_ns->type == ENTRY_TYPE_AIO_FILE) {
#ifdef HAVE_LIBAIO
io_destroy(g_ns->u.aio.ctx);
free(g_ns->u.aio.events);
#endif
} else {
spdk_nvme_ctrlr_free_io_qpair(g_ns->u.nvme.qpair);
}
}
static int
work_fn(void)
{
uint64_t tsc_end;
printf("Starting work_fn on core %u\n", rte_lcore_id());
/* Allocate a queue pair for each namespace. */
if (init_ns_worker_ctx() != 0) {
printf("ERROR: init_ns_worker_ctx() failed\n");
return 1;
}
tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate;
/* Submit initial I/O for each namespace. */
submit_single_io();
g_complete_tsc_start = spdk_get_ticks();
while (1) {
/*
* Check for completed I/O for each controller. A new
* I/O will be submitted in the io_complete callback
* to replace each I/O that is completed.
*/
check_io();
if (spdk_get_ticks() > tsc_end) {
break;
}
}
drain_io();
cleanup_ns_worker_ctx();
return 0;
}
static void usage(char *program_name)
{
printf("%s options", program_name);
#if HAVE_LIBAIO
printf(" [AIO device(s)]...");
#endif
printf("\n");
printf("\t[-s io size in bytes]\n");
printf("\t[-t time in seconds]\n");
printf("\t\t(default: 1)]\n");
}
static void
print_stats(void)
{
printf("g_tsc_submit = %ju\n", g_tsc_submit);
printf("g_tsc_complete = %ju\n", g_tsc_complete);
printf("g_io_completed = %ju\n", g_io_completed);
printf("submit avg, min, max = %8.1f, %ju, %ju\n",
(float)g_tsc_submit / g_io_completed, g_tsc_submit_min, g_tsc_submit_max);
printf("complete avg, min, max = %8.1f, %ju, %ju\n",
(float)g_tsc_complete / g_io_completed, g_tsc_complete_min, g_tsc_complete_max);
}
static int
parse_args(int argc, char **argv)
{
int op;
/* default value*/
g_io_size_bytes = 0;
g_time_in_sec = 0;
while ((op = getopt(argc, argv, "s:t:")) != -1) {
switch (op) {
case 's':
g_io_size_bytes = atoi(optarg);
break;
case 't':
g_time_in_sec = atoi(optarg);
break;
default:
usage(argv[0]);
return 1;
}
}
if (!g_io_size_bytes) {
usage(argv[0]);
return 1;
}
if (!g_time_in_sec) {
usage(argv[0]);
return 1;
}
g_aio_optind = optind;
optind = 1;
return 0;
}
static bool
probe_cb(void *cb_ctx, const struct spdk_nvme_probe_info *probe_info,
struct spdk_nvme_ctrlr_opts *opts)
{
static uint32_t ctrlr_found = 0;
if (ctrlr_found == 1) {
fprintf(stderr, "only attching to one controller, so skipping\n");
fprintf(stderr, " controller at PCI address %04x:%02x:%02x.%02x\n",
probe_info->pci_addr.domain,
probe_info->pci_addr.bus,
probe_info->pci_addr.dev,
probe_info->pci_addr.func);
return false;
}
ctrlr_found = 1;
printf("Attaching to %04x:%02x:%02x.%02x\n",
probe_info->pci_addr.domain,
probe_info->pci_addr.bus,
probe_info->pci_addr.dev,
probe_info->pci_addr.func);
return true;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_probe_info *probe_info,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
printf("Attached to %04x:%02x:%02x.%02x\n",
probe_info->pci_addr.domain,
probe_info->pci_addr.bus,
probe_info->pci_addr.dev,
probe_info->pci_addr.func);
register_ctrlr(ctrlr);
}
static int
register_controllers(void)
{
printf("Initializing NVMe Controllers\n");
if (spdk_nvme_probe(NULL, probe_cb, attach_cb, NULL) != 0) {
fprintf(stderr, "spdk_nvme_probe() failed\n");
return 1;
}
return 0;
}
static char *ealargs[] = {
"perf",
"-c 0x1",
"-n 4",
};
int main(int argc, char **argv)
{
int rc;
rc = parse_args(argc, argv);
if (rc != 0) {
return rc;
}
rc = rte_eal_init(sizeof(ealargs) / sizeof(ealargs[0]), ealargs);
if (rc < 0) {
fprintf(stderr, "could not initialize dpdk\n");
return 1;
}
g_task = spdk_zmalloc(sizeof(struct perf_task), 0, NULL);
if (g_task == NULL) {
fprintf(stderr, "g_task alloc failed\n");
exit(1);
}
g_task->buf = spdk_zmalloc(g_io_size_bytes, 0x1000, NULL);
if (g_task->buf == NULL) {
fprintf(stderr, "g_task->buf spdk_zmalloc failed\n");
exit(1);
}
g_tsc_rate = spdk_get_ticks_hz();
#if HAVE_LIBAIO
if (g_aio_optind < argc) {
printf("Measuring overhead for AIO device %s.\n", argv[g_aio_optind]);
if (register_aio_file(argv[g_aio_optind]) != 0) {
rc = -1;
goto cleanup;
}
} else
#endif
{
if (register_controllers() != 0) {
rc = -1;
goto cleanup;
}
}
printf("Initialization complete. Launching workers.\n");
rc = work_fn();
print_stats();
cleanup:
free(g_ns);
if (g_ctrlr) {
spdk_nvme_detach(g_ctrlr->ctrlr);
free(g_ctrlr);
}
if (rc != 0) {
fprintf(stderr, "%s: errors occured\n", argv[0]);
}
return rc;
}