Spdk/test/unit/lib/bdev/mt/bdev.c/bdev_ut.c
gila df6b55fd8c bdev: make spdk_bdev_register_module_xxx function names predictable
Currently, the SPDK_BDEV_REGISTER_MODULE() macro uses __LINE__
to generate functions like spdk_bdev_module_register_187().

Typically, this is not a problem as these functions are not called directly
rather, they are only used as constructor functions to load the bdevs during
system startup.

There are languages however, (e.g rust) that require these functions to be
referenced explicitly to prevent them from being removed during the linking phase.

In order to reference them, having the names predictable (and potentially
changed per commit) makes things easier.

Change-Id: I15947ed9136912cfe2368db7e5bba833f1d94b15
Signed-off-by: gila <jeffry.molanus@gmail.com>
Reviewed-on: https://review.gerrithub.io/c/443536
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
2019-02-11 23:56:53 +00:00

1492 lines
44 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk_cunit.h"
#include "common/lib/ut_multithread.c"
#include "unit/lib/json_mock.c"
#include "spdk/config.h"
/* HACK: disable VTune integration so the unit test doesn't need VTune headers and libs to build */
#undef SPDK_CONFIG_VTUNE
#include "bdev/bdev.c"
#define BDEV_UT_NUM_THREADS 3
DEFINE_STUB(spdk_conf_find_section, struct spdk_conf_section *, (struct spdk_conf *cp,
const char *name), NULL);
DEFINE_STUB(spdk_conf_section_get_nmval, char *,
(struct spdk_conf_section *sp, const char *key, int idx1, int idx2), NULL);
DEFINE_STUB(spdk_conf_section_get_intval, int, (struct spdk_conf_section *sp, const char *key), -1);
struct spdk_trace_histories *g_trace_histories;
DEFINE_STUB_V(spdk_trace_add_register_fn, (struct spdk_trace_register_fn *reg_fn));
DEFINE_STUB_V(spdk_trace_register_owner, (uint8_t type, char id_prefix));
DEFINE_STUB_V(spdk_trace_register_object, (uint8_t type, char id_prefix));
DEFINE_STUB_V(spdk_trace_register_description, (const char *name, const char *short_name,
uint16_t tpoint_id, uint8_t owner_type,
uint8_t object_type, uint8_t new_object,
uint8_t arg1_is_ptr, const char *arg1_name));
DEFINE_STUB_V(_spdk_trace_record, (uint64_t tsc, uint16_t tpoint_id, uint16_t poller_id,
uint32_t size, uint64_t object_id, uint64_t arg1));
struct ut_bdev {
struct spdk_bdev bdev;
void *io_target;
};
struct ut_bdev_channel {
TAILQ_HEAD(, spdk_bdev_io) outstanding_io;
uint32_t outstanding_cnt;
uint32_t avail_cnt;
};
int g_io_device;
struct ut_bdev g_bdev;
struct spdk_bdev_desc *g_desc;
bool g_teardown_done = false;
bool g_get_io_channel = true;
bool g_create_ch = true;
bool g_init_complete_called = false;
bool g_fini_start_called = true;
int g_status = 0;
int g_count = 0;
struct spdk_histogram_data *g_histogram = NULL;
static int
stub_create_ch(void *io_device, void *ctx_buf)
{
struct ut_bdev_channel *ch = ctx_buf;
if (g_create_ch == false) {
return -1;
}
TAILQ_INIT(&ch->outstanding_io);
ch->outstanding_cnt = 0;
/*
* When avail gets to 0, the submit_request function will return ENOMEM.
* Most tests to not want ENOMEM to occur, so by default set this to a
* big value that won't get hit. The ENOMEM tests can then override this
* value to something much smaller to induce ENOMEM conditions.
*/
ch->avail_cnt = 2048;
return 0;
}
static void
stub_destroy_ch(void *io_device, void *ctx_buf)
{
}
static struct spdk_io_channel *
stub_get_io_channel(void *ctx)
{
struct ut_bdev *ut_bdev = ctx;
if (g_get_io_channel == true) {
return spdk_get_io_channel(ut_bdev->io_target);
} else {
return NULL;
}
}
static int
stub_destruct(void *ctx)
{
return 0;
}
static void
stub_submit_request(struct spdk_io_channel *_ch, struct spdk_bdev_io *bdev_io)
{
struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch);
if (bdev_io->type == SPDK_BDEV_IO_TYPE_RESET) {
struct spdk_bdev_io *io;
while (!TAILQ_EMPTY(&ch->outstanding_io)) {
io = TAILQ_FIRST(&ch->outstanding_io);
TAILQ_REMOVE(&ch->outstanding_io, io, module_link);
ch->outstanding_cnt--;
spdk_bdev_io_complete(io, SPDK_BDEV_IO_STATUS_FAILED);
ch->avail_cnt++;
}
}
if (ch->avail_cnt > 0) {
TAILQ_INSERT_TAIL(&ch->outstanding_io, bdev_io, module_link);
ch->outstanding_cnt++;
ch->avail_cnt--;
} else {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_NOMEM);
}
}
static uint32_t
stub_complete_io(void *io_target, uint32_t num_to_complete)
{
struct spdk_io_channel *_ch = spdk_get_io_channel(io_target);
struct ut_bdev_channel *ch = spdk_io_channel_get_ctx(_ch);
struct spdk_bdev_io *io;
bool complete_all = (num_to_complete == 0);
uint32_t num_completed = 0;
while (complete_all || num_completed < num_to_complete) {
if (TAILQ_EMPTY(&ch->outstanding_io)) {
break;
}
io = TAILQ_FIRST(&ch->outstanding_io);
TAILQ_REMOVE(&ch->outstanding_io, io, module_link);
ch->outstanding_cnt--;
