Spdk/module/bdev/nvme/bdev_nvme.c
Shuhei Matsumoto 0aeab1f13d bdev/nvme: Add nvme_bdev_ctrlr pointer to struct nvme_io_channel
When we support ANA multipath, I/O path will get nvme_bdev_ns from
nvme_bdev_ctrlr->namespaces, and nvme_bdev_ctrlr will be got from
nvme_io_channel.

Hence this patch adds a pointer to nvme_bdev_ctrlr to struct
nvme_io_channel.

As a side effect, nvme_io_channel->ctrlr is helpful to simplify
admin command submit functions, and do it in this patch.

For ocssd_bdev, we will do the similar change later.

Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Change-Id: I6976d1543ccda37dde4b81b2124d88f0d05ed7eb
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/5055
Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Community-CI: Broadcom CI
Community-CI: Mellanox Build Bot
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
2020-11-25 08:52:15 +00:00

2867 lines
79 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation. All rights reserved.
* Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "bdev_nvme.h"
#include "bdev_ocssd.h"
#include "spdk/config.h"
#include "spdk/endian.h"
#include "spdk/bdev.h"
#include "spdk/json.h"
#include "spdk/nvme.h"
#include "spdk/nvme_ocssd.h"
#include "spdk/thread.h"
#include "spdk/string.h"
#include "spdk/likely.h"
#include "spdk/util.h"
#include "spdk/bdev_module.h"
#include "spdk/log.h"
#define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
struct nvme_bdev_io {
/** array of iovecs to transfer. */
struct iovec *iovs;
/** Number of iovecs in iovs array. */
int iovcnt;
/** Current iovec position. */
int iovpos;
/** Offset in current iovec. */
uint32_t iov_offset;
/** array of iovecs to transfer. */
struct iovec *fused_iovs;
/** Number of iovecs in iovs array. */
int fused_iovcnt;
/** Current iovec position. */
int fused_iovpos;
/** Offset in current iovec. */
uint32_t fused_iov_offset;
/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
struct spdk_nvme_cpl cpl;
/** Originating thread */
struct spdk_thread *orig_thread;
/** Keeps track if first of fused commands was submitted */
bool first_fused_submitted;
};
struct nvme_probe_ctx {
size_t count;
struct spdk_nvme_transport_id trids[NVME_MAX_CONTROLLERS];
struct spdk_nvme_host_id hostids[NVME_MAX_CONTROLLERS];
const char *names[NVME_MAX_CONTROLLERS];
uint32_t prchk_flags[NVME_MAX_CONTROLLERS];
const char *hostnqn;
};
struct nvme_probe_skip_entry {
struct spdk_nvme_transport_id trid;
TAILQ_ENTRY(nvme_probe_skip_entry) tailq;
};
/* All the controllers deleted by users via RPC are skipped by hotplug monitor */
static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
g_skipped_nvme_ctrlrs);
static struct spdk_bdev_nvme_opts g_opts = {
.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
.timeout_us = 0,
.retry_count = 4,
.arbitration_burst = 0,
.low_priority_weight = 0,
.medium_priority_weight = 0,
.high_priority_weight = 0,
.nvme_adminq_poll_period_us = 10000ULL,
.nvme_ioq_poll_period_us = 0,
.io_queue_requests = 0,
.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
};
#define NVME_HOTPLUG_POLL_PERIOD_MAX 10000000ULL
#define NVME_HOTPLUG_POLL_PERIOD_DEFAULT 100000ULL
static int g_hot_insert_nvme_controller_index = 0;
static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
static bool g_nvme_hotplug_enabled = false;
static struct spdk_thread *g_bdev_nvme_init_thread;
static struct spdk_poller *g_hotplug_poller;
static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
static void nvme_ctrlr_populate_namespaces(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr,
struct nvme_async_probe_ctx *ctx);
static void nvme_ctrlr_populate_namespaces_done(struct nvme_async_probe_ctx *ctx);
static int bdev_nvme_library_init(void);
static void bdev_nvme_library_fini(void);
static int bdev_nvme_readv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags);
static int bdev_nvme_no_pi_readv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba);
static int bdev_nvme_writev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags);
static int bdev_nvme_comparev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags);
static int bdev_nvme_comparev_and_writev(struct spdk_nvme_ns *ns,
struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags);
static int bdev_nvme_admin_passthru(struct nvme_io_channel *nvme_ch,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
static int bdev_nvme_io_passthru(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
static int bdev_nvme_io_passthru_md(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, void *md_buf, size_t md_len);
static int bdev_nvme_abort(struct nvme_io_channel *nvme_ch,
struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
static int bdev_nvme_reset(struct nvme_io_channel *nvme_ch, struct nvme_bdev_io *bio);
static int bdev_nvme_failover(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr, bool remove);
typedef void (*populate_namespace_fn)(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr,
struct nvme_bdev_ns *nvme_ns, struct nvme_async_probe_ctx *ctx);
static void nvme_ctrlr_populate_standard_namespace(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr,
struct nvme_bdev_ns *nvme_ns, struct nvme_async_probe_ctx *ctx);
static populate_namespace_fn g_populate_namespace_fn[] = {
NULL,
nvme_ctrlr_populate_standard_namespace,
bdev_ocssd_populate_namespace,
};
typedef void (*depopulate_namespace_fn)(struct nvme_bdev_ns *ns);
static void nvme_ctrlr_depopulate_standard_namespace(struct nvme_bdev_ns *ns);
static depopulate_namespace_fn g_depopulate_namespace_fn[] = {
NULL,
nvme_ctrlr_depopulate_standard_namespace,
bdev_ocssd_depopulate_namespace,
};
typedef void (*config_json_namespace_fn)(struct spdk_json_write_ctx *w, struct nvme_bdev_ns *ns);
static void nvme_ctrlr_config_json_standard_namespace(struct spdk_json_write_ctx *w,
struct nvme_bdev_ns *ns);
static config_json_namespace_fn g_config_json_namespace_fn[] = {
NULL,
nvme_ctrlr_config_json_standard_namespace,
bdev_ocssd_namespace_config_json,
};
struct spdk_nvme_qpair *
bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
{
struct nvme_io_channel *nvme_ch;
nvme_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
return nvme_ch->qpair;
}
static int
bdev_nvme_get_ctx_size(void)
{
return sizeof(struct nvme_bdev_io);
}
static struct spdk_bdev_module nvme_if = {
.name = "nvme",
.async_fini = true,
.module_init = bdev_nvme_library_init,
.module_fini = bdev_nvme_library_fini,
.config_json = bdev_nvme_config_json,
.get_ctx_size = bdev_nvme_get_ctx_size,
};
SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
static void
bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
{
SPDK_DEBUGLOG(bdev_nvme, "qpar %p is disconnected, attempting reconnect.\n", qpair);
/*
* Currently, just try to reconnect indefinitely. If we are doing a reset, the reset will
* reconnect a qpair and we will stop getting a callback for this one.
