Spdk/lib/bdev/bdev.c
Derek Su 950822cae1 xattr: set creation_time xattr when creating a lvol
Longhorn 6604

Signed-off-by: Derek Su <derek.su@suse.com>
2023-09-19 11:07:45 +02:00

9824 lines
269 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2016 Intel Corporation. All rights reserved.
* Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
* Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*/
#include "spdk/stdinc.h"
#include "spdk/bdev.h"
#include "spdk/accel.h"
#include "spdk/config.h"
#include "spdk/env.h"
#include "spdk/thread.h"
#include "spdk/likely.h"
#include "spdk/queue.h"
#include "spdk/nvme_spec.h"
#include "spdk/scsi_spec.h"
#include "spdk/notify.h"
#include "spdk/util.h"
#include "spdk/trace.h"
#include "spdk/dma.h"
#include "spdk/bdev_module.h"
#include "spdk/log.h"
#include "spdk/string.h"
#include "bdev_internal.h"
#include "spdk_internal/trace_defs.h"
#include "spdk_internal/assert.h"
#ifdef SPDK_CONFIG_VTUNE
#include "ittnotify.h"
#include "ittnotify_types.h"
int __itt_init_ittlib(const char *, __itt_group_id);
#endif
#define SPDK_BDEV_IO_POOL_SIZE (64 * 1024 - 1)
#define SPDK_BDEV_IO_CACHE_SIZE 256
#define SPDK_BDEV_AUTO_EXAMINE true
#define BUF_SMALL_POOL_SIZE 8191
#define BUF_LARGE_POOL_SIZE 1023
#define BUF_SMALL_CACHE_SIZE 128
#define BUF_LARGE_CACHE_SIZE 16
#define NOMEM_THRESHOLD_COUNT 8
#define SPDK_BDEV_QOS_TIMESLICE_IN_USEC 1000
#define SPDK_BDEV_QOS_MIN_IO_PER_TIMESLICE 1
#define SPDK_BDEV_QOS_MIN_BYTE_PER_TIMESLICE 512
#define SPDK_BDEV_QOS_MIN_IOS_PER_SEC 1000
#define SPDK_BDEV_QOS_MIN_BYTES_PER_SEC (1024 * 1024)
#define SPDK_BDEV_QOS_LIMIT_NOT_DEFINED UINT64_MAX
#define SPDK_BDEV_IO_POLL_INTERVAL_IN_MSEC 1000
/* The maximum number of children requests for a UNMAP or WRITE ZEROES command
* when splitting into children requests at a time.
*/
#define SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS (8)
#define BDEV_RESET_CHECK_OUTSTANDING_IO_PERIOD 1000000
/* The maximum number of children requests for a COPY command
* when splitting into children requests at a time.
*/
#define SPDK_BDEV_MAX_CHILDREN_COPY_REQS (8)
#define LOG_ALREADY_CLAIMED_ERROR(detail, bdev) \
log_already_claimed(SPDK_LOG_ERROR, __LINE__, __func__, detail, bdev)
#ifdef DEBUG
#define LOG_ALREADY_CLAIMED_DEBUG(detail, bdev) \
log_already_claimed(SPDK_LOG_DEBUG, __LINE__, __func__, detail, bdev)
#else
#define LOG_ALREADY_CLAIMED_DEBUG(detail, bdev) do {} while(0)
#endif
static void log_already_claimed(enum spdk_log_level level, const int line, const char *func,
const char *detail, struct spdk_bdev *bdev);
SPDK_LOG_DEPRECATION_REGISTER(vtune_support, "Intel(R) VTune integration", "SPDK 23.05", 0);
static const char *qos_rpc_type[] = {"rw_ios_per_sec",
"rw_mbytes_per_sec", "r_mbytes_per_sec", "w_mbytes_per_sec"
};
TAILQ_HEAD(spdk_bdev_list, spdk_bdev);
RB_HEAD(bdev_name_tree, spdk_bdev_name);
static int
bdev_name_cmp(struct spdk_bdev_name *name1, struct spdk_bdev_name *name2)
{
return strcmp(name1->name, name2->name);
}
RB_GENERATE_STATIC(bdev_name_tree, spdk_bdev_name, node, bdev_name_cmp);
struct spdk_bdev_mgr {
struct spdk_mempool *bdev_io_pool;
void *zero_buffer;
TAILQ_HEAD(bdev_module_list, spdk_bdev_module) bdev_modules;
struct spdk_bdev_list bdevs;
struct bdev_name_tree bdev_names;
bool init_complete;
bool module_init_complete;
struct spdk_spinlock spinlock;
#ifdef SPDK_CONFIG_VTUNE
__itt_domain *domain;
#endif
};
static struct spdk_bdev_mgr g_bdev_mgr = {
.bdev_modules = TAILQ_HEAD_INITIALIZER(g_bdev_mgr.bdev_modules),
.bdevs = TAILQ_HEAD_INITIALIZER(g_bdev_mgr.bdevs),
.bdev_names = RB_INITIALIZER(g_bdev_mgr.bdev_names),
.init_complete = false,
.module_init_complete = false,
};
static void
__attribute__((constructor))
_bdev_init(void)
{
spdk_spin_init(&g_bdev_mgr.spinlock);
}
typedef void (*lock_range_cb)(void *ctx, int status);
typedef void (*bdev_copy_bounce_buffer_cpl)(void *ctx, int rc);
struct lba_range {
uint64_t offset;
uint64_t length;
void *locked_ctx;
struct spdk_bdev_channel *owner_ch;
TAILQ_ENTRY(lba_range) tailq;
};
static struct spdk_bdev_opts g_bdev_opts = {
.bdev_io_pool_size = SPDK_BDEV_IO_POOL_SIZE,
.bdev_io_cache_size = SPDK_BDEV_IO_CACHE_SIZE,
.bdev_auto_examine = SPDK_BDEV_AUTO_EXAMINE,
.small_buf_pool_size = BUF_SMALL_POOL_SIZE,
.large_buf_pool_size = BUF_LARGE_POOL_SIZE,
};
static spdk_bdev_init_cb g_init_cb_fn = NULL;
static void *g_init_cb_arg = NULL;
static spdk_bdev_fini_cb g_fini_cb_fn = NULL;
static void *g_fini_cb_arg = NULL;
static struct spdk_thread *g_fini_thread = NULL;
struct spdk_bdev_qos_limit {
/** IOs or bytes allowed per second (i.e., 1s). */
uint64_t limit;
/** Remaining IOs or bytes allowed in current timeslice (e.g., 1ms).
* For remaining bytes, allowed to run negative if an I/O is submitted when
* some bytes are remaining, but the I/O is bigger than that amount. The
* excess will be deducted from the next timeslice.
*/
int64_t remaining_this_timeslice;
/** Minimum allowed IOs or bytes to be issued in one timeslice (e.g., 1ms). */
uint32_t min_per_timeslice;
/** Maximum allowed IOs or bytes to be issued in one timeslice (e.g., 1ms). */
uint32_t max_per_timeslice;
/** Function to check whether to queue the IO. */
bool (*queue_io)(const struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io);
/** Function to update for the submitted IO. */
void (*update_quota)(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io);
};
struct spdk_bdev_qos {
/** Types of structure of rate limits. */
struct spdk_bdev_qos_limit rate_limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES];
/** The channel that all I/O are funneled through. */
struct spdk_bdev_channel *ch;
/** The thread on which the poller is running. */
struct spdk_thread *thread;
/** Queue of I/O waiting to be issued. */
bdev_io_tailq_t queued;
/** Size of a timeslice in tsc ticks. */
uint64_t timeslice_size;
/** Timestamp of start of last timeslice. */
uint64_t last_timeslice;
/** Poller that processes queued I/O commands each time slice. */
struct spdk_poller *poller;
};
struct spdk_bdev_mgmt_channel {
/*
* Each thread keeps a cache of bdev_io - this allows
* bdev threads which are *not* DPDK threads to still
* benefit from a per-thread bdev_io cache. Without
* this, non-DPDK threads fetching from the mempool
* incur a cmpxchg on get and put.
*/
bdev_io_stailq_t per_thread_cache;
uint32_t per_thread_cache_count;
uint32_t bdev_io_cache_size;
struct spdk_iobuf_channel iobuf;
TAILQ_HEAD(, spdk_bdev_shared_resource) shared_resources;
TAILQ_HEAD(, spdk_bdev_io_wait_entry) io_wait_queue;
};
/*
* Per-module (or per-io_device) data. Multiple bdevs built on the same io_device
* will queue here their IO that awaits retry. It makes it possible to retry sending
* IO to one bdev after IO from other bdev completes.
*/
struct spdk_bdev_shared_resource {
/* The bdev management channel */
struct spdk_bdev_mgmt_channel *mgmt_ch;
/*
* Count of I/O submitted to bdev module and waiting for completion.
* Incremented before submit_request() is called on an spdk_bdev_io.
*/
uint64_t io_outstanding;
/*
* Queue of IO awaiting retry because of a previous NOMEM status returned
* on this channel.
*/
bdev_io_tailq_t nomem_io;
/*
* Threshold which io_outstanding must drop to before retrying nomem_io.
*/
uint64_t nomem_threshold;
/* I/O channel allocated by a bdev module */
struct spdk_io_channel *shared_ch;
/* Refcount of bdev channels using this resource */
uint32_t ref;
TAILQ_ENTRY(spdk_bdev_shared_resource) link;
};
#define BDEV_CH_RESET_IN_PROGRESS (1 << 0)
#define BDEV_CH_QOS_ENABLED (1 << 1)
struct spdk_bdev_channel {
struct spdk_bdev *bdev;
/* The channel for the underlying device */
struct spdk_io_channel *channel;
/* Accel channel */
struct spdk_io_channel *accel_channel;
/* Per io_device per thread data */
struct spdk_bdev_shared_resource *shared_resource;
struct spdk_bdev_io_stat *stat;
/*
* Count of I/O submitted to the underlying dev module through this channel
* and waiting for completion.
*/
uint64_t io_outstanding;
/*
* List of all submitted I/Os including I/O that are generated via splitting.
*/
bdev_io_tailq_t io_submitted;
/*
* List of spdk_bdev_io that are currently queued because they write to a locked
* LBA range.
*/
bdev_io_tailq_t io_locked;
/* List of I/Os with accel sequence being currently executed */
bdev_io_tailq_t io_accel_exec;
/* List of I/Os doing memory domain pull/push */
bdev_io_tailq_t io_memory_domain;
uint32_t flags;
struct spdk_histogram_data *histogram;
#ifdef SPDK_CONFIG_VTUNE
uint64_t start_tsc;
uint64_t interval_tsc;
__itt_string_handle *handle;
struct spdk_bdev_io_stat *prev_stat;
#endif
bdev_io_tailq_t queued_resets;
lba_range_tailq_t locked_ranges;
};
struct media_event_entry {
struct spdk_bdev_media_event event;
TAILQ_ENTRY(media_event_entry) tailq;
};
#define MEDIA_EVENT_POOL_SIZE 64
struct spdk_bdev_desc {
struct spdk_bdev *bdev;
struct spdk_thread *thread;
struct {
spdk_bdev_event_cb_t event_fn;
void *ctx;
} callback;
bool closed;
bool write;
bool memory_domains_supported;
bool accel_sequence_supported[SPDK_BDEV_NUM_IO_TYPES];
struct spdk_spinlock spinlock;
uint32_t refs;
TAILQ_HEAD(, media_event_entry) pending_media_events;
TAILQ_HEAD(, media_event_entry) free_media_events;
struct media_event_entry *media_events_buffer;
TAILQ_ENTRY(spdk_bdev_desc) link;
uint64_t timeout_in_sec;
spdk_bdev_io_timeout_cb cb_fn;
void *cb_arg;
struct spdk_poller *io_timeout_poller;
struct spdk_bdev_module_claim *claim;
};
struct spdk_bdev_iostat_ctx {
struct spdk_bdev_io_stat *stat;
spdk_bdev_get_device_stat_cb cb;
void *cb_arg;
};
struct set_qos_limit_ctx {
void (*cb_fn)(void *cb_arg, int status);
void *cb_arg;
struct spdk_bdev *bdev;
};
struct spdk_bdev_channel_iter {
spdk_bdev_for_each_channel_msg fn;
spdk_bdev_for_each_channel_done cpl;
struct spdk_io_channel_iter *i;
void *ctx;
};
struct spdk_bdev_io_error_stat {
uint32_t error_status[-SPDK_MIN_BDEV_IO_STATUS];
};
enum bdev_io_retry_state {
BDEV_IO_RETRY_STATE_INVALID,
BDEV_IO_RETRY_STATE_PULL,
BDEV_IO_RETRY_STATE_PULL_MD,
BDEV_IO_RETRY_STATE_SUBMIT,
BDEV_IO_RETRY_STATE_PUSH,
BDEV_IO_RETRY_STATE_PUSH_MD,
};
#define __bdev_to_io_dev(bdev) (((char *)bdev) + 1)
#define __bdev_from_io_dev(io_dev) ((struct spdk_bdev *)(((char *)io_dev) - 1))
#define __io_ch_to_bdev_ch(io_ch) ((struct spdk_bdev_channel *)spdk_io_channel_get_ctx(io_ch))
#define __io_ch_to_bdev_mgmt_ch(io_ch) ((struct spdk_bdev_mgmt_channel *)spdk_io_channel_get_ctx(io_ch))
static inline void bdev_io_complete(void *ctx);
static inline void bdev_io_complete_unsubmitted(struct spdk_bdev_io *bdev_io);
static void bdev_io_push_bounce_md_buf(struct spdk_bdev_io *bdev_io);
static void bdev_io_push_bounce_data(struct spdk_bdev_io *bdev_io);
static void bdev_write_zero_buffer_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
static int bdev_write_zero_buffer(struct spdk_bdev_io *bdev_io);
static void bdev_enable_qos_msg(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev,
struct spdk_io_channel *ch, void *_ctx);
static void bdev_enable_qos_done(struct spdk_bdev *bdev, void *_ctx, int status);
static int bdev_readv_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt, void *md_buf, uint64_t offset_blocks,
uint64_t num_blocks,
struct spdk_memory_domain *domain, void *domain_ctx,
struct spdk_accel_sequence *seq,
spdk_bdev_io_completion_cb cb, void *cb_arg);
static int bdev_writev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt, void *md_buf,
uint64_t offset_blocks, uint64_t num_blocks,
struct spdk_memory_domain *domain, void *domain_ctx,
struct spdk_accel_sequence *seq,
spdk_bdev_io_completion_cb cb, void *cb_arg);
static int bdev_lock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch,
uint64_t offset, uint64_t length,
lock_range_cb cb_fn, void *cb_arg);
static int bdev_unlock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch,
uint64_t offset, uint64_t length,
lock_range_cb cb_fn, void *cb_arg);
static bool bdev_abort_queued_io(bdev_io_tailq_t *queue, struct spdk_bdev_io *bio_to_abort);
static bool bdev_abort_buf_io(struct spdk_bdev_mgmt_channel *ch, struct spdk_bdev_io *bio_to_abort);
static bool claim_type_is_v2(enum spdk_bdev_claim_type type);
static void bdev_desc_release_claims(struct spdk_bdev_desc *desc);
static void claim_reset(struct spdk_bdev *bdev);
static void bdev_ch_retry_io(struct spdk_bdev_channel *bdev_ch);
#define bdev_get_ext_io_opt(opts, field, defval) \
(((opts) != NULL && offsetof(struct spdk_bdev_ext_io_opts, field) + \
sizeof((opts)->field) <= sizeof(*(opts))) ? (opts)->field : (defval))
void
spdk_bdev_get_opts(struct spdk_bdev_opts *opts, size_t opts_size)
{
if (!opts) {
SPDK_ERRLOG("opts should not be NULL\n");
return;
}
if (!opts_size) {
SPDK_ERRLOG("opts_size should not be zero value\n");
return;
}
opts->opts_size = opts_size;
#define SET_FIELD(field) \
if (offsetof(struct spdk_bdev_opts, field) + sizeof(opts->field) <= opts_size) { \
opts->field = g_bdev_opts.field; \
} \
SET_FIELD(bdev_io_pool_size);
SET_FIELD(bdev_io_cache_size);
SET_FIELD(bdev_auto_examine);
SET_FIELD(small_buf_pool_size);
SET_FIELD(large_buf_pool_size);
/* Do not remove this statement, you should always update this statement when you adding a new field,
* and do not forget to add the SET_FIELD statement for your added field. */
SPDK_STATIC_ASSERT(sizeof(struct spdk_bdev_opts) == 32, "Incorrect size");
#undef SET_FIELD
}
SPDK_LOG_DEPRECATION_REGISTER(bdev_opts_small_buf_pool_size, "spdk_bdev_opts.small_buf_pool_size",
"v23.05", 0);
SPDK_LOG_DEPRECATION_REGISTER(bdev_opts_large_buf_pool_size, "spdk_bdev_opts.large_buf_pool_size",
"v23.05", 0);
int
spdk_bdev_set_opts(struct spdk_bdev_opts *opts)
{
struct spdk_iobuf_opts iobuf_opts;
uint32_t min_pool_size;
int rc;
if (!opts) {
SPDK_ERRLOG("opts cannot be NULL\n");
return -1;
}
if (!opts->opts_size) {
SPDK_ERRLOG("opts_size inside opts cannot be zero value\n");
return -1;
}
/*
* Add 1 to the thread count to account for the extra mgmt_ch that gets created during subsystem
* initialization. A second mgmt_ch will be created on the same thread when the application starts
* but before the deferred put_io_channel event is executed for the first mgmt_ch.
*/
min_pool_size = opts->bdev_io_cache_size * (spdk_thread_get_count() + 1);
if (opts->bdev_io_pool_size < min_pool_size) {
SPDK_ERRLOG("bdev_io_pool_size %" PRIu32 " is not compatible with bdev_io_cache_size %" PRIu32
" and %" PRIu32 " threads\n", opts->bdev_io_pool_size, opts->bdev_io_cache_size,
spdk_thread_get_count());
SPDK_ERRLOG("bdev_io_pool_size must be at least %" PRIu32 "\n", min_pool_size);
return -1;
}
if (opts->small_buf_pool_size != BUF_SMALL_POOL_SIZE) {
SPDK_LOG_DEPRECATED(bdev_opts_small_buf_pool_size);
}
if (opts->large_buf_pool_size != BUF_LARGE_POOL_SIZE) {
SPDK_LOG_DEPRECATED(bdev_opts_large_buf_pool_size);
}
#define SET_FIELD(field) \
if (offsetof(struct spdk_bdev_opts, field) + sizeof(opts->field) <= opts->opts_size) { \
g_bdev_opts.field = opts->field; \
} \
SET_FIELD(bdev_io_pool_size);
SET_FIELD(bdev_io_cache_size);
SET_FIELD(bdev_auto_examine);
SET_FIELD(small_buf_pool_size);
SET_FIELD(large_buf_pool_size);
spdk_iobuf_get_opts(&iobuf_opts);
iobuf_opts.small_pool_count = opts->small_buf_pool_size;
iobuf_opts.large_pool_count = opts->large_buf_pool_size;
rc = spdk_iobuf_set_opts(&iobuf_opts);
if (rc != 0) {
SPDK_ERRLOG("Failed to set iobuf opts\n");
return -1;
}
g_bdev_opts.opts_size = opts->opts_size;
#undef SET_FIELD
return 0;
}
static struct spdk_bdev *
bdev_get_by_name(const char *bdev_name)
{
struct spdk_bdev_name find;
struct spdk_bdev_name *res;
find.name = (char *)bdev_name;
res = RB_FIND(bdev_name_tree, &g_bdev_mgr.bdev_names, &find);
if (res != NULL) {
return res->bdev;
}
return NULL;
}
struct spdk_bdev *
spdk_bdev_get_by_name(const char *bdev_name)
{
struct spdk_bdev *bdev;
spdk_spin_lock(&g_bdev_mgr.spinlock);
bdev = bdev_get_by_name(bdev_name);
spdk_spin_unlock(&g_bdev_mgr.spinlock);
return bdev;
}
struct bdev_io_status_string {
enum spdk_bdev_io_status status;
const char *str;
};
static const struct bdev_io_status_string bdev_io_status_strings[] = {
{ SPDK_BDEV_IO_STATUS_AIO_ERROR, "aio_error" },
{ SPDK_BDEV_IO_STATUS_ABORTED, "aborted" },
{ SPDK_BDEV_IO_STATUS_FIRST_FUSED_FAILED, "first_fused_failed" },
{ SPDK_BDEV_IO_STATUS_MISCOMPARE, "miscompare" },
{ SPDK_BDEV_IO_STATUS_NOMEM, "nomem" },
{ SPDK_BDEV_IO_STATUS_SCSI_ERROR, "scsi_error" },
{ SPDK_BDEV_IO_STATUS_NVME_ERROR, "nvme_error" },
{ SPDK_BDEV_IO_STATUS_FAILED, "failed" },
{ SPDK_BDEV_IO_STATUS_PENDING, "pending" },
{ SPDK_BDEV_IO_STATUS_SUCCESS, "success" },
};
static const char *
bdev_io_status_get_string(enum spdk_bdev_io_status status)
{
uint32_t i;
for (i = 0; i < SPDK_COUNTOF(bdev_io_status_strings); i++) {
if (bdev_io_status_strings[i].status == status) {
return bdev_io_status_strings[i].str;
}
}
return "reserved";
}
struct spdk_bdev_wait_for_examine_ctx {
struct spdk_poller *poller;
spdk_bdev_wait_for_examine_cb cb_fn;
void *cb_arg;
};
static bool bdev_module_all_actions_completed(void);
static int
bdev_wait_for_examine_cb(void *arg)
{
struct spdk_bdev_wait_for_examine_ctx *ctx = arg;
if (!bdev_module_all_actions_completed()) {
return SPDK_POLLER_IDLE;
}
spdk_poller_unregister(&ctx->poller);
ctx->cb_fn(ctx->cb_arg);
free(ctx);
return SPDK_POLLER_BUSY;
}
int
spdk_bdev_wait_for_examine(spdk_bdev_wait_for_examine_cb cb_fn, void *cb_arg)
{
struct spdk_bdev_wait_for_examine_ctx *ctx;
ctx = calloc(1, sizeof(*ctx));
if (ctx == NULL) {
return -ENOMEM;
}
ctx->cb_fn = cb_fn;
ctx->cb_arg = cb_arg;
ctx->poller = SPDK_POLLER_REGISTER(bdev_wait_for_examine_cb, ctx, 0);
return 0;
}
struct spdk_bdev_examine_item {
char *name;
TAILQ_ENTRY(spdk_bdev_examine_item) link;
};
TAILQ_HEAD(spdk_bdev_examine_allowlist, spdk_bdev_examine_item);
struct spdk_bdev_examine_allowlist g_bdev_examine_allowlist = TAILQ_HEAD_INITIALIZER(
g_bdev_examine_allowlist);
static inline bool
bdev_examine_allowlist_check(const char *name)
{
struct spdk_bdev_examine_item *item;
TAILQ_FOREACH(item, &g_bdev_examine_allowlist, link) {
if (strcmp(name, item->name) == 0) {
return true;
}
}
return false;
}
static inline void
bdev_examine_allowlist_free(void)
{
struct spdk_bdev_examine_item *item;
while (!TAILQ_EMPTY(&g_bdev_examine_allowlist)) {
item = TAILQ_FIRST(&g_bdev_examine_allowlist);
TAILQ_REMOVE(&g_bdev_examine_allowlist, item, link);
free(item->name);
free(item);
}
}
static inline bool
bdev_in_examine_allowlist(struct spdk_bdev *bdev)
{
struct spdk_bdev_alias *tmp;
if (bdev_examine_allowlist_check(bdev->name)) {
return true;
}
TAILQ_FOREACH(tmp, &bdev->aliases, tailq) {
if (bdev_examine_allowlist_check(tmp->alias.name)) {
return true;
}
}
return false;
}
static inline bool
bdev_ok_to_examine(struct spdk_bdev *bdev)
{
if (g_bdev_opts.bdev_auto_examine) {
return true;
} else {
return bdev_in_examine_allowlist(bdev);
}
}
static void
bdev_examine(struct spdk_bdev *bdev)
{
struct spdk_bdev_module *module;
struct spdk_bdev_module_claim *claim, *tmpclaim;
uint32_t action;
if (!bdev_ok_to_examine(bdev)) {
return;
}
TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) {
if (module->examine_config) {
spdk_spin_lock(&module->internal.spinlock);
action = module->internal.action_in_progress;
module->internal.action_in_progress++;
spdk_spin_unlock(&module->internal.spinlock);
module->examine_config(bdev);
if (action != module->internal.action_in_progress) {
SPDK_ERRLOG("examine_config for module %s did not call "
"spdk_bdev_module_examine_done()\n", module->name);
}
}
}
spdk_spin_lock(&bdev->internal.spinlock);
switch (bdev->internal.claim_type) {
case SPDK_BDEV_CLAIM_NONE:
/* Examine by all bdev modules */
TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) {
if (module->examine_disk) {
spdk_spin_lock(&module->internal.spinlock);
module->internal.action_in_progress++;
spdk_spin_unlock(&module->internal.spinlock);
spdk_spin_unlock(&bdev->internal.spinlock);
module->examine_disk(bdev);
spdk_spin_lock(&bdev->internal.spinlock);
}
}
break;
case SPDK_BDEV_CLAIM_EXCL_WRITE:
/* Examine by the one bdev module with a v1 claim */
module = bdev->internal.claim.v1.module;
if (module->examine_disk) {
spdk_spin_lock(&module->internal.spinlock);
module->internal.action_in_progress++;
spdk_spin_unlock(&module->internal.spinlock);
spdk_spin_unlock(&bdev->internal.spinlock);
module->examine_disk(bdev);
return;
}
break;
default:
/* Examine by all bdev modules with a v2 claim */
assert(claim_type_is_v2(bdev->internal.claim_type));
/*
* Removal of tailq nodes while iterating can cause the iteration to jump out of the
* list, perhaps accessing freed memory. Without protection, this could happen
* while the lock is dropped during the examine callback.