spdk_bdev_io_complete(io, SPDK_BDEV_IO_STATUS_SUCCESS);
ch->avail_cnt++;
num_completed++;
}
spdk_put_io_channel(_ch);
return num_completed;
}
static struct spdk_bdev_fn_table fn_table = {
.get_io_channel = stub_get_io_channel,
.destruct = stub_destruct,
.submit_request = stub_submit_request,
};
static int
module_init(void)
{
return 0;
}
static void
module_fini(void)
{
}
static void
init_complete(void)
{
g_init_complete_called = true;
}
static void
fini_start(void)
{
g_fini_start_called = true;
}
struct spdk_bdev_module bdev_ut_if = {
.name = "bdev_ut",
.module_init = module_init,
.module_fini = module_fini,
.init_complete = init_complete,
.fini_start = fini_start,
};
SPDK_BDEV_MODULE_REGISTER(bdev_ut, &bdev_ut_if)
static void
register_bdev(struct ut_bdev *ut_bdev, char *name, void *io_target)
{
memset(ut_bdev, 0, sizeof(*ut_bdev));
ut_bdev->io_target = io_target;
ut_bdev->bdev.ctxt = ut_bdev;
ut_bdev->bdev.name = name;
ut_bdev->bdev.fn_table = &fn_table;
ut_bdev->bdev.module = &bdev_ut_if;
ut_bdev->bdev.blocklen = 4096;
ut_bdev->bdev.blockcnt = 1024;
spdk_bdev_register(&ut_bdev->bdev);
}
static void
unregister_bdev(struct ut_bdev *ut_bdev)
{
/* Handle any deferred messages. */
poll_threads();
spdk_bdev_unregister(&ut_bdev->bdev, NULL, NULL);
}
static void
bdev_init_cb(void *done, int rc)
{
CU_ASSERT(rc == 0);
*(bool *)done = true;
}
static void
setup_test(void)
{
bool done = false;
allocate_threads(BDEV_UT_NUM_THREADS);
set_thread(0);
spdk_bdev_initialize(bdev_init_cb, &done);
spdk_io_device_register(&g_io_device, stub_create_ch, stub_destroy_ch,
sizeof(struct ut_bdev_channel), NULL);
register_bdev(&g_bdev, "ut_bdev", &g_io_device);
spdk_bdev_open(&g_bdev.bdev, true, NULL, NULL, &g_desc);
}
static void
finish_cb(void *cb_arg)
{
g_teardown_done = true;
}
static void
teardown_test(void)
{
set_thread(0);
g_teardown_done = false;
spdk_bdev_close(g_desc);
g_desc = NULL;
unregister_bdev(&g_bdev);
spdk_io_device_unregister(&g_io_device, NULL);
spdk_bdev_finish(finish_cb, NULL);
poll_threads();
memset(&g_bdev, 0, sizeof(g_bdev));
CU_ASSERT(g_teardown_done == true);
g_teardown_done = false;
free_threads();
}
static uint32_t
bdev_io_tailq_cnt(bdev_io_tailq_t *tailq)
{
struct spdk_bdev_io *io;
uint32_t cnt = 0;
TAILQ_FOREACH(io, tailq, internal.link) {
cnt++;
}
return cnt;
}
static void
basic(void)
{
g_init_complete_called = false;
setup_test();
CU_ASSERT(g_init_complete_called == true);
set_thread(0);
g_get_io_channel = false;
g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc);
CU_ASSERT(g_ut_threads[0].ch == NULL);
g_get_io_channel = true;
g_create_ch = false;
g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc);
CU_ASSERT(g_ut_threads[0].ch == NULL);
g_get_io_channel = true;
g_create_ch = true;
g_ut_threads[0].ch = spdk_bdev_get_io_channel(g_desc);
CU_ASSERT(g_ut_threads[0].ch != NULL);
spdk_put_io_channel(g_ut_threads[0].ch);
g_fini_start_called = false;
teardown_test();
CU_ASSERT(g_fini_start_called == true);
}
static void
_bdev_removed(void *done)
{
*(bool *)done = true;
}
static void
_bdev_unregistered(void *done, int rc)
{
CU_ASSERT(rc == 0);
*(bool *)done = true;
}
static void
unregister_and_close(void)
{
bool done, remove_notify;
struct spdk_bdev_desc *desc;
setup_test();
set_thread(0);
/* setup_test() automatically opens the bdev,
* but this test needs to do that in a different
* way. */
spdk_bdev_close(g_desc);
poll_threads();
remove_notify = false;
spdk_bdev_open(&g_bdev.bdev, true, _bdev_removed, &remove_notify, &desc);
CU_ASSERT(remove_notify == false);
CU_ASSERT(desc != NULL);
/* There is an open descriptor on the device. Unregister it,
* which can't proceed until the descriptor is closed. */
done = false;
spdk_bdev_unregister(&g_bdev.bdev, _bdev_unregistered, &done);
/* No polling has occurred, so neither of these should execute */
CU_ASSERT(remove_notify == false);
CU_ASSERT(done == false);
/* Prior to the unregister completing, close the descriptor */
spdk_bdev_close(desc);
/* Poll the threads to allow all events to be processed */
poll_threads();
/* Remove notify should not have been called because the
* descriptor is already closed. */
CU_ASSERT(remove_notify == false);
/* The unregister should have completed */
CU_ASSERT(done == true);
spdk_bdev_finish(finish_cb, NULL);
poll_threads();
free_threads();
}
static void
reset_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
bool *done = cb_arg;
CU_ASSERT(success == true);
*done = true;
spdk_bdev_free_io(bdev_io);
}
static void
put_channel_during_reset(void)
{
struct spdk_io_channel *io_ch;
bool done = false;
setup_test();
set_thread(0);
io_ch = spdk_bdev_get_io_channel(g_desc);
CU_ASSERT(io_ch != NULL);
/*
* Start a reset, but then put the I/O channel before
* the deferred messages for the reset get a chance to
* execute.