*/
spdk_nvme_ctrlr_reconnect_io_qpair(qpair);
}
static int
bdev_nvme_poll(void *arg)
{
struct nvme_bdev_poll_group *group = arg;
int64_t num_completions;
if (group->collect_spin_stat && group->start_ticks == 0) {
group->start_ticks = spdk_get_ticks();
}
num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
bdev_nvme_disconnected_qpair_cb);
if (group->collect_spin_stat) {
if (num_completions > 0) {
if (group->end_ticks != 0) {
group->spin_ticks += (group->end_ticks - group->start_ticks);
group->end_ticks = 0;
}
group->start_ticks = 0;
} else {
group->end_ticks = spdk_get_ticks();
}
}
return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
}
static int
bdev_nvme_poll_adminq(void *arg)
{
int32_t rc;
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = arg;
assert(nvme_bdev_ctrlr != NULL);
rc = spdk_nvme_ctrlr_process_admin_completions(nvme_bdev_ctrlr->ctrlr);
if (rc < 0) {
bdev_nvme_failover(nvme_bdev_ctrlr, false);
}
return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
}
static int
bdev_nvme_destruct(void *ctx)
{
struct nvme_bdev *nvme_disk = ctx;
nvme_bdev_detach_bdev_from_ns(nvme_disk);
free(nvme_disk->disk.name);
free(nvme_disk);
return 0;
}
static int
bdev_nvme_flush(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, uint64_t offset, uint64_t nbytes)
{
spdk_bdev_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_SUCCESS);
return 0;
}
static void
bdev_nvme_destroy_qpair(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr,
struct nvme_io_channel *nvme_ch)
{
assert(nvme_ch->group != NULL);
if (nvme_ch->qpair != NULL) {
spdk_nvme_poll_group_remove(nvme_ch->group->group, nvme_ch->qpair);
}
spdk_nvme_ctrlr_free_io_qpair(nvme_ch->qpair);
}
static int
bdev_nvme_create_qpair(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr,
struct nvme_io_channel *nvme_ch)
{
struct spdk_nvme_ctrlr *ctrlr = nvme_bdev_ctrlr->ctrlr;
struct spdk_nvme_io_qpair_opts opts;
int rc;
spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
opts.delay_cmd_submit = g_opts.delay_cmd_submit;
opts.create_only = true;
opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
g_opts.io_queue_requests = opts.io_queue_requests;
nvme_ch->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ctrlr, &opts, sizeof(opts));
if (nvme_ch->qpair == NULL) {
return -1;
}
assert(nvme_ch->group != NULL);
rc = spdk_nvme_poll_group_add(nvme_ch->group->group, nvme_ch->qpair);
if (rc != 0) {
SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
goto err;
}
rc = spdk_nvme_ctrlr_connect_io_qpair(ctrlr, nvme_ch->qpair);
if (rc != 0) {
SPDK_ERRLOG("Unable to connect I/O qpair.\n");
goto err;
}
return 0;
err:
bdev_nvme_destroy_qpair(nvme_bdev_ctrlr, nvme_ch);
return rc;
}
static void
_bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(_ch);
struct spdk_bdev_io *bdev_io;
enum spdk_bdev_io_status status = SPDK_BDEV_IO_STATUS_SUCCESS;
/* A NULL ctx means success. */
if (spdk_io_channel_iter_get_ctx(i) != NULL) {
status = SPDK_BDEV_IO_STATUS_FAILED;
}
while (!TAILQ_EMPTY(&nvme_ch->pending_resets)) {
bdev_io = TAILQ_FIRST(&nvme_ch->pending_resets);
TAILQ_REMOVE(&nvme_ch->pending_resets, bdev_io, module_link);
spdk_bdev_io_complete(bdev_io, status);
}
spdk_for_each_channel_continue(i, 0);
}
static void
_bdev_nvme_reset_complete(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr, int rc)
{
/* we are using the for_each_channel cb_arg like a return code here. */
/* If it's zero, we succeeded, otherwise, the reset failed. */
void *cb_arg = NULL;
if (rc) {
cb_arg = (void *)0x1;
SPDK_ERRLOG("Resetting controller failed.\n");
} else {
SPDK_NOTICELOG("Resetting controller successful.\n");
}
pthread_mutex_lock(&g_bdev_nvme_mutex);
nvme_bdev_ctrlr->resetting = false;
nvme_bdev_ctrlr->failover_in_progress = false;
pthread_mutex_unlock(&g_bdev_nvme_mutex);
/* Make sure we clear any pending resets before returning. */
spdk_for_each_channel(nvme_bdev_ctrlr,
_bdev_nvme_complete_pending_resets,
cb_arg, NULL);
}
static void
_bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = spdk_io_channel_iter_get_io_device(i);
struct nvme_bdev_io *bio = spdk_io_channel_iter_get_ctx(i);
int rc = SPDK_BDEV_IO_STATUS_SUCCESS;
if (status) {
rc = SPDK_BDEV_IO_STATUS_FAILED;
}
if (bio) {
spdk_bdev_io_complete(spdk_bdev_io_from_ctx(bio), rc);
}
_bdev_nvme_reset_complete(nvme_bdev_ctrlr, status);
}
static void
_bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = spdk_io_channel_iter_get_io_device(i);
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(_ch);
int rc;
rc = bdev_nvme_create_qpair(nvme_bdev_ctrlr, nvme_ch);
spdk_for_each_channel_continue(i, rc);
}
static void
_bdev_nvme_reset_ctrlr(struct spdk_io_channel_iter *i, int status)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = spdk_io_channel_iter_get_io_device(i);
struct nvme_bdev_io *bio = spdk_io_channel_iter_get_ctx(i);
int rc;
if (status) {
rc = status;
goto err;
}
rc = spdk_nvme_ctrlr_reset(nvme_bdev_ctrlr->ctrlr);
if (rc != 0) {
goto err;
}
/* Recreate all of the I/O queue pairs */
spdk_for_each_channel(nvme_bdev_ctrlr,
_bdev_nvme_reset_create_qpair,
bio,
_bdev_nvme_reset_create_qpairs_done);
return;
err:
if (bio) {
spdk_bdev_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_FAILED);
}
_bdev_nvme_reset_complete(nvme_bdev_ctrlr, rc);
}
static void
_bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
{
struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(ch);
int rc;
rc = spdk_nvme_ctrlr_free_io_qpair(nvme_ch->qpair);
if (!rc) {
nvme_ch->qpair = NULL;
}
spdk_for_each_channel_continue(i, rc);
}
static int
_bdev_nvme_reset(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr, void *ctx)
{
pthread_mutex_lock(&g_bdev_nvme_mutex);
if (nvme_bdev_ctrlr->destruct) {
pthread_mutex_unlock(&g_bdev_nvme_mutex);
return -EBUSY;
}
if (nvme_bdev_ctrlr->resetting) {
pthread_mutex_unlock(&g_bdev_nvme_mutex);
SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
return -EAGAIN;
}
nvme_bdev_ctrlr->resetting = true;
pthread_mutex_unlock(&g_bdev_nvme_mutex);
/* First, delete all NVMe I/O queue pairs. */
spdk_for_each_channel(nvme_bdev_ctrlr,
_bdev_nvme_reset_destroy_qpair,
ctx,
_bdev_nvme_reset_ctrlr);
return 0;
}
static int
bdev_nvme_reset(struct nvme_io_channel *nvme_ch, struct nvme_bdev_io *bio)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
int rc;
rc = _bdev_nvme_reset(nvme_ch->ctrlr, bio);
if (rc == -EBUSY) {
/* Don't bother resetting if the controller is in the process of being destructed. */
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
return 0;
} else if (rc == -EAGAIN) {
/*
* Reset call is queued only if it is from the app framework. This is on purpose so that
* we don't interfere with the app framework reset strategy. i.e. we are deferring to the
* upper level. If they are in the middle of a reset, we won't try to schedule another one.
*/
TAILQ_INSERT_TAIL(&nvme_ch->pending_resets, bdev_io, module_link);
return 0;
} else {
return rc;
}
}
static int
bdev_nvme_failover(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr, bool remove)
{
struct nvme_bdev_ctrlr_trid *curr_trid = NULL, *next_trid = NULL;
int rc = 0;
pthread_mutex_lock(&g_bdev_nvme_mutex);
if (nvme_bdev_ctrlr->destruct) {
pthread_mutex_unlock(&g_bdev_nvme_mutex);
/* Don't bother resetting if the controller is in the process of being destructed. */
return 0;
}
curr_trid = TAILQ_FIRST(&nvme_bdev_ctrlr->trids);
assert(curr_trid);
assert(&curr_trid->trid == nvme_bdev_ctrlr->connected_trid);
next_trid = TAILQ_NEXT(curr_trid, link);
if (nvme_bdev_ctrlr->resetting) {
if (next_trid && !nvme_bdev_ctrlr->failover_in_progress) {
rc = -EAGAIN;
}
pthread_mutex_unlock(&g_bdev_nvme_mutex);
SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
return rc;
}
nvme_bdev_ctrlr->resetting = true;
if (next_trid) {
nvme_bdev_ctrlr->failover_in_progress = true;
spdk_nvme_ctrlr_fail(nvme_bdev_ctrlr->ctrlr);
nvme_bdev_ctrlr->connected_trid = &next_trid->trid;
rc = spdk_nvme_ctrlr_set_trid(nvme_bdev_ctrlr->ctrlr, &next_trid->trid);
assert(rc == 0);
TAILQ_REMOVE(&nvme_bdev_ctrlr->trids, curr_trid, link);
if (!remove) {
/** Shuffle the old trid to the end of the list and use the new one.
* Allows for round robin through multiple connections.