*/
bdev->internal.examine_in_progress++;
TAILQ_FOREACH(claim, &bdev->internal.claim.v2.claims, link) {
module = claim->module;
if (module == NULL) {
/* This is a vestigial claim, held by examine_count */
continue;
}
if (module->examine_disk == NULL) {
continue;
}
spdk_spin_lock(&module->internal.spinlock);
module->internal.action_in_progress++;
spdk_spin_unlock(&module->internal.spinlock);
/* Call examine_disk without holding internal.spinlock. */
spdk_spin_unlock(&bdev->internal.spinlock);
module->examine_disk(bdev);
spdk_spin_lock(&bdev->internal.spinlock);
}
assert(bdev->internal.examine_in_progress > 0);
bdev->internal.examine_in_progress--;
if (bdev->internal.examine_in_progress == 0) {
/* Remove any claims that were released during examine_disk */
TAILQ_FOREACH_SAFE(claim, &bdev->internal.claim.v2.claims, link, tmpclaim) {
if (claim->desc != NULL) {
continue;
}
TAILQ_REMOVE(&bdev->internal.claim.v2.claims, claim, link);
free(claim);
}
if (TAILQ_EMPTY(&bdev->internal.claim.v2.claims)) {
claim_reset(bdev);
}
}
}
spdk_spin_unlock(&bdev->internal.spinlock);
}
int
spdk_bdev_examine(const char *name)
{
struct spdk_bdev *bdev;
struct spdk_bdev_examine_item *item;
struct spdk_thread *thread = spdk_get_thread();
if (spdk_unlikely(spdk_thread_get_app_thread() != thread)) {
SPDK_ERRLOG("Cannot examine bdev %s on thread %p (%s)\n", name, thread,
thread ? spdk_thread_get_name(thread) : "null");
return -EINVAL;
}
if (g_bdev_opts.bdev_auto_examine) {
SPDK_ERRLOG("Manual examine is not allowed if auto examine is enabled");
return -EINVAL;
}
if (bdev_examine_allowlist_check(name)) {
SPDK_ERRLOG("Duplicate bdev name for manual examine: %s\n", name);
return -EEXIST;
}
item = calloc(1, sizeof(*item));
if (!item) {
return -ENOMEM;
}
item->name = strdup(name);
if (!item->name) {
free(item);
return -ENOMEM;
}
TAILQ_INSERT_TAIL(&g_bdev_examine_allowlist, item, link);
bdev = spdk_bdev_get_by_name(name);
if (bdev) {
bdev_examine(bdev);
}
return 0;
}
static inline void
bdev_examine_allowlist_config_json(struct spdk_json_write_ctx *w)
{
struct spdk_bdev_examine_item *item;
TAILQ_FOREACH(item, &g_bdev_examine_allowlist, link) {
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "bdev_examine");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_string(w, "name", item->name);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
}
}
struct spdk_bdev *
spdk_bdev_first(void)
{
struct spdk_bdev *bdev;
bdev = TAILQ_FIRST(&g_bdev_mgr.bdevs);
if (bdev) {
SPDK_DEBUGLOG(bdev, "Starting bdev iteration at %s\n", bdev->name);
}
return bdev;
}
struct spdk_bdev *
spdk_bdev_next(struct spdk_bdev *prev)
{
struct spdk_bdev *bdev;
bdev = TAILQ_NEXT(prev, internal.link);
if (bdev) {
SPDK_DEBUGLOG(bdev, "Continuing bdev iteration at %s\n", bdev->name);
}
return bdev;
}
static struct spdk_bdev *
_bdev_next_leaf(struct spdk_bdev *bdev)
{
while (bdev != NULL) {
if (bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE) {
return bdev;
} else {
bdev = TAILQ_NEXT(bdev, internal.link);
}
}
return bdev;
}
struct spdk_bdev *
spdk_bdev_first_leaf(void)
{
struct spdk_bdev *bdev;
bdev = _bdev_next_leaf(TAILQ_FIRST(&g_bdev_mgr.bdevs));
if (bdev) {
SPDK_DEBUGLOG(bdev, "Starting bdev iteration at %s\n", bdev->name);
}
return bdev;
}
struct spdk_bdev *
spdk_bdev_next_leaf(struct spdk_bdev *prev)
{
struct spdk_bdev *bdev;
bdev = _bdev_next_leaf(TAILQ_NEXT(prev, internal.link));
if (bdev) {
SPDK_DEBUGLOG(bdev, "Continuing bdev iteration at %s\n", bdev->name);
}
return bdev;
}
static inline bool
bdev_io_use_memory_domain(struct spdk_bdev_io *bdev_io)
{
return bdev_io->internal.memory_domain;
}
static inline bool
bdev_io_use_accel_sequence(struct spdk_bdev_io *bdev_io)
{
return bdev_io->internal.accel_sequence;
}
static inline void
bdev_queue_nomem_io_head(struct spdk_bdev_shared_resource *shared_resource,
struct spdk_bdev_io *bdev_io, enum bdev_io_retry_state state)
{
/* Wait for some of the outstanding I/O to complete before we retry any of the nomem_io.
* Normally we will wait for NOMEM_THRESHOLD_COUNT I/O to complete but for low queue depth
* channels we will instead wait for half to complete.
*/
shared_resource->nomem_threshold = spdk_max((int64_t)shared_resource->io_outstanding / 2,
(int64_t)shared_resource->io_outstanding - NOMEM_THRESHOLD_COUNT);
assert(state != BDEV_IO_RETRY_STATE_INVALID);
bdev_io->internal.retry_state = state;
TAILQ_INSERT_HEAD(&shared_resource->nomem_io, bdev_io, internal.link);
}
static inline void
bdev_queue_nomem_io_tail(struct spdk_bdev_shared_resource *shared_resource,
struct spdk_bdev_io *bdev_io, enum bdev_io_retry_state state)
{
/* We only queue IOs at the end of the nomem_io queue if they're submitted by the user while
* the queue isn't empty, so we don't need to update the nomem_threshold here */
assert(!TAILQ_EMPTY(&shared_resource->nomem_io));
assert(state != BDEV_IO_RETRY_STATE_INVALID);
bdev_io->internal.retry_state = state;
TAILQ_INSERT_TAIL(&shared_resource->nomem_io, bdev_io, internal.link);
}
void
spdk_bdev_io_set_buf(struct spdk_bdev_io *bdev_io, void *buf, size_t len)
{
struct iovec *iovs;
if (bdev_io->u.bdev.iovs == NULL) {
bdev_io->u.bdev.iovs = &bdev_io->iov;
bdev_io->u.bdev.iovcnt = 1;
}
iovs = bdev_io->u.bdev.iovs;
assert(iovs != NULL);
assert(bdev_io->u.bdev.iovcnt >= 1);
iovs[0].iov_base = buf;
iovs[0].iov_len = len;
}
void
spdk_bdev_io_set_md_buf(struct spdk_bdev_io *bdev_io, void *md_buf, size_t len)
{
assert((len / spdk_bdev_get_md_size(bdev_io->bdev)) >= bdev_io->u.bdev.num_blocks);
bdev_io->u.bdev.md_buf = md_buf;
}
static bool
_is_buf_allocated(const struct iovec *iovs)
{
if (iovs == NULL) {
return false;
}
return iovs[0].iov_base != NULL;
}
static bool
_are_iovs_aligned(struct iovec *iovs, int iovcnt, uint32_t alignment)
{
int i;
uintptr_t iov_base;
if (spdk_likely(alignment == 1)) {
return true;
}
for (i = 0; i < iovcnt; i++) {
iov_base = (uintptr_t)iovs[i].iov_base;
if ((iov_base & (alignment - 1)) != 0) {
return false;
}
}
return true;
}
static inline bool
bdev_io_needs_sequence_exec(struct spdk_bdev_desc *desc, struct spdk_bdev_io *bdev_io)
{
if (!bdev_io_use_accel_sequence(bdev_io)) {
return false;
}
/* For now, we don't allow splitting IOs with an accel sequence and will treat them as if
* bdev module didn't support accel sequences */
return !desc->accel_sequence_supported[bdev_io->type] || bdev_io->internal.split;
}
static inline void
bdev_io_increment_outstanding(struct spdk_bdev_channel *bdev_ch,
struct spdk_bdev_shared_resource *shared_resource)
{
bdev_ch->io_outstanding++;
shared_resource->io_outstanding++;
}
static inline void
bdev_io_decrement_outstanding(struct spdk_bdev_channel *bdev_ch,
struct spdk_bdev_shared_resource *shared_resource)
{
assert(bdev_ch->io_outstanding > 0);
assert(shared_resource->io_outstanding > 0);
bdev_ch->io_outstanding--;
shared_resource->io_outstanding--;
}
static void
bdev_io_submit_sequence_cb(void *ctx, int status)
{
struct spdk_bdev_io *bdev_io = ctx;
bdev_io->u.bdev.accel_sequence = NULL;
bdev_io->internal.accel_sequence = NULL;
if (spdk_unlikely(status != 0)) {
SPDK_ERRLOG("Failed to execute accel sequence, status=%d\n", status);
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
bdev_io_complete_unsubmitted(bdev_io);
return;
}
bdev_io_submit(bdev_io);
}
static void
bdev_io_exec_sequence_cb(void *ctx, int status)
{
struct spdk_bdev_io *bdev_io = ctx;
struct spdk_bdev_channel *ch = bdev_io->internal.ch;
TAILQ_REMOVE(&bdev_io->internal.ch->io_accel_exec, bdev_io, internal.link);
bdev_io_decrement_outstanding(ch, ch->shared_resource);
if (spdk_unlikely(!TAILQ_EMPTY(&ch->shared_resource->nomem_io))) {
bdev_ch_retry_io(ch);
}
bdev_io->internal.data_transfer_cpl(bdev_io, status);
}
static void
bdev_io_exec_sequence(struct spdk_bdev_io *bdev_io, void (*cb_fn)(void *ctx, int status))
{
struct spdk_bdev_channel *ch = bdev_io->internal.ch;
assert(bdev_io_needs_sequence_exec(bdev_io->internal.desc, bdev_io));
assert(bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE || bdev_io->type == SPDK_BDEV_IO_TYPE_READ);
/* Since the operations are appended during submission, they're in the opposite order than
* how we want to execute them for reads (i.e. we need to execute the most recently added
* operation first), so reverse the sequence before executing it.
*/
if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
spdk_accel_sequence_reverse(bdev_io->internal.accel_sequence);
}
TAILQ_INSERT_TAIL(&bdev_io->internal.ch->io_accel_exec, bdev_io, internal.link);
bdev_io_increment_outstanding(ch, ch->shared_resource);
bdev_io->internal.data_transfer_cpl = cb_fn;
spdk_accel_sequence_finish(bdev_io->internal.accel_sequence,
bdev_io_exec_sequence_cb, bdev_io);
}
static void
bdev_io_get_buf_complete(struct spdk_bdev_io *bdev_io, bool status)
{
struct spdk_io_channel *ch = spdk_bdev_io_get_io_channel(bdev_io);
void *buf;
if (spdk_unlikely(bdev_io->internal.get_aux_buf_cb != NULL)) {
buf = bdev_io->internal.buf;
bdev_io->internal.buf = NULL;
bdev_io->internal.get_aux_buf_cb(ch, bdev_io, buf);
bdev_io->internal.get_aux_buf_cb = NULL;
} else {
assert(bdev_io->internal.get_buf_cb != NULL);
bdev_io->internal.get_buf_cb(ch, bdev_io, status);
bdev_io->internal.get_buf_cb = NULL;
}
}
static void
_bdev_io_pull_buffer_cpl(void *ctx, int rc)
{
struct spdk_bdev_io *bdev_io = ctx;
if (rc) {
SPDK_ERRLOG("Set bounce buffer failed with rc %d\n", rc);
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
}
bdev_io_get_buf_complete(bdev_io, !rc);
}
static void
bdev_io_pull_md_buf_done(void *ctx, int status)
{
struct spdk_bdev_io *bdev_io = ctx;
struct spdk_bdev_channel *ch = bdev_io->internal.ch;
TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link);
bdev_io_decrement_outstanding(ch, ch->shared_resource);
if (spdk_unlikely(!TAILQ_EMPTY(&ch->shared_resource->nomem_io))) {
bdev_ch_retry_io(ch);
}
assert(bdev_io->internal.data_transfer_cpl);
bdev_io->internal.data_transfer_cpl(bdev_io, status);
}
static void
bdev_io_pull_md_buf(struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev_channel *ch = bdev_io->internal.ch;
int rc = 0;
if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
if (bdev_io_use_memory_domain(bdev_io)) {
TAILQ_INSERT_TAIL(&ch->io_memory_domain, bdev_io, internal.link);
bdev_io_increment_outstanding(ch, ch->shared_resource);
rc = spdk_memory_domain_pull_data(bdev_io->internal.memory_domain,
bdev_io->internal.memory_domain_ctx,
&bdev_io->internal.orig_md_iov, 1,
&bdev_io->internal.bounce_md_iov, 1,
bdev_io_pull_md_buf_done, bdev_io);
if (rc == 0) {
/* Continue to submit IO in completion callback */
return;
}
bdev_io_decrement_outstanding(ch, ch->shared_resource);
TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link);
if (rc != -ENOMEM) {
SPDK_ERRLOG("Failed to pull data from memory domain %s, rc %d\n",
spdk_memory_domain_get_dma_device_id(
bdev_io->internal.memory_domain), rc);
}
} else {
memcpy(bdev_io->internal.bounce_md_iov.iov_base,
bdev_io->internal.orig_md_iov.iov_base,
bdev_io->internal.orig_md_iov.iov_len);
}
}
if (spdk_unlikely(rc == -ENOMEM)) {
bdev_queue_nomem_io_head(ch->shared_resource, bdev_io, BDEV_IO_RETRY_STATE_PULL_MD);
} else {
assert(bdev_io->internal.data_transfer_cpl);
bdev_io->internal.data_transfer_cpl(bdev_io, rc);
}
}
static void
_bdev_io_pull_bounce_md_buf(struct spdk_bdev_io *bdev_io, void *md_buf, size_t len)
{
/* save original md_buf */
bdev_io->internal.orig_md_iov.iov_base = bdev_io->u.bdev.md_buf;
bdev_io->internal.orig_md_iov.iov_len = len;
bdev_io->internal.bounce_md_iov.iov_base = md_buf;
bdev_io->internal.bounce_md_iov.iov_len = len;
/* set bounce md_buf */
bdev_io->u.bdev.md_buf = md_buf;
bdev_io_pull_md_buf(bdev_io);
}
static void
_bdev_io_set_md_buf(struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev *bdev = bdev_io->bdev;
uint64_t md_len;
void *buf;
if (spdk_bdev_is_md_separate(bdev)) {
assert(!bdev_io_use_accel_sequence(bdev_io));
buf = (char *)bdev_io->u.bdev.iovs[0].iov_base + bdev_io->u.bdev.iovs[0].iov_len;
md_len = bdev_io->u.bdev.num_blocks * bdev->md_len;
assert(((uintptr_t)buf & (spdk_bdev_get_buf_align(bdev) - 1)) == 0);
if (bdev_io->u.bdev.md_buf != NULL) {
_bdev_io_pull_bounce_md_buf(bdev_io, buf, md_len);
return;
} else {
spdk_bdev_io_set_md_buf(bdev_io, buf, md_len);
}
}
bdev_io_get_buf_complete(bdev_io, true);
}
static inline void
bdev_io_pull_data_done(struct spdk_bdev_io *bdev_io, int rc)
{
if (rc) {
SPDK_ERRLOG("Failed to get data buffer\n");
assert(bdev_io->internal.data_transfer_cpl);
bdev_io->internal.data_transfer_cpl(bdev_io, rc);
return;
}
_bdev_io_set_md_buf(bdev_io);
}
static void
bdev_io_pull_data_done_and_track(void *ctx, int status)
{
struct spdk_bdev_io *bdev_io = ctx;
struct spdk_bdev_channel *ch = bdev_io->internal.ch;
TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link);
bdev_io_decrement_outstanding(ch, ch->shared_resource);
if (spdk_unlikely(!TAILQ_EMPTY(&ch->shared_resource->nomem_io))) {
bdev_ch_retry_io(ch);
}
bdev_io_pull_data_done(bdev_io, status);
}
static void
bdev_io_pull_data(struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev_channel *ch = bdev_io->internal.ch;
int rc = 0;
/* If we need to exec an accel sequence, append a copy operation making accel change the
* src/dst buffers of the previous operation */
if (bdev_io_needs_sequence_exec(bdev_io->internal.desc, bdev_io)) {
if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
rc = spdk_accel_append_copy(&bdev_io->internal.accel_sequence, ch->accel_channel,
bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
NULL, NULL,
bdev_io->internal.orig_iovs,
bdev_io->internal.orig_iovcnt,
bdev_io->internal.memory_domain,
bdev_io->internal.memory_domain_ctx,
0, NULL, NULL);
} else {
/* We need to reverse the src/dst for reads */
assert(bdev_io->type == SPDK_BDEV_IO_TYPE_READ);
rc = spdk_accel_append_copy(&bdev_io->internal.accel_sequence, ch->accel_channel,
bdev_io->internal.orig_iovs,
bdev_io->internal.orig_iovcnt,
bdev_io->internal.memory_domain,
bdev_io->internal.memory_domain_ctx,
bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
NULL, NULL, 0, NULL, NULL);
}
if (spdk_unlikely(rc != 0 && rc != -ENOMEM)) {
SPDK_ERRLOG("Failed to append copy to accel sequence: %p\n",
bdev_io->internal.accel_sequence);
}
} else if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
/* if this is write path, copy data from original buffer to bounce buffer */
if (bdev_io_use_memory_domain(bdev_io)) {
TAILQ_INSERT_TAIL(&ch->io_memory_domain, bdev_io, internal.link);
bdev_io_increment_outstanding(ch, ch->shared_resource);
rc = spdk_memory_domain_pull_data(bdev_io->internal.memory_domain,
bdev_io->internal.memory_domain_ctx,
bdev_io->internal.orig_iovs,
(uint32_t) bdev_io->internal.orig_iovcnt,
bdev_io->u.bdev.iovs, 1,
bdev_io_pull_data_done_and_track,
bdev_io);
if (rc == 0) {
/* Continue to submit IO in completion callback */
return;
}
TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link);
bdev_io_decrement_outstanding(ch, ch->shared_resource);
if (rc != -ENOMEM) {
SPDK_ERRLOG("Failed to pull data from memory domain %s\n",
spdk_memory_domain_get_dma_device_id(
bdev_io->internal.memory_domain));
}
} else {
assert(bdev_io->u.bdev.iovcnt == 1);
spdk_copy_iovs_to_buf(bdev_io->u.bdev.iovs[0].iov_base,
bdev_io->u.bdev.iovs[0].iov_len,
bdev_io->internal.orig_iovs,
bdev_io->internal.orig_iovcnt);
}
}
if (spdk_unlikely(rc == -ENOMEM)) {
bdev_queue_nomem_io_head(ch->shared_resource, bdev_io, BDEV_IO_RETRY_STATE_PULL);
} else {
bdev_io_pull_data_done(bdev_io, rc);
}
}
static void
_bdev_io_pull_bounce_data_buf(struct spdk_bdev_io *bdev_io, void *buf, size_t len,
bdev_copy_bounce_buffer_cpl cpl_cb)
{
struct spdk_bdev_shared_resource *shared_resource = bdev_io->internal.ch->shared_resource;
bdev_io->internal.data_transfer_cpl = cpl_cb;
/* save original iovec */
bdev_io->internal.orig_iovs = bdev_io->u.bdev.iovs;
bdev_io->internal.orig_iovcnt = bdev_io->u.bdev.iovcnt;
/* set bounce iov */
bdev_io->u.bdev.iovs = &bdev_io->internal.bounce_iov;
bdev_io->u.bdev.iovcnt = 1;
/* set bounce buffer for this operation */
bdev_io->u.bdev.iovs[0].iov_base = buf;
bdev_io->u.bdev.iovs[0].iov_len = len;
if (spdk_unlikely(!TAILQ_EMPTY(&shared_resource->nomem_io))) {
bdev_queue_nomem_io_tail(shared_resource, bdev_io, BDEV_IO_RETRY_STATE_PULL);
} else {
bdev_io_pull_data(bdev_io);
}
}
static void
_bdev_io_set_buf(struct spdk_bdev_io *bdev_io, void *buf, uint64_t len)
{
struct spdk_bdev *bdev = bdev_io->bdev;
bool buf_allocated;
uint64_t alignment;
void *aligned_buf;
bdev_io->internal.buf = buf;
if (spdk_unlikely(bdev_io->internal.get_aux_buf_cb != NULL)) {
bdev_io_get_buf_complete(bdev_io, true);
return;
}
alignment = spdk_bdev_get_buf_align(bdev);
buf_allocated = _is_buf_allocated(bdev_io->u.bdev.iovs);
aligned_buf = (void *)(((uintptr_t)buf + (alignment - 1)) & ~(alignment - 1));
if (buf_allocated) {
_bdev_io_pull_bounce_data_buf(bdev_io, aligned_buf, len, _bdev_io_pull_buffer_cpl);
/* Continue in completion callback */
return;
} else {
spdk_bdev_io_set_buf(bdev_io, aligned_buf, len);
}
_bdev_io_set_md_buf(bdev_io);
}
static inline uint64_t
bdev_io_get_max_buf_len(struct spdk_bdev_io *bdev_io, uint64_t len)
{
struct spdk_bdev *bdev = bdev_io->bdev;
uint64_t md_len, alignment;
md_len = spdk_bdev_is_md_separate(bdev) ? bdev_io->u.bdev.num_blocks * bdev->md_len : 0;
/* 1 byte alignment needs 0 byte of extra space, 64 bytes alignment needs 63 bytes of extra space, etc. */
alignment = spdk_bdev_get_buf_align(bdev) - 1;
return len + alignment + md_len;
}
static void
_bdev_io_put_buf(struct spdk_bdev_io *bdev_io, void *buf, uint64_t buf_len)
{
struct spdk_bdev_mgmt_channel *ch;
ch = bdev_io->internal.ch->shared_resource->mgmt_ch;
spdk_iobuf_put(&ch->iobuf, buf, bdev_io_get_max_buf_len(bdev_io, buf_len));
}
static void
bdev_io_put_buf(struct spdk_bdev_io *bdev_io)
{
assert(bdev_io->internal.buf != NULL);
_bdev_io_put_buf(bdev_io, bdev_io->internal.buf, bdev_io->internal.buf_len);
bdev_io->internal.buf = NULL;
}
void
spdk_bdev_io_put_aux_buf(struct spdk_bdev_io *bdev_io, void *buf)
{
uint64_t len = bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen;
assert(buf != NULL);
_bdev_io_put_buf(bdev_io, buf, len);
}
static inline void
bdev_submit_request(struct spdk_bdev *bdev, struct spdk_io_channel *ioch,
struct spdk_bdev_io *bdev_io)
{
/* After a request is submitted to a bdev module, the ownership of an accel sequence
* associated with that bdev_io is transferred to the bdev module. So, clear the internal
* sequence pointer to make sure we won't touch it anymore. */
if ((bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE ||
bdev_io->type == SPDK_BDEV_IO_TYPE_READ) && bdev_io->u.bdev.accel_sequence != NULL) {
assert(!bdev_io_needs_sequence_exec(bdev_io->internal.desc, bdev_io));
bdev_io->internal.accel_sequence = NULL;
}
bdev->fn_table->submit_request(ioch, bdev_io);
}
static inline void
bdev_ch_resubmit_io(struct spdk_bdev_channel *bdev_ch, struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev *bdev = bdev_ch->bdev;
bdev_io_increment_outstanding(bdev_io->internal.ch, bdev_ch->shared_resource);
bdev_io->internal.error.nvme.cdw0 = 0;
bdev_io->num_retries++;
bdev_submit_request(bdev, spdk_bdev_io_get_io_channel(bdev_io), bdev_io);
}
static void
bdev_ch_retry_io(struct spdk_bdev_channel *bdev_ch)
{
struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource;
struct spdk_bdev_io *bdev_io;
if (shared_resource->io_outstanding > shared_resource->nomem_threshold) {
/*
* Allow some more I/O to complete before retrying the nomem_io queue.