*/
spdk_bdev_reset(g_desc, io_ch, reset_done, &done);
spdk_put_io_channel(io_ch);
poll_threads();
stub_complete_io(g_bdev.io_target, 0);
teardown_test();
}
static void
aborted_reset_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
enum spdk_bdev_io_status *status = cb_arg;
*status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
spdk_bdev_free_io(bdev_io);
}
static void
aborted_reset(void)
{
struct spdk_io_channel *io_ch[2];
enum spdk_bdev_io_status status1 = SPDK_BDEV_IO_STATUS_PENDING,
status2 = SPDK_BDEV_IO_STATUS_PENDING;
setup_test();
set_thread(0);
io_ch[0] = spdk_bdev_get_io_channel(g_desc);
CU_ASSERT(io_ch[0] != NULL);
spdk_bdev_reset(g_desc, io_ch[0], aborted_reset_done, &status1);
poll_threads();
CU_ASSERT(g_bdev.bdev.internal.reset_in_progress != NULL);
/*
* First reset has been submitted on ch0. Now submit a second
* reset on ch1 which will get queued since there is already a
* reset in progress.
*/
set_thread(1);
io_ch[1] = spdk_bdev_get_io_channel(g_desc);
CU_ASSERT(io_ch[1] != NULL);
spdk_bdev_reset(g_desc, io_ch[1], aborted_reset_done, &status2);
poll_threads();
CU_ASSERT(g_bdev.bdev.internal.reset_in_progress != NULL);
/*
* Now destroy ch1. This will abort the queued reset. Check that
* the second reset was completed with failed status. Also check
* that bdev->internal.reset_in_progress != NULL, since the
* original reset has not been completed yet. This ensures that
* the bdev code is correctly noticing that the failed reset is
* *not* the one that had been submitted to the bdev module.
*/
set_thread(1);
spdk_put_io_channel(io_ch[1]);
poll_threads();
CU_ASSERT(status2 == SPDK_BDEV_IO_STATUS_FAILED);
CU_ASSERT(g_bdev.bdev.internal.reset_in_progress != NULL);
/*
* Now complete the first reset, verify that it completed with SUCCESS
* status and that bdev->internal.reset_in_progress is also set back to NULL.
*/
set_thread(0);
spdk_put_io_channel(io_ch[0]);
stub_complete_io(g_bdev.io_target, 0);
poll_threads();
CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
CU_ASSERT(g_bdev.bdev.internal.reset_in_progress == NULL);
teardown_test();
}
static void
io_during_io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
enum spdk_bdev_io_status *status = cb_arg;
*status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
spdk_bdev_free_io(bdev_io);
}
static void
io_during_reset(void)
{
struct spdk_io_channel *io_ch[2];
struct spdk_bdev_channel *bdev_ch[2];
enum spdk_bdev_io_status status0, status1, status_reset;
int rc;
setup_test();
/*
* First test normal case - submit an I/O on each of two channels (with no resets)
* and verify they complete successfully.
*/
set_thread(0);
io_ch[0] = spdk_bdev_get_io_channel(g_desc);
bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
CU_ASSERT(bdev_ch[0]->flags == 0);
status0 = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
CU_ASSERT(rc == 0);
set_thread(1);
io_ch[1] = spdk_bdev_get_io_channel(g_desc);
bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
CU_ASSERT(bdev_ch[1]->flags == 0);
status1 = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING);
CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
set_thread(0);
stub_complete_io(g_bdev.io_target, 0);
CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS);
set_thread(1);
stub_complete_io(g_bdev.io_target, 0);
CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
/*
* Now submit a reset, and leave it pending while we submit I/O on two different
* channels. These I/O should be failed by the bdev layer since the reset is in
* progress.
*/
set_thread(0);
status_reset = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_reset(g_desc, io_ch[0], io_during_io_done, &status_reset);
CU_ASSERT(rc == 0);
CU_ASSERT(bdev_ch[0]->flags == 0);
CU_ASSERT(bdev_ch[1]->flags == 0);
poll_threads();
CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_RESET_IN_PROGRESS);
CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_RESET_IN_PROGRESS);
set_thread(0);
status0 = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
CU_ASSERT(rc == 0);
set_thread(1);
status1 = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
CU_ASSERT(rc == 0);
/*
* A reset is in progress so these read I/O should complete with failure. Note that we
* need to poll_threads() since I/O completed inline have their completion deferred.
*/
poll_threads();
CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING);
CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_FAILED);
CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_FAILED);
/*
* Complete the reset
*/
set_thread(0);
stub_complete_io(g_bdev.io_target, 0);
/*
* Only poll thread 0. We should not get a completion.
*/
poll_thread(0);
CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_PENDING);
/*
* Poll both thread 0 and 1 so the messages can propagate and we
* get a completion.
*/
poll_threads();
CU_ASSERT(status_reset == SPDK_BDEV_IO_STATUS_SUCCESS);
spdk_put_io_channel(io_ch[0]);
set_thread(1);
spdk_put_io_channel(io_ch[1]);
poll_threads();
teardown_test();
}
static void
basic_qos(void)
{
struct spdk_io_channel *io_ch[2];
struct spdk_bdev_channel *bdev_ch[2];
struct spdk_bdev *bdev;
enum spdk_bdev_io_status status;
int rc;
setup_test();
/* Enable QoS */
bdev = &g_bdev.bdev;
bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos));
SPDK_CU_ASSERT_FATAL(bdev->internal.qos != NULL);
TAILQ_INIT(&bdev->internal.qos->queued);
/*
* Enable read/write IOPS, read only byte per second and
* read/write byte per second rate limits.