*/
TAILQ_INSERT_TAIL(&nvme_bdev_ctrlr->trids, curr_trid, link);
} else {
free(curr_trid);
}
}
pthread_mutex_unlock(&g_bdev_nvme_mutex);
/* First, delete all NVMe I/O queue pairs. */
spdk_for_each_channel(nvme_bdev_ctrlr,
_bdev_nvme_reset_destroy_qpair,
NULL,
_bdev_nvme_reset_ctrlr);
return 0;
}
static int
bdev_nvme_unmap(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
uint64_t offset_blocks,
uint64_t num_blocks);
static void
bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
bool success)
{
struct spdk_bdev *bdev = bdev_io->bdev;
struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev->ctxt;
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(ch);
int ret;
if (!success) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
return;
}
ret = bdev_nvme_readv(nbdev->nvme_ns->ns,
nvme_ch->qpair,
(struct nvme_bdev_io *)bdev_io->driver_ctx,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags);
if (spdk_likely(ret == 0)) {
return;
} else if (ret == -ENOMEM) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_NOMEM);
} else {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
static int
_bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
{
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(ch);
struct spdk_bdev *bdev = bdev_io->bdev;
struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev->ctxt;
struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
struct nvme_bdev_io *nbdev_io_to_abort;
if (nvme_ch->qpair == NULL) {
/* The device is currently resetting */
return -1;
}
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_READ:
if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
bdev_nvme_get_buf_cb(ch, bdev_io, true);
} else {
spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
bdev_io->u.bdev.num_blocks * bdev->blocklen);
}
return 0;
case SPDK_BDEV_IO_TYPE_WRITE:
return bdev_nvme_writev(nbdev->nvme_ns->ns,
nvme_ch->qpair,
nbdev_io,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags);
case SPDK_BDEV_IO_TYPE_COMPARE:
return bdev_nvme_comparev(nbdev->nvme_ns->ns,
nvme_ch->qpair,
nbdev_io,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags);
case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
return bdev_nvme_comparev_and_writev(nbdev->nvme_ns->ns,
nvme_ch->qpair,
nbdev_io,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.fused_iovs,
bdev_io->u.bdev.fused_iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks,
bdev->dif_check_flags);
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
return bdev_nvme_unmap(nbdev->nvme_ns->ns,
nvme_ch->qpair,
nbdev_io,
bdev_io->u.bdev.offset_blocks,
bdev_io->u.bdev.num_blocks);
case SPDK_BDEV_IO_TYPE_UNMAP:
return bdev_nvme_unmap(nbdev->nvme_ns->ns,
nvme_ch->qpair,
nbdev_io,
bdev_io->u.bdev.offset_blocks,
bdev_io->u.bdev.num_blocks);
case SPDK_BDEV_IO_TYPE_RESET:
return bdev_nvme_reset(nvme_ch, nbdev_io);
case SPDK_BDEV_IO_TYPE_FLUSH:
return bdev_nvme_flush(nbdev->nvme_ns->ns,
nvme_ch->qpair,
nbdev_io,
bdev_io->u.bdev.offset_blocks,
bdev_io->u.bdev.num_blocks);
case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
return bdev_nvme_admin_passthru(nvme_ch,
nbdev_io,
&bdev_io->u.nvme_passthru.cmd,
bdev_io->u.nvme_passthru.buf,
bdev_io->u.nvme_passthru.nbytes);
case SPDK_BDEV_IO_TYPE_NVME_IO:
return bdev_nvme_io_passthru(nbdev->nvme_ns->ns,
nvme_ch->qpair,
nbdev_io,
&bdev_io->u.nvme_passthru.cmd,
bdev_io->u.nvme_passthru.buf,
bdev_io->u.nvme_passthru.nbytes);
case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
return bdev_nvme_io_passthru_md(nbdev->nvme_ns->ns,
nvme_ch->qpair,
nbdev_io,
&bdev_io->u.nvme_passthru.cmd,
bdev_io->u.nvme_passthru.buf,
bdev_io->u.nvme_passthru.nbytes,
bdev_io->u.nvme_passthru.md_buf,
bdev_io->u.nvme_passthru.md_len);
case SPDK_BDEV_IO_TYPE_ABORT:
nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
return bdev_nvme_abort(nvme_ch,
nbdev_io,
nbdev_io_to_abort);
default:
return -EINVAL;
}
return 0;
}
static void
bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
{
int rc = _bdev_nvme_submit_request(ch, bdev_io);
if (spdk_unlikely(rc != 0)) {
if (rc == -ENOMEM) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_NOMEM);
} else {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
}
static bool
bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
{
struct nvme_bdev *nbdev = ctx;
struct spdk_nvme_ctrlr *ctrlr = nbdev->nvme_ns->ctrlr->ctrlr;
struct spdk_nvme_ns *ns = nbdev->nvme_ns->ns;
const struct spdk_nvme_ctrlr_data *cdata;
switch (io_type) {
case SPDK_BDEV_IO_TYPE_READ:
case SPDK_BDEV_IO_TYPE_WRITE:
case SPDK_BDEV_IO_TYPE_RESET:
case SPDK_BDEV_IO_TYPE_FLUSH:
case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
case SPDK_BDEV_IO_TYPE_NVME_IO:
case SPDK_BDEV_IO_TYPE_ABORT:
return true;
case SPDK_BDEV_IO_TYPE_COMPARE:
return spdk_nvme_ns_supports_compare(ns);
case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
return spdk_nvme_ns_get_md_size(ns) ? true : false;
case SPDK_BDEV_IO_TYPE_UNMAP:
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
return cdata->oncs.dsm;
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
/*
* If an NVMe controller guarantees reading unallocated blocks returns zero,
* we can implement WRITE_ZEROES as an NVMe deallocate command.
*/
if (cdata->oncs.dsm &&
spdk_nvme_ns_get_dealloc_logical_block_read_value(ns) ==
SPDK_NVME_DEALLOC_READ_00) {
return true;
}
/*
* The NVMe controller write_zeroes function is currently not used by our driver.
* If a user submits an arbitrarily large write_zeroes request to the controller, the request will fail.
* Until this is resolved, we only claim support for write_zeroes if deallocated blocks return 0's when read.
*/
return false;
case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
if (spdk_nvme_ctrlr_get_flags(ctrlr) &
SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
return true;
}
return false;
default:
return false;
}
}
static int
bdev_nvme_create_cb(void *io_device, void *ctx_buf)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = io_device;
struct nvme_io_channel *nvme_ch = ctx_buf;
struct spdk_io_channel *pg_ch = NULL;
int rc;
nvme_ch->ctrlr = nvme_bdev_ctrlr;
if (spdk_nvme_ctrlr_is_ocssd_supported(nvme_bdev_ctrlr->ctrlr)) {
rc = bdev_ocssd_create_io_channel(nvme_ch);
if (rc != 0) {
return rc;
}
}
pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
if (!pg_ch) {
rc = -1;
goto err_pg_ch;
}
nvme_ch->group = spdk_io_channel_get_ctx(pg_ch);
#ifdef SPDK_CONFIG_VTUNE
nvme_ch->group->collect_spin_stat = true;
#else
nvme_ch->group->collect_spin_stat = false;
#endif
TAILQ_INIT(&nvme_ch->pending_resets);
rc = bdev_nvme_create_qpair(nvme_bdev_ctrlr, nvme_ch);
if (rc != 0) {
goto err_qpair;
}
return 0;
err_qpair:
spdk_put_io_channel(pg_ch);
err_pg_ch:
if (spdk_nvme_ctrlr_is_ocssd_supported(nvme_bdev_ctrlr->ctrlr)) {
bdev_ocssd_destroy_io_channel(nvme_ch);
}
return rc;
}
static void
bdev_nvme_destroy_cb(void *io_device, void *ctx_buf)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = io_device;
struct nvme_io_channel *nvme_ch = ctx_buf;
assert(nvme_ch->group != NULL);
if (spdk_nvme_ctrlr_is_ocssd_supported(nvme_bdev_ctrlr->ctrlr)) {
bdev_ocssd_destroy_io_channel(nvme_ch);
}
bdev_nvme_destroy_qpair(nvme_bdev_ctrlr, nvme_ch);
spdk_put_io_channel(spdk_io_channel_from_ctx(nvme_ch->group));
}
static int
bdev_nvme_poll_group_create_cb(void *io_device, void *ctx_buf)
{
struct nvme_bdev_poll_group *group = ctx_buf;
group->group = spdk_nvme_poll_group_create(group);
if (group->group == NULL) {
return -1;
}
group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
if (group->poller == NULL) {
spdk_nvme_poll_group_destroy(group->group);
return -1;
}
return 0;
}
static void
bdev_nvme_poll_group_destroy_cb(void *io_device, void *ctx_buf)
{
struct nvme_bdev_poll_group *group = ctx_buf;
spdk_poller_unregister(&group->poller);
if (spdk_nvme_poll_group_destroy(group->group)) {
SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.");
assert(false);
}
}
static struct spdk_io_channel *
bdev_nvme_get_io_channel(void *ctx)
{
struct nvme_bdev *nvme_bdev = ctx;
return spdk_get_io_channel(nvme_bdev->nvme_ns->ctrlr);
}
static int
bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
{
struct nvme_bdev *nvme_bdev = ctx;
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = nvme_bdev->nvme_ns->ctrlr;
struct spdk_nvme_ctrlr *ctrlr = nvme_bdev_ctrlr->ctrlr;
const struct spdk_nvme_ctrlr_data *cdata;
const struct spdk_nvme_transport_id *trid;
struct spdk_nvme_ns *ns = nvme_bdev->nvme_ns->ns;
union spdk_nvme_vs_register vs;
union spdk_nvme_csts_register csts;
char buf[128];
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
spdk_json_write_named_object_begin(w, "nvme");
if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
spdk_json_write_named_string(w, "pci_address", trid->traddr);
}