* Some drivers (such as nvme) cannot immediately take a new I/O in
* the context of a completion, because the resources for the I/O are
* not released until control returns to the bdev poller. Also, we
* may require several small I/O to complete before a larger I/O
* (that requires splitting) can be submitted.
*/
return;
}
while (!TAILQ_EMPTY(&shared_resource->nomem_io)) {
bdev_io = TAILQ_FIRST(&shared_resource->nomem_io);
TAILQ_REMOVE(&shared_resource->nomem_io, bdev_io, internal.link);
switch (bdev_io->internal.retry_state) {
case BDEV_IO_RETRY_STATE_SUBMIT:
bdev_ch_resubmit_io(bdev_ch, bdev_io);
break;
case BDEV_IO_RETRY_STATE_PULL:
bdev_io_pull_data(bdev_io);
break;
case BDEV_IO_RETRY_STATE_PULL_MD:
bdev_io_pull_md_buf(bdev_io);
break;
case BDEV_IO_RETRY_STATE_PUSH:
bdev_io_push_bounce_data(bdev_io);
break;
case BDEV_IO_RETRY_STATE_PUSH_MD:
bdev_io_push_bounce_md_buf(bdev_io);
break;
default:
assert(0 && "invalid retry state");
break;
}
if (bdev_io == TAILQ_FIRST(&shared_resource->nomem_io)) {
/* This IO completed again with NOMEM status, so break the loop and
* don't try anymore. Note that a bdev_io that fails with NOMEM
* always gets requeued at the front of the list, to maintain
* ordering.
*/
break;
}
}
}
static inline bool
_bdev_io_handle_no_mem(struct spdk_bdev_io *bdev_io, enum bdev_io_retry_state state)
{
struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch;
struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource;
if (spdk_unlikely(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM)) {
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING;
bdev_queue_nomem_io_head(shared_resource, bdev_io, state);
/* If bdev module completed an I/O that has an accel sequence with NOMEM status, the
* ownership of that sequence is transferred back to the bdev layer, so we need to
* restore internal.accel_sequence to make sure that the sequence is handled
* correctly in case the I/O is later aborted. */
if ((bdev_io->type == SPDK_BDEV_IO_TYPE_READ ||
bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) && bdev_io->u.bdev.accel_sequence) {
assert(bdev_io->internal.accel_sequence == NULL);
bdev_io->internal.accel_sequence = bdev_io->u.bdev.accel_sequence;
}
return true;
}
if (spdk_unlikely(!TAILQ_EMPTY(&shared_resource->nomem_io))) {
bdev_ch_retry_io(bdev_ch);
}
return false;
}
static void
_bdev_io_complete_push_bounce_done(void *ctx, int rc)
{
struct spdk_bdev_io *bdev_io = ctx;
if (rc) {
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
}
/* We want to free the bounce buffer here since we know we're done with it (as opposed
* to waiting for the conditional free of internal.buf in spdk_bdev_free_io()).
*/
bdev_io_put_buf(bdev_io);
/* Continue with IO completion flow */
bdev_io_complete(bdev_io);
}
static void
bdev_io_push_bounce_md_buf_done(void *ctx, int rc)
{
struct spdk_bdev_io *bdev_io = ctx;
struct spdk_bdev_channel *ch = bdev_io->internal.ch;
TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link);
bdev_io_decrement_outstanding(ch, ch->shared_resource);
if (spdk_unlikely(!TAILQ_EMPTY(&ch->shared_resource->nomem_io))) {
bdev_ch_retry_io(ch);
}
bdev_io->internal.data_transfer_cpl(bdev_io, rc);
}
static inline void
bdev_io_push_bounce_md_buf(struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev_channel *ch = bdev_io->internal.ch;
int rc = 0;
assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS);
/* do the same for metadata buffer */
if (spdk_unlikely(bdev_io->internal.orig_md_iov.iov_base != NULL)) {
assert(spdk_bdev_is_md_separate(bdev_io->bdev));
if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
if (bdev_io_use_memory_domain(bdev_io)) {
TAILQ_INSERT_TAIL(&ch->io_memory_domain, bdev_io, internal.link);
bdev_io_increment_outstanding(ch, ch->shared_resource);
/* If memory domain is used then we need to call async push function */
rc = spdk_memory_domain_push_data(bdev_io->internal.memory_domain,
bdev_io->internal.memory_domain_ctx,
&bdev_io->internal.orig_md_iov,
(uint32_t)bdev_io->internal.orig_iovcnt,
&bdev_io->internal.bounce_md_iov, 1,
bdev_io_push_bounce_md_buf_done,
bdev_io);
if (rc == 0) {
/* Continue IO completion in async callback */
return;
}
TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link);
bdev_io_decrement_outstanding(ch, ch->shared_resource);
if (rc != -ENOMEM) {
SPDK_ERRLOG("Failed to push md to memory domain %s\n",
spdk_memory_domain_get_dma_device_id(
bdev_io->internal.memory_domain));
}
} else {
memcpy(bdev_io->internal.orig_md_iov.iov_base, bdev_io->u.bdev.md_buf,
bdev_io->internal.orig_md_iov.iov_len);
}
}
}
if (spdk_unlikely(rc == -ENOMEM)) {
bdev_queue_nomem_io_head(ch->shared_resource, bdev_io, BDEV_IO_RETRY_STATE_PUSH_MD);
} else {
assert(bdev_io->internal.data_transfer_cpl);
bdev_io->internal.data_transfer_cpl(bdev_io, rc);
}
}
static inline void
bdev_io_push_bounce_data_done(struct spdk_bdev_io *bdev_io, int rc)
{
assert(bdev_io->internal.data_transfer_cpl);
if (rc) {
bdev_io->internal.data_transfer_cpl(bdev_io, rc);
return;
}
/* set original buffer for this io */
bdev_io->u.bdev.iovcnt = bdev_io->internal.orig_iovcnt;
bdev_io->u.bdev.iovs = bdev_io->internal.orig_iovs;
/* disable bouncing buffer for this io */
bdev_io->internal.orig_iovcnt = 0;
bdev_io->internal.orig_iovs = NULL;
bdev_io_push_bounce_md_buf(bdev_io);
}
static void
bdev_io_push_bounce_data_done_and_track(void *ctx, int status)
{
struct spdk_bdev_io *bdev_io = ctx;
struct spdk_bdev_channel *ch = bdev_io->internal.ch;
TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link);
bdev_io_decrement_outstanding(ch, ch->shared_resource);
if (spdk_unlikely(!TAILQ_EMPTY(&ch->shared_resource->nomem_io))) {
bdev_ch_retry_io(ch);
}
bdev_io_push_bounce_data_done(bdev_io, status);
}
static inline void
bdev_io_push_bounce_data(struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev_channel *ch = bdev_io->internal.ch;
int rc = 0;
assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS);
/* if this is read path, copy data from bounce buffer to original buffer */
if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) {
if (bdev_io_use_memory_domain(bdev_io)) {
TAILQ_INSERT_TAIL(&ch->io_memory_domain, bdev_io, internal.link);
bdev_io_increment_outstanding(ch, ch->shared_resource);
/* If memory domain is used then we need to call async push function */
rc = spdk_memory_domain_push_data(bdev_io->internal.memory_domain,
bdev_io->internal.memory_domain_ctx,
bdev_io->internal.orig_iovs,
(uint32_t)bdev_io->internal.orig_iovcnt,
&bdev_io->internal.bounce_iov, 1,
bdev_io_push_bounce_data_done_and_track,
bdev_io);
if (rc == 0) {
/* Continue IO completion in async callback */
return;
}
TAILQ_REMOVE(&ch->io_memory_domain, bdev_io, internal.link);
bdev_io_decrement_outstanding(ch, ch->shared_resource);
if (rc != -ENOMEM) {
SPDK_ERRLOG("Failed to push data to memory domain %s\n",
spdk_memory_domain_get_dma_device_id(
bdev_io->internal.memory_domain));
}
} else {
spdk_copy_buf_to_iovs(bdev_io->internal.orig_iovs,
bdev_io->internal.orig_iovcnt,
bdev_io->internal.bounce_iov.iov_base,
bdev_io->internal.bounce_iov.iov_len);
}
}
if (spdk_unlikely(rc == -ENOMEM)) {
bdev_queue_nomem_io_head(ch->shared_resource, bdev_io, BDEV_IO_RETRY_STATE_PUSH);
} else {
bdev_io_push_bounce_data_done(bdev_io, rc);
}
}
static inline void
_bdev_io_push_bounce_data_buffer(struct spdk_bdev_io *bdev_io, bdev_copy_bounce_buffer_cpl cpl_cb)
{
bdev_io->internal.data_transfer_cpl = cpl_cb;
bdev_io_push_bounce_data(bdev_io);
}
static void
bdev_io_get_iobuf_cb(struct spdk_iobuf_entry *iobuf, void *buf)
{
struct spdk_bdev_io *bdev_io;
bdev_io = SPDK_CONTAINEROF(iobuf, struct spdk_bdev_io, internal.iobuf);
_bdev_io_set_buf(bdev_io, buf, bdev_io->internal.buf_len);
}
static void
bdev_io_get_buf(struct spdk_bdev_io *bdev_io, uint64_t len)
{
struct spdk_bdev_mgmt_channel *mgmt_ch;
uint64_t max_len;
void *buf;
assert(spdk_bdev_io_get_thread(bdev_io) == spdk_get_thread());
mgmt_ch = bdev_io->internal.ch->shared_resource->mgmt_ch;
max_len = bdev_io_get_max_buf_len(bdev_io, len);
if (spdk_unlikely(max_len > mgmt_ch->iobuf.large.bufsize)) {
SPDK_ERRLOG("Length %" PRIu64 " is larger than allowed\n", max_len);
bdev_io_get_buf_complete(bdev_io, false);
return;
}
bdev_io->internal.buf_len = len;
buf = spdk_iobuf_get(&mgmt_ch->iobuf, max_len, &bdev_io->internal.iobuf,
bdev_io_get_iobuf_cb);
if (buf != NULL) {
_bdev_io_set_buf(bdev_io, buf, len);
}
}
void
spdk_bdev_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb, uint64_t len)
{
struct spdk_bdev *bdev = bdev_io->bdev;
uint64_t alignment;
assert(cb != NULL);
bdev_io->internal.get_buf_cb = cb;
alignment = spdk_bdev_get_buf_align(bdev);
if (_is_buf_allocated(bdev_io->u.bdev.iovs) &&
_are_iovs_aligned(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, alignment)) {
/* Buffer already present and aligned */
cb(spdk_bdev_io_get_io_channel(bdev_io), bdev_io, true);
return;
}
bdev_io_get_buf(bdev_io, len);
}
static void
_bdev_memory_domain_get_io_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
bool success)
{
if (!success) {
SPDK_ERRLOG("Failed to get data buffer, completing IO\n");
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
bdev_io_complete_unsubmitted(bdev_io);
return;
}
if (bdev_io_needs_sequence_exec(bdev_io->internal.desc, bdev_io)) {
if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
bdev_io_exec_sequence(bdev_io, bdev_io_submit_sequence_cb);
return;
}
/* For reads we'll execute the sequence after the data is read, so, for now, only
* clear out accel_sequence pointer and submit the IO */
assert(bdev_io->type == SPDK_BDEV_IO_TYPE_READ);
bdev_io->u.bdev.accel_sequence = NULL;
}
bdev_io_submit(bdev_io);
}
static void
_bdev_memory_domain_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb,
uint64_t len)
{
assert(cb != NULL);
bdev_io->internal.get_buf_cb = cb;
bdev_io_get_buf(bdev_io, len);
}
void
spdk_bdev_io_get_aux_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_aux_buf_cb cb)
{
uint64_t len = bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen;
assert(cb != NULL);
assert(bdev_io->internal.get_aux_buf_cb == NULL);
bdev_io->internal.get_aux_buf_cb = cb;
bdev_io_get_buf(bdev_io, len);
}
static int
bdev_module_get_max_ctx_size(void)
{
struct spdk_bdev_module *bdev_module;
int max_bdev_module_size = 0;
TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) {
if (bdev_module->get_ctx_size && bdev_module->get_ctx_size() > max_bdev_module_size) {
max_bdev_module_size = bdev_module->get_ctx_size();
}
}
return max_bdev_module_size;
}
static void
bdev_qos_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
{
int i;
struct spdk_bdev_qos *qos = bdev->internal.qos;
uint64_t limits[SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES];
if (!qos) {
return;
}
spdk_bdev_get_qos_rate_limits(bdev, limits);
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "bdev_set_qos_limit");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_string(w, "name", bdev->name);
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
if (limits[i] > 0) {
spdk_json_write_named_uint64(w, qos_rpc_type[i], limits[i]);
}
}
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
}
void
spdk_bdev_subsystem_config_json(struct spdk_json_write_ctx *w)
{
struct spdk_bdev_module *bdev_module;
struct spdk_bdev *bdev;
assert(w != NULL);
spdk_json_write_array_begin(w);
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "bdev_set_options");
spdk_json_write_named_object_begin(w, "params");
spdk_json_write_named_uint32(w, "bdev_io_pool_size", g_bdev_opts.bdev_io_pool_size);
spdk_json_write_named_uint32(w, "bdev_io_cache_size", g_bdev_opts.bdev_io_cache_size);
spdk_json_write_named_bool(w, "bdev_auto_examine", g_bdev_opts.bdev_auto_examine);
spdk_json_write_object_end(w);
spdk_json_write_object_end(w);
bdev_examine_allowlist_config_json(w);
TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) {
if (bdev_module->config_json) {
bdev_module->config_json(w);
}
}
spdk_spin_lock(&g_bdev_mgr.spinlock);
TAILQ_FOREACH(bdev, &g_bdev_mgr.bdevs, internal.link) {
if (bdev->fn_table->write_config_json) {
bdev->fn_table->write_config_json(bdev, w);
}
bdev_qos_config_json(bdev, w);
}
spdk_spin_unlock(&g_bdev_mgr.spinlock);
/* This has to be last RPC in array to make sure all bdevs finished examine */
spdk_json_write_object_begin(w);
spdk_json_write_named_string(w, "method", "bdev_wait_for_examine");
spdk_json_write_object_end(w);
spdk_json_write_array_end(w);
}
static void
bdev_mgmt_channel_destroy(void *io_device, void *ctx_buf)
{
struct spdk_bdev_mgmt_channel *ch = ctx_buf;
struct spdk_bdev_io *bdev_io;
spdk_iobuf_channel_fini(&ch->iobuf);
while (!STAILQ_EMPTY(&ch->per_thread_cache)) {
bdev_io = STAILQ_FIRST(&ch->per_thread_cache);
STAILQ_REMOVE_HEAD(&ch->per_thread_cache, internal.buf_link);
ch->per_thread_cache_count--;
spdk_mempool_put(g_bdev_mgr.bdev_io_pool, (void *)bdev_io);
}
assert(ch->per_thread_cache_count == 0);
}
static int
bdev_mgmt_channel_create(void *io_device, void *ctx_buf)
{
struct spdk_bdev_mgmt_channel *ch = ctx_buf;
struct spdk_bdev_io *bdev_io;
uint32_t i;
int rc;
rc = spdk_iobuf_channel_init(&ch->iobuf, "bdev", BUF_SMALL_CACHE_SIZE, BUF_LARGE_CACHE_SIZE);
if (rc != 0) {
SPDK_ERRLOG("Failed to create iobuf channel: %s\n", spdk_strerror(-rc));
return -1;
}
STAILQ_INIT(&ch->per_thread_cache);
ch->bdev_io_cache_size = g_bdev_opts.bdev_io_cache_size;
/* Pre-populate bdev_io cache to ensure this thread cannot be starved. */
ch->per_thread_cache_count = 0;
for (i = 0; i < ch->bdev_io_cache_size; i++) {
bdev_io = spdk_mempool_get(g_bdev_mgr.bdev_io_pool);
if (bdev_io == NULL) {
SPDK_ERRLOG("You need to increase bdev_io_pool_size using bdev_set_options RPC.\n");
assert(false);
bdev_mgmt_channel_destroy(io_device, ctx_buf);
return -1;
}
ch->per_thread_cache_count++;
STAILQ_INSERT_HEAD(&ch->per_thread_cache, bdev_io, internal.buf_link);
}
TAILQ_INIT(&ch->shared_resources);
TAILQ_INIT(&ch->io_wait_queue);
return 0;
}
static void
bdev_init_complete(int rc)
{
spdk_bdev_init_cb cb_fn = g_init_cb_fn;
void *cb_arg = g_init_cb_arg;
struct spdk_bdev_module *m;
g_bdev_mgr.init_complete = true;
g_init_cb_fn = NULL;
g_init_cb_arg = NULL;
/*
* For modules that need to know when subsystem init is complete,
* inform them now.
*/
if (rc == 0) {
TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, internal.tailq) {
if (m->init_complete) {
m->init_complete();
}
}
}
cb_fn(cb_arg, rc);
}
static bool
bdev_module_all_actions_completed(void)
{
struct spdk_bdev_module *m;
TAILQ_FOREACH(m, &g_bdev_mgr.bdev_modules, internal.tailq) {
if (m->internal.action_in_progress > 0) {
return false;
}
}
return true;
}
static void
bdev_module_action_complete(void)
{
/*
* Don't finish bdev subsystem initialization if
* module pre-initialization is still in progress, or
* the subsystem been already initialized.
*/
if (!g_bdev_mgr.module_init_complete || g_bdev_mgr.init_complete) {
return;
}
/*
* Check all bdev modules for inits/examinations in progress. If any
* exist, return immediately since we cannot finish bdev subsystem
* initialization until all are completed.
*/
if (!bdev_module_all_actions_completed()) {
return;
}
/*
* Modules already finished initialization - now that all
* the bdev modules have finished their asynchronous I/O
* processing, the entire bdev layer can be marked as complete.
*/
bdev_init_complete(0);
}
static void
bdev_module_action_done(struct spdk_bdev_module *module)
{
spdk_spin_lock(&module->internal.spinlock);
assert(module->internal.action_in_progress > 0);
module->internal.action_in_progress--;
spdk_spin_unlock(&module->internal.spinlock);
bdev_module_action_complete();
}
void
spdk_bdev_module_init_done(struct spdk_bdev_module *module)
{
assert(module->async_init);
bdev_module_action_done(module);
}
void
spdk_bdev_module_examine_done(struct spdk_bdev_module *module)
{
bdev_module_action_done(module);
}
/** The last initialized bdev module */
static struct spdk_bdev_module *g_resume_bdev_module = NULL;
static void
bdev_init_failed(void *cb_arg)
{
struct spdk_bdev_module *module = cb_arg;
spdk_spin_lock(&module->internal.spinlock);
assert(module->internal.action_in_progress > 0);
module->internal.action_in_progress--;
spdk_spin_unlock(&module->internal.spinlock);
bdev_init_complete(-1);
}
static int
bdev_modules_init(void)
{
struct spdk_bdev_module *module;
int rc = 0;
TAILQ_FOREACH(module, &g_bdev_mgr.bdev_modules, internal.tailq) {
g_resume_bdev_module = module;
if (module->async_init) {
spdk_spin_lock(&module->internal.spinlock);
module->internal.action_in_progress = 1;
spdk_spin_unlock(&module->internal.spinlock);
}
rc = module->module_init();
if (rc != 0) {
/* Bump action_in_progress to prevent other modules from completion of modules_init
* Send message to defer application shutdown until resources are cleaned up */
spdk_spin_lock(&module->internal.spinlock);
module->internal.action_in_progress = 1;
spdk_spin_unlock(&module->internal.spinlock);
spdk_thread_send_msg(spdk_get_thread(), bdev_init_failed, module);
return rc;
}
}
g_resume_bdev_module = NULL;
return 0;
}
void
spdk_bdev_initialize(spdk_bdev_init_cb cb_fn, void *cb_arg)
{
int rc = 0;
char mempool_name[32];
assert(cb_fn != NULL);
g_init_cb_fn = cb_fn;
g_init_cb_arg = cb_arg;
spdk_notify_type_register("bdev_register");
spdk_notify_type_register("bdev_unregister");
snprintf(mempool_name, sizeof(mempool_name), "bdev_io_%d", getpid());
rc = spdk_iobuf_register_module("bdev");
if (rc != 0) {
SPDK_ERRLOG("could not register bdev iobuf module: %s\n", spdk_strerror(-rc));
bdev_init_complete(-1);
return;
}
g_bdev_mgr.bdev_io_pool = spdk_mempool_create(mempool_name,
g_bdev_opts.bdev_io_pool_size,
sizeof(struct spdk_bdev_io) +
bdev_module_get_max_ctx_size(),
0,
SPDK_ENV_SOCKET_ID_ANY);
if (g_bdev_mgr.bdev_io_pool == NULL) {
SPDK_ERRLOG("could not allocate spdk_bdev_io pool\n");
bdev_init_complete(-1);
return;
}
g_bdev_mgr.zero_buffer = spdk_zmalloc(ZERO_BUFFER_SIZE, ZERO_BUFFER_SIZE,
NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
if (!g_bdev_mgr.zero_buffer) {
SPDK_ERRLOG("create bdev zero buffer failed\n");
bdev_init_complete(-1);
return;
}
#ifdef SPDK_CONFIG_VTUNE
SPDK_LOG_DEPRECATED(vtune_support);
g_bdev_mgr.domain = __itt_domain_create("spdk_bdev");
#endif
spdk_io_device_register(&g_bdev_mgr, bdev_mgmt_channel_create,
bdev_mgmt_channel_destroy,
sizeof(struct spdk_bdev_mgmt_channel),
"bdev_mgr");
rc = bdev_modules_init();
g_bdev_mgr.module_init_complete = true;
if (rc != 0) {
SPDK_ERRLOG("bdev modules init failed\n");
return;
}
bdev_module_action_complete();
}
static void
bdev_mgr_unregister_cb(void *io_device)
{
spdk_bdev_fini_cb cb_fn = g_fini_cb_fn;
if (g_bdev_mgr.bdev_io_pool) {
if (spdk_mempool_count(g_bdev_mgr.bdev_io_pool) != g_bdev_opts.bdev_io_pool_size) {
SPDK_ERRLOG("bdev IO pool count is %zu but should be %u\n",
spdk_mempool_count(g_bdev_mgr.bdev_io_pool),
g_bdev_opts.bdev_io_pool_size);
}
spdk_mempool_free(g_bdev_mgr.bdev_io_pool);
}
spdk_free(g_bdev_mgr.zero_buffer);
bdev_examine_allowlist_free();
cb_fn(g_fini_cb_arg);
g_fini_cb_fn = NULL;
g_fini_cb_arg = NULL;
g_bdev_mgr.init_complete = false;
g_bdev_mgr.module_init_complete = false;
}
static void
bdev_module_fini_iter(void *arg)
{
struct spdk_bdev_module *bdev_module;
/* FIXME: Handling initialization failures is broken now,
* so we won't even try cleaning up after successfully
* initialized modules. if module_init_complete is false,
* just call spdk_bdev_mgr_unregister_cb
*/
if (!g_bdev_mgr.module_init_complete) {
bdev_mgr_unregister_cb(NULL);
return;
}
/* Start iterating from the last touched module */
if (!g_resume_bdev_module) {
bdev_module = TAILQ_LAST(&g_bdev_mgr.bdev_modules, bdev_module_list);
} else {
bdev_module = TAILQ_PREV(g_resume_bdev_module, bdev_module_list,
internal.tailq);
}
while (bdev_module) {
if (bdev_module->async_fini) {
/* Save our place so we can resume later. We must
* save the variable here, before calling module_fini()
* below, because in some cases the module may immediately
* call spdk_bdev_module_fini_done() and re-enter
* this function to continue iterating. */
g_resume_bdev_module = bdev_module;
}
if (bdev_module->module_fini) {
bdev_module->module_fini();
}
if (bdev_module->async_fini) {
return;
}
bdev_module = TAILQ_PREV(bdev_module, bdev_module_list,
internal.tailq);
}
g_resume_bdev_module = NULL;
spdk_io_device_unregister(&g_bdev_mgr, bdev_mgr_unregister_cb);
}
void
spdk_bdev_module_fini_done(void)
{
if (spdk_get_thread() != g_fini_thread) {
spdk_thread_send_msg(g_fini_thread, bdev_module_fini_iter, NULL);
} else {
bdev_module_fini_iter(NULL);
}
}
static void
bdev_finish_unregister_bdevs_iter(void *cb_arg, int bdeverrno)
{
struct spdk_bdev *bdev = cb_arg;
if (bdeverrno && bdev) {
SPDK_WARNLOG("Unable to unregister bdev '%s' during spdk_bdev_finish()\n",
bdev->name);
/*
* Since the call to spdk_bdev_unregister() failed, we have no way to free this
* bdev; try to continue by manually removing this bdev from the list and continue
* with the next bdev in the list.