* In this case, all rate limits will take equal effect.
*/
/* 2000 read/write I/O per second, or 2 per millisecond */
bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT].limit = 2000;
/* 8K read/write byte per millisecond with 4K block size */
bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT].limit = 8192000;
/* 8K read only byte per millisecond with 4K block size */
bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_R_BPS_RATE_LIMIT].limit = 8192000;
g_get_io_channel = true;
set_thread(0);
io_ch[0] = spdk_bdev_get_io_channel(g_desc);
bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED);
set_thread(1);
io_ch[1] = spdk_bdev_get_io_channel(g_desc);
bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED);
/*
* Send an I/O on thread 0, which is where the QoS thread is running.
*/
set_thread(0);
status = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status);
CU_ASSERT(rc == 0);
CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING);
poll_threads();
stub_complete_io(g_bdev.io_target, 0);
poll_threads();
CU_ASSERT(status == SPDK_BDEV_IO_STATUS_SUCCESS);
/* Send an I/O on thread 1. The QoS thread is not running here. */
status = SPDK_BDEV_IO_STATUS_PENDING;
set_thread(1);
rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status);
CU_ASSERT(rc == 0);
CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING);
poll_threads();
/* Complete I/O on thread 1. This should not complete the I/O we submitted */
stub_complete_io(g_bdev.io_target, 0);
poll_threads();
CU_ASSERT(status == SPDK_BDEV_IO_STATUS_PENDING);
/* Now complete I/O on thread 0 */
set_thread(0);
poll_threads();
stub_complete_io(g_bdev.io_target, 0);
poll_threads();
CU_ASSERT(status == SPDK_BDEV_IO_STATUS_SUCCESS);
/* Tear down the channels */
set_thread(0);
spdk_put_io_channel(io_ch[0]);
set_thread(1);
spdk_put_io_channel(io_ch[1]);
poll_threads();
set_thread(0);
/* Close the descriptor, which should stop the qos channel */
spdk_bdev_close(g_desc);
poll_threads();
CU_ASSERT(bdev->internal.qos->ch == NULL);
spdk_bdev_open(bdev, true, NULL, NULL, &g_desc);
/* Create the channels in reverse order. */
set_thread(1);
io_ch[1] = spdk_bdev_get_io_channel(g_desc);
bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED);
set_thread(0);
io_ch[0] = spdk_bdev_get_io_channel(g_desc);
bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED);
/* Confirm that the qos thread is now thread 1 */
CU_ASSERT(bdev->internal.qos->ch == bdev_ch[1]);
/* Tear down the channels */
set_thread(0);
spdk_put_io_channel(io_ch[0]);
set_thread(1);
spdk_put_io_channel(io_ch[1]);
poll_threads();
set_thread(0);
teardown_test();
}
static void
io_during_qos_queue(void)
{
struct spdk_io_channel *io_ch[2];
struct spdk_bdev_channel *bdev_ch[2];
struct spdk_bdev *bdev;
enum spdk_bdev_io_status status0, status1, status2;
int rc;
setup_test();
MOCK_SET(spdk_get_ticks, 0);
/* Enable QoS */
bdev = &g_bdev.bdev;
bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos));
SPDK_CU_ASSERT_FATAL(bdev->internal.qos != NULL);
TAILQ_INIT(&bdev->internal.qos->queued);
/*
* Enable read/write IOPS, read only byte per sec, write only
* byte per sec and read/write byte per sec rate limits.
* In this case, both read only and write only byte per sec
* rate limit will take effect.
*/
/* 4000 read/write I/O per second, or 4 per millisecond */
bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT].limit = 4000;
/* 8K byte per millisecond with 4K block size */
bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT].limit = 8192000;
/* 4K byte per millisecond with 4K block size */
bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_R_BPS_RATE_LIMIT].limit = 4096000;
/* 4K byte per millisecond with 4K block size */
bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_W_BPS_RATE_LIMIT].limit = 4096000;
g_get_io_channel = true;
/* Create channels */
set_thread(0);
io_ch[0] = spdk_bdev_get_io_channel(g_desc);
bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED);
set_thread(1);
io_ch[1] = spdk_bdev_get_io_channel(g_desc);
bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED);
/* Send two read I/Os */
status1 = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
CU_ASSERT(rc == 0);
CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
set_thread(0);
status0 = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
CU_ASSERT(rc == 0);
CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING);
/* Send one write I/O */
status2 = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_write_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status2);
CU_ASSERT(rc == 0);
CU_ASSERT(status2 == SPDK_BDEV_IO_STATUS_PENDING);
/* Complete any I/O that arrived at the disk */
poll_threads();
set_thread(1);
stub_complete_io(g_bdev.io_target, 0);
set_thread(0);
stub_complete_io(g_bdev.io_target, 0);
poll_threads();
/* Only one of the two read I/Os should complete. (logical XOR) */
if (status0 == SPDK_BDEV_IO_STATUS_SUCCESS) {
CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
} else {
CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
}
/* The write I/O should complete. */
CU_ASSERT(status2 == SPDK_BDEV_IO_STATUS_SUCCESS);
/* Advance in time by a millisecond */
spdk_delay_us(1000);
/* Complete more I/O */
poll_threads();
set_thread(1);
stub_complete_io(g_bdev.io_target, 0);
set_thread(0);
stub_complete_io(g_bdev.io_target, 0);
poll_threads();
/* Now the second read I/O should be done */
CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_SUCCESS);
CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_SUCCESS);
/* Tear down the channels */
set_thread(1);
spdk_put_io_channel(io_ch[1]);
set_thread(0);
spdk_put_io_channel(io_ch[0]);
poll_threads();
teardown_test();
}
static void
io_during_qos_reset(void)
{
struct spdk_io_channel *io_ch[2];
struct spdk_bdev_channel *bdev_ch[2];
struct spdk_bdev *bdev;
enum spdk_bdev_io_status status0, status1, reset_status;
int rc;
setup_test();
MOCK_SET(spdk_get_ticks, 0);
/* Enable QoS */
bdev = &g_bdev.bdev;
bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos));
SPDK_CU_ASSERT_FATAL(bdev->internal.qos != NULL);
TAILQ_INIT(&bdev->internal.qos->queued);
/*
* Enable read/write IOPS, write only byte per sec and
* read/write byte per second rate limits.