spdk_json_write_named_object_begin(w, "trid");
nvme_bdev_dump_trid_json(trid, w);
spdk_json_write_object_end(w);
#ifdef SPDK_CONFIG_NVME_CUSE
size_t cuse_name_size = 128;
char cuse_name[cuse_name_size];
int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
cuse_name, &cuse_name_size);
if (rc == 0) {
spdk_json_write_named_string(w, "cuse_device", cuse_name);
}
#endif
spdk_json_write_named_object_begin(w, "ctrlr_data");
spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
spdk_str_trim(buf);
spdk_json_write_named_string(w, "model_number", buf);
snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
spdk_str_trim(buf);
spdk_json_write_named_string(w, "serial_number", buf);
snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
spdk_str_trim(buf);
spdk_json_write_named_string(w, "firmware_revision", buf);
if (cdata->subnqn[0] != '\0') {
spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
}
spdk_json_write_named_object_begin(w, "oacs");
spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
spdk_json_write_named_object_begin(w, "vs");
spdk_json_write_name(w, "nvme_version");
if (vs.bits.ter) {
spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
} else {
spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
}
spdk_json_write_object_end(w);
spdk_json_write_named_object_begin(w, "csts");
spdk_json_write_named_uint32(w, "rdy", csts.bits.rdy);
spdk_json_write_named_uint32(w, "cfs", csts.bits.cfs);
spdk_json_write_object_end(w);
spdk_json_write_named_object_begin(w, "ns_data");
spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
spdk_json_write_object_end(w);
if (cdata->oacs.security) {
spdk_json_write_named_object_begin(w, "security");
spdk_json_write_named_bool(w, "opal", nvme_bdev_ctrlr->opal_dev ? true : false);
spdk_json_write_object_end(w);
}
spdk_json_write_object_end(w);
return 0;
}
static void
bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
{
/* No config per bdev needed */
}
static uint64_t
bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
{
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(ch);
struct nvme_bdev_poll_group *group = nvme_ch->group;
uint64_t spin_time;
if (!group || !group->collect_spin_stat) {
return 0;
}
if (group->end_ticks != 0) {
group->spin_ticks += (group->end_ticks - group->start_ticks);
group->end_ticks = 0;
}
spin_time = (group->spin_ticks * 1000000ULL) / spdk_get_ticks_hz();
group->start_ticks = 0;
group->spin_ticks = 0;
return spin_time;
}
static const struct spdk_bdev_fn_table nvmelib_fn_table = {
.destruct = bdev_nvme_destruct,
.submit_request = bdev_nvme_submit_request,
.io_type_supported = bdev_nvme_io_type_supported,
.get_io_channel = bdev_nvme_get_io_channel,
.dump_info_json = bdev_nvme_dump_info_json,
.write_config_json = bdev_nvme_write_config_json,
.get_spin_time = bdev_nvme_get_spin_time,
};
static struct nvme_bdev *
nvme_bdev_create(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr, struct nvme_bdev_ns *nvme_ns)
{
struct nvme_bdev *bdev;
struct spdk_nvme_ctrlr *ctrlr = nvme_bdev_ctrlr->ctrlr;
struct spdk_nvme_ns *ns = nvme_ns->ns;
const struct spdk_uuid *uuid;
const struct spdk_nvme_ctrlr_data *cdata;
const struct spdk_nvme_ns_data *nsdata;
int rc;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
bdev = calloc(1, sizeof(*bdev));
if (!bdev) {
SPDK_ERRLOG("bdev calloc() failed\n");
return NULL;
}
bdev->nvme_ns = nvme_ns;
bdev->disk.name = spdk_sprintf_alloc("%sn%d", nvme_bdev_ctrlr->name, spdk_nvme_ns_get_id(ns));
if (!bdev->disk.name) {
free(bdev);
return NULL;
}
bdev->disk.product_name = "NVMe disk";
bdev->disk.write_cache = 0;
if (cdata->vwc.present) {
/* Enable if the Volatile Write Cache exists */
bdev->disk.write_cache = 1;
}
bdev->disk.blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
bdev->disk.blockcnt = spdk_nvme_ns_get_num_sectors(ns);
bdev->disk.optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
uuid = spdk_nvme_ns_get_uuid(ns);
if (uuid != NULL) {
bdev->disk.uuid = *uuid;
}
nsdata = spdk_nvme_ns_get_data(ns);
bdev->disk.md_len = spdk_nvme_ns_get_md_size(ns);
if (bdev->disk.md_len != 0) {
bdev->disk.md_interleave = nsdata->flbas.extended;
bdev->disk.dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
if (bdev->disk.dif_type != SPDK_DIF_DISABLE) {
bdev->disk.dif_is_head_of_md = nsdata->dps.md_start;
bdev->disk.dif_check_flags = nvme_bdev_ctrlr->prchk_flags;
}
}
if (!bdev_nvme_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE)) {
bdev->disk.acwu = 0;
} else if (nsdata->nsfeat.ns_atomic_write_unit) {
bdev->disk.acwu = nsdata->nacwu;
} else {
bdev->disk.acwu = cdata->acwu;
}
bdev->disk.ctxt = bdev;
bdev->disk.fn_table = &nvmelib_fn_table;
bdev->disk.module = &nvme_if;
rc = spdk_bdev_register(&bdev->disk);
if (rc) {
SPDK_ERRLOG("spdk_bdev_register() failed\n");
free(bdev->disk.name);
free(bdev);
return NULL;
}
return bdev;
}
static void
nvme_ctrlr_populate_standard_namespace(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr,
struct nvme_bdev_ns *nvme_ns, struct nvme_async_probe_ctx *ctx)
{
struct nvme_bdev *bdev;
struct spdk_nvme_ctrlr *ctrlr = nvme_bdev_ctrlr->ctrlr;
struct spdk_nvme_ns *ns;
int rc = 0;
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
if (!ns) {
SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
rc = -EINVAL;
goto done;
}
nvme_ns->ns = ns;
bdev = nvme_bdev_create(nvme_bdev_ctrlr, nvme_ns);
if (!bdev) {
rc = -ENOMEM;
goto done;
}
nvme_bdev_attach_bdev_to_ns(nvme_ns, bdev);
done:
nvme_ctrlr_populate_namespace_done(ctx, nvme_ns, rc);
}
static bool
hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
struct nvme_probe_skip_entry *entry;
TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
return false;
}
}
opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
return true;
}
static void
nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = ctx;
if (spdk_nvme_cpl_is_error(cpl)) {
SPDK_WARNLOG("Abort failed. Resetting controller.\n");
_bdev_nvme_reset(nvme_bdev_ctrlr, NULL);
}
}
static void
timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *qpair, uint16_t cid)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = cb_arg;
union spdk_nvme_csts_register csts;
int rc;
assert(nvme_bdev_ctrlr->ctrlr == ctrlr);
SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
if (csts.bits.cfs) {
SPDK_ERRLOG("Controller Fatal Status, reset required\n");
_bdev_nvme_reset(nvme_bdev_ctrlr, NULL);
return;
}
switch (g_opts.action_on_timeout) {
case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
if (qpair) {
rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
nvme_abort_cpl, nvme_bdev_ctrlr);
if (rc == 0) {
return;
}
SPDK_ERRLOG("Unable to send abort. Resetting.\n");
}
/* FALLTHROUGH */
case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
_bdev_nvme_reset(nvme_bdev_ctrlr, NULL);
break;
case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
break;
default:
SPDK_ERRLOG("An invalid timeout action value is found.\n");
break;
}
}
void
nvme_ctrlr_depopulate_namespace_done(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr)
{
pthread_mutex_lock(&g_bdev_nvme_mutex);
assert(nvme_bdev_ctrlr->ref > 0);
nvme_bdev_ctrlr->ref--;
if (nvme_bdev_ctrlr->ref == 0 && nvme_bdev_ctrlr->destruct) {
pthread_mutex_unlock(&g_bdev_nvme_mutex);
nvme_bdev_ctrlr_destruct(nvme_bdev_ctrlr);
return;
}
pthread_mutex_unlock(&g_bdev_nvme_mutex);
}
static void
nvme_ctrlr_depopulate_standard_namespace(struct nvme_bdev_ns *ns)
{
struct nvme_bdev *bdev, *tmp;
TAILQ_FOREACH_SAFE(bdev, &ns->bdevs, tailq, tmp) {
spdk_bdev_unregister(&bdev->disk, NULL, NULL);
}
ns->populated = false;
nvme_ctrlr_depopulate_namespace_done(ns->ctrlr);
}
static void
nvme_ctrlr_populate_namespace(struct nvme_bdev_ctrlr *ctrlr, struct nvme_bdev_ns *ns,
struct nvme_async_probe_ctx *ctx)
{
g_populate_namespace_fn[ns->type](ctrlr, ns, ctx);
}
static void
nvme_ctrlr_depopulate_namespace(struct nvme_bdev_ctrlr *ctrlr, struct nvme_bdev_ns *ns)
{
g_depopulate_namespace_fn[ns->type](ns);
}
void
nvme_ctrlr_populate_namespace_done(struct nvme_async_probe_ctx *ctx,
struct nvme_bdev_ns *ns, int rc)
{
if (rc == 0) {
ns->populated = true;
pthread_mutex_lock(&g_bdev_nvme_mutex);
ns->ctrlr->ref++;
pthread_mutex_unlock(&g_bdev_nvme_mutex);
} else {
memset(ns, 0, sizeof(*ns));
}
if (ctx) {
ctx->populates_in_progress--;
if (ctx->populates_in_progress == 0) {
nvme_ctrlr_populate_namespaces_done(ctx);
}
}
}
static void
nvme_ctrlr_populate_namespaces(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr,
struct nvme_async_probe_ctx *ctx)
{
struct spdk_nvme_ctrlr *ctrlr = nvme_bdev_ctrlr->ctrlr;
struct nvme_bdev_ns *ns;
struct spdk_nvme_ns *nvme_ns;
struct nvme_bdev *bdev;
uint32_t i;
int rc;
uint64_t num_sectors;
bool ns_is_active;
if (ctx) {
/* Initialize this count to 1 to handle the populate functions
* calling nvme_ctrlr_populate_namespace_done() immediately.