*/
TAILQ_REMOVE(&g_bdev_mgr.bdevs, bdev, internal.link);
}
if (TAILQ_EMPTY(&g_bdev_mgr.bdevs)) {
SPDK_DEBUGLOG(bdev, "Done unregistering bdevs\n");
/*
* Bdev module finish need to be deferred as we might be in the middle of some context
* (like bdev part free) that will use this bdev (or private bdev driver ctx data)
* after returning.
*/
spdk_thread_send_msg(spdk_get_thread(), bdev_module_fini_iter, NULL);
return;
}
/*
* Unregister last unclaimed bdev in the list, to ensure that bdev subsystem
* shutdown proceeds top-down. The goal is to give virtual bdevs an opportunity
* to detect clean shutdown as opposed to run-time hot removal of the underlying
* base bdevs.
*
* Also, walk the list in the reverse order.
*/
for (bdev = TAILQ_LAST(&g_bdev_mgr.bdevs, spdk_bdev_list);
bdev; bdev = TAILQ_PREV(bdev, spdk_bdev_list, internal.link)) {
spdk_spin_lock(&bdev->internal.spinlock);
if (bdev->internal.claim_type != SPDK_BDEV_CLAIM_NONE) {
LOG_ALREADY_CLAIMED_DEBUG("claimed, skipping", bdev);
spdk_spin_unlock(&bdev->internal.spinlock);
continue;
}
spdk_spin_unlock(&bdev->internal.spinlock);
SPDK_DEBUGLOG(bdev, "Unregistering bdev '%s'\n", bdev->name);
spdk_bdev_unregister(bdev, bdev_finish_unregister_bdevs_iter, bdev);
return;
}
/*
* If any bdev fails to unclaim underlying bdev properly, we may face the
* case of bdev list consisting of claimed bdevs only (if claims are managed
* correctly, this would mean there's a loop in the claims graph which is
* clearly impossible). Warn and unregister last bdev on the list then.
*/
for (bdev = TAILQ_LAST(&g_bdev_mgr.bdevs, spdk_bdev_list);
bdev; bdev = TAILQ_PREV(bdev, spdk_bdev_list, internal.link)) {
SPDK_WARNLOG("Unregistering claimed bdev '%s'!\n", bdev->name);
spdk_bdev_unregister(bdev, bdev_finish_unregister_bdevs_iter, bdev);
return;
}
}
static void
bdev_module_fini_start_iter(void *arg)
{
struct spdk_bdev_module *bdev_module;
if (!g_resume_bdev_module) {
bdev_module = TAILQ_LAST(&g_bdev_mgr.bdev_modules, bdev_module_list);
} else {
bdev_module = TAILQ_PREV(g_resume_bdev_module, bdev_module_list, internal.tailq);
}
while (bdev_module) {
if (bdev_module->async_fini_start) {
/* Save our place so we can resume later. We must
* save the variable here, before calling fini_start()
* below, because in some cases the module may immediately
* call spdk_bdev_module_fini_start_done() and re-enter
* this function to continue iterating. */
g_resume_bdev_module = bdev_module;
}
if (bdev_module->fini_start) {
bdev_module->fini_start();
}
if (bdev_module->async_fini_start) {
return;
}
bdev_module = TAILQ_PREV(bdev_module, bdev_module_list, internal.tailq);
}
g_resume_bdev_module = NULL;
bdev_finish_unregister_bdevs_iter(NULL, 0);
}
void
spdk_bdev_module_fini_start_done(void)
{
if (spdk_get_thread() != g_fini_thread) {
spdk_thread_send_msg(g_fini_thread, bdev_module_fini_start_iter, NULL);
} else {
bdev_module_fini_start_iter(NULL);
}
}
static void
bdev_finish_wait_for_examine_done(void *cb_arg)
{
bdev_module_fini_start_iter(NULL);
}
void
spdk_bdev_finish(spdk_bdev_fini_cb cb_fn, void *cb_arg)
{
int rc;
assert(cb_fn != NULL);
g_fini_thread = spdk_get_thread();
g_fini_cb_fn = cb_fn;
g_fini_cb_arg = cb_arg;
rc = spdk_bdev_wait_for_examine(bdev_finish_wait_for_examine_done, NULL);
if (rc != 0) {
SPDK_ERRLOG("wait_for_examine failed: %s\n", spdk_strerror(-rc));
bdev_finish_wait_for_examine_done(NULL);
}
}
struct spdk_bdev_io *
bdev_channel_get_io(struct spdk_bdev_channel *channel)
{
struct spdk_bdev_mgmt_channel *ch = channel->shared_resource->mgmt_ch;
struct spdk_bdev_io *bdev_io;
if (ch->per_thread_cache_count > 0) {
bdev_io = STAILQ_FIRST(&ch->per_thread_cache);
STAILQ_REMOVE_HEAD(&ch->per_thread_cache, internal.buf_link);
ch->per_thread_cache_count--;
} else if (spdk_unlikely(!TAILQ_EMPTY(&ch->io_wait_queue))) {
/*
* Don't try to look for bdev_ios in the global pool if there are
* waiters on bdev_ios - we don't want this caller to jump the line.
*/
bdev_io = NULL;
} else {
bdev_io = spdk_mempool_get(g_bdev_mgr.bdev_io_pool);
}
return bdev_io;
}
void
spdk_bdev_free_io(struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev_mgmt_channel *ch;
assert(bdev_io != NULL);
assert(bdev_io->internal.status != SPDK_BDEV_IO_STATUS_PENDING);
ch = bdev_io->internal.ch->shared_resource->mgmt_ch;
if (bdev_io->internal.buf != NULL) {
bdev_io_put_buf(bdev_io);
}
if (ch->per_thread_cache_count < ch->bdev_io_cache_size) {
ch->per_thread_cache_count++;
STAILQ_INSERT_HEAD(&ch->per_thread_cache, bdev_io, internal.buf_link);
while (ch->per_thread_cache_count > 0 && !TAILQ_EMPTY(&ch->io_wait_queue)) {
struct spdk_bdev_io_wait_entry *entry;
entry = TAILQ_FIRST(&ch->io_wait_queue);
TAILQ_REMOVE(&ch->io_wait_queue, entry, link);
entry->cb_fn(entry->cb_arg);
}
} else {
/* We should never have a full cache with entries on the io wait queue. */
assert(TAILQ_EMPTY(&ch->io_wait_queue));
spdk_mempool_put(g_bdev_mgr.bdev_io_pool, (void *)bdev_io);
}
}
static bool
bdev_qos_is_iops_rate_limit(enum spdk_bdev_qos_rate_limit_type limit)
{
assert(limit != SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES);
switch (limit) {
case SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT:
return true;
case SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT:
case SPDK_BDEV_QOS_R_BPS_RATE_LIMIT:
case SPDK_BDEV_QOS_W_BPS_RATE_LIMIT:
return false;
case SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES:
default:
return false;
}
}
static bool
bdev_qos_io_to_limit(struct spdk_bdev_io *bdev_io)
{
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_NVME_IO:
case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
case SPDK_BDEV_IO_TYPE_READ:
case SPDK_BDEV_IO_TYPE_WRITE:
return true;
case SPDK_BDEV_IO_TYPE_ZCOPY:
if (bdev_io->u.bdev.zcopy.start) {
return true;
} else {
return false;
}
default:
return false;
}
}
static bool
bdev_is_read_io(struct spdk_bdev_io *bdev_io)
{
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_NVME_IO:
case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
/* Bit 1 (0x2) set for read operation */
if (bdev_io->u.nvme_passthru.cmd.opc & SPDK_NVME_OPC_READ) {
return true;
} else {
return false;
}
case SPDK_BDEV_IO_TYPE_READ:
return true;
case SPDK_BDEV_IO_TYPE_ZCOPY:
/* Populate to read from disk */
if (bdev_io->u.bdev.zcopy.populate) {
return true;
} else {
return false;
}
default:
return false;
}
}
static uint64_t
bdev_get_io_size_in_byte(struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev *bdev = bdev_io->bdev;
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_NVME_IO:
case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
return bdev_io->u.nvme_passthru.nbytes;
case SPDK_BDEV_IO_TYPE_READ:
case SPDK_BDEV_IO_TYPE_WRITE:
return bdev_io->u.bdev.num_blocks * bdev->blocklen;
case SPDK_BDEV_IO_TYPE_ZCOPY:
/* Track the data in the start phase only */
if (bdev_io->u.bdev.zcopy.start) {
return bdev_io->u.bdev.num_blocks * bdev->blocklen;
} else {
return 0;
}
default:
return 0;
}
}
static bool
bdev_qos_rw_queue_io(const struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io)
{
if (limit->max_per_timeslice > 0 && limit->remaining_this_timeslice <= 0) {
return true;
} else {
return false;
}
}
static bool
bdev_qos_r_queue_io(const struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io)
{
if (bdev_is_read_io(io) == false) {
return false;
}
return bdev_qos_rw_queue_io(limit, io);
}
static bool
bdev_qos_w_queue_io(const struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io)
{
if (bdev_is_read_io(io) == true) {
return false;
}
return bdev_qos_rw_queue_io(limit, io);
}
static void
bdev_qos_rw_iops_update_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io)
{
limit->remaining_this_timeslice--;
}
static void
bdev_qos_rw_bps_update_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io)
{
limit->remaining_this_timeslice -= bdev_get_io_size_in_byte(io);
}
static void
bdev_qos_r_bps_update_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io)
{
if (bdev_is_read_io(io) == false) {
return;
}
return bdev_qos_rw_bps_update_quota(limit, io);
}
static void
bdev_qos_w_bps_update_quota(struct spdk_bdev_qos_limit *limit, struct spdk_bdev_io *io)
{
if (bdev_is_read_io(io) == true) {
return;
}
return bdev_qos_rw_bps_update_quota(limit, io);
}
static void
bdev_qos_set_ops(struct spdk_bdev_qos *qos)
{
int i;
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
if (qos->rate_limits[i].limit == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) {
qos->rate_limits[i].queue_io = NULL;
qos->rate_limits[i].update_quota = NULL;
continue;
}
switch (i) {
case SPDK_BDEV_QOS_RW_IOPS_RATE_LIMIT:
qos->rate_limits[i].queue_io = bdev_qos_rw_queue_io;
qos->rate_limits[i].update_quota = bdev_qos_rw_iops_update_quota;
break;
case SPDK_BDEV_QOS_RW_BPS_RATE_LIMIT:
qos->rate_limits[i].queue_io = bdev_qos_rw_queue_io;
qos->rate_limits[i].update_quota = bdev_qos_rw_bps_update_quota;
break;
case SPDK_BDEV_QOS_R_BPS_RATE_LIMIT:
qos->rate_limits[i].queue_io = bdev_qos_r_queue_io;
qos->rate_limits[i].update_quota = bdev_qos_r_bps_update_quota;
break;
case SPDK_BDEV_QOS_W_BPS_RATE_LIMIT:
qos->rate_limits[i].queue_io = bdev_qos_w_queue_io;
qos->rate_limits[i].update_quota = bdev_qos_w_bps_update_quota;
break;
default:
break;
}
}
}
static void
_bdev_io_complete_in_submit(struct spdk_bdev_channel *bdev_ch,
struct spdk_bdev_io *bdev_io,
enum spdk_bdev_io_status status)
{
struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource;
bdev_io->internal.in_submit_request = true;
bdev_ch->io_outstanding++;
shared_resource->io_outstanding++;
spdk_bdev_io_complete(bdev_io, status);
bdev_io->internal.in_submit_request = false;
}
static inline void
bdev_io_do_submit(struct spdk_bdev_channel *bdev_ch, struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev *bdev = bdev_io->bdev;
struct spdk_io_channel *ch = bdev_ch->channel;
struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource;
if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT)) {
struct spdk_bdev_mgmt_channel *mgmt_channel = shared_resource->mgmt_ch;
struct spdk_bdev_io *bio_to_abort = bdev_io->u.abort.bio_to_abort;
if (bdev_abort_queued_io(&shared_resource->nomem_io, bio_to_abort) ||
bdev_abort_buf_io(mgmt_channel, bio_to_abort)) {
_bdev_io_complete_in_submit(bdev_ch, bdev_io,
SPDK_BDEV_IO_STATUS_SUCCESS);
return;
}
}
if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE &&
bdev_io->bdev->split_on_write_unit &&
bdev_io->u.bdev.num_blocks < bdev_io->bdev->write_unit_size)) {
SPDK_ERRLOG("IO num_blocks %lu does not match the write_unit_size %u\n",
bdev_io->u.bdev.num_blocks, bdev_io->bdev->write_unit_size);
_bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
return;
}
if (spdk_likely(TAILQ_EMPTY(&shared_resource->nomem_io))) {
bdev_ch->io_outstanding++;
shared_resource->io_outstanding++;
bdev_io->internal.in_submit_request = true;
bdev_submit_request(bdev, ch, bdev_io);
bdev_io->internal.in_submit_request = false;
} else {
bdev_queue_nomem_io_tail(shared_resource, bdev_io, BDEV_IO_RETRY_STATE_SUBMIT);
}
}
static bool
bdev_qos_queue_io(struct spdk_bdev_qos *qos, struct spdk_bdev_io *bdev_io)
{
int i;
if (bdev_qos_io_to_limit(bdev_io) == true) {
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
if (!qos->rate_limits[i].queue_io) {
continue;
}
if (qos->rate_limits[i].queue_io(&qos->rate_limits[i],
bdev_io) == true) {
return true;
}
}
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
if (!qos->rate_limits[i].update_quota) {
continue;
}
qos->rate_limits[i].update_quota(&qos->rate_limits[i], bdev_io);
}
}
return false;
}
static inline void
_bdev_io_do_submit(void *ctx)
{
struct spdk_bdev_io *bdev_io = ctx;
struct spdk_bdev_channel *ch = bdev_io->internal.ch;
bdev_io_do_submit(ch, bdev_io);
}
static int
bdev_qos_io_submit(struct spdk_bdev_channel *ch, struct spdk_bdev_qos *qos)
{
struct spdk_bdev_io *bdev_io = NULL, *tmp = NULL;
int submitted_ios = 0;
TAILQ_FOREACH_SAFE(bdev_io, &qos->queued, internal.link, tmp) {
if (!bdev_qos_queue_io(qos, bdev_io)) {
TAILQ_REMOVE(&qos->queued, bdev_io, internal.link);
if (bdev_io->internal.io_submit_ch) {
/* Send back the IO to the original thread for the actual processing. */
bdev_io->internal.ch = bdev_io->internal.io_submit_ch;
bdev_io->internal.io_submit_ch = NULL;
spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
_bdev_io_do_submit, bdev_io);
} else {
bdev_io_do_submit(ch, bdev_io);
}
submitted_ios++;
}
}
return submitted_ios;
}
static void
bdev_queue_io_wait_with_cb(struct spdk_bdev_io *bdev_io, spdk_bdev_io_wait_cb cb_fn)
{
int rc;
bdev_io->internal.waitq_entry.bdev = bdev_io->bdev;
bdev_io->internal.waitq_entry.cb_fn = cb_fn;
bdev_io->internal.waitq_entry.cb_arg = bdev_io;
rc = spdk_bdev_queue_io_wait(bdev_io->bdev, spdk_io_channel_from_ctx(bdev_io->internal.ch),
&bdev_io->internal.waitq_entry);
if (rc != 0) {
SPDK_ERRLOG("Queue IO failed, rc=%d\n", rc);
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx);
}
}
static bool
bdev_rw_should_split(struct spdk_bdev_io *bdev_io)
{
uint32_t io_boundary;
struct spdk_bdev *bdev = bdev_io->bdev;
uint32_t max_size = bdev->max_segment_size;
int max_segs = bdev->max_num_segments;
if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE && bdev->split_on_write_unit) {
io_boundary = bdev->write_unit_size;
} else if (bdev->split_on_optimal_io_boundary) {
io_boundary = bdev->optimal_io_boundary;
} else {
io_boundary = 0;
}
if (spdk_likely(!io_boundary && !max_segs && !max_size)) {
return false;
}
if (io_boundary) {
uint64_t start_stripe, end_stripe;
start_stripe = bdev_io->u.bdev.offset_blocks;
end_stripe = start_stripe + bdev_io->u.bdev.num_blocks - 1;
/* Avoid expensive div operations if possible. These spdk_u32 functions are very cheap. */
if (spdk_likely(spdk_u32_is_pow2(io_boundary))) {
start_stripe >>= spdk_u32log2(io_boundary);
end_stripe >>= spdk_u32log2(io_boundary);
} else {
start_stripe /= io_boundary;
end_stripe /= io_boundary;
}
if (start_stripe != end_stripe) {
return true;
}
}
if (max_segs) {
if (bdev_io->u.bdev.iovcnt > max_segs) {
return true;
}
}
if (max_size) {
for (int i = 0; i < bdev_io->u.bdev.iovcnt; i++) {
if (bdev_io->u.bdev.iovs[i].iov_len > max_size) {
return true;
}
}
}
return false;
}
static bool
bdev_unmap_should_split(struct spdk_bdev_io *bdev_io)
{
uint32_t num_unmap_segments;
if (!bdev_io->bdev->max_unmap || !bdev_io->bdev->max_unmap_segments) {
return false;
}
num_unmap_segments = spdk_divide_round_up(bdev_io->u.bdev.num_blocks, bdev_io->bdev->max_unmap);
if (num_unmap_segments > bdev_io->bdev->max_unmap_segments) {
return true;
}
return false;
}
static bool
bdev_write_zeroes_should_split(struct spdk_bdev_io *bdev_io)
{
if (!bdev_io->bdev->max_write_zeroes) {
return false;
}
if (bdev_io->u.bdev.num_blocks > bdev_io->bdev->max_write_zeroes) {
return true;
}
return false;
}
static bool
bdev_copy_should_split(struct spdk_bdev_io *bdev_io)
{
if (bdev_io->bdev->max_copy != 0 &&
bdev_io->u.bdev.num_blocks > bdev_io->bdev->max_copy) {
return true;
}
return false;
}
static bool
bdev_io_should_split(struct spdk_bdev_io *bdev_io)
{
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_READ:
case SPDK_BDEV_IO_TYPE_WRITE:
return bdev_rw_should_split(bdev_io);
case SPDK_BDEV_IO_TYPE_UNMAP:
return bdev_unmap_should_split(bdev_io);
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
return bdev_write_zeroes_should_split(bdev_io);
case SPDK_BDEV_IO_TYPE_COPY:
return bdev_copy_should_split(bdev_io);
default:
return false;
}
}
static uint32_t
_to_next_boundary(uint64_t offset, uint32_t boundary)
{
return (boundary - (offset % boundary));
}
static void bdev_io_split_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
static void _bdev_rw_split(void *_bdev_io);
static void bdev_unmap_split(struct spdk_bdev_io *bdev_io);
static void
_bdev_unmap_split(void *_bdev_io)
{
return bdev_unmap_split((struct spdk_bdev_io *)_bdev_io);
}
static void bdev_write_zeroes_split(struct spdk_bdev_io *bdev_io);
static void
_bdev_write_zeroes_split(void *_bdev_io)
{
return bdev_write_zeroes_split((struct spdk_bdev_io *)_bdev_io);
}
static void bdev_copy_split(struct spdk_bdev_io *bdev_io);
static void
_bdev_copy_split(void *_bdev_io)
{
return bdev_copy_split((struct spdk_bdev_io *)_bdev_io);
}
static int
bdev_io_split_submit(struct spdk_bdev_io *bdev_io, struct iovec *iov, int iovcnt, void *md_buf,
uint64_t num_blocks, uint64_t *offset, uint64_t *remaining)
{
int rc;
uint64_t current_offset, current_remaining, current_src_offset;
spdk_bdev_io_wait_cb io_wait_fn;
current_offset = *offset;
current_remaining = *remaining;
bdev_io->u.bdev.split_outstanding++;
io_wait_fn = _bdev_rw_split;
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_READ:
assert(bdev_io->u.bdev.accel_sequence == NULL);
rc = bdev_readv_blocks_with_md(bdev_io->internal.desc,
spdk_io_channel_from_ctx(bdev_io->internal.ch),
iov, iovcnt, md_buf, current_offset,
num_blocks, bdev_io->internal.memory_domain,
bdev_io->internal.memory_domain_ctx, NULL,
bdev_io_split_done, bdev_io);
break;
case SPDK_BDEV_IO_TYPE_WRITE:
assert(bdev_io->u.bdev.accel_sequence == NULL);
rc = bdev_writev_blocks_with_md(bdev_io->internal.desc,
spdk_io_channel_from_ctx(bdev_io->internal.ch),
iov, iovcnt, md_buf, current_offset,
num_blocks, bdev_io->internal.memory_domain,
bdev_io->internal.memory_domain_ctx, NULL,
bdev_io_split_done, bdev_io);
break;
case SPDK_BDEV_IO_TYPE_UNMAP:
io_wait_fn = _bdev_unmap_split;
rc = spdk_bdev_unmap_blocks(bdev_io->internal.desc,
spdk_io_channel_from_ctx(bdev_io->internal.ch),
current_offset, num_blocks,
bdev_io_split_done, bdev_io);
break;
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
io_wait_fn = _bdev_write_zeroes_split;
rc = spdk_bdev_write_zeroes_blocks(bdev_io->internal.desc,
spdk_io_channel_from_ctx(bdev_io->internal.ch),
current_offset, num_blocks,
bdev_io_split_done, bdev_io);
break;
case SPDK_BDEV_IO_TYPE_COPY:
io_wait_fn = _bdev_copy_split;
current_src_offset = bdev_io->u.bdev.copy.src_offset_blocks +
(current_offset - bdev_io->u.bdev.offset_blocks);
rc = spdk_bdev_copy_blocks(bdev_io->internal.desc,
spdk_io_channel_from_ctx(bdev_io->internal.ch),
current_offset, current_src_offset, num_blocks,
bdev_io_split_done, bdev_io);
break;
default:
assert(false);
rc = -EINVAL;
break;
}
if (rc == 0) {
current_offset += num_blocks;
current_remaining -= num_blocks;
bdev_io->u.bdev.split_current_offset_blocks = current_offset;
bdev_io->u.bdev.split_remaining_num_blocks = current_remaining;
*offset = current_offset;
*remaining = current_remaining;
} else {
bdev_io->u.bdev.split_outstanding--;
if (rc == -ENOMEM) {
if (bdev_io->u.bdev.split_outstanding == 0) {
/* No I/O is outstanding. Hence we should wait here. */
bdev_queue_io_wait_with_cb(bdev_io, io_wait_fn);
}
} else {
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
if (bdev_io->u.bdev.split_outstanding == 0) {
spdk_trace_record(TRACE_BDEV_IO_DONE, 0, 0, (uintptr_t)bdev_io, bdev_io->internal.caller_ctx);
TAILQ_REMOVE(&bdev_io->internal.ch->io_submitted, bdev_io, internal.ch_link);
bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx);
}
}
}
return rc;
}
static void
_bdev_rw_split(void *_bdev_io)
{
struct iovec *parent_iov, *iov;
struct spdk_bdev_io *bdev_io = _bdev_io;
struct spdk_bdev *bdev = bdev_io->bdev;
uint64_t parent_offset, current_offset, remaining;
uint32_t parent_iov_offset, parent_iovcnt, parent_iovpos, child_iovcnt;
uint32_t to_next_boundary, to_next_boundary_bytes, to_last_block_bytes;
uint32_t iovcnt, iov_len, child_iovsize;
uint32_t blocklen = bdev->blocklen;
uint32_t io_boundary;
uint32_t max_segment_size = bdev->max_segment_size;
uint32_t max_child_iovcnt = bdev->max_num_segments;
void *md_buf = NULL;
int rc;
max_segment_size = max_segment_size ? max_segment_size : UINT32_MAX;
max_child_iovcnt = max_child_iovcnt ? spdk_min(max_child_iovcnt, SPDK_BDEV_IO_NUM_CHILD_IOV) :
SPDK_BDEV_IO_NUM_CHILD_IOV;
if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE && bdev->split_on_write_unit) {
io_boundary = bdev->write_unit_size;
} else if (bdev->split_on_optimal_io_boundary) {
io_boundary = bdev->optimal_io_boundary;
} else {
io_boundary = UINT32_MAX;
}
remaining = bdev_io->u.bdev.split_remaining_num_blocks;
current_offset = bdev_io->u.bdev.split_current_offset_blocks;
parent_offset = bdev_io->u.bdev.offset_blocks;
parent_iov_offset = (current_offset - parent_offset) * blocklen;
parent_iovcnt = bdev_io->u.bdev.iovcnt;
for (parent_iovpos = 0; parent_iovpos < parent_iovcnt; parent_iovpos++) {
parent_iov = &bdev_io->u.bdev.iovs[parent_iovpos];
if (parent_iov_offset < parent_iov->iov_len) {
break;
}
parent_iov_offset -= parent_iov->iov_len;
}
child_iovcnt = 0;
while (remaining > 0 && parent_iovpos < parent_iovcnt &&
child_iovcnt < SPDK_BDEV_IO_NUM_CHILD_IOV) {
to_next_boundary = _to_next_boundary(current_offset, io_boundary);
to_next_boundary = spdk_min(remaining, to_next_boundary);
to_next_boundary_bytes = to_next_boundary * blocklen;
iov = &bdev_io->child_iov[child_iovcnt];
iovcnt = 0;
if (bdev_io->u.bdev.md_buf) {
md_buf = (char *)bdev_io->u.bdev.md_buf +
(current_offset - parent_offset) * spdk_bdev_get_md_size(bdev);
}
child_iovsize = spdk_min(SPDK_BDEV_IO_NUM_CHILD_IOV - child_iovcnt, max_child_iovcnt);
while (to_next_boundary_bytes > 0 && parent_iovpos < parent_iovcnt &&
iovcnt < child_iovsize) {
parent_iov = &bdev_io->u.bdev.iovs[parent_iovpos];
iov_len = parent_iov->iov_len - parent_iov_offset;
iov_len = spdk_min(iov_len, max_segment_size);
iov_len = spdk_min(iov_len, to_next_boundary_bytes);
to_next_boundary_bytes -= iov_len;
bdev_io->child_iov[child_iovcnt].iov_base = parent_iov->iov_base + parent_iov_offset;
bdev_io->child_iov[child_iovcnt].iov_len = iov_len;
if (iov_len < parent_iov->iov_len - parent_iov_offset) {
parent_iov_offset += iov_len;
} else {
parent_iovpos++;
parent_iov_offset = 0;
}
child_iovcnt++;
iovcnt++;
}
if (to_next_boundary_bytes > 0) {
/* We had to stop this child I/O early because we ran out of
* child_iov space or were limited by max_num_segments.