* In this case, read/write byte per second rate limit will
* take effect first.
*/
/* 2000 read/write I/O per second, or 2 per millisecond */
bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT].limit = 2000;
/* 4K byte per millisecond with 4K block size */
bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT].limit = 4096000;
/* 8K byte per millisecond with 4K block size */
bdev->internal.qos->rate_limits[SPDK_BDEV_QOS_W_BPS_RATE_LIMIT].limit = 8192000;
g_get_io_channel = true;
/* Create channels */
set_thread(0);
io_ch[0] = spdk_bdev_get_io_channel(g_desc);
bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
CU_ASSERT(bdev_ch[0]->flags == BDEV_CH_QOS_ENABLED);
set_thread(1);
io_ch[1] = spdk_bdev_get_io_channel(g_desc);
bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
CU_ASSERT(bdev_ch[1]->flags == BDEV_CH_QOS_ENABLED);
/* Send two I/O. One of these gets queued by QoS. The other is sitting at the disk. */
status1 = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_write_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &status1);
CU_ASSERT(rc == 0);
set_thread(0);
status0 = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_write_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &status0);
CU_ASSERT(rc == 0);
poll_threads();
CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_PENDING);
CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_PENDING);
/* Reset the bdev. */
reset_status = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_reset(g_desc, io_ch[0], io_during_io_done, &reset_status);
CU_ASSERT(rc == 0);
/* Complete any I/O that arrived at the disk */
poll_threads();
set_thread(1);
stub_complete_io(g_bdev.io_target, 0);
set_thread(0);
stub_complete_io(g_bdev.io_target, 0);
poll_threads();
CU_ASSERT(reset_status == SPDK_BDEV_IO_STATUS_SUCCESS);
CU_ASSERT(status0 == SPDK_BDEV_IO_STATUS_FAILED);
CU_ASSERT(status1 == SPDK_BDEV_IO_STATUS_FAILED);
/* Tear down the channels */
set_thread(1);
spdk_put_io_channel(io_ch[1]);
set_thread(0);
spdk_put_io_channel(io_ch[0]);
poll_threads();
teardown_test();
}
static void
enomem_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
enum spdk_bdev_io_status *status = cb_arg;
*status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
spdk_bdev_free_io(bdev_io);
}
static void
enomem(void)
{
struct spdk_io_channel *io_ch;
struct spdk_bdev_channel *bdev_ch;
struct spdk_bdev_shared_resource *shared_resource;
struct ut_bdev_channel *ut_ch;
const uint32_t IO_ARRAY_SIZE = 64;
const uint32_t AVAIL = 20;
enum spdk_bdev_io_status status[IO_ARRAY_SIZE], status_reset;
uint32_t nomem_cnt, i;
struct spdk_bdev_io *first_io;
int rc;
setup_test();
set_thread(0);
io_ch = spdk_bdev_get_io_channel(g_desc);
bdev_ch = spdk_io_channel_get_ctx(io_ch);
shared_resource = bdev_ch->shared_resource;
ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel);
ut_ch->avail_cnt = AVAIL;
/* First submit a number of IOs equal to what the channel can support. */
for (i = 0; i < AVAIL; i++) {
status[i] = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
CU_ASSERT(rc == 0);
}
CU_ASSERT(TAILQ_EMPTY(&shared_resource->nomem_io));
/*
* Next, submit one additional I/O. This one should fail with ENOMEM and then go onto
* the enomem_io list.
*/
status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&shared_resource->nomem_io));
first_io = TAILQ_FIRST(&shared_resource->nomem_io);
/*
* Now submit a bunch more I/O. These should all fail with ENOMEM and get queued behind
* the first_io above.
*/
for (i = AVAIL + 1; i < IO_ARRAY_SIZE; i++) {
status[i] = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
CU_ASSERT(rc == 0);
}
/* Assert that first_io is still at the head of the list. */
CU_ASSERT(TAILQ_FIRST(&shared_resource->nomem_io) == first_io);
CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == (IO_ARRAY_SIZE - AVAIL));
nomem_cnt = bdev_io_tailq_cnt(&shared_resource->nomem_io);
CU_ASSERT(shared_resource->nomem_threshold == (AVAIL - NOMEM_THRESHOLD_COUNT));
/*
* Complete 1 I/O only. The key check here is bdev_io_tailq_cnt - this should not have
* changed since completing just 1 I/O should not trigger retrying the queued nomem_io
* list.
*/
stub_complete_io(g_bdev.io_target, 1);
CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == nomem_cnt);
/*
* Complete enough I/O to hit the nomem_theshold. This should trigger retrying nomem_io,
* and we should see I/O get resubmitted to the test bdev module.
*/
stub_complete_io(g_bdev.io_target, NOMEM_THRESHOLD_COUNT - 1);
CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) < nomem_cnt);
nomem_cnt = bdev_io_tailq_cnt(&shared_resource->nomem_io);
/* Complete 1 I/O only. This should not trigger retrying the queued nomem_io. */
stub_complete_io(g_bdev.io_target, 1);
CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == nomem_cnt);
/*
* Send a reset and confirm that all I/O are completed, including the ones that
* were queued on the nomem_io list.