*/
ctx->populates_in_progress = 1;
}
for (i = 0; i < nvme_bdev_ctrlr->num_ns; i++) {
uint32_t nsid = i + 1;
ns = nvme_bdev_ctrlr->namespaces[i];
ns_is_active = spdk_nvme_ctrlr_is_active_ns(ctrlr, nsid);
if (ns->populated && ns_is_active && ns->type == NVME_BDEV_NS_STANDARD) {
/* NS is still there but attributes may have changed */
nvme_ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
num_sectors = spdk_nvme_ns_get_num_sectors(nvme_ns);
bdev = TAILQ_FIRST(&ns->bdevs);
if (bdev->disk.blockcnt != num_sectors) {
SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
nsid,
bdev->disk.name,
bdev->disk.blockcnt,
num_sectors);
rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
if (rc != 0) {
SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
bdev->disk.name, rc);
}
}
}
if (!ns->populated && ns_is_active) {
ns->id = nsid;
ns->ctrlr = nvme_bdev_ctrlr;
if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
ns->type = NVME_BDEV_NS_OCSSD;
} else {
ns->type = NVME_BDEV_NS_STANDARD;
}
TAILQ_INIT(&ns->bdevs);
if (ctx) {
ctx->populates_in_progress++;
}
nvme_ctrlr_populate_namespace(nvme_bdev_ctrlr, ns, ctx);
}
if (ns->populated && !ns_is_active) {
nvme_ctrlr_depopulate_namespace(nvme_bdev_ctrlr, ns);
}
}
if (ctx) {
/* Decrement this count now that the loop is over to account
* for the one we started with. If the count is then 0, we
* know any populate_namespace functions completed immediately,
* so we'll kick the callback here.
*/
ctx->populates_in_progress--;
if (ctx->populates_in_progress == 0) {
nvme_ctrlr_populate_namespaces_done(ctx);
}
}
}
static void
nvme_ctrlr_depopulate_namespaces(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr)
{
uint32_t i;
struct nvme_bdev_ns *ns;
for (i = 0; i < nvme_bdev_ctrlr->num_ns; i++) {
uint32_t nsid = i + 1;
ns = nvme_bdev_ctrlr->namespaces[nsid - 1];
if (ns->populated) {
assert(ns->id == nsid);
nvme_ctrlr_depopulate_namespace(nvme_bdev_ctrlr, ns);
}
}
}
static void
aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr = arg;
union spdk_nvme_async_event_completion event;
if (spdk_nvme_cpl_is_error(cpl)) {
SPDK_WARNLOG("AER request execute failed");
return;
}
event.raw = cpl->cdw0;
if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
(event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
nvme_ctrlr_populate_namespaces(nvme_bdev_ctrlr, NULL);
} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_VENDOR) &&
(event.bits.log_page_identifier == SPDK_OCSSD_LOG_CHUNK_NOTIFICATION) &&
spdk_nvme_ctrlr_is_ocssd_supported(nvme_bdev_ctrlr->ctrlr)) {
bdev_ocssd_handle_chunk_notification(nvme_bdev_ctrlr);
}
}
static int
nvme_bdev_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
const char *name,
const struct spdk_nvme_transport_id *trid,
uint32_t prchk_flags)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr;
struct nvme_bdev_ctrlr_trid *trid_entry;
uint32_t i;
int rc;
nvme_bdev_ctrlr = calloc(1, sizeof(*nvme_bdev_ctrlr));
if (nvme_bdev_ctrlr == NULL) {
SPDK_ERRLOG("Failed to allocate device struct\n");
return -ENOMEM;
}
TAILQ_INIT(&nvme_bdev_ctrlr->trids);
nvme_bdev_ctrlr->num_ns = spdk_nvme_ctrlr_get_num_ns(ctrlr);
nvme_bdev_ctrlr->namespaces = calloc(nvme_bdev_ctrlr->num_ns, sizeof(struct nvme_bdev_ns *));
if (!nvme_bdev_ctrlr->namespaces) {
SPDK_ERRLOG("Failed to allocate block namespaces pointer\n");
rc = -ENOMEM;
goto err_alloc_namespaces;
}
trid_entry = calloc(1, sizeof(*trid_entry));
if (trid_entry == NULL) {
SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
rc = -ENOMEM;
goto err_alloc_trid;
}
trid_entry->trid = *trid;
for (i = 0; i < nvme_bdev_ctrlr->num_ns; i++) {
nvme_bdev_ctrlr->namespaces[i] = calloc(1, sizeof(struct nvme_bdev_ns));
if (nvme_bdev_ctrlr->namespaces[i] == NULL) {
SPDK_ERRLOG("Failed to allocate block namespace struct\n");
rc = -ENOMEM;
goto err_alloc_namespace;
}
}
nvme_bdev_ctrlr->thread = spdk_get_thread();
nvme_bdev_ctrlr->adminq_timer_poller = NULL;
nvme_bdev_ctrlr->ctrlr = ctrlr;
nvme_bdev_ctrlr->ref = 1;
nvme_bdev_ctrlr->connected_trid = &trid_entry->trid;
nvme_bdev_ctrlr->name = strdup(name);
if (nvme_bdev_ctrlr->name == NULL) {
rc = -ENOMEM;
goto err_alloc_name;
}
if (spdk_nvme_ctrlr_is_ocssd_supported(nvme_bdev_ctrlr->ctrlr)) {
rc = bdev_ocssd_init_ctrlr(nvme_bdev_ctrlr);
if (spdk_unlikely(rc != 0)) {
SPDK_ERRLOG("Unable to initialize OCSSD controller\n");
goto err_init_ocssd;
}
}
nvme_bdev_ctrlr->prchk_flags = prchk_flags;
spdk_io_device_register(nvme_bdev_ctrlr, bdev_nvme_create_cb, bdev_nvme_destroy_cb,
sizeof(struct nvme_io_channel),
name);
nvme_bdev_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_bdev_ctrlr,
g_opts.nvme_adminq_poll_period_us);
TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nvme_bdev_ctrlr, tailq);
if (g_opts.timeout_us > 0) {
spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
timeout_cb, nvme_bdev_ctrlr);
}
spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_bdev_ctrlr);
if (spdk_nvme_ctrlr_get_flags(nvme_bdev_ctrlr->ctrlr) &
SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
nvme_bdev_ctrlr->opal_dev = spdk_opal_dev_construct(nvme_bdev_ctrlr->ctrlr);
if (nvme_bdev_ctrlr->opal_dev == NULL) {
SPDK_ERRLOG("Failed to initialize Opal\n");
}
}
TAILQ_INSERT_HEAD(&nvme_bdev_ctrlr->trids, trid_entry, link);
return 0;
err_init_ocssd:
free(nvme_bdev_ctrlr->name);
err_alloc_name:
err_alloc_namespace:
for (; i > 0; i--) {
free(nvme_bdev_ctrlr->namespaces[i - 1]);
}
free(trid_entry);
err_alloc_trid:
free(nvme_bdev_ctrlr->namespaces);
err_alloc_namespaces:
free(nvme_bdev_ctrlr);
return rc;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr;
struct nvme_probe_ctx *ctx = cb_ctx;
char *name = NULL;
uint32_t prchk_flags = 0;
size_t i;
if (ctx) {
for (i = 0; i < ctx->count; i++) {
if (spdk_nvme_transport_id_compare(trid, &ctx->trids[i]) == 0) {
prchk_flags = ctx->prchk_flags[i];
name = strdup(ctx->names[i]);
break;
}
}
} else {
name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
}
if (!name) {
SPDK_ERRLOG("Failed to assign name to NVMe device\n");
return;
}
SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
nvme_bdev_ctrlr_create(ctrlr, name, trid, prchk_flags);
nvme_bdev_ctrlr = nvme_bdev_ctrlr_get(trid);
if (!nvme_bdev_ctrlr) {
SPDK_ERRLOG("Failed to find new NVMe controller\n");
free(name);
return;
}
nvme_ctrlr_populate_namespaces(nvme_bdev_ctrlr, NULL);
free(name);
}
static void
remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr;
pthread_mutex_lock(&g_bdev_nvme_mutex);
TAILQ_FOREACH(nvme_bdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
if (nvme_bdev_ctrlr->ctrlr == ctrlr) {
/* The controller's destruction was already started */
if (nvme_bdev_ctrlr->destruct) {
pthread_mutex_unlock(&g_bdev_nvme_mutex);
return;
}
nvme_bdev_ctrlr->destruct = true;
pthread_mutex_unlock(&g_bdev_nvme_mutex);
nvme_ctrlr_depopulate_namespaces(nvme_bdev_ctrlr);
pthread_mutex_lock(&g_bdev_nvme_mutex);
assert(nvme_bdev_ctrlr->ref > 0);
nvme_bdev_ctrlr->ref--;
if (nvme_bdev_ctrlr->ref == 0) {
pthread_mutex_unlock(&g_bdev_nvme_mutex);
nvme_bdev_ctrlr_destruct(nvme_bdev_ctrlr);
} else {
pthread_mutex_unlock(&g_bdev_nvme_mutex);
}
return;
}
}
pthread_mutex_unlock(&g_bdev_nvme_mutex);
}
static int
bdev_nvme_hotplug(void *arg)
{
struct spdk_nvme_transport_id trid_pcie;
int done;
if (!g_hotplug_probe_ctx) {
memset(&trid_pcie, 0, sizeof(trid_pcie));
spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
hotplug_probe_cb,
attach_cb, remove_cb);
if (!g_hotplug_probe_ctx) {
return SPDK_POLLER_BUSY;
}
}
done = spdk_nvme_probe_poll_async(g_hotplug_probe_ctx);
if (done != -EAGAIN) {
g_hotplug_probe_ctx = NULL;
}
return SPDK_POLLER_BUSY;
}
void
bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
{
*opts = g_opts;
}
int
bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
{
if (g_bdev_nvme_init_thread != NULL) {
if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
return -EPERM;
}
}
g_opts = *opts;
return 0;
}
struct set_nvme_hotplug_ctx {
uint64_t period_us;
bool enabled;
spdk_msg_fn fn;
void *fn_ctx;
};
static void
set_nvme_hotplug_period_cb(void *_ctx)
{
struct set_nvme_hotplug_ctx *ctx = _ctx;
spdk_poller_unregister(&g_hotplug_poller);
if (ctx->enabled) {
g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
}
g_nvme_hotplug_poll_period_us = ctx->period_us;
g_nvme_hotplug_enabled = ctx->enabled;
if (ctx->fn) {
ctx->fn(ctx->fn_ctx);
}
free(ctx);
}
int
bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
{
struct set_nvme_hotplug_ctx *ctx;
if (enabled == true && !spdk_process_is_primary()) {
return -EPERM;
}
ctx = calloc(1, sizeof(*ctx));
if (ctx == NULL) {
return -ENOMEM;
}
period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
ctx->enabled = enabled;
ctx->fn = cb;
ctx->fn_ctx = cb_ctx;
spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
return 0;
}
static void
populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, size_t count, int rc)
{
if (ctx->cb_fn) {
ctx->cb_fn(ctx->cb_ctx, count, rc);
}
free(ctx);
}
static void
nvme_ctrlr_populate_namespaces_done(struct nvme_async_probe_ctx *ctx)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr;
struct nvme_bdev_ns *ns;
struct nvme_bdev *nvme_bdev, *tmp;
uint32_t i, nsid;
size_t j;
nvme_bdev_ctrlr = nvme_bdev_ctrlr_get_by_name(ctx->base_name);
assert(nvme_bdev_ctrlr != NULL);
/*
* Report the new bdevs that were created in this call.