* Ensure the iovs to be aligned with block size and
* then adjust to_next_boundary before starting the
* child I/O.
*/
assert(child_iovcnt == SPDK_BDEV_IO_NUM_CHILD_IOV ||
iovcnt == child_iovsize);
to_last_block_bytes = to_next_boundary_bytes % blocklen;
if (to_last_block_bytes != 0) {
uint32_t child_iovpos = child_iovcnt - 1;
/* don't decrease child_iovcnt when it equals to SPDK_BDEV_IO_NUM_CHILD_IOV
* so the loop will naturally end
*/
to_last_block_bytes = blocklen - to_last_block_bytes;
to_next_boundary_bytes += to_last_block_bytes;
while (to_last_block_bytes > 0 && iovcnt > 0) {
iov_len = spdk_min(to_last_block_bytes,
bdev_io->child_iov[child_iovpos].iov_len);
bdev_io->child_iov[child_iovpos].iov_len -= iov_len;
if (bdev_io->child_iov[child_iovpos].iov_len == 0) {
child_iovpos--;
if (--iovcnt == 0) {
/* If the child IO is less than a block size just return.
* If the first child IO of any split round is less than
* a block size, an error exit.
*/
if (bdev_io->u.bdev.split_outstanding == 0) {
SPDK_ERRLOG("The first child io was less than a block size\n");
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
spdk_trace_record(TRACE_BDEV_IO_DONE, 0, 0, (uintptr_t)bdev_io, bdev_io->internal.caller_ctx);
TAILQ_REMOVE(&bdev_io->internal.ch->io_submitted, bdev_io, internal.ch_link);
bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx);
}
return;
}
}
to_last_block_bytes -= iov_len;
if (parent_iov_offset == 0) {
parent_iovpos--;
parent_iov_offset = bdev_io->u.bdev.iovs[parent_iovpos].iov_len;
}
parent_iov_offset -= iov_len;
}
assert(to_last_block_bytes == 0);
}
to_next_boundary -= to_next_boundary_bytes / blocklen;
}
rc = bdev_io_split_submit(bdev_io, iov, iovcnt, md_buf, to_next_boundary,
&current_offset, &remaining);
if (spdk_unlikely(rc)) {
return;
}
}
}
static void
bdev_unmap_split(struct spdk_bdev_io *bdev_io)
{
uint64_t offset, unmap_blocks, remaining, max_unmap_blocks;
uint32_t num_children_reqs = 0;
int rc;
offset = bdev_io->u.bdev.split_current_offset_blocks;
remaining = bdev_io->u.bdev.split_remaining_num_blocks;
max_unmap_blocks = bdev_io->bdev->max_unmap * bdev_io->bdev->max_unmap_segments;
while (remaining && (num_children_reqs < SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS)) {
unmap_blocks = spdk_min(remaining, max_unmap_blocks);
rc = bdev_io_split_submit(bdev_io, NULL, 0, NULL, unmap_blocks,
&offset, &remaining);
if (spdk_likely(rc == 0)) {
num_children_reqs++;
} else {
return;
}
}
}
static void
bdev_write_zeroes_split(struct spdk_bdev_io *bdev_io)
{
uint64_t offset, write_zeroes_blocks, remaining;
uint32_t num_children_reqs = 0;
int rc;
offset = bdev_io->u.bdev.split_current_offset_blocks;
remaining = bdev_io->u.bdev.split_remaining_num_blocks;
while (remaining && (num_children_reqs < SPDK_BDEV_MAX_CHILDREN_UNMAP_WRITE_ZEROES_REQS)) {
write_zeroes_blocks = spdk_min(remaining, bdev_io->bdev->max_write_zeroes);
rc = bdev_io_split_submit(bdev_io, NULL, 0, NULL, write_zeroes_blocks,
&offset, &remaining);
if (spdk_likely(rc == 0)) {
num_children_reqs++;
} else {
return;
}
}
}
static void
bdev_copy_split(struct spdk_bdev_io *bdev_io)
{
uint64_t offset, copy_blocks, remaining;
uint32_t num_children_reqs = 0;
int rc;
offset = bdev_io->u.bdev.split_current_offset_blocks;
remaining = bdev_io->u.bdev.split_remaining_num_blocks;
assert(bdev_io->bdev->max_copy != 0);
while (remaining && (num_children_reqs < SPDK_BDEV_MAX_CHILDREN_COPY_REQS)) {
copy_blocks = spdk_min(remaining, bdev_io->bdev->max_copy);
rc = bdev_io_split_submit(bdev_io, NULL, 0, NULL, copy_blocks,
&offset, &remaining);
if (spdk_likely(rc == 0)) {
num_children_reqs++;
} else {
return;
}
}
}
static void
parent_bdev_io_complete(void *ctx, int rc)
{
struct spdk_bdev_io *parent_io = ctx;
if (rc) {
parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
}
parent_io->internal.cb(parent_io, parent_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS,
parent_io->internal.caller_ctx);
}
static void
bdev_io_complete_parent_sequence_cb(void *ctx, int status)
{
struct spdk_bdev_io *bdev_io = ctx;
/* u.bdev.accel_sequence should have already been cleared at this point */
assert(bdev_io->u.bdev.accel_sequence == NULL);
assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS);
bdev_io->internal.accel_sequence = NULL;
if (spdk_unlikely(status != 0)) {
SPDK_ERRLOG("Failed to execute accel sequence, status=%d\n", status);
}
parent_bdev_io_complete(bdev_io, status);
}
static void
bdev_io_split_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct spdk_bdev_io *parent_io = cb_arg;
spdk_bdev_free_io(bdev_io);
if (!success) {
parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
/* If any child I/O failed, stop further splitting process. */
parent_io->u.bdev.split_current_offset_blocks += parent_io->u.bdev.split_remaining_num_blocks;
parent_io->u.bdev.split_remaining_num_blocks = 0;
}
parent_io->u.bdev.split_outstanding--;
if (parent_io->u.bdev.split_outstanding != 0) {
return;
}
/*
* Parent I/O finishes when all blocks are consumed.
*/
if (parent_io->u.bdev.split_remaining_num_blocks == 0) {
assert(parent_io->internal.cb != bdev_io_split_done);
spdk_trace_record(TRACE_BDEV_IO_DONE, 0, 0, (uintptr_t)parent_io, bdev_io->internal.caller_ctx);
TAILQ_REMOVE(&parent_io->internal.ch->io_submitted, parent_io, internal.ch_link);
if (spdk_likely(parent_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS)) {
if (bdev_io_needs_sequence_exec(parent_io->internal.desc, parent_io)) {
bdev_io_exec_sequence(parent_io, bdev_io_complete_parent_sequence_cb);
return;
} else if (parent_io->internal.orig_iovcnt != 0) {
/* bdev IO will be completed in the callback */
_bdev_io_push_bounce_data_buffer(parent_io, parent_bdev_io_complete);
return;
}
}
parent_bdev_io_complete(parent_io, 0);
return;
}
/*
* Continue with the splitting process. This function will complete the parent I/O if the
* splitting is done.
*/
switch (parent_io->type) {
case SPDK_BDEV_IO_TYPE_READ:
case SPDK_BDEV_IO_TYPE_WRITE:
_bdev_rw_split(parent_io);
break;
case SPDK_BDEV_IO_TYPE_UNMAP:
bdev_unmap_split(parent_io);
break;
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
bdev_write_zeroes_split(parent_io);
break;
case SPDK_BDEV_IO_TYPE_COPY:
bdev_copy_split(parent_io);
break;
default:
assert(false);
break;
}
}
static void bdev_rw_split_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
bool success);
static void
bdev_io_split(struct spdk_bdev_io *bdev_io)
{
assert(bdev_io_should_split(bdev_io));
bdev_io->u.bdev.split_current_offset_blocks = bdev_io->u.bdev.offset_blocks;
bdev_io->u.bdev.split_remaining_num_blocks = bdev_io->u.bdev.num_blocks;
bdev_io->u.bdev.split_outstanding = 0;
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS;
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_READ:
case SPDK_BDEV_IO_TYPE_WRITE:
if (_is_buf_allocated(bdev_io->u.bdev.iovs)) {
_bdev_rw_split(bdev_io);
} else {
assert(bdev_io->type == SPDK_BDEV_IO_TYPE_READ);
spdk_bdev_io_get_buf(bdev_io, bdev_rw_split_get_buf_cb,
bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
}
break;
case SPDK_BDEV_IO_TYPE_UNMAP:
bdev_unmap_split(bdev_io);
break;
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
bdev_write_zeroes_split(bdev_io);
break;
case SPDK_BDEV_IO_TYPE_COPY:
bdev_copy_split(bdev_io);
break;
default:
assert(false);
break;
}
}
static void
bdev_rw_split_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, bool success)
{
if (!success) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
return;
}
_bdev_rw_split(bdev_io);
}
/* Explicitly mark this inline, since it's used as a function pointer and otherwise won't
* be inlined, at least on some compilers.
*/
static inline void
_bdev_io_submit(void *ctx)
{
struct spdk_bdev_io *bdev_io = ctx;
struct spdk_bdev *bdev = bdev_io->bdev;
struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch;
if (spdk_likely(bdev_ch->flags == 0)) {
bdev_io_do_submit(bdev_ch, bdev_io);
return;
}
if (bdev_ch->flags & BDEV_CH_RESET_IN_PROGRESS) {
_bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_ABORTED);
} else if (bdev_ch->flags & BDEV_CH_QOS_ENABLED) {
if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT) &&
bdev_abort_queued_io(&bdev->internal.qos->queued, bdev_io->u.abort.bio_to_abort)) {
_bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
} else {
TAILQ_INSERT_TAIL(&bdev->internal.qos->queued, bdev_io, internal.link);
bdev_qos_io_submit(bdev_ch, bdev->internal.qos);
}
} else {
SPDK_ERRLOG("unknown bdev_ch flag %x found\n", bdev_ch->flags);
_bdev_io_complete_in_submit(bdev_ch, bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
bool bdev_lba_range_overlapped(struct lba_range *range1, struct lba_range *range2);
bool
bdev_lba_range_overlapped(struct lba_range *range1, struct lba_range *range2)
{
if (range1->length == 0 || range2->length == 0) {
return false;
}
if (range1->offset + range1->length <= range2->offset) {
return false;
}
if (range2->offset + range2->length <= range1->offset) {
return false;
}
return true;
}
static bool
bdev_io_range_is_locked(struct spdk_bdev_io *bdev_io, struct lba_range *range)
{
struct spdk_bdev_channel *ch = bdev_io->internal.ch;
struct lba_range r;
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_NVME_IO:
case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
/* Don't try to decode the NVMe command - just assume worst-case and that
* it overlaps a locked range.
*/
return true;
case SPDK_BDEV_IO_TYPE_WRITE:
case SPDK_BDEV_IO_TYPE_UNMAP:
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
case SPDK_BDEV_IO_TYPE_ZCOPY:
case SPDK_BDEV_IO_TYPE_COPY:
r.offset = bdev_io->u.bdev.offset_blocks;
r.length = bdev_io->u.bdev.num_blocks;
if (!bdev_lba_range_overlapped(range, &r)) {
/* This I/O doesn't overlap the specified LBA range. */
return false;
} else if (range->owner_ch == ch && range->locked_ctx == bdev_io->internal.caller_ctx) {
/* This I/O overlaps, but the I/O is on the same channel that locked this
* range, and the caller_ctx is the same as the locked_ctx. This means
* that this I/O is associated with the lock, and is allowed to execute.
*/
return false;
} else {
return true;
}
default:
return false;
}
}
void
bdev_io_submit(struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev *bdev = bdev_io->bdev;
struct spdk_thread *thread = spdk_bdev_io_get_thread(bdev_io);
struct spdk_bdev_channel *ch = bdev_io->internal.ch;
assert(thread != NULL);
assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_PENDING);
if (!TAILQ_EMPTY(&ch->locked_ranges)) {
struct lba_range *range;
TAILQ_FOREACH(range, &ch->locked_ranges, tailq) {
if (bdev_io_range_is_locked(bdev_io, range)) {
TAILQ_INSERT_TAIL(&ch->io_locked, bdev_io, internal.ch_link);
return;
}
}
}
TAILQ_INSERT_TAIL(&ch->io_submitted, bdev_io, internal.ch_link);
bdev_io->internal.submit_tsc = spdk_get_ticks();
spdk_trace_record_tsc(bdev_io->internal.submit_tsc, TRACE_BDEV_IO_START, 0, 0,
(uintptr_t)bdev_io, (uint64_t)bdev_io->type, bdev_io->internal.caller_ctx,
bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks,
spdk_bdev_get_name(bdev));
if (bdev_io->internal.split) {
bdev_io_split(bdev_io);
return;
}
if (ch->flags & BDEV_CH_QOS_ENABLED) {
if ((thread == bdev->internal.qos->thread) || !bdev->internal.qos->thread) {
_bdev_io_submit(bdev_io);
} else {
bdev_io->internal.io_submit_ch = ch;
bdev_io->internal.ch = bdev->internal.qos->ch;
spdk_thread_send_msg(bdev->internal.qos->thread, _bdev_io_submit, bdev_io);
}
} else {
_bdev_io_submit(bdev_io);
}
}
static inline void
_bdev_io_ext_use_bounce_buffer(struct spdk_bdev_io *bdev_io)
{
/* bdev doesn't support memory domains, thereby buffers in this IO request can't
* be accessed directly. It is needed to allocate buffers before issuing IO operation.
* For write operation we need to pull buffers from memory domain before submitting IO.
* Once read operation completes, we need to use memory_domain push functionality to
* update data in original memory domain IO buffer
* This IO request will go through a regular IO flow, so clear memory domains pointers */
bdev_io->u.bdev.memory_domain = NULL;
bdev_io->u.bdev.memory_domain_ctx = NULL;
_bdev_memory_domain_io_get_buf(bdev_io, _bdev_memory_domain_get_io_cb,
bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen);
}
static inline void
_bdev_io_submit_ext(struct spdk_bdev_desc *desc, struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev_channel *ch = bdev_io->internal.ch;
bool needs_exec = bdev_io_needs_sequence_exec(desc, bdev_io);
if (spdk_unlikely(ch->flags & BDEV_CH_RESET_IN_PROGRESS)) {
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_ABORTED;
bdev_io_complete_unsubmitted(bdev_io);
return;
}
/* We need to allocate bounce buffer if bdev doesn't support memory domains, or if it does
* support them, but we need to execute an accel sequence and the data buffer is from accel
* memory domain (to avoid doing a push/pull from that domain).
*/
if ((bdev_io->internal.memory_domain && !desc->memory_domains_supported) ||
(needs_exec && bdev_io->internal.memory_domain == spdk_accel_get_memory_domain())) {
_bdev_io_ext_use_bounce_buffer(bdev_io);
return;
}
if (needs_exec) {
if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
bdev_io_exec_sequence(bdev_io, bdev_io_submit_sequence_cb);
return;
}
/* For reads we'll execute the sequence after the data is read, so, for now, only
* clear out accel_sequence pointer and submit the IO */
assert(bdev_io->type == SPDK_BDEV_IO_TYPE_READ);
bdev_io->u.bdev.accel_sequence = NULL;
}
bdev_io_submit(bdev_io);
}
static void
bdev_io_submit_reset(struct spdk_bdev_io *bdev_io)
{
struct spdk_bdev *bdev = bdev_io->bdev;
struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch;
struct spdk_io_channel *ch = bdev_ch->channel;
assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_PENDING);
bdev_io->internal.in_submit_request = true;
bdev_submit_request(bdev, ch, bdev_io);
bdev_io->internal.in_submit_request = false;
}
void
bdev_io_init(struct spdk_bdev_io *bdev_io,
struct spdk_bdev *bdev, void *cb_arg,
spdk_bdev_io_completion_cb cb)
{
bdev_io->bdev = bdev;
bdev_io->internal.caller_ctx = cb_arg;
bdev_io->internal.cb = cb;
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING;
bdev_io->internal.in_submit_request = false;
bdev_io->internal.buf = NULL;
bdev_io->internal.io_submit_ch = NULL;
bdev_io->internal.orig_iovs = NULL;
bdev_io->internal.orig_iovcnt = 0;
bdev_io->internal.orig_md_iov.iov_base = NULL;
bdev_io->internal.error.nvme.cdw0 = 0;
bdev_io->num_retries = 0;
bdev_io->internal.get_buf_cb = NULL;
bdev_io->internal.get_aux_buf_cb = NULL;
bdev_io->internal.memory_domain = NULL;
bdev_io->internal.memory_domain_ctx = NULL;
bdev_io->internal.data_transfer_cpl = NULL;
bdev_io->internal.split = bdev_io_should_split(bdev_io);
bdev_io->internal.accel_sequence = NULL;
}
static bool
bdev_io_type_supported(struct spdk_bdev *bdev, enum spdk_bdev_io_type io_type)
{
return bdev->fn_table->io_type_supported(bdev->ctxt, io_type);
}
bool
spdk_bdev_io_type_supported(struct spdk_bdev *bdev, enum spdk_bdev_io_type io_type)
{
bool supported;
supported = bdev_io_type_supported(bdev, io_type);
if (!supported) {
switch (io_type) {
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
/* The bdev layer will emulate write zeroes as long as write is supported. */
supported = bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE);
break;
default:
break;
}
}
return supported;
}
uint64_t
spdk_bdev_io_get_submit_tsc(struct spdk_bdev_io *bdev_io)
{
return bdev_io->internal.submit_tsc;
}
int
spdk_bdev_dump_info_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
{
if (bdev->fn_table->dump_info_json) {
return bdev->fn_table->dump_info_json(bdev->ctxt, w);
}
return 0;
}
static void
bdev_qos_update_max_quota_per_timeslice(struct spdk_bdev_qos *qos)
{
uint32_t max_per_timeslice = 0;
int i;
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
if (qos->rate_limits[i].limit == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) {
qos->rate_limits[i].max_per_timeslice = 0;
continue;
}
max_per_timeslice = qos->rate_limits[i].limit *
SPDK_BDEV_QOS_TIMESLICE_IN_USEC / SPDK_SEC_TO_USEC;
qos->rate_limits[i].max_per_timeslice = spdk_max(max_per_timeslice,
qos->rate_limits[i].min_per_timeslice);
qos->rate_limits[i].remaining_this_timeslice = qos->rate_limits[i].max_per_timeslice;
}
bdev_qos_set_ops(qos);
}
static int
bdev_channel_poll_qos(void *arg)
{
struct spdk_bdev_qos *qos = arg;
uint64_t now = spdk_get_ticks();
int i;
if (now < (qos->last_timeslice + qos->timeslice_size)) {
/* We received our callback earlier than expected - return
* immediately and wait to do accounting until at least one
* timeslice has actually expired. This should never happen
* with a well-behaved timer implementation.
*/
return SPDK_POLLER_IDLE;
}
/* Reset for next round of rate limiting */
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
/* We may have allowed the IOs or bytes to slightly overrun in the last
* timeslice. remaining_this_timeslice is signed, so if it's negative
* here, we'll account for the overrun so that the next timeslice will
* be appropriately reduced.