*/
status_reset = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_reset(g_desc, io_ch, enomem_done, &status_reset);
poll_threads();
CU_ASSERT(rc == 0);
/* This will complete the reset. */
stub_complete_io(g_bdev.io_target, 0);
CU_ASSERT(bdev_io_tailq_cnt(&shared_resource->nomem_io) == 0);
CU_ASSERT(shared_resource->io_outstanding == 0);
spdk_put_io_channel(io_ch);
poll_threads();
teardown_test();
}
static void
enomem_multi_bdev(void)
{
struct spdk_io_channel *io_ch;
struct spdk_bdev_channel *bdev_ch;
struct spdk_bdev_shared_resource *shared_resource;
struct ut_bdev_channel *ut_ch;
const uint32_t IO_ARRAY_SIZE = 64;
const uint32_t AVAIL = 20;
enum spdk_bdev_io_status status[IO_ARRAY_SIZE];
uint32_t i;
struct ut_bdev *second_bdev;
struct spdk_bdev_desc *second_desc = NULL;
struct spdk_bdev_channel *second_bdev_ch;
struct spdk_io_channel *second_ch;
int rc;
setup_test();
/* Register second bdev with the same io_target */
second_bdev = calloc(1, sizeof(*second_bdev));
SPDK_CU_ASSERT_FATAL(second_bdev != NULL);
register_bdev(second_bdev, "ut_bdev2", g_bdev.io_target);
spdk_bdev_open(&second_bdev->bdev, true, NULL, NULL, &second_desc);
SPDK_CU_ASSERT_FATAL(second_desc != NULL);
set_thread(0);
io_ch = spdk_bdev_get_io_channel(g_desc);
bdev_ch = spdk_io_channel_get_ctx(io_ch);
shared_resource = bdev_ch->shared_resource;
ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel);
ut_ch->avail_cnt = AVAIL;
second_ch = spdk_bdev_get_io_channel(second_desc);
second_bdev_ch = spdk_io_channel_get_ctx(second_ch);
SPDK_CU_ASSERT_FATAL(shared_resource == second_bdev_ch->shared_resource);
/* Saturate io_target through bdev A. */
for (i = 0; i < AVAIL; i++) {
status[i] = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
CU_ASSERT(rc == 0);
}
CU_ASSERT(TAILQ_EMPTY(&shared_resource->nomem_io));
/*
* Now submit I/O through the second bdev. This should fail with ENOMEM
* and then go onto the nomem_io list.
*/
status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_read_blocks(second_desc, second_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&shared_resource->nomem_io));
/* Complete first bdev's I/O. This should retry sending second bdev's nomem_io */
stub_complete_io(g_bdev.io_target, AVAIL);
SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&shared_resource->nomem_io));
CU_ASSERT(shared_resource->io_outstanding == 1);
/* Now complete our retried I/O */
stub_complete_io(g_bdev.io_target, 1);
SPDK_CU_ASSERT_FATAL(shared_resource->io_outstanding == 0);
spdk_put_io_channel(io_ch);
spdk_put_io_channel(second_ch);
spdk_bdev_close(second_desc);
unregister_bdev(second_bdev);
poll_threads();
free(second_bdev);
teardown_test();
}
static void
enomem_multi_io_target(void)
{
struct spdk_io_channel *io_ch;
struct spdk_bdev_channel *bdev_ch;
struct ut_bdev_channel *ut_ch;
const uint32_t IO_ARRAY_SIZE = 64;
const uint32_t AVAIL = 20;
enum spdk_bdev_io_status status[IO_ARRAY_SIZE];
uint32_t i;
int new_io_device;
struct ut_bdev *second_bdev;
struct spdk_bdev_desc *second_desc = NULL;
struct spdk_bdev_channel *second_bdev_ch;
struct spdk_io_channel *second_ch;
int rc;
setup_test();
/* Create new io_target and a second bdev using it */
spdk_io_device_register(&new_io_device, stub_create_ch, stub_destroy_ch,
sizeof(struct ut_bdev_channel), NULL);
second_bdev = calloc(1, sizeof(*second_bdev));
SPDK_CU_ASSERT_FATAL(second_bdev != NULL);
register_bdev(second_bdev, "ut_bdev2", &new_io_device);
spdk_bdev_open(&second_bdev->bdev, true, NULL, NULL, &second_desc);
SPDK_CU_ASSERT_FATAL(second_desc != NULL);
set_thread(0);
io_ch = spdk_bdev_get_io_channel(g_desc);
bdev_ch = spdk_io_channel_get_ctx(io_ch);
ut_ch = spdk_io_channel_get_ctx(bdev_ch->channel);
ut_ch->avail_cnt = AVAIL;
/* Different io_target should imply a different shared_resource */
second_ch = spdk_bdev_get_io_channel(second_desc);
second_bdev_ch = spdk_io_channel_get_ctx(second_ch);
SPDK_CU_ASSERT_FATAL(bdev_ch->shared_resource != second_bdev_ch->shared_resource);
/* Saturate io_target through bdev A. */
for (i = 0; i < AVAIL; i++) {
status[i] = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[i]);
CU_ASSERT(rc == 0);
}
CU_ASSERT(TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io));
/* Issue one more I/O to fill ENOMEM list. */
status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_read_blocks(g_desc, io_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(!TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io));
/*
* Now submit I/O through the second bdev. This should go through and complete
* successfully because we're using a different io_device underneath.