* There can be more than one bdev per NVMe controller.
*/
j = 0;
for (i = 0; i < nvme_bdev_ctrlr->num_ns; i++) {
nsid = i + 1;
ns = nvme_bdev_ctrlr->namespaces[nsid - 1];
if (!ns->populated) {
continue;
}
assert(ns->id == nsid);
TAILQ_FOREACH_SAFE(nvme_bdev, &ns->bdevs, tailq, tmp) {
if (j < ctx->count) {
ctx->names[j] = nvme_bdev->disk.name;
j++;
} else {
SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
ctx->count);
populate_namespaces_cb(ctx, 0, -ERANGE);
return;
}
}
}
populate_namespaces_cb(ctx, j, 0);
}
static void
connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr;
struct nvme_async_probe_ctx *ctx;
int rc;
ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, opts);
spdk_poller_unregister(&ctx->poller);
rc = nvme_bdev_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx->prchk_flags);
if (rc) {
SPDK_ERRLOG("Failed to create new device\n");
populate_namespaces_cb(ctx, 0, rc);
return;
}
nvme_bdev_ctrlr = nvme_bdev_ctrlr_get(&ctx->trid);
assert(nvme_bdev_ctrlr != NULL);
nvme_ctrlr_populate_namespaces(nvme_bdev_ctrlr, ctx);
}
static int
bdev_nvme_async_poll(void *arg)
{
struct nvme_async_probe_ctx *ctx = arg;
int rc;
rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
if (spdk_unlikely(rc != -EAGAIN && rc != 0)) {
spdk_poller_unregister(&ctx->poller);
free(ctx);
}
return SPDK_POLLER_BUSY;
}
static int
bdev_nvme_add_trid(struct nvme_bdev_ctrlr *nvme_bdev_ctrlr, struct spdk_nvme_transport_id *trid)
{
struct spdk_nvme_ctrlr *new_ctrlr;
struct spdk_nvme_ctrlr_opts opts;
uint32_t i;
struct spdk_nvme_ns *ns, *new_ns;
const struct spdk_nvme_ns_data *ns_data, *new_ns_data;
struct nvme_bdev_ctrlr_trid *new_trid;
int rc = 0;
assert(nvme_bdev_ctrlr != NULL);
if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
SPDK_ERRLOG("PCIe failover is not supported.\n");
return -ENOTSUP;
}
/* Currently we only support failover to the same transport type. */
if (nvme_bdev_ctrlr->connected_trid->trtype != trid->trtype) {
return -EINVAL;
}
/* Currently we only support failover to the same NQN. */
if (strncmp(trid->subnqn, nvme_bdev_ctrlr->connected_trid->subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
return -EINVAL;
}
/* Skip all the other checks if we've already registered this path. */
TAILQ_FOREACH(new_trid, &nvme_bdev_ctrlr->trids, link) {
if (!spdk_nvme_transport_id_compare(&new_trid->trid, trid)) {
return -EEXIST;
}
}
spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, sizeof(opts));
opts.transport_retry_count = g_opts.retry_count;
new_ctrlr = spdk_nvme_connect(trid, &opts, sizeof(opts));
if (new_ctrlr == NULL) {
return -ENODEV;
}
if (spdk_nvme_ctrlr_get_num_ns(new_ctrlr) != nvme_bdev_ctrlr->num_ns) {
rc = -EINVAL;
goto out;
}
for (i = 1; i <= nvme_bdev_ctrlr->num_ns; i++) {
if (!spdk_nvme_ctrlr_is_active_ns(nvme_bdev_ctrlr->ctrlr, i)) {
continue;
}
ns = spdk_nvme_ctrlr_get_ns(nvme_bdev_ctrlr->ctrlr, i);
new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, i);
assert(ns != NULL);
assert(new_ns != NULL);
ns_data = spdk_nvme_ns_get_data(ns);
new_ns_data = spdk_nvme_ns_get_data(new_ns);
if (memcmp(ns_data->nguid, new_ns_data->nguid, sizeof(ns_data->nguid))) {
rc = -EINVAL;
goto out;
}
}
new_trid = calloc(1, sizeof(*new_trid));
if (new_trid == NULL) {
rc = -ENOMEM;
goto out;
}
new_trid->trid = *trid;
TAILQ_INSERT_TAIL(&nvme_bdev_ctrlr->trids, new_trid, link);
out:
spdk_nvme_detach(new_ctrlr);
return rc;
}
int
bdev_nvme_remove_trid(const char *name, struct spdk_nvme_transport_id *trid)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr;
struct nvme_bdev_ctrlr_trid *ctrlr_trid, *tmp_trid;
if (name == NULL) {
return -EINVAL;
}
nvme_bdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
if (nvme_bdev_ctrlr == NULL) {
SPDK_ERRLOG("Failed to find NVMe controller\n");
return -ENODEV;
}
/* case 1: we are currently using the path to be removed. */
if (!spdk_nvme_transport_id_compare(trid, nvme_bdev_ctrlr->connected_trid)) {
ctrlr_trid = TAILQ_FIRST(&nvme_bdev_ctrlr->trids);
assert(nvme_bdev_ctrlr->connected_trid == &ctrlr_trid->trid);
/* case 1A: the current path is the only path. */
if (!TAILQ_NEXT(ctrlr_trid, link)) {
return bdev_nvme_delete(name);
}
/* case 1B: there is an alternative path. */
return bdev_nvme_failover(nvme_bdev_ctrlr, true);
}
/* case 2: We are not using the specified path. */
TAILQ_FOREACH_SAFE(ctrlr_trid, &nvme_bdev_ctrlr->trids, link, tmp_trid) {
if (!spdk_nvme_transport_id_compare(&ctrlr_trid->trid, trid)) {
TAILQ_REMOVE(&nvme_bdev_ctrlr->trids, ctrlr_trid, link);
free(ctrlr_trid);
return 0;
}
}
/* case 2A: The address isn't even in the registered list. */
return -ENXIO;
}
int
bdev_nvme_create(struct spdk_nvme_transport_id *trid,
struct spdk_nvme_host_id *hostid,
const char *base_name,
const char **names,
uint32_t count,
const char *hostnqn,
uint32_t prchk_flags,
spdk_bdev_create_nvme_fn cb_fn,
void *cb_ctx)
{
struct nvme_probe_skip_entry *entry, *tmp;
struct nvme_async_probe_ctx *ctx;
struct nvme_bdev_ctrlr *existing_ctrlr;
int rc;
/* TODO expand this check to include both the host and target TRIDs.
* Only if both are the same should we fail.