*/
if (qos->rate_limits[i].remaining_this_timeslice > 0) {
qos->rate_limits[i].remaining_this_timeslice = 0;
}
}
while (now >= (qos->last_timeslice + qos->timeslice_size)) {
qos->last_timeslice += qos->timeslice_size;
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
qos->rate_limits[i].remaining_this_timeslice +=
qos->rate_limits[i].max_per_timeslice;
}
}
return bdev_qos_io_submit(qos->ch, qos);
}
static void
bdev_channel_destroy_resource(struct spdk_bdev_channel *ch)
{
struct spdk_bdev_shared_resource *shared_resource;
struct lba_range *range;
bdev_free_io_stat(ch->stat);
#ifdef SPDK_CONFIG_VTUNE
bdev_free_io_stat(ch->prev_stat);
#endif
while (!TAILQ_EMPTY(&ch->locked_ranges)) {
range = TAILQ_FIRST(&ch->locked_ranges);
TAILQ_REMOVE(&ch->locked_ranges, range, tailq);
free(range);
}
spdk_put_io_channel(ch->channel);
spdk_put_io_channel(ch->accel_channel);
shared_resource = ch->shared_resource;
assert(TAILQ_EMPTY(&ch->io_locked));
assert(TAILQ_EMPTY(&ch->io_submitted));
assert(TAILQ_EMPTY(&ch->io_accel_exec));
assert(TAILQ_EMPTY(&ch->io_memory_domain));
assert(ch->io_outstanding == 0);
assert(shared_resource->ref > 0);
shared_resource->ref--;
if (shared_resource->ref == 0) {
assert(shared_resource->io_outstanding == 0);
TAILQ_REMOVE(&shared_resource->mgmt_ch->shared_resources, shared_resource, link);
spdk_put_io_channel(spdk_io_channel_from_ctx(shared_resource->mgmt_ch));
free(shared_resource);
}
}
static void
bdev_enable_qos(struct spdk_bdev *bdev, struct spdk_bdev_channel *ch)
{
struct spdk_bdev_qos *qos = bdev->internal.qos;
int i;
assert(spdk_spin_held(&bdev->internal.spinlock));
/* Rate limiting on this bdev enabled */
if (qos) {
if (qos->ch == NULL) {
struct spdk_io_channel *io_ch;
SPDK_DEBUGLOG(bdev, "Selecting channel %p as QoS channel for bdev %s on thread %p\n", ch,
bdev->name, spdk_get_thread());
/* No qos channel has been selected, so set one up */
/* Take another reference to ch */
io_ch = spdk_get_io_channel(__bdev_to_io_dev(bdev));
assert(io_ch != NULL);
qos->ch = ch;
qos->thread = spdk_io_channel_get_thread(io_ch);
TAILQ_INIT(&qos->queued);
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
if (bdev_qos_is_iops_rate_limit(i) == true) {
qos->rate_limits[i].min_per_timeslice =
SPDK_BDEV_QOS_MIN_IO_PER_TIMESLICE;
} else {
qos->rate_limits[i].min_per_timeslice =
SPDK_BDEV_QOS_MIN_BYTE_PER_TIMESLICE;
}
if (qos->rate_limits[i].limit == 0) {
qos->rate_limits[i].limit = SPDK_BDEV_QOS_LIMIT_NOT_DEFINED;
}
}
bdev_qos_update_max_quota_per_timeslice(qos);
qos->timeslice_size =
SPDK_BDEV_QOS_TIMESLICE_IN_USEC * spdk_get_ticks_hz() / SPDK_SEC_TO_USEC;
qos->last_timeslice = spdk_get_ticks();
qos->poller = SPDK_POLLER_REGISTER(bdev_channel_poll_qos,
qos,
SPDK_BDEV_QOS_TIMESLICE_IN_USEC);
}
ch->flags |= BDEV_CH_QOS_ENABLED;
}
}
struct poll_timeout_ctx {
struct spdk_bdev_desc *desc;
uint64_t timeout_in_sec;
spdk_bdev_io_timeout_cb cb_fn;
void *cb_arg;
};
static void
bdev_desc_free(struct spdk_bdev_desc *desc)
{
spdk_spin_destroy(&desc->spinlock);
free(desc->media_events_buffer);
free(desc);
}
static void
bdev_channel_poll_timeout_io_done(struct spdk_bdev *bdev, void *_ctx, int status)
{
struct poll_timeout_ctx *ctx = _ctx;
struct spdk_bdev_desc *desc = ctx->desc;
free(ctx);
spdk_spin_lock(&desc->spinlock);
desc->refs--;
if (desc->closed == true && desc->refs == 0) {
spdk_spin_unlock(&desc->spinlock);
bdev_desc_free(desc);
return;
}
spdk_spin_unlock(&desc->spinlock);
}
static void
bdev_channel_poll_timeout_io(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev,
struct spdk_io_channel *io_ch, void *_ctx)
{
struct poll_timeout_ctx *ctx = _ctx;
struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(io_ch);
struct spdk_bdev_desc *desc = ctx->desc;
struct spdk_bdev_io *bdev_io;
uint64_t now;
spdk_spin_lock(&desc->spinlock);
if (desc->closed == true) {
spdk_spin_unlock(&desc->spinlock);
spdk_bdev_for_each_channel_continue(i, -1);
return;
}
spdk_spin_unlock(&desc->spinlock);
now = spdk_get_ticks();
TAILQ_FOREACH(bdev_io, &bdev_ch->io_submitted, internal.ch_link) {
/* Exclude any I/O that are generated via splitting. */
if (bdev_io->internal.cb == bdev_io_split_done) {
continue;
}
/* Once we find an I/O that has not timed out, we can immediately
* exit the loop.
*/
if (now < (bdev_io->internal.submit_tsc +
ctx->timeout_in_sec * spdk_get_ticks_hz())) {
goto end;
}
if (bdev_io->internal.desc == desc) {
ctx->cb_fn(ctx->cb_arg, bdev_io);
}
}
end:
spdk_bdev_for_each_channel_continue(i, 0);
}
static int
bdev_poll_timeout_io(void *arg)
{
struct spdk_bdev_desc *desc = arg;
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct poll_timeout_ctx *ctx;
ctx = calloc(1, sizeof(struct poll_timeout_ctx));
if (!ctx) {
SPDK_ERRLOG("failed to allocate memory\n");
return SPDK_POLLER_BUSY;
}
ctx->desc = desc;
ctx->cb_arg = desc->cb_arg;
ctx->cb_fn = desc->cb_fn;
ctx->timeout_in_sec = desc->timeout_in_sec;
/* Take a ref on the descriptor in case it gets closed while we are checking
* all of the channels.
*/
spdk_spin_lock(&desc->spinlock);
desc->refs++;
spdk_spin_unlock(&desc->spinlock);
spdk_bdev_for_each_channel(bdev, bdev_channel_poll_timeout_io, ctx,
bdev_channel_poll_timeout_io_done);
return SPDK_POLLER_BUSY;
}
int
spdk_bdev_set_timeout(struct spdk_bdev_desc *desc, uint64_t timeout_in_sec,
spdk_bdev_io_timeout_cb cb_fn, void *cb_arg)
{
assert(desc->thread == spdk_get_thread());
spdk_poller_unregister(&desc->io_timeout_poller);
if (timeout_in_sec) {
assert(cb_fn != NULL);
desc->io_timeout_poller = SPDK_POLLER_REGISTER(bdev_poll_timeout_io,
desc,
SPDK_BDEV_IO_POLL_INTERVAL_IN_MSEC * SPDK_SEC_TO_USEC /
1000);
if (desc->io_timeout_poller == NULL) {
SPDK_ERRLOG("can not register the desc timeout IO poller\n");
return -1;
}
}
desc->cb_fn = cb_fn;
desc->cb_arg = cb_arg;
desc->timeout_in_sec = timeout_in_sec;
return 0;
}
static int
bdev_channel_create(void *io_device, void *ctx_buf)
{
struct spdk_bdev *bdev = __bdev_from_io_dev(io_device);
struct spdk_bdev_channel *ch = ctx_buf;
struct spdk_io_channel *mgmt_io_ch;
struct spdk_bdev_mgmt_channel *mgmt_ch;
struct spdk_bdev_shared_resource *shared_resource;
struct lba_range *range;
ch->bdev = bdev;
ch->channel = bdev->fn_table->get_io_channel(bdev->ctxt);
if (!ch->channel) {
return -1;
}
ch->accel_channel = spdk_accel_get_io_channel();
if (!ch->accel_channel) {
spdk_put_io_channel(ch->channel);
return -1;
}
spdk_trace_record(TRACE_BDEV_IOCH_CREATE, 0, 0, 0, ch->bdev->name,
spdk_thread_get_id(spdk_io_channel_get_thread(ch->channel)));
assert(ch->histogram == NULL);
if (bdev->internal.histogram_enabled) {
ch->histogram = spdk_histogram_data_alloc();
if (ch->histogram == NULL) {
SPDK_ERRLOG("Could not allocate histogram\n");
}
}
mgmt_io_ch = spdk_get_io_channel(&g_bdev_mgr);
if (!mgmt_io_ch) {
spdk_put_io_channel(ch->channel);
spdk_put_io_channel(ch->accel_channel);
return -1;
}
mgmt_ch = __io_ch_to_bdev_mgmt_ch(mgmt_io_ch);
TAILQ_FOREACH(shared_resource, &mgmt_ch->shared_resources, link) {
if (shared_resource->shared_ch == ch->channel) {
spdk_put_io_channel(mgmt_io_ch);
shared_resource->ref++;
break;
}
}
if (shared_resource == NULL) {
shared_resource = calloc(1, sizeof(*shared_resource));
if (shared_resource == NULL) {
spdk_put_io_channel(ch->channel);
spdk_put_io_channel(ch->accel_channel);
spdk_put_io_channel(mgmt_io_ch);
return -1;
}
shared_resource->mgmt_ch = mgmt_ch;
shared_resource->io_outstanding = 0;
TAILQ_INIT(&shared_resource->nomem_io);
shared_resource->nomem_threshold = 0;
shared_resource->shared_ch = ch->channel;
shared_resource->ref = 1;
TAILQ_INSERT_TAIL(&mgmt_ch->shared_resources, shared_resource, link);
}
ch->io_outstanding = 0;
TAILQ_INIT(&ch->queued_resets);
TAILQ_INIT(&ch->locked_ranges);
ch->flags = 0;
ch->shared_resource = shared_resource;
TAILQ_INIT(&ch->io_submitted);
TAILQ_INIT(&ch->io_locked);
TAILQ_INIT(&ch->io_accel_exec);
TAILQ_INIT(&ch->io_memory_domain);
ch->stat = bdev_alloc_io_stat(false);
if (ch->stat == NULL) {
bdev_channel_destroy_resource(ch);
return -1;
}
ch->stat->ticks_rate = spdk_get_ticks_hz();
#ifdef SPDK_CONFIG_VTUNE
{
char *name;
__itt_init_ittlib(NULL, 0);
name = spdk_sprintf_alloc("spdk_bdev_%s_%p", ch->bdev->name, ch);
if (!name) {
bdev_channel_destroy_resource(ch);
return -1;
}
ch->handle = __itt_string_handle_create(name);
free(name);
ch->start_tsc = spdk_get_ticks();
ch->interval_tsc = spdk_get_ticks_hz() / 100;
ch->prev_stat = bdev_alloc_io_stat(false);
if (ch->prev_stat == NULL) {
bdev_channel_destroy_resource(ch);
return -1;
}
}
#endif
spdk_spin_lock(&bdev->internal.spinlock);
bdev_enable_qos(bdev, ch);
TAILQ_FOREACH(range, &bdev->internal.locked_ranges, tailq) {
struct lba_range *new_range;
new_range = calloc(1, sizeof(*new_range));
if (new_range == NULL) {
spdk_spin_unlock(&bdev->internal.spinlock);
bdev_channel_destroy_resource(ch);
return -1;
}
new_range->length = range->length;
new_range->offset = range->offset;
new_range->locked_ctx = range->locked_ctx;
TAILQ_INSERT_TAIL(&ch->locked_ranges, new_range, tailq);
}
spdk_spin_unlock(&bdev->internal.spinlock);
return 0;
}
static int
bdev_abort_all_buf_io_cb(struct spdk_iobuf_channel *ch, struct spdk_iobuf_entry *entry,
void *cb_ctx)
{
struct spdk_bdev_channel *bdev_ch = cb_ctx;
struct spdk_bdev_io *bdev_io;
uint64_t buf_len;
bdev_io = SPDK_CONTAINEROF(entry, struct spdk_bdev_io, internal.iobuf);
if (bdev_io->internal.ch == bdev_ch) {
buf_len = bdev_io_get_max_buf_len(bdev_io, bdev_io->internal.buf_len);
spdk_iobuf_entry_abort(ch, entry, buf_len);
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED);
}
return 0;
}
/*
* Abort I/O that are waiting on a data buffer.
*/
static void
bdev_abort_all_buf_io(struct spdk_bdev_mgmt_channel *mgmt_ch, struct spdk_bdev_channel *ch)
{
spdk_iobuf_for_each_entry(&mgmt_ch->iobuf, &mgmt_ch->iobuf.small,
bdev_abort_all_buf_io_cb, ch);
spdk_iobuf_for_each_entry(&mgmt_ch->iobuf, &mgmt_ch->iobuf.large,
bdev_abort_all_buf_io_cb, ch);
}
/*
* Abort I/O that are queued waiting for submission. These types of I/O are
* linked using the spdk_bdev_io link TAILQ_ENTRY.
*/
static void
bdev_abort_all_queued_io(bdev_io_tailq_t *queue, struct spdk_bdev_channel *ch)
{
struct spdk_bdev_io *bdev_io, *tmp;
TAILQ_FOREACH_SAFE(bdev_io, queue, internal.link, tmp) {
if (bdev_io->internal.ch == ch) {
TAILQ_REMOVE(queue, bdev_io, internal.link);
/*
* spdk_bdev_io_complete() assumes that the completed I/O had
* been submitted to the bdev module. Since in this case it
* hadn't, bump io_outstanding to account for the decrement
* that spdk_bdev_io_complete() will do.
*/
if (bdev_io->type != SPDK_BDEV_IO_TYPE_RESET) {
ch->io_outstanding++;
ch->shared_resource->io_outstanding++;
}
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED);
}
}
}
static bool
bdev_abort_queued_io(bdev_io_tailq_t *queue, struct spdk_bdev_io *bio_to_abort)
{
struct spdk_bdev_io *bdev_io;
TAILQ_FOREACH(bdev_io, queue, internal.link) {
if (bdev_io == bio_to_abort) {
TAILQ_REMOVE(queue, bio_to_abort, internal.link);
spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_ABORTED);
return true;
}
}
return false;
}
static int
bdev_abort_buf_io_cb(struct spdk_iobuf_channel *ch, struct spdk_iobuf_entry *entry, void *cb_ctx)
{
struct spdk_bdev_io *bdev_io, *bio_to_abort = cb_ctx;
uint64_t buf_len;
bdev_io = SPDK_CONTAINEROF(entry, struct spdk_bdev_io, internal.iobuf);
if (bdev_io == bio_to_abort) {
buf_len = bdev_io_get_max_buf_len(bdev_io, bdev_io->internal.buf_len);
spdk_iobuf_entry_abort(ch, entry, buf_len);
spdk_bdev_io_complete(bio_to_abort, SPDK_BDEV_IO_STATUS_ABORTED);
return 1;
}
return 0;
}
static bool
bdev_abort_buf_io(struct spdk_bdev_mgmt_channel *mgmt_ch, struct spdk_bdev_io *bio_to_abort)
{
int rc;
rc = spdk_iobuf_for_each_entry(&mgmt_ch->iobuf, &mgmt_ch->iobuf.small,
bdev_abort_buf_io_cb, bio_to_abort);
if (rc == 1) {
return true;
}
rc = spdk_iobuf_for_each_entry(&mgmt_ch->iobuf, &mgmt_ch->iobuf.large,
bdev_abort_buf_io_cb, bio_to_abort);
return rc == 1;
}
static void
bdev_qos_channel_destroy(void *cb_arg)
{
struct spdk_bdev_qos *qos = cb_arg;
spdk_put_io_channel(spdk_io_channel_from_ctx(qos->ch));
spdk_poller_unregister(&qos->poller);
SPDK_DEBUGLOG(bdev, "Free QoS %p.\n", qos);
free(qos);
}
static int
bdev_qos_destroy(struct spdk_bdev *bdev)
{
int i;
/*
* Cleanly shutting down the QoS poller is tricky, because
* during the asynchronous operation the user could open
* a new descriptor and create a new channel, spawning
* a new QoS poller.
*
* The strategy is to create a new QoS structure here and swap it
* in. The shutdown path then continues to refer to the old one
* until it completes and then releases it.
*/
struct spdk_bdev_qos *new_qos, *old_qos;
old_qos = bdev->internal.qos;
new_qos = calloc(1, sizeof(*new_qos));
if (!new_qos) {
SPDK_ERRLOG("Unable to allocate memory to shut down QoS.\n");
return -ENOMEM;
}
/* Copy the old QoS data into the newly allocated structure */
memcpy(new_qos, old_qos, sizeof(*new_qos));
/* Zero out the key parts of the QoS structure */
new_qos->ch = NULL;
new_qos->thread = NULL;
new_qos->poller = NULL;
TAILQ_INIT(&new_qos->queued);
/*
* The limit member of spdk_bdev_qos_limit structure is not zeroed.
* It will be used later for the new QoS structure.
*/
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
new_qos->rate_limits[i].remaining_this_timeslice = 0;
new_qos->rate_limits[i].min_per_timeslice = 0;
new_qos->rate_limits[i].max_per_timeslice = 0;
}
bdev->internal.qos = new_qos;
if (old_qos->thread == NULL) {
free(old_qos);
} else {
spdk_thread_send_msg(old_qos->thread, bdev_qos_channel_destroy, old_qos);
}
/* It is safe to continue with destroying the bdev even though the QoS channel hasn't
* been destroyed yet. The destruction path will end up waiting for the final
* channel to be put before it releases resources. */
return 0;
}
void
spdk_bdev_add_io_stat(struct spdk_bdev_io_stat *total, struct spdk_bdev_io_stat *add)
{
total->bytes_read += add->bytes_read;
total->num_read_ops += add->num_read_ops;
total->bytes_written += add->bytes_written;
total->num_write_ops += add->num_write_ops;
total->bytes_unmapped += add->bytes_unmapped;
total->num_unmap_ops += add->num_unmap_ops;
total->bytes_copied += add->bytes_copied;
total->num_copy_ops += add->num_copy_ops;
total->read_latency_ticks += add->read_latency_ticks;
total->write_latency_ticks += add->write_latency_ticks;
total->unmap_latency_ticks += add->unmap_latency_ticks;
total->copy_latency_ticks += add->copy_latency_ticks;
if (total->max_read_latency_ticks < add->max_read_latency_ticks) {
total->max_read_latency_ticks = add->max_read_latency_ticks;
}
if (total->min_read_latency_ticks > add->min_read_latency_ticks) {
total->min_read_latency_ticks = add->min_read_latency_ticks;
}
if (total->max_write_latency_ticks < add->max_write_latency_ticks) {
total->max_write_latency_ticks = add->max_write_latency_ticks;
}
if (total->min_write_latency_ticks > add->min_write_latency_ticks) {
total->min_write_latency_ticks = add->min_write_latency_ticks;
}
if (total->max_unmap_latency_ticks < add->max_unmap_latency_ticks) {
total->max_unmap_latency_ticks = add->max_unmap_latency_ticks;
}
if (total->min_unmap_latency_ticks > add->min_unmap_latency_ticks) {
total->min_unmap_latency_ticks = add->min_unmap_latency_ticks;
}
if (total->max_copy_latency_ticks < add->max_copy_latency_ticks) {
total->max_copy_latency_ticks = add->max_copy_latency_ticks;
}
if (total->min_copy_latency_ticks > add->min_copy_latency_ticks) {
total->min_copy_latency_ticks = add->min_copy_latency_ticks;
}
}
static void
bdev_get_io_stat(struct spdk_bdev_io_stat *to_stat, struct spdk_bdev_io_stat *from_stat)
{
memcpy(to_stat, from_stat, offsetof(struct spdk_bdev_io_stat, io_error));
if (to_stat->io_error != NULL && from_stat->io_error != NULL) {
memcpy(to_stat->io_error, from_stat->io_error,
sizeof(struct spdk_bdev_io_error_stat));
}
}
void
spdk_bdev_reset_io_stat(struct spdk_bdev_io_stat *stat, enum spdk_bdev_reset_stat_mode mode)
{
stat->max_read_latency_ticks = 0;
stat->min_read_latency_ticks = UINT64_MAX;
stat->max_write_latency_ticks = 0;
stat->min_write_latency_ticks = UINT64_MAX;
stat->max_unmap_latency_ticks = 0;
stat->min_unmap_latency_ticks = UINT64_MAX;
stat->max_copy_latency_ticks = 0;
stat->min_copy_latency_ticks = UINT64_MAX;
if (mode != SPDK_BDEV_RESET_STAT_ALL) {
return;
}
stat->bytes_read = 0;
stat->num_read_ops = 0;
stat->bytes_written = 0;
stat->num_write_ops = 0;
stat->bytes_unmapped = 0;
stat->num_unmap_ops = 0;
stat->bytes_copied = 0;
stat->num_copy_ops = 0;
stat->read_latency_ticks = 0;
stat->write_latency_ticks = 0;
stat->unmap_latency_ticks = 0;
stat->copy_latency_ticks = 0;
if (stat->io_error != NULL) {
memset(stat->io_error, 0, sizeof(struct spdk_bdev_io_error_stat));
}
}
struct spdk_bdev_io_stat *
bdev_alloc_io_stat(bool io_error_stat)
{
struct spdk_bdev_io_stat *stat;
stat = malloc(sizeof(struct spdk_bdev_io_stat));
if (stat == NULL) {
return NULL;
}
if (io_error_stat) {
stat->io_error = malloc(sizeof(struct spdk_bdev_io_error_stat));
if (stat->io_error == NULL) {
free(stat);
return NULL;
}
} else {
stat->io_error = NULL;
}
spdk_bdev_reset_io_stat(stat, SPDK_BDEV_RESET_STAT_ALL);
return stat;
}
void
bdev_free_io_stat(struct spdk_bdev_io_stat *stat)
{
if (stat != NULL) {
free(stat->io_error);
free(stat);
}
}
void
spdk_bdev_dump_io_stat_json(struct spdk_bdev_io_stat *stat, struct spdk_json_write_ctx *w)
{
int i;
spdk_json_write_named_uint64(w, "bytes_read", stat->bytes_read);
spdk_json_write_named_uint64(w, "num_read_ops", stat->num_read_ops);
spdk_json_write_named_uint64(w, "bytes_written", stat->bytes_written);
spdk_json_write_named_uint64(w, "num_write_ops", stat->num_write_ops);
spdk_json_write_named_uint64(w, "bytes_unmapped", stat->bytes_unmapped);
spdk_json_write_named_uint64(w, "num_unmap_ops", stat->num_unmap_ops);
spdk_json_write_named_uint64(w, "bytes_copied", stat->bytes_copied);
spdk_json_write_named_uint64(w, "num_copy_ops", stat->num_copy_ops);
spdk_json_write_named_uint64(w, "read_latency_ticks", stat->read_latency_ticks);
spdk_json_write_named_uint64(w, "max_read_latency_ticks", stat->max_read_latency_ticks);
spdk_json_write_named_uint64(w, "min_read_latency_ticks",
stat->min_read_latency_ticks != UINT64_MAX ?
stat->min_read_latency_ticks : 0);
spdk_json_write_named_uint64(w, "write_latency_ticks", stat->write_latency_ticks);
spdk_json_write_named_uint64(w, "max_write_latency_ticks", stat->max_write_latency_ticks);
spdk_json_write_named_uint64(w, "min_write_latency_ticks",
stat->min_write_latency_ticks != UINT64_MAX ?
stat->min_write_latency_ticks : 0);
spdk_json_write_named_uint64(w, "unmap_latency_ticks", stat->unmap_latency_ticks);
spdk_json_write_named_uint64(w, "max_unmap_latency_ticks", stat->max_unmap_latency_ticks);
spdk_json_write_named_uint64(w, "min_unmap_latency_ticks",
stat->min_unmap_latency_ticks != UINT64_MAX ?
stat->min_unmap_latency_ticks : 0);
spdk_json_write_named_uint64(w, "copy_latency_ticks", stat->copy_latency_ticks);
spdk_json_write_named_uint64(w, "max_copy_latency_ticks", stat->max_copy_latency_ticks);
spdk_json_write_named_uint64(w, "min_copy_latency_ticks",
stat->min_copy_latency_ticks != UINT64_MAX ?
stat->min_copy_latency_ticks : 0);
if (stat->io_error != NULL) {
spdk_json_write_named_object_begin(w, "io_error");
for (i = 0; i < -SPDK_MIN_BDEV_IO_STATUS; i++) {
if (stat->io_error->error_status[i] != 0) {
spdk_json_write_named_uint32(w, bdev_io_status_get_string(-(i + 1)),
stat->io_error->error_status[i]);
}
}
spdk_json_write_object_end(w);
}
}
static void
bdev_channel_abort_queued_ios(struct spdk_bdev_channel *ch)
{
struct spdk_bdev_shared_resource *shared_resource = ch->shared_resource;
struct spdk_bdev_mgmt_channel *mgmt_ch = shared_resource->mgmt_ch;
bdev_abort_all_queued_io(&shared_resource->nomem_io, ch);
bdev_abort_all_buf_io(mgmt_ch, ch);
bdev_abort_all_buf_io(mgmt_ch, ch);
}
static void
bdev_channel_destroy(void *io_device, void *ctx_buf)
{
struct spdk_bdev_channel *ch = ctx_buf;
SPDK_DEBUGLOG(bdev, "Destroying channel %p for bdev %s on thread %p\n", ch, ch->bdev->name,
spdk_get_thread());
spdk_trace_record(TRACE_BDEV_IOCH_DESTROY, 0, 0, 0, ch->bdev->name,
spdk_thread_get_id(spdk_io_channel_get_thread(ch->channel)));
/* This channel is going away, so add its statistics into the bdev so that they don't get lost. */
spdk_spin_lock(&ch->bdev->internal.spinlock);
spdk_bdev_add_io_stat(ch->bdev->internal.stat, ch->stat);
spdk_spin_unlock(&ch->bdev->internal.spinlock);
bdev_abort_all_queued_io(&ch->queued_resets, ch);
bdev_channel_abort_queued_ios(ch);
if (ch->histogram) {
spdk_histogram_data_free(ch->histogram);
}
bdev_channel_destroy_resource(ch);
}
/*
* If the name already exists in the global bdev name tree, RB_INSERT() returns a pointer
* to it. Hence we do not have to call bdev_get_by_name() when using this function.