*/
status[AVAIL] = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_read_blocks(second_desc, second_ch, NULL, 0, 1, enomem_done, &status[AVAIL]);
CU_ASSERT(rc == 0);
SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&second_bdev_ch->shared_resource->nomem_io));
stub_complete_io(second_bdev->io_target, 1);
/* Cleanup; Complete outstanding I/O. */
stub_complete_io(g_bdev.io_target, AVAIL);
SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io));
/* Complete the ENOMEM I/O */
stub_complete_io(g_bdev.io_target, 1);
CU_ASSERT(bdev_ch->shared_resource->io_outstanding == 0);
SPDK_CU_ASSERT_FATAL(TAILQ_EMPTY(&bdev_ch->shared_resource->nomem_io));
CU_ASSERT(bdev_ch->shared_resource->io_outstanding == 0);
spdk_put_io_channel(io_ch);
spdk_put_io_channel(second_ch);
spdk_bdev_close(second_desc);
unregister_bdev(second_bdev);
spdk_io_device_unregister(&new_io_device, NULL);
poll_threads();
free(second_bdev);
teardown_test();
}
static void
qos_dynamic_enable_done(void *cb_arg, int status)
{
int *rc = cb_arg;
*rc = status;
}
static void
qos_dynamic_enable(void)
{
struct spdk_io_channel *io_ch[2];
struct spdk_bdev_channel *bdev_ch[2];
struct spdk_bdev *bdev;
enum spdk_bdev_io_status bdev_io_status[2];
uint64_t limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES] = {};
int status, second_status, rc, i;
setup_test();
MOCK_SET(spdk_get_ticks, 0);
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
limits[i] = UINT64_MAX;
}
bdev = &g_bdev.bdev;
g_get_io_channel = true;
/* Create channels */
set_thread(0);
io_ch[0] = spdk_bdev_get_io_channel(g_desc);
bdev_ch[0] = spdk_io_channel_get_ctx(io_ch[0]);
CU_ASSERT(bdev_ch[0]->flags == 0);
set_thread(1);
io_ch[1] = spdk_bdev_get_io_channel(g_desc);
bdev_ch[1] = spdk_io_channel_get_ctx(io_ch[1]);
CU_ASSERT(bdev_ch[1]->flags == 0);
set_thread(0);
/*
* Enable QoS: Read/Write IOPS, Read/Write byte,
* Read only byte and Write only byte per second
* rate limits.
* More than 10 I/Os allowed per timeslice.
*/
status = -1;
limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 10000;
limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT] = 100;
limits[SPDK_BDEV_QOS_R_BPS_RATE_LIMIT] = 100;
limits[SPDK_BDEV_QOS_W_BPS_RATE_LIMIT] = 10;
spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
poll_threads();
CU_ASSERT(status == 0);
CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
/*
* Submit and complete 10 I/O to fill the QoS allotment for this timeslice.
* Additional I/O will then be queued.
*/
set_thread(0);
for (i = 0; i < 10; i++) {
bdev_io_status[0] = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &bdev_io_status[0]);
CU_ASSERT(rc == 0);
CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_PENDING);
poll_thread(0);
stub_complete_io(g_bdev.io_target, 0);
CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_SUCCESS);
}
/*
* Send two more I/O. These I/O will be queued since the current timeslice allotment has been
* filled already. We want to test that when QoS is disabled that these two I/O:
* 1) are not aborted
* 2) are sent back to their original thread for resubmission
*/
bdev_io_status[0] = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_read_blocks(g_desc, io_ch[0], NULL, 0, 1, io_during_io_done, &bdev_io_status[0]);
CU_ASSERT(rc == 0);
CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_PENDING);
set_thread(1);
bdev_io_status[1] = SPDK_BDEV_IO_STATUS_PENDING;
rc = spdk_bdev_read_blocks(g_desc, io_ch[1], NULL, 0, 1, io_during_io_done, &bdev_io_status[1]);
CU_ASSERT(rc == 0);
CU_ASSERT(bdev_io_status[1] == SPDK_BDEV_IO_STATUS_PENDING);
poll_threads();
/*
* Disable QoS: Read/Write IOPS, Read/Write byte,
* Read only byte rate limits
*/
status = -1;
limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 0;
limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT] = 0;
limits[SPDK_BDEV_QOS_R_BPS_RATE_LIMIT] = 0;
spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
poll_threads();
CU_ASSERT(status == 0);
CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
/* Disable QoS: Write only Byte per second rate limit */
status = -1;
limits[SPDK_BDEV_QOS_W_BPS_RATE_LIMIT] = 0;
spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
poll_threads();
CU_ASSERT(status == 0);
CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) == 0);
CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) == 0);
/*
* All I/O should have been resubmitted back on their original thread. Complete
* all I/O on thread 0, and ensure that only the thread 0 I/O was completed.