*/
if (nvme_bdev_ctrlr_get(trid) != NULL) {
SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
return -EEXIST;
}
ctx = calloc(1, sizeof(*ctx));
if (!ctx) {
return -ENOMEM;
}
ctx->base_name = base_name;
ctx->names = names;
ctx->count = count;
ctx->cb_fn = cb_fn;
ctx->cb_ctx = cb_ctx;
ctx->prchk_flags = prchk_flags;
ctx->trid = *trid;
existing_ctrlr = nvme_bdev_ctrlr_get_by_name(base_name);
if (existing_ctrlr) {
rc = bdev_nvme_add_trid(existing_ctrlr, trid);
if (rc) {
free(ctx);
return rc;
}
nvme_ctrlr_populate_namespaces_done(ctx);
return 0;
}
if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
free(entry);
break;
}
}
}
spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->opts, sizeof(ctx->opts));
ctx->opts.transport_retry_count = g_opts.retry_count;
if (hostnqn) {
snprintf(ctx->opts.hostnqn, sizeof(ctx->opts.hostnqn), "%s", hostnqn);
}
if (hostid->hostaddr[0] != '\0') {
snprintf(ctx->opts.src_addr, sizeof(ctx->opts.src_addr), "%s", hostid->hostaddr);
}
if (hostid->hostsvcid[0] != '\0') {
snprintf(ctx->opts.src_svcid, sizeof(ctx->opts.src_svcid), "%s", hostid->hostsvcid);
}
ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->opts, connect_attach_cb);
if (ctx->probe_ctx == NULL) {
SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
free(ctx);
return -ENODEV;
}
ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
return 0;
}
int
bdev_nvme_delete(const char *name)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr;
struct nvme_probe_skip_entry *entry;
if (name == NULL) {
return -EINVAL;
}
pthread_mutex_lock(&g_bdev_nvme_mutex);
nvme_bdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
if (nvme_bdev_ctrlr == NULL) {
pthread_mutex_unlock(&g_bdev_nvme_mutex);
SPDK_ERRLOG("Failed to find NVMe controller\n");
return -ENODEV;
}
/* The controller's destruction was already started */
if (nvme_bdev_ctrlr->destruct) {
pthread_mutex_unlock(&g_bdev_nvme_mutex);
return 0;
}
if (nvme_bdev_ctrlr->connected_trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
entry = calloc(1, sizeof(*entry));
if (!entry) {
pthread_mutex_unlock(&g_bdev_nvme_mutex);
return -ENOMEM;
}
entry->trid = *nvme_bdev_ctrlr->connected_trid;
TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
}
nvme_bdev_ctrlr->destruct = true;
pthread_mutex_unlock(&g_bdev_nvme_mutex);
nvme_ctrlr_depopulate_namespaces(nvme_bdev_ctrlr);
pthread_mutex_lock(&g_bdev_nvme_mutex);
assert(nvme_bdev_ctrlr->ref > 0);
nvme_bdev_ctrlr->ref--;
if (nvme_bdev_ctrlr->ref == 0) {
pthread_mutex_unlock(&g_bdev_nvme_mutex);
nvme_bdev_ctrlr_destruct(nvme_bdev_ctrlr);
} else {
pthread_mutex_unlock(&g_bdev_nvme_mutex);
}
return 0;
}
static int
bdev_nvme_library_init(void)
{
g_bdev_nvme_init_thread = spdk_get_thread();
spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_poll_group_create_cb,
bdev_nvme_poll_group_destroy_cb,
sizeof(struct nvme_bdev_poll_group), "bdev_nvme_poll_groups");
return 0;
}
static void
bdev_nvme_library_fini(void)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr, *tmp;
struct nvme_probe_skip_entry *entry, *entry_tmp;
spdk_poller_unregister(&g_hotplug_poller);
free(g_hotplug_probe_ctx);
TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
free(entry);
}
pthread_mutex_lock(&g_bdev_nvme_mutex);
TAILQ_FOREACH_SAFE(nvme_bdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq, tmp) {
if (nvme_bdev_ctrlr->destruct) {
/* This controller's destruction was already started
* before the application started shutting down
*/
continue;
}
nvme_bdev_ctrlr->destruct = true;
pthread_mutex_unlock(&g_bdev_nvme_mutex);
nvme_ctrlr_depopulate_namespaces(nvme_bdev_ctrlr);
pthread_mutex_lock(&g_bdev_nvme_mutex);
assert(nvme_bdev_ctrlr->ref > 0);
nvme_bdev_ctrlr->ref--;
if (nvme_bdev_ctrlr->ref == 0) {
pthread_mutex_unlock(&g_bdev_nvme_mutex);
nvme_bdev_ctrlr_destruct(nvme_bdev_ctrlr);
pthread_mutex_lock(&g_bdev_nvme_mutex);
}
}
g_bdev_nvme_module_finish = true;
if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
pthread_mutex_unlock(&g_bdev_nvme_mutex);
spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
spdk_bdev_module_finish_done();
return;
}
pthread_mutex_unlock(&g_bdev_nvme_mutex);
}
static void
bdev_nvme_verify_pi_error(struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev *bdev = bdev_io->bdev;
struct spdk_dif_ctx dif_ctx;
struct spdk_dif_error err_blk = {};
int rc;
rc = spdk_dif_ctx_init(&dif_ctx,
bdev->blocklen, bdev->md_len, bdev->md_interleave,
bdev->dif_is_head_of_md, bdev->dif_type, bdev->dif_check_flags,
bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0);
if (rc != 0) {
SPDK_ERRLOG("Initialization of DIF context failed\n");
return;
}
if (bdev->md_interleave) {
rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
} else {
struct iovec md_iov = {
.iov_base = bdev_io->u.bdev.md_buf,
.iov_len = bdev_io->u.bdev.num_blocks * bdev->md_len,
};
rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
&md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
}
if (rc != 0) {
SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
err_blk.err_type, err_blk.err_offset);
} else {
SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
}
}
static void
bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
if (spdk_nvme_cpl_is_success(cpl)) {
/* Run PI verification for read data buffer. */
bdev_nvme_verify_pi_error(bdev_io);
}
/* Return original completion status */
spdk_bdev_io_complete_nvme_status(bdev_io, bio->cpl.cdw0, bio->cpl.status.sct,
bio->cpl.status.sc);
}
static void
bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
struct nvme_bdev *nbdev = (struct nvme_bdev *)bdev_io->bdev->ctxt;
struct nvme_io_channel *nvme_ch;
int ret;
if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
cpl->status.sct, cpl->status.sc);
/* Save completion status to use after verifying PI error. */
bio->cpl = *cpl;
nvme_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
/* Read without PI checking to verify PI error. */
ret = bdev_nvme_no_pi_readv(nbdev->nvme_ns->ns,
nvme_ch->qpair,
bio,
bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt,
bdev_io->u.bdev.md_buf,
bdev_io->u.bdev.num_blocks,
bdev_io->u.bdev.offset_blocks);
if (ret == 0) {
return;
}
}
spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
}
static void
bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx((struct nvme_bdev_io *)ref);
if (spdk_nvme_cpl_is_pi_error(cpl)) {
SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
cpl->status.sct, cpl->status.sc);
/* Run PI verification for write data buffer if PI error is detected. */
bdev_nvme_verify_pi_error(bdev_io);
}
spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
}
static void
bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx((struct nvme_bdev_io *)ref);
if (spdk_nvme_cpl_is_pi_error(cpl)) {
SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
cpl->status.sct, cpl->status.sc);
/* Run PI verification for compare data buffer if PI error is detected. */
bdev_nvme_verify_pi_error(bdev_io);
}
spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
}
static void
bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
/* Compare operation completion */
if ((cpl->cdw0 & 0xFF) == SPDK_NVME_OPC_COMPARE) {
/* Save compare result for write callback */
bio->cpl = *cpl;
return;
}
/* Write operation completion */
if (spdk_nvme_cpl_is_error(&bio->cpl)) {
/* If bio->cpl is already an error, it means the compare operation failed. In that case,
* complete the IO with the compare operation's status.