*/
static int
bdev_name_add(struct spdk_bdev_name *bdev_name, struct spdk_bdev *bdev, const char *name)
{
struct spdk_bdev_name *tmp;
bdev_name->name = strdup(name);
if (bdev_name->name == NULL) {
SPDK_ERRLOG("Unable to allocate bdev name\n");
return -ENOMEM;
}
bdev_name->bdev = bdev;
spdk_spin_lock(&g_bdev_mgr.spinlock);
tmp = RB_INSERT(bdev_name_tree, &g_bdev_mgr.bdev_names, bdev_name);
spdk_spin_unlock(&g_bdev_mgr.spinlock);
if (tmp != NULL) {
SPDK_ERRLOG("Bdev name %s already exists\n", name);
free(bdev_name->name);
return -EEXIST;
}
return 0;
}
static void
bdev_name_del_unsafe(struct spdk_bdev_name *bdev_name)
{
RB_REMOVE(bdev_name_tree, &g_bdev_mgr.bdev_names, bdev_name);
free(bdev_name->name);
}
static void
bdev_name_del(struct spdk_bdev_name *bdev_name)
{
spdk_spin_lock(&g_bdev_mgr.spinlock);
bdev_name_del_unsafe(bdev_name);
spdk_spin_unlock(&g_bdev_mgr.spinlock);
}
int
spdk_bdev_alias_add(struct spdk_bdev *bdev, const char *alias)
{
struct spdk_bdev_alias *tmp;
int ret;
if (alias == NULL) {
SPDK_ERRLOG("Empty alias passed\n");
return -EINVAL;
}
tmp = calloc(1, sizeof(*tmp));
if (tmp == NULL) {
SPDK_ERRLOG("Unable to allocate alias\n");
return -ENOMEM;
}
ret = bdev_name_add(&tmp->alias, bdev, alias);
if (ret != 0) {
free(tmp);
return ret;
}
TAILQ_INSERT_TAIL(&bdev->aliases, tmp, tailq);
return 0;
}
static int
bdev_alias_del(struct spdk_bdev *bdev, const char *alias,
void (*alias_del_fn)(struct spdk_bdev_name *n))
{
struct spdk_bdev_alias *tmp;
TAILQ_FOREACH(tmp, &bdev->aliases, tailq) {
if (strcmp(alias, tmp->alias.name) == 0) {
TAILQ_REMOVE(&bdev->aliases, tmp, tailq);
alias_del_fn(&tmp->alias);
free(tmp);
return 0;
}
}
return -ENOENT;
}
int
spdk_bdev_alias_del(struct spdk_bdev *bdev, const char *alias)
{
int rc;
rc = bdev_alias_del(bdev, alias, bdev_name_del);
if (rc == -ENOENT) {
SPDK_INFOLOG(bdev, "Alias %s does not exist\n", alias);
}
return rc;
}
void
spdk_bdev_alias_del_all(struct spdk_bdev *bdev)
{
struct spdk_bdev_alias *p, *tmp;
TAILQ_FOREACH_SAFE(p, &bdev->aliases, tailq, tmp) {
TAILQ_REMOVE(&bdev->aliases, p, tailq);
bdev_name_del(&p->alias);
free(p);
}
}
struct spdk_io_channel *
spdk_bdev_get_io_channel(struct spdk_bdev_desc *desc)
{
return spdk_get_io_channel(__bdev_to_io_dev(spdk_bdev_desc_get_bdev(desc)));
}
void *
spdk_bdev_get_module_ctx(struct spdk_bdev_desc *desc)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
void *ctx = NULL;
if (bdev->fn_table->get_module_ctx) {
ctx = bdev->fn_table->get_module_ctx(bdev->ctxt);
}
return ctx;
}
const char *
spdk_bdev_get_module_name(const struct spdk_bdev *bdev)
{
return bdev->module->name;
}
const char *
spdk_bdev_get_name(const struct spdk_bdev *bdev)
{
return bdev->name;
}
const char *
spdk_bdev_get_product_name(const struct spdk_bdev *bdev)
{
return bdev->product_name;
}
const struct spdk_bdev_aliases_list *
spdk_bdev_get_aliases(const struct spdk_bdev *bdev)
{
return &bdev->aliases;
}
const char *
spdk_bdev_get_creation_time(const struct spdk_bdev *bdev)
{
return bdev->creation_time;
}
uint32_t
spdk_bdev_get_block_size(const struct spdk_bdev *bdev)
{
return bdev->blocklen;
}
uint32_t
spdk_bdev_get_write_unit_size(const struct spdk_bdev *bdev)
{
return bdev->write_unit_size;
}
uint64_t
spdk_bdev_get_num_blocks(const struct spdk_bdev *bdev)
{
return bdev->blockcnt;
}
const char *
spdk_bdev_get_qos_rpc_type(enum spdk_bdev_qos_rate_limit_type type)
{
return qos_rpc_type[type];
}
void
spdk_bdev_get_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits)
{
int i;
memset(limits, 0, sizeof(*limits) * SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES);
spdk_spin_lock(&bdev->internal.spinlock);
if (bdev->internal.qos) {
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
if (bdev->internal.qos->rate_limits[i].limit !=
SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) {
limits[i] = bdev->internal.qos->rate_limits[i].limit;
if (bdev_qos_is_iops_rate_limit(i) == false) {
/* Change from Byte to Megabyte which is user visible. */
limits[i] = limits[i] / 1024 / 1024;
}
}
}
}
spdk_spin_unlock(&bdev->internal.spinlock);
}
size_t
spdk_bdev_get_buf_align(const struct spdk_bdev *bdev)
{
return 1 << bdev->required_alignment;
}
uint32_t
spdk_bdev_get_optimal_io_boundary(const struct spdk_bdev *bdev)
{
return bdev->optimal_io_boundary;
}
bool
spdk_bdev_has_write_cache(const struct spdk_bdev *bdev)
{
return bdev->write_cache;
}
const struct spdk_uuid *
spdk_bdev_get_uuid(const struct spdk_bdev *bdev)
{
return &bdev->uuid;
}
uint16_t
spdk_bdev_get_acwu(const struct spdk_bdev *bdev)
{
return bdev->acwu;
}
uint32_t
spdk_bdev_get_md_size(const struct spdk_bdev *bdev)
{
return bdev->md_len;
}
bool
spdk_bdev_is_md_interleaved(const struct spdk_bdev *bdev)
{
return (bdev->md_len != 0) && bdev->md_interleave;
}
bool
spdk_bdev_is_md_separate(const struct spdk_bdev *bdev)
{
return (bdev->md_len != 0) && !bdev->md_interleave;
}
bool
spdk_bdev_is_zoned(const struct spdk_bdev *bdev)
{
return bdev->zoned;
}
uint32_t
spdk_bdev_get_data_block_size(const struct spdk_bdev *bdev)
{
if (spdk_bdev_is_md_interleaved(bdev)) {
return bdev->blocklen - bdev->md_len;
} else {
return bdev->blocklen;
}
}
uint32_t
spdk_bdev_get_physical_block_size(const struct spdk_bdev *bdev)
{
return bdev->phys_blocklen;
}
static uint32_t
_bdev_get_block_size_with_md(const struct spdk_bdev *bdev)
{
if (!spdk_bdev_is_md_interleaved(bdev)) {
return bdev->blocklen + bdev->md_len;
} else {
return bdev->blocklen;
}
}
/* We have to use the typedef in the function declaration to appease astyle. */
typedef enum spdk_dif_type spdk_dif_type_t;
spdk_dif_type_t
spdk_bdev_get_dif_type(const struct spdk_bdev *bdev)
{
if (bdev->md_len != 0) {
return bdev->dif_type;
} else {
return SPDK_DIF_DISABLE;
}
}
bool
spdk_bdev_is_dif_head_of_md(const struct spdk_bdev *bdev)
{
if (spdk_bdev_get_dif_type(bdev) != SPDK_DIF_DISABLE) {
return bdev->dif_is_head_of_md;
} else {
return false;
}
}
bool
spdk_bdev_is_dif_check_enabled(const struct spdk_bdev *bdev,
enum spdk_dif_check_type check_type)
{
if (spdk_bdev_get_dif_type(bdev) == SPDK_DIF_DISABLE) {
return false;
}
switch (check_type) {
case SPDK_DIF_CHECK_TYPE_REFTAG:
return (bdev->dif_check_flags & SPDK_DIF_FLAGS_REFTAG_CHECK) != 0;
case SPDK_DIF_CHECK_TYPE_APPTAG:
return (bdev->dif_check_flags & SPDK_DIF_FLAGS_APPTAG_CHECK) != 0;
case SPDK_DIF_CHECK_TYPE_GUARD:
return (bdev->dif_check_flags & SPDK_DIF_FLAGS_GUARD_CHECK) != 0;
default:
return false;
}
}
static uint32_t
bdev_get_max_write(const struct spdk_bdev *bdev, uint64_t num_bytes)
{
uint64_t aligned_length, max_write_blocks;
aligned_length = num_bytes - (spdk_bdev_get_buf_align(bdev) - 1);
max_write_blocks = aligned_length / _bdev_get_block_size_with_md(bdev);
max_write_blocks -= max_write_blocks % bdev->write_unit_size;
return max_write_blocks;
}
uint32_t
spdk_bdev_get_max_copy(const struct spdk_bdev *bdev)
{
return bdev->max_copy;
}
uint64_t
spdk_bdev_get_qd(const struct spdk_bdev *bdev)
{
return bdev->internal.measured_queue_depth;
}
uint64_t
spdk_bdev_get_qd_sampling_period(const struct spdk_bdev *bdev)
{
return bdev->internal.period;
}
uint64_t
spdk_bdev_get_weighted_io_time(const struct spdk_bdev *bdev)
{
return bdev->internal.weighted_io_time;
}
uint64_t
spdk_bdev_get_io_time(const struct spdk_bdev *bdev)
{
return bdev->internal.io_time;
}
static void bdev_update_qd_sampling_period(void *ctx);
static void
_calculate_measured_qd_cpl(struct spdk_bdev *bdev, void *_ctx, int status)
{
bdev->internal.measured_queue_depth = bdev->internal.temporary_queue_depth;
if (bdev->internal.measured_queue_depth) {
bdev->internal.io_time += bdev->internal.period;
bdev->internal.weighted_io_time += bdev->internal.period * bdev->internal.measured_queue_depth;
}
bdev->internal.qd_poll_in_progress = false;
bdev_update_qd_sampling_period(bdev);
}
static void
_calculate_measured_qd(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev,
struct spdk_io_channel *io_ch, void *_ctx)
{
struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(io_ch);
bdev->internal.temporary_queue_depth += ch->io_outstanding;
spdk_bdev_for_each_channel_continue(i, 0);
}
static int
bdev_calculate_measured_queue_depth(void *ctx)
{
struct spdk_bdev *bdev = ctx;
bdev->internal.qd_poll_in_progress = true;
bdev->internal.temporary_queue_depth = 0;
spdk_bdev_for_each_channel(bdev, _calculate_measured_qd, bdev, _calculate_measured_qd_cpl);
return SPDK_POLLER_BUSY;
}
static void
bdev_update_qd_sampling_period(void *ctx)
{
struct spdk_bdev *bdev = ctx;
if (bdev->internal.period == bdev->internal.new_period) {
return;
}
if (bdev->internal.qd_poll_in_progress) {
return;
}
bdev->internal.period = bdev->internal.new_period;
spdk_poller_unregister(&bdev->internal.qd_poller);
if (bdev->internal.period != 0) {
bdev->internal.qd_poller = SPDK_POLLER_REGISTER(bdev_calculate_measured_queue_depth,
bdev, bdev->internal.period);
} else {
spdk_bdev_close(bdev->internal.qd_desc);
bdev->internal.qd_desc = NULL;
}
}
static void
_tmp_bdev_event_cb(enum spdk_bdev_event_type type, struct spdk_bdev *bdev, void *ctx)
{
SPDK_NOTICELOG("Unexpected event type: %d\n", type);
}
void
spdk_bdev_set_qd_sampling_period(struct spdk_bdev *bdev, uint64_t period)
{
int rc;
if (bdev->internal.new_period == period) {
return;
}
bdev->internal.new_period = period;
if (bdev->internal.qd_desc != NULL) {
assert(bdev->internal.period != 0);
spdk_thread_send_msg(bdev->internal.qd_desc->thread,
bdev_update_qd_sampling_period, bdev);
return;
}
assert(bdev->internal.period == 0);
rc = spdk_bdev_open_ext(spdk_bdev_get_name(bdev), false, _tmp_bdev_event_cb,
NULL, &bdev->internal.qd_desc);
if (rc != 0) {
return;
}
bdev->internal.period = period;
bdev->internal.qd_poller = SPDK_POLLER_REGISTER(bdev_calculate_measured_queue_depth,
bdev, period);
}
struct bdev_get_current_qd_ctx {
uint64_t current_qd;
spdk_bdev_get_current_qd_cb cb_fn;
void *cb_arg;
};
static void
bdev_get_current_qd_done(struct spdk_bdev *bdev, void *_ctx, int status)
{
struct bdev_get_current_qd_ctx *ctx = _ctx;
ctx->cb_fn(bdev, ctx->current_qd, ctx->cb_arg, 0);
free(ctx);
}
static void
bdev_get_current_qd(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev,
struct spdk_io_channel *io_ch, void *_ctx)
{
struct bdev_get_current_qd_ctx *ctx = _ctx;
struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(io_ch);
ctx->current_qd += bdev_ch->io_outstanding;
spdk_bdev_for_each_channel_continue(i, 0);
}
void
spdk_bdev_get_current_qd(struct spdk_bdev *bdev, spdk_bdev_get_current_qd_cb cb_fn,
void *cb_arg)
{
struct bdev_get_current_qd_ctx *ctx;
assert(cb_fn != NULL);
ctx = calloc(1, sizeof(*ctx));
if (ctx == NULL) {
cb_fn(bdev, 0, cb_arg, -ENOMEM);
return;
}
ctx->cb_fn = cb_fn;
ctx->cb_arg = cb_arg;
spdk_bdev_for_each_channel(bdev, bdev_get_current_qd, ctx, bdev_get_current_qd_done);
}
static void
_event_notify(struct spdk_bdev_desc *desc, enum spdk_bdev_event_type type)
{
assert(desc->thread == spdk_get_thread());
spdk_spin_lock(&desc->spinlock);
desc->refs--;
if (!desc->closed) {
spdk_spin_unlock(&desc->spinlock);
desc->callback.event_fn(type,
desc->bdev,
desc->callback.ctx);
return;
} else if (desc->refs == 0) {
/* This descriptor was closed after this event_notify message was sent.
* spdk_bdev_close() could not free the descriptor since this message was
* in flight, so we free it now using bdev_desc_free().
*/
spdk_spin_unlock(&desc->spinlock);
bdev_desc_free(desc);
return;
}
spdk_spin_unlock(&desc->spinlock);
}
static void
event_notify(struct spdk_bdev_desc *desc, spdk_msg_fn event_notify_fn)
{
spdk_spin_lock(&desc->spinlock);
desc->refs++;
spdk_thread_send_msg(desc->thread, event_notify_fn, desc);
spdk_spin_unlock(&desc->spinlock);
}
static void
_resize_notify(void *ctx)
{
struct spdk_bdev_desc *desc = ctx;
_event_notify(desc, SPDK_BDEV_EVENT_RESIZE);
}
int
spdk_bdev_notify_blockcnt_change(struct spdk_bdev *bdev, uint64_t size)
{
struct spdk_bdev_desc *desc;
int ret;
if (size == bdev->blockcnt) {
return 0;
}
spdk_spin_lock(&bdev->internal.spinlock);
/* bdev has open descriptors */
if (!TAILQ_EMPTY(&bdev->internal.open_descs) &&
bdev->blockcnt > size) {
ret = -EBUSY;
} else {
bdev->blockcnt = size;
TAILQ_FOREACH(desc, &bdev->internal.open_descs, link) {
event_notify(desc, _resize_notify);
}
ret = 0;
}
spdk_spin_unlock(&bdev->internal.spinlock);
return ret;
}
/*
* Convert I/O offset and length from bytes to blocks.
*
* Returns zero on success or non-zero if the byte parameters aren't divisible by the block size.
*/
static uint64_t
bdev_bytes_to_blocks(struct spdk_bdev *bdev, uint64_t offset_bytes, uint64_t *offset_blocks,
uint64_t num_bytes, uint64_t *num_blocks)
{
uint32_t block_size = bdev->blocklen;
uint8_t shift_cnt;
/* Avoid expensive div operations if possible. These spdk_u32 functions are very cheap. */
if (spdk_likely(spdk_u32_is_pow2(block_size))) {
shift_cnt = spdk_u32log2(block_size);
*offset_blocks = offset_bytes >> shift_cnt;
*num_blocks = num_bytes >> shift_cnt;
return (offset_bytes - (*offset_blocks << shift_cnt)) |
(num_bytes - (*num_blocks << shift_cnt));
} else {
*offset_blocks = offset_bytes / block_size;
*num_blocks = num_bytes / block_size;
return (offset_bytes % block_size) | (num_bytes % block_size);
}
}
static bool
bdev_io_valid_blocks(struct spdk_bdev *bdev, uint64_t offset_blocks, uint64_t num_blocks)
{
/* Return failure if offset_blocks + num_blocks is less than offset_blocks; indicates there
* has been an overflow and hence the offset has been wrapped around */
if (offset_blocks + num_blocks < offset_blocks) {
return false;
}
/* Return failure if offset_blocks + num_blocks exceeds the size of the bdev */
if (offset_blocks + num_blocks > bdev->blockcnt) {
return false;
}
return true;
}
static void
bdev_seek_complete_cb(void *ctx)
{
struct spdk_bdev_io *bdev_io = ctx;
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS;
bdev_io->internal.cb(bdev_io, true, bdev_io->internal.caller_ctx);
}
static int
bdev_seek(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset_blocks, enum spdk_bdev_io_type io_type,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch);
assert(io_type == SPDK_BDEV_IO_TYPE_SEEK_DATA || io_type == SPDK_BDEV_IO_TYPE_SEEK_HOLE);
/* Check if offset_blocks is valid looking at the validity of one block */
if (!bdev_io_valid_blocks(bdev, offset_blocks, 1)) {
return -EINVAL;
}
bdev_io = bdev_channel_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = io_type;
bdev_io->u.bdev.offset_blocks = offset_blocks;
bdev_io->u.bdev.memory_domain = NULL;
bdev_io->u.bdev.memory_domain_ctx = NULL;
bdev_io->u.bdev.accel_sequence = NULL;
bdev_io_init(bdev_io, bdev, cb_arg, cb);
if (!spdk_bdev_io_type_supported(bdev, io_type)) {
/* In case bdev doesn't support seek to next data/hole offset,
* it is assumed that only data and no holes are present */
if (io_type == SPDK_BDEV_IO_TYPE_SEEK_DATA) {
bdev_io->u.bdev.seek.offset = offset_blocks;
} else {
bdev_io->u.bdev.seek.offset = UINT64_MAX;
}
spdk_thread_send_msg(spdk_get_thread(), bdev_seek_complete_cb, bdev_io);
return 0;
}
bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_seek_data(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
return bdev_seek(desc, ch, offset_blocks, SPDK_BDEV_IO_TYPE_SEEK_DATA, cb, cb_arg);
}
int
spdk_bdev_seek_hole(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
return bdev_seek(desc, ch, offset_blocks, SPDK_BDEV_IO_TYPE_SEEK_HOLE, cb, cb_arg);
}
uint64_t
spdk_bdev_io_get_seek_offset(const struct spdk_bdev_io *bdev_io)
{
return bdev_io->u.bdev.seek.offset;
}
static int
bdev_read_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, void *buf,
void *md_buf, uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch);
if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
bdev_io = bdev_channel_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_READ;
bdev_io->u.bdev.iovs = &bdev_io->iov;
bdev_io->u.bdev.iovs[0].iov_base = buf;
bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen;
bdev_io->u.bdev.iovcnt = 1;
bdev_io->u.bdev.md_buf = md_buf;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io->u.bdev.offset_blocks = offset_blocks;
bdev_io->u.bdev.memory_domain = NULL;
bdev_io->u.bdev.memory_domain_ctx = NULL;
bdev_io->u.bdev.accel_sequence = NULL;
bdev_io_init(bdev_io, bdev, cb_arg, cb);
bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_read(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
void *buf, uint64_t offset, uint64_t nbytes,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
uint64_t offset_blocks, num_blocks;
if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks,
nbytes, &num_blocks) != 0) {
return -EINVAL;
}
return spdk_bdev_read_blocks(desc, ch, buf, offset_blocks, num_blocks, cb, cb_arg);
}
int
spdk_bdev_read_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
void *buf, uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
return bdev_read_blocks_with_md(desc, ch, buf, NULL, offset_blocks, num_blocks, cb, cb_arg);
}
int
spdk_bdev_read_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct iovec iov = {
.iov_base = buf,
};
if (md_buf && !spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) {
return -EINVAL;
}
if (md_buf && !_is_buf_allocated(&iov)) {
return -EINVAL;
}
return bdev_read_blocks_with_md(desc, ch, buf, md_buf, offset_blocks, num_blocks,
cb, cb_arg);
}
int
spdk_bdev_readv(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt,
uint64_t offset, uint64_t nbytes,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
uint64_t offset_blocks, num_blocks;
if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks,
nbytes, &num_blocks) != 0) {
return -EINVAL;
}
return spdk_bdev_readv_blocks(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg);
}
static int
bdev_readv_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt, void *md_buf, uint64_t offset_blocks,
uint64_t num_blocks, struct spdk_memory_domain *domain, void *domain_ctx,
struct spdk_accel_sequence *seq,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch);
if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
bdev_io = bdev_channel_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_READ;
bdev_io->u.bdev.iovs = iov;
bdev_io->u.bdev.iovcnt = iovcnt;
bdev_io->u.bdev.md_buf = md_buf;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io->u.bdev.offset_blocks = offset_blocks;
bdev_io_init(bdev_io, bdev, cb_arg, cb);
bdev_io->internal.memory_domain = domain;
bdev_io->internal.memory_domain_ctx = domain_ctx;
bdev_io->internal.accel_sequence = seq;
bdev_io->u.bdev.memory_domain = domain;
bdev_io->u.bdev.memory_domain_ctx = domain_ctx;
bdev_io->u.bdev.accel_sequence = seq;
_bdev_io_submit_ext(desc, bdev_io);
return 0;
}
int
spdk_bdev_readv_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
return bdev_readv_blocks_with_md(desc, ch, iov, iovcnt, NULL, offset_blocks,
num_blocks, NULL, NULL, NULL, cb, cb_arg);
}
int
spdk_bdev_readv_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt, void *md_buf,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
if (md_buf && !spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) {
return -EINVAL;
}
if (md_buf && !_is_buf_allocated(iov)) {
return -EINVAL;
}
return bdev_readv_blocks_with_md(desc, ch, iov, iovcnt, md_buf, offset_blocks,
num_blocks, NULL, NULL, NULL, cb, cb_arg);
}
static inline bool
_bdev_io_check_opts(struct spdk_bdev_ext_io_opts *opts, struct iovec *iov)
{
/*
* We check if opts size is at least of size when we first introduced
* spdk_bdev_ext_io_opts (ac6f2bdd8d) since access to those members
* are not checked internal.
*/
return opts->size >= offsetof(struct spdk_bdev_ext_io_opts, metadata) +
sizeof(opts->metadata) &&
opts->size <= sizeof(*opts) &&
/* When memory domain is used, the user must provide data buffers */
(!opts->memory_domain || (iov && iov[0].iov_base));
}
int
spdk_bdev_readv_blocks_ext(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg,
struct spdk_bdev_ext_io_opts *opts)
{
void *md = NULL;
if (opts) {
if (spdk_unlikely(!_bdev_io_check_opts(opts, iov))) {
return -EINVAL;
}
md = opts->metadata;
}
if (md && !spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) {
return -EINVAL;
}
if (md && !_is_buf_allocated(iov)) {
return -EINVAL;
}
return bdev_readv_blocks_with_md(desc, ch, iov, iovcnt, md, offset_blocks,
num_blocks,
bdev_get_ext_io_opt(opts, memory_domain, NULL),
bdev_get_ext_io_opt(opts, memory_domain_ctx, NULL),
bdev_get_ext_io_opt(opts, accel_sequence, NULL),
cb, cb_arg);
}
static int
bdev_write_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch);
if (!desc->write) {
return -EBADF;
}
if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
bdev_io = bdev_channel_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE;
bdev_io->u.bdev.iovs = &bdev_io->iov;
bdev_io->u.bdev.iovs[0].iov_base = buf;
bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen;
bdev_io->u.bdev.iovcnt = 1;
bdev_io->u.bdev.md_buf = md_buf;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io->u.bdev.offset_blocks = offset_blocks;
bdev_io->u.bdev.memory_domain = NULL;
bdev_io->u.bdev.memory_domain_ctx = NULL;
bdev_io->u.bdev.accel_sequence = NULL;
bdev_io_init(bdev_io, bdev, cb_arg, cb);
bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_write(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
void *buf, uint64_t offset, uint64_t nbytes,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
uint64_t offset_blocks, num_blocks;
if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks,
nbytes, &num_blocks) != 0) {
return -EINVAL;
}
return spdk_bdev_write_blocks(desc, ch, buf, offset_blocks, num_blocks, cb, cb_arg);
}
int
spdk_bdev_write_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
void *buf, uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
return bdev_write_blocks_with_md(desc, ch, buf, NULL, offset_blocks, num_blocks,
cb, cb_arg);
}
int
spdk_bdev_write_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct iovec iov = {
.iov_base = buf,
};
if (md_buf && !spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) {
return -EINVAL;
}
if (md_buf && !_is_buf_allocated(&iov)) {
return -EINVAL;
}
return bdev_write_blocks_with_md(desc, ch, buf, md_buf, offset_blocks, num_blocks,
cb, cb_arg);
}
static int
bdev_writev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt, void *md_buf,
uint64_t offset_blocks, uint64_t num_blocks,
struct spdk_memory_domain *domain, void *domain_ctx,
struct spdk_accel_sequence *seq,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch);
if (!desc->write) {
return -EBADF;
}
if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
bdev_io = bdev_channel_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE;
bdev_io->u.bdev.iovs = iov;
bdev_io->u.bdev.iovcnt = iovcnt;
bdev_io->u.bdev.md_buf = md_buf;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io->u.bdev.offset_blocks = offset_blocks;
bdev_io_init(bdev_io, bdev, cb_arg, cb);
bdev_io->internal.memory_domain = domain;
bdev_io->internal.memory_domain_ctx = domain_ctx;
bdev_io->internal.accel_sequence = seq;
bdev_io->u.bdev.memory_domain = domain;
bdev_io->u.bdev.memory_domain_ctx = domain_ctx;
bdev_io->u.bdev.accel_sequence = seq;
_bdev_io_submit_ext(desc, bdev_io);
return 0;
}
int
spdk_bdev_writev(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt,
uint64_t offset, uint64_t len,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
uint64_t offset_blocks, num_blocks;
if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks,
len, &num_blocks) != 0) {
return -EINVAL;
}
return spdk_bdev_writev_blocks(desc, ch, iov, iovcnt, offset_blocks, num_blocks, cb, cb_arg);
}
int
spdk_bdev_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
return bdev_writev_blocks_with_md(desc, ch, iov, iovcnt, NULL, offset_blocks,
num_blocks, NULL, NULL, NULL, cb, cb_arg);
}
int
spdk_bdev_writev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt, void *md_buf,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
if (md_buf && !spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) {
return -EINVAL;
}
if (md_buf && !_is_buf_allocated(iov)) {
return -EINVAL;
}
return bdev_writev_blocks_with_md(desc, ch, iov, iovcnt, md_buf, offset_blocks,
num_blocks, NULL, NULL, NULL, cb, cb_arg);
}
int
spdk_bdev_writev_blocks_ext(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg,
struct spdk_bdev_ext_io_opts *opts)
{
void *md = NULL;
if (opts) {
if (spdk_unlikely(!_bdev_io_check_opts(opts, iov))) {
return -EINVAL;
}
md = opts->metadata;
}
if (md && !spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) {
return -EINVAL;
}
if (md && !_is_buf_allocated(iov)) {
return -EINVAL;
}
return bdev_writev_blocks_with_md(desc, ch, iov, iovcnt, md, offset_blocks, num_blocks,
bdev_get_ext_io_opt(opts, memory_domain, NULL),
bdev_get_ext_io_opt(opts, memory_domain_ctx, NULL),
bdev_get_ext_io_opt(opts, accel_sequence, NULL),
cb, cb_arg);
}
static void
bdev_compare_do_read_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct spdk_bdev_io *parent_io = cb_arg;
struct spdk_bdev *bdev = parent_io->bdev;
uint8_t *read_buf = bdev_io->u.bdev.iovs[0].iov_base;
int i, rc = 0;
if (!success) {
parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
parent_io->internal.cb(parent_io, false, parent_io->internal.caller_ctx);
spdk_bdev_free_io(bdev_io);
return;
}
for (i = 0; i < parent_io->u.bdev.iovcnt; i++) {
rc = memcmp(read_buf,
parent_io->u.bdev.iovs[i].iov_base,
parent_io->u.bdev.iovs[i].iov_len);
if (rc) {
break;
}
read_buf += parent_io->u.bdev.iovs[i].iov_len;
}
if (rc == 0 && parent_io->u.bdev.md_buf && spdk_bdev_is_md_separate(bdev)) {
rc = memcmp(bdev_io->u.bdev.md_buf,
parent_io->u.bdev.md_buf,
spdk_bdev_get_md_size(bdev));
}
spdk_bdev_free_io(bdev_io);
if (rc == 0) {
parent_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS;
parent_io->internal.cb(parent_io, true, parent_io->internal.caller_ctx);
} else {
parent_io->internal.status = SPDK_BDEV_IO_STATUS_MISCOMPARE;
parent_io->internal.cb(parent_io, false, parent_io->internal.caller_ctx);
}
}
static void
bdev_compare_do_read(void *_bdev_io)
{
struct spdk_bdev_io *bdev_io = _bdev_io;
int rc;
rc = spdk_bdev_read_blocks(bdev_io->internal.desc,
spdk_io_channel_from_ctx(bdev_io->internal.ch), NULL,
bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks,
bdev_compare_do_read_done, bdev_io);
if (rc == -ENOMEM) {
bdev_queue_io_wait_with_cb(bdev_io, bdev_compare_do_read);
} else if (rc != 0) {
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx);
}
}
static int
bdev_comparev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt, void *md_buf,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch);
if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
bdev_io = bdev_channel_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_COMPARE;
bdev_io->u.bdev.iovs = iov;
bdev_io->u.bdev.iovcnt = iovcnt;
bdev_io->u.bdev.md_buf = md_buf;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io->u.bdev.offset_blocks = offset_blocks;
bdev_io_init(bdev_io, bdev, cb_arg, cb);
bdev_io->u.bdev.memory_domain = NULL;
bdev_io->u.bdev.memory_domain_ctx = NULL;
bdev_io->u.bdev.accel_sequence = NULL;
if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COMPARE)) {
bdev_io_submit(bdev_io);
return 0;
}
bdev_compare_do_read(bdev_io);
return 0;
}
int
spdk_bdev_comparev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
return bdev_comparev_blocks_with_md(desc, ch, iov, iovcnt, NULL, offset_blocks,
num_blocks, cb, cb_arg);
}
int
spdk_bdev_comparev_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt, void *md_buf,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
if (md_buf && !spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) {
return -EINVAL;
}
if (md_buf && !_is_buf_allocated(iov)) {
return -EINVAL;
}
return bdev_comparev_blocks_with_md(desc, ch, iov, iovcnt, md_buf, offset_blocks,
num_blocks, cb, cb_arg);
}
static int
bdev_compare_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch);
if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
bdev_io = bdev_channel_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_COMPARE;
bdev_io->u.bdev.iovs = &bdev_io->iov;
bdev_io->u.bdev.iovs[0].iov_base = buf;
bdev_io->u.bdev.iovs[0].iov_len = num_blocks * bdev->blocklen;
bdev_io->u.bdev.iovcnt = 1;
bdev_io->u.bdev.md_buf = md_buf;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io->u.bdev.offset_blocks = offset_blocks;
bdev_io_init(bdev_io, bdev, cb_arg, cb);
bdev_io->u.bdev.memory_domain = NULL;
bdev_io->u.bdev.memory_domain_ctx = NULL;
bdev_io->u.bdev.accel_sequence = NULL;
if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COMPARE)) {
bdev_io_submit(bdev_io);
return 0;
}
bdev_compare_do_read(bdev_io);
return 0;
}
int
spdk_bdev_compare_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
void *buf, uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
return bdev_compare_blocks_with_md(desc, ch, buf, NULL, offset_blocks, num_blocks,
cb, cb_arg);
}
int
spdk_bdev_compare_blocks_with_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
void *buf, void *md_buf, uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct iovec iov = {
.iov_base = buf,
};
if (md_buf && !spdk_bdev_is_md_separate(spdk_bdev_desc_get_bdev(desc))) {
return -EINVAL;
}
if (md_buf && !_is_buf_allocated(&iov)) {
return -EINVAL;
}
return bdev_compare_blocks_with_md(desc, ch, buf, md_buf, offset_blocks, num_blocks,
cb, cb_arg);
}
static void
bdev_comparev_and_writev_blocks_unlocked(void *ctx, int unlock_status)
{
struct spdk_bdev_io *bdev_io = ctx;
if (unlock_status) {
SPDK_ERRLOG("LBA range unlock failed\n");
}
bdev_io->internal.cb(bdev_io, bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS ? true :
false, bdev_io->internal.caller_ctx);
}
static void
bdev_comparev_and_writev_blocks_unlock(struct spdk_bdev_io *bdev_io, int status)
{
bdev_io->internal.status = status;
bdev_unlock_lba_range(bdev_io->internal.desc, spdk_io_channel_from_ctx(bdev_io->internal.ch),
bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks,
bdev_comparev_and_writev_blocks_unlocked, bdev_io);
}
static void
bdev_compare_and_write_do_write_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct spdk_bdev_io *parent_io = cb_arg;
if (!success) {
SPDK_ERRLOG("Compare and write operation failed\n");
}
spdk_bdev_free_io(bdev_io);
bdev_comparev_and_writev_blocks_unlock(parent_io,
success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED);
}
static void
bdev_compare_and_write_do_write(void *_bdev_io)
{
struct spdk_bdev_io *bdev_io = _bdev_io;
int rc;
rc = spdk_bdev_writev_blocks(bdev_io->internal.desc,
spdk_io_channel_from_ctx(bdev_io->internal.ch),
bdev_io->u.bdev.fused_iovs, bdev_io->u.bdev.fused_iovcnt,
bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks,
bdev_compare_and_write_do_write_done, bdev_io);
if (rc == -ENOMEM) {
bdev_queue_io_wait_with_cb(bdev_io, bdev_compare_and_write_do_write);
} else if (rc != 0) {
bdev_comparev_and_writev_blocks_unlock(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
static void
bdev_compare_and_write_do_compare_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct spdk_bdev_io *parent_io = cb_arg;
spdk_bdev_free_io(bdev_io);
if (!success) {
bdev_comparev_and_writev_blocks_unlock(parent_io, SPDK_BDEV_IO_STATUS_MISCOMPARE);
return;
}
bdev_compare_and_write_do_write(parent_io);
}
static void
bdev_compare_and_write_do_compare(void *_bdev_io)
{
struct spdk_bdev_io *bdev_io = _bdev_io;
int rc;
rc = spdk_bdev_comparev_blocks(bdev_io->internal.desc,
spdk_io_channel_from_ctx(bdev_io->internal.ch), bdev_io->u.bdev.iovs,
bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks,
bdev_compare_and_write_do_compare_done, bdev_io);
if (rc == -ENOMEM) {
bdev_queue_io_wait_with_cb(bdev_io, bdev_compare_and_write_do_compare);
} else if (rc != 0) {
bdev_comparev_and_writev_blocks_unlock(bdev_io, SPDK_BDEV_IO_STATUS_FIRST_FUSED_FAILED);
}
}
static void
bdev_comparev_and_writev_blocks_locked(void *ctx, int status)
{
struct spdk_bdev_io *bdev_io = ctx;
if (status) {
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FIRST_FUSED_FAILED;
bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx);
return;
}
bdev_compare_and_write_do_compare(bdev_io);
}
int
spdk_bdev_comparev_and_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *compare_iov, int compare_iovcnt,
struct iovec *write_iov, int write_iovcnt,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch);
if (!desc->write) {
return -EBADF;
}
if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
if (num_blocks > bdev->acwu) {
return -EINVAL;
}
bdev_io = bdev_channel_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE;
bdev_io->u.bdev.iovs = compare_iov;
bdev_io->u.bdev.iovcnt = compare_iovcnt;
bdev_io->u.bdev.fused_iovs = write_iov;
bdev_io->u.bdev.fused_iovcnt = write_iovcnt;
bdev_io->u.bdev.md_buf = NULL;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io->u.bdev.offset_blocks = offset_blocks;
bdev_io_init(bdev_io, bdev, cb_arg, cb);
bdev_io->u.bdev.memory_domain = NULL;
bdev_io->u.bdev.memory_domain_ctx = NULL;
bdev_io->u.bdev.accel_sequence = NULL;
if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE)) {
bdev_io_submit(bdev_io);
return 0;
}
return bdev_lock_lba_range(desc, ch, offset_blocks, num_blocks,
bdev_comparev_and_writev_blocks_locked, bdev_io);
}
int
spdk_bdev_zcopy_start(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
struct iovec *iov, int iovcnt,
uint64_t offset_blocks, uint64_t num_blocks,
bool populate,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch);
if (!desc->write) {
return -EBADF;
}
if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
if (!spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_ZCOPY)) {
return -ENOTSUP;
}
bdev_io = bdev_channel_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_ZCOPY;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io->u.bdev.offset_blocks = offset_blocks;
bdev_io->u.bdev.iovs = iov;
bdev_io->u.bdev.iovcnt = iovcnt;
bdev_io->u.bdev.md_buf = NULL;
bdev_io->u.bdev.zcopy.populate = populate ? 1 : 0;
bdev_io->u.bdev.zcopy.commit = 0;
bdev_io->u.bdev.zcopy.start = 1;
bdev_io_init(bdev_io, bdev, cb_arg, cb);
bdev_io->u.bdev.memory_domain = NULL;
bdev_io->u.bdev.memory_domain_ctx = NULL;
bdev_io->u.bdev.accel_sequence = NULL;
bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_zcopy_end(struct spdk_bdev_io *bdev_io, bool commit,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
if (bdev_io->type != SPDK_BDEV_IO_TYPE_ZCOPY) {
return -EINVAL;
}
bdev_io->u.bdev.zcopy.commit = commit ? 1 : 0;
bdev_io->u.bdev.zcopy.start = 0;
bdev_io->internal.caller_ctx = cb_arg;
bdev_io->internal.cb = cb;
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_PENDING;
bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_write_zeroes(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset, uint64_t len,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
uint64_t offset_blocks, num_blocks;
if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks,
len, &num_blocks) != 0) {
return -EINVAL;
}
return spdk_bdev_write_zeroes_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg);
}
int
spdk_bdev_write_zeroes_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch);
if (!desc->write) {
return -EBADF;
}
if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
if (!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE_ZEROES) &&
!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE)) {
return -ENOTSUP;
}
bdev_io = bdev_channel_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->type = SPDK_BDEV_IO_TYPE_WRITE_ZEROES;
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->u.bdev.offset_blocks = offset_blocks;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io_init(bdev_io, bdev, cb_arg, cb);
bdev_io->u.bdev.memory_domain = NULL;
bdev_io->u.bdev.memory_domain_ctx = NULL;
bdev_io->u.bdev.accel_sequence = NULL;
/* If the write_zeroes size is large and should be split, use the generic split
* logic regardless of whether SPDK_BDEV_IO_TYPE_WRITE_ZEREOS is supported or not.
*
* Then, send the write_zeroes request if SPDK_BDEV_IO_TYPE_WRITE_ZEROES is supported
* or emulate it using regular write request otherwise.
*/
if (bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE_ZEROES) ||
bdev_io->internal.split) {
bdev_io_submit(bdev_io);
return 0;
}
assert(_bdev_get_block_size_with_md(bdev) <= ZERO_BUFFER_SIZE);
return bdev_write_zero_buffer(bdev_io);
}
int
spdk_bdev_unmap(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset, uint64_t nbytes,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
uint64_t offset_blocks, num_blocks;
if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks,
nbytes, &num_blocks) != 0) {
return -EINVAL;
}
return spdk_bdev_unmap_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg);
}
int
spdk_bdev_unmap_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch);
if (!desc->write) {
return -EBADF;
}
if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
if (num_blocks == 0) {
SPDK_ERRLOG("Can't unmap 0 bytes\n");
return -EINVAL;
}
bdev_io = bdev_channel_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_UNMAP;
bdev_io->u.bdev.iovs = &bdev_io->iov;
bdev_io->u.bdev.iovs[0].iov_base = NULL;
bdev_io->u.bdev.iovs[0].iov_len = 0;
bdev_io->u.bdev.iovcnt = 1;
bdev_io->u.bdev.offset_blocks = offset_blocks;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io_init(bdev_io, bdev, cb_arg, cb);
bdev_io->u.bdev.memory_domain = NULL;
bdev_io->u.bdev.memory_domain_ctx = NULL;
bdev_io->u.bdev.accel_sequence = NULL;
bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_flush(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset, uint64_t length,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
uint64_t offset_blocks, num_blocks;
if (bdev_bytes_to_blocks(spdk_bdev_desc_get_bdev(desc), offset, &offset_blocks,
length, &num_blocks) != 0) {
return -EINVAL;
}
return spdk_bdev_flush_blocks(desc, ch, offset_blocks, num_blocks, cb, cb_arg);
}
int
spdk_bdev_flush_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch);
if (!desc->write) {
return -EBADF;
}
if (!bdev_io_valid_blocks(bdev, offset_blocks, num_blocks)) {
return -EINVAL;
}
bdev_io = bdev_channel_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_FLUSH;
bdev_io->u.bdev.iovs = NULL;
bdev_io->u.bdev.iovcnt = 0;
bdev_io->u.bdev.offset_blocks = offset_blocks;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io->u.bdev.memory_domain = NULL;
bdev_io->u.bdev.memory_domain_ctx = NULL;
bdev_io->u.bdev.accel_sequence = NULL;
bdev_io_init(bdev_io, bdev, cb_arg, cb);
bdev_io_submit(bdev_io);
return 0;
}
static int bdev_reset_poll_for_outstanding_io(void *ctx);
static void
bdev_reset_check_outstanding_io_done(struct spdk_bdev *bdev, void *_ctx, int status)
{
struct spdk_bdev_channel *ch = _ctx;
struct spdk_bdev_io *bdev_io;
bdev_io = TAILQ_FIRST(&ch->queued_resets);
if (status == -EBUSY) {
if (spdk_get_ticks() < bdev_io->u.reset.wait_poller.stop_time_tsc) {
bdev_io->u.reset.wait_poller.poller = SPDK_POLLER_REGISTER(bdev_reset_poll_for_outstanding_io,
ch, BDEV_RESET_CHECK_OUTSTANDING_IO_PERIOD);
} else {
TAILQ_REMOVE(&ch->queued_resets, bdev_io, internal.link);
if (TAILQ_EMPTY(&ch->io_memory_domain) && TAILQ_EMPTY(&ch->io_accel_exec)) {
/* If outstanding IOs are still present and reset_io_drain_timeout
* seconds passed, start the reset. */
bdev_io_submit_reset(bdev_io);
} else {
/* We still have in progress memory domain pull/push or we're
* executing accel sequence. Since we cannot abort either of those
* operaions, fail the reset request. */
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
} else {
TAILQ_REMOVE(&ch->queued_resets, bdev_io, internal.link);
SPDK_DEBUGLOG(bdev,
"Skipping reset for underlying device of bdev: %s - no outstanding I/O.\n",
ch->bdev->name);
/* Mark the completion status as a SUCCESS and complete the reset. */
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
}
}
static void
bdev_reset_check_outstanding_io(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev,
struct spdk_io_channel *io_ch, void *_ctx)
{
struct spdk_bdev_channel *cur_ch = __io_ch_to_bdev_ch(io_ch);
int status = 0;
if (cur_ch->io_outstanding > 0 ||
!TAILQ_EMPTY(&cur_ch->io_memory_domain) ||
!TAILQ_EMPTY(&cur_ch->io_accel_exec)) {
/* If a channel has outstanding IO, set status to -EBUSY code. This will stop
* further iteration over the rest of the channels and pass non-zero status
* to the callback function. */
status = -EBUSY;
}
spdk_bdev_for_each_channel_continue(i, status);
}
static int
bdev_reset_poll_for_outstanding_io(void *ctx)
{
struct spdk_bdev_channel *ch = ctx;
struct spdk_bdev_io *bdev_io;
bdev_io = TAILQ_FIRST(&ch->queued_resets);
spdk_poller_unregister(&bdev_io->u.reset.wait_poller.poller);
spdk_bdev_for_each_channel(ch->bdev, bdev_reset_check_outstanding_io, ch,
bdev_reset_check_outstanding_io_done);
return SPDK_POLLER_BUSY;
}
static void
bdev_reset_freeze_channel_done(struct spdk_bdev *bdev, void *_ctx, int status)
{
struct spdk_bdev_channel *ch = _ctx;
struct spdk_bdev_io *bdev_io;
bdev_io = TAILQ_FIRST(&ch->queued_resets);
if (bdev->reset_io_drain_timeout == 0) {
TAILQ_REMOVE(&ch->queued_resets, bdev_io, internal.link);
bdev_io_submit_reset(bdev_io);
return;
}
bdev_io->u.reset.wait_poller.stop_time_tsc = spdk_get_ticks() +
(ch->bdev->reset_io_drain_timeout * spdk_get_ticks_hz());
/* In case bdev->reset_io_drain_timeout is not equal to zero,
* submit the reset to the underlying module only if outstanding I/O
* remain after reset_io_drain_timeout seconds have passed. */
spdk_bdev_for_each_channel(ch->bdev, bdev_reset_check_outstanding_io, ch,
bdev_reset_check_outstanding_io_done);
}
static void
bdev_reset_freeze_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev,
struct spdk_io_channel *ch, void *_ctx)
{
struct spdk_bdev_channel *channel;
struct spdk_bdev_mgmt_channel *mgmt_channel;
struct spdk_bdev_shared_resource *shared_resource;
bdev_io_tailq_t tmp_queued;
TAILQ_INIT(&tmp_queued);
channel = __io_ch_to_bdev_ch(ch);
shared_resource = channel->shared_resource;
mgmt_channel = shared_resource->mgmt_ch;
channel->flags |= BDEV_CH_RESET_IN_PROGRESS;
if ((channel->flags & BDEV_CH_QOS_ENABLED) != 0) {
/* The QoS object is always valid and readable while
* the channel flag is set, so the lock here should not
* be necessary. We're not in the fast path though, so
* just take it anyway. */
spdk_spin_lock(&channel->bdev->internal.spinlock);
if (channel->bdev->internal.qos->ch == channel) {
TAILQ_SWAP(&channel->bdev->internal.qos->queued, &tmp_queued, spdk_bdev_io, internal.link);
}
spdk_spin_unlock(&channel->bdev->internal.spinlock);
}
bdev_abort_all_queued_io(&shared_resource->nomem_io, channel);
bdev_