*/
set_thread(0);
stub_complete_io(g_bdev.io_target, 0);
poll_threads();
CU_ASSERT(bdev_io_status[0] == SPDK_BDEV_IO_STATUS_SUCCESS);
CU_ASSERT(bdev_io_status[1] == SPDK_BDEV_IO_STATUS_PENDING);
/* Now complete all I/O on thread 1 and ensure the thread 1 I/O was completed. */
set_thread(1);
stub_complete_io(g_bdev.io_target, 0);
poll_threads();
CU_ASSERT(bdev_io_status[1] == SPDK_BDEV_IO_STATUS_SUCCESS);
/* Disable QoS again */
status = -1;
limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 0;
spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
poll_threads();
CU_ASSERT(status == 0); /* This should succeed */
CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) == 0);
CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) == 0);
/* Enable QoS on thread 0 */
status = -1;
limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 10000;
spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
poll_threads();
CU_ASSERT(status == 0);
CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
/* Disable QoS on thread 1 */
set_thread(1);
status = -1;
limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 0;
spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
/* Don't poll yet. This should leave the channels with QoS enabled */
CU_ASSERT(status == -1);
CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
/* Enable QoS. This should immediately fail because the previous disable QoS hasn't completed. */
second_status = 0;
limits[SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT] = 10;
spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &second_status);
poll_threads();
CU_ASSERT(status == 0); /* The disable should succeed */
CU_ASSERT(second_status < 0); /* The enable should fail */
CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) == 0);
CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) == 0);
/* Enable QoS on thread 1. This should succeed now that the disable has completed. */
status = -1;
limits[SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT] = 10000;
spdk_bdev_set_qos_rate_limits(bdev, limits, qos_dynamic_enable_done, &status);
poll_threads();
CU_ASSERT(status == 0);
CU_ASSERT((bdev_ch[0]->flags & BDEV_CH_QOS_ENABLED) != 0);
CU_ASSERT((bdev_ch[1]->flags & BDEV_CH_QOS_ENABLED) != 0);
/* Tear down the channels */
set_thread(0);
spdk_put_io_channel(io_ch[0]);
set_thread(1);
spdk_put_io_channel(io_ch[1]);
poll_threads();
set_thread(0);
teardown_test();
}
static void
histogram_status_cb(void *cb_arg, int status)
{
g_status = status;
}
static void
histogram_data_cb(void *cb_arg, int status, struct spdk_histogram_data *histogram)
{
g_status = status;
g_histogram = histogram;
}
static void
histogram_io_count(void *ctx, uint64_t start, uint64_t end, uint64_t count,
uint64_t total, uint64_t so_far)
{
g_count += count;
}
static void
bdev_histograms_mt(void)
{
struct spdk_io_channel *ch[2];
struct spdk_histogram_data *histogram;
uint8_t buf[4096];
int status = false;
int rc;
setup_test();
set_thread(0);
ch[0] = spdk_bdev_get_io_channel(g_desc);
CU_ASSERT(ch[0] != NULL);
set_thread(1);
ch[1] = spdk_bdev_get_io_channel(g_desc);
CU_ASSERT(ch[1] != NULL);
/* Enable histogram */
spdk_bdev_histogram_enable(&g_bdev.bdev, histogram_status_cb, NULL, true);
poll_threads();
CU_ASSERT(g_status == 0);
CU_ASSERT(g_bdev.bdev.internal.histogram_enabled == true);
/* Allocate histogram */
histogram = spdk_histogram_data_alloc();
/* Check if histogram is zeroed */
spdk_bdev_histogram_get(&g_bdev.bdev, histogram, histogram_data_cb, NULL);
poll_threads();
CU_ASSERT(g_status == 0);
SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
g_count = 0;
spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
CU_ASSERT(g_count == 0);
set_thread(0);
rc = spdk_bdev_write_blocks(g_desc, ch[0], &buf, 0, 1, io_during_io_done, &status);
CU_ASSERT(rc == 0);
spdk_delay_us(10);
stub_complete_io(g_bdev.io_target, 1);
poll_threads();
CU_ASSERT(status == true);
set_thread(1);
rc = spdk_bdev_read_blocks(g_desc, ch[1], &buf, 0, 1, io_during_io_done, &status);
CU_ASSERT(rc == 0);
spdk_delay_us(10);
stub_complete_io(g_bdev.io_target, 1);
poll_threads();
CU_ASSERT(status == true);
set_thread(0);
/* Check if histogram gathered data from all I/O channels */
spdk_bdev_histogram_get(&g_bdev.bdev, histogram, histogram_data_cb, NULL);
poll_threads();
CU_ASSERT(g_status == 0);
CU_ASSERT(g_bdev.bdev.internal.histogram_enabled == true);
SPDK_CU_ASSERT_FATAL(g_histogram != NULL);
g_count = 0;
spdk_histogram_data_iterate(g_histogram, histogram_io_count, NULL);
CU_ASSERT(g_count == 2);
/* Disable histogram */
spdk_bdev_histogram_enable(&g_bdev.bdev, histogram_status_cb, NULL, false);
poll_threads();
CU_ASSERT(g_status == 0);
CU_ASSERT(g_bdev.bdev.internal.histogram_enabled == false);
spdk_histogram_data_free(g_histogram);
}
int
main(int argc, char **argv)
{
CU_pSuite suite = NULL;
unsigned int num_failures;
if (CU_initialize_registry() != CUE_SUCCESS) {
return CU_get_error();
}
suite = CU_add_suite("bdev", NULL, NULL);
if (suite == NULL) {
CU_cleanup_registry();
return CU_get_error();
}
if (
CU_add_test(suite, "basic", basic) == NULL ||
CU_add_test(suite, "unregister_and_close", unregister_and_close) == NULL ||
CU_add_test(suite, "basic_qos", basic_qos) == NULL ||
CU_add_test(suite, "put_channel_during_reset", put_channel_during_reset) == NULL ||
CU_add_test(suite, "aborted_reset", aborted_reset) == NULL ||
CU_add_test(suite, "io_during_reset", io_during_reset) == NULL ||
CU_add_test(suite, "io_during_qos_queue", io_during_qos_queue) == NULL ||
CU_add_test(suite, "io_during_qos_reset", io_during_qos_reset) == NULL ||
CU_add_test(suite, "enomem", enomem) == NULL ||
CU_add_test(suite, "enomem_multi_bdev", enomem_multi_bdev) == NULL ||
CU_add_test(suite, "enomem_multi_io_target", enomem_multi_io_target) == NULL ||
CU_add_test(suite, "qos_dynamic_enable", qos_dynamic_enable) == NULL ||
CU_add_test(suite, "bdev_histograms_mt", bdev_histograms_mt) == NULL
) {
CU_cleanup_registry();
return CU_get_error();
}
CU_basic_set_mode(CU_BRM_VERBOSE);
CU_basic_run_tests();
num_failures = CU_get_number_of_failures();
CU_cleanup_registry();
return num_failures;
}