*/
if (!spdk_nvme_cpl_is_error(cpl)) {
SPDK_ERRLOG("Unexpected write success after compare failure.\n");
}
spdk_bdev_io_complete_nvme_status(bdev_io, bio->cpl.cdw0, bio->cpl.status.sct, bio->cpl.status.sc);
} else {
spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
}
}
static void
bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx((struct nvme_bdev_io *)ref);
spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
}
static void
bdev_nvme_admin_passthru_completion(void *ctx)
{
struct nvme_bdev_io *bio = ctx;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
spdk_bdev_io_complete_nvme_status(bdev_io,
bio->cpl.cdw0, bio->cpl.status.sct, bio->cpl.status.sc);
}
static void
bdev_nvme_abort_completion(void *ctx)
{
struct nvme_bdev_io *bio = ctx;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
} else {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
static void
bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
bio->cpl = *cpl;
spdk_thread_send_msg(bio->orig_thread, bdev_nvme_abort_completion, bio);
}
static void
bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct nvme_bdev_io *bio = ref;
bio->cpl = *cpl;
spdk_thread_send_msg(bio->orig_thread, bdev_nvme_admin_passthru_completion, bio);
}
static void
bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
{
struct nvme_bdev_io *bio = ref;
struct iovec *iov;
bio->iov_offset = sgl_offset;
for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
iov = &bio->iovs[bio->iovpos];
if (bio->iov_offset < iov->iov_len) {
break;
}
bio->iov_offset -= iov->iov_len;
}
}
static int
bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
{
struct nvme_bdev_io *bio = ref;
struct iovec *iov;
assert(bio->iovpos < bio->iovcnt);
iov = &bio->iovs[bio->iovpos];
*address = iov->iov_base;
*length = iov->iov_len;
if (bio->iov_offset) {
assert(bio->iov_offset <= iov->iov_len);
*address += bio->iov_offset;
*length -= bio->iov_offset;
}
bio->iov_offset += *length;
if (bio->iov_offset == iov->iov_len) {
bio->iovpos++;
bio->iov_offset = 0;
}
return 0;
}
static void
bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
{
struct nvme_bdev_io *bio = ref;
struct iovec *iov;
bio->fused_iov_offset = sgl_offset;
for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
iov = &bio->fused_iovs[bio->fused_iovpos];
if (bio->fused_iov_offset < iov->iov_len) {
break;
}
bio->fused_iov_offset -= iov->iov_len;
}
}
static int
bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
{
struct nvme_bdev_io *bio = ref;
struct iovec *iov;
assert(bio->fused_iovpos < bio->fused_iovcnt);
iov = &bio->fused_iovs[bio->fused_iovpos];
*address = iov->iov_base;
*length = iov->iov_len;
if (bio->fused_iov_offset) {
assert(bio->fused_iov_offset <= iov->iov_len);
*address += bio->fused_iov_offset;
*length -= bio->fused_iov_offset;
}
bio->fused_iov_offset += *length;
if (bio->fused_iov_offset == iov->iov_len) {
bio->fused_iovpos++;
bio->fused_iov_offset = 0;
}
return 0;
}
static int
bdev_nvme_no_pi_readv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
void *md, uint64_t lba_count, uint64_t lba)
{
int rc;
SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
lba_count, lba);
bio->iovs = iov;
bio->iovcnt = iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
bdev_nvme_no_pi_readv_done, bio, 0,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
md, 0, 0);
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
}
return rc;
}
static int
bdev_nvme_readv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
{
int rc;
SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
lba_count, lba);
bio->iovs = iov;
bio->iovcnt = iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
if (iovcnt == 1) {
rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base, md, lba,
lba_count,
bdev_nvme_readv_done, bio,
flags,
0, 0);
} else {
rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
bdev_nvme_readv_done, bio, flags,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
md, 0, 0);
}
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("readv failed: rc = %d\n", rc);
}
return rc;
}
static int
bdev_nvme_writev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags)
{
int rc;
SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
lba_count, lba);
bio->iovs = iov;
bio->iovcnt = iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
if (iovcnt == 1) {
rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base, md, lba,
lba_count,
bdev_nvme_readv_done, bio,
flags,
0, 0);
} else {
rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
bdev_nvme_writev_done, bio, flags,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
md, 0, 0);
}
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("writev failed: rc = %d\n", rc);
}
return rc;
}
static int
bdev_nvme_comparev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct iovec *iov, int iovcnt, void *md, uint64_t lba_count, uint64_t lba,
uint32_t flags)
{
int rc;
SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
lba_count, lba);
bio->iovs = iov;
bio->iovcnt = iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
bdev_nvme_comparev_done, bio, flags,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
md, 0, 0);
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
}
return rc;
}
static int
bdev_nvme_comparev_and_writev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
struct iovec *write_iov, int write_iovcnt,
void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
int rc;
SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
lba_count, lba);
bio->iovs = cmp_iov;
bio->iovcnt = cmp_iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
bio->fused_iovs = write_iov;
bio->fused_iovcnt = write_iovcnt;
bio->fused_iovpos = 0;
bio->fused_iov_offset = 0;
if (bdev_io->num_retries == 0) {
bio->first_fused_submitted = false;
}
if (!bio->first_fused_submitted) {
flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
memset(&bio->cpl, 0, sizeof(bio->cpl));
rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
bdev_nvme_comparev_and_writev_done, bio, flags,
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
if (rc == 0) {
bio->first_fused_submitted = true;
flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
} else {
if (rc != -ENOMEM) {
SPDK_ERRLOG("compare failed: rc = %d\n", rc);
}
return rc;
}
}
flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
bdev_nvme_comparev_and_writev_done, bio, flags,
bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
if (rc != 0 && rc != -ENOMEM) {
SPDK_ERRLOG("write failed: rc = %d\n", rc);
rc = 0;
}
return rc;
}
static int
bdev_nvme_unmap(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
uint64_t offset_blocks,
uint64_t num_blocks)
{
struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
struct spdk_nvme_dsm_range *range;
uint64_t offset, remaining;
uint64_t num_ranges_u64;
uint16_t num_ranges;
int rc;
num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
return -EINVAL;
}
num_ranges = (uint16_t)num_ranges_u64;
offset = offset_blocks;
remaining = num_blocks;
range = &dsm_ranges[0];
/* Fill max-size ranges until the remaining blocks fit into one range */
while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
range->attributes.raw = 0;
range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
range->starting_lba = offset;
offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
range++;
}
/* Final range describes the remaining blocks */
range->attributes.raw = 0;
range->length = remaining;
range->starting_lba = offset;
rc = spdk_nvme_ns_cmd_dataset_management(ns, qpair,
SPDK_NVME_DSM_ATTR_DEALLOCATE,
dsm_ranges, num_ranges,
bdev_nvme_queued_done, bio);
return rc;
}
static int
bdev_nvme_admin_passthru(struct nvme_io_channel *nvme_ch, struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
{
uint32_t max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ch->ctrlr->ctrlr);
if (nbytes > max_xfer_size) {
SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
return -EINVAL;
}
bio->orig_thread = spdk_io_channel_get_thread(spdk_io_channel_from_ctx(nvme_ch));
return spdk_nvme_ctrlr_cmd_admin_raw(nvme_ch->ctrlr->ctrlr, cmd, buf,
(uint32_t)nbytes, bdev_nvme_admin_passthru_done, bio);
}
static int
bdev_nvme_io_passthru(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
{
uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
if (nbytes > max_xfer_size) {
SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
return -EINVAL;
}
/*
* Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
* so fill it out automatically.
*/
cmd->nsid = spdk_nvme_ns_get_id(ns);
return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
(uint32_t)nbytes, bdev_nvme_queued_done, bio);
}
static int
bdev_nvme_io_passthru_md(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
struct nvme_bdev_io *bio,
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, void *md_buf, size_t md_len)
{
size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
if (nbytes > max_xfer_size) {
SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
return -EINVAL;
}
if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
SPDK_ERRLOG("invalid meta data buffer size\n");
return -EINVAL;
}
/*
* Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
* so fill it out automatically.
*/
cmd->nsid = spdk_nvme_ns_get_id(ns);
return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
}
static void
bdev_nvme_abort_admin_cmd(void *ctx)
{
struct nvme_bdev_io *bio = ctx;
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
struct nvme_io_channel *nvme_ch;
struct nvme_bdev_io *bio_to_abort;
int rc;
nvme_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
bio_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ch->ctrlr->ctrlr,
NULL,
bio_to_abort,
bdev_nvme_abort_done, bio);
if (rc == -ENOENT) {
/* If no admin command was found in admin qpair, complete the abort
* request with failure.
*/
bio->cpl.cdw0 |= 1U;
bio->cpl.status.sc = SPDK_NVME_SC_SUCCESS;
bio->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
spdk_thread_send_msg(bio->orig_thread, bdev_nvme_abort_completion, bio);
}
}
static int
bdev_nvme_abort(struct nvme_io_channel *nvme_ch, struct nvme_bdev_io *bio,
struct nvme_bdev_io *bio_to_abort)
{
int rc;
bio->orig_thread = spdk_io_channel_get_thread(spdk_io_channel_from_ctx(nvme_ch));
rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ch->ctrlr->ctrlr,
nvme_ch->qpair,
bio_to_abort,
bdev_nvme_abort_done, bio);
if (rc == -ENOENT) {
/* If no command was found in I/O qpair, the target command may be
* admin command. Only a single thread tries aborting admin command
* to clean I/O flow.
*/
spdk_thread_send_msg(nvme_ch->ctrlr->thread,
bdev_nvme_abort_admin_cmd, bio);
rc = 0;
}
return rc;
}
static void
nvme_ctrlr_config_json_standard_namespace(struct spdk_json_write_ctx *w, struct nvme_bdev_ns *ns)
{
/* nop */
}
static void
nvme_namespace_config_json(struct spdk_json_write_ctx *w, struct nvme_bdev_ns *ns)
{
g_config_json_namespace_fn[ns->type](w, ns);
}
static int
bdev_nvme_config_json(struct spdk_json_write_ctx *w)
{
struct nvme_bdev_ctrlr *nvme_bdev_ctrlr;
struct spdk_nvme_transport_id *trid;
const char *action;
uint32_t nsid;
if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
action = "reset";
} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
action = "abort";
} else {
action = "none";
}
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_string(w, "action_on_timeout", action);
spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
spdk_json_write_named_uint32(w, "retry_count", g_opts.retry_count);
spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
pthread_mutex_lock(&g_bdev_nvme_mutex);
TAILQ_FOREACH(nvme_bdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
trid = nvme_bdev_ctrlr->connected_trid;
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_string(w, "name", nvme_bdev_ctrlr->name);
nvme_bdev_dump_trid_json(trid, w);
spdk_json_write_named_bool(w, "prchk_reftag",
(nvme_bdev_ctrlr->prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
spdk_json_write_named_bool(w, "prchk_guard",
(nvme_bdev_ctrlr->prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
for (nsid = 0; nsid < nvme_bdev_ctrlr->num_ns; ++nsid) {
if (!nvme_bdev_ctrlr->namespaces[nsid]->populated) {
continue;
}
nvme_namespace_config_json(w, nvme_bdev_ctrlr->namespaces[nsid]);
}
}
/* Dump as last parameter to give all NVMe bdevs chance to be constructed
* before enabling hotplug poller.
*/
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
pthread_mutex_unlock(&g_bdev_nvme_mutex);
return 0;
}
struct spdk_nvme_ctrlr *
bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
{
if (!bdev || bdev->module != &nvme_if) {
return NULL;
}
return SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk)->nvme_ns->ctrlr->ctrlr;
}
SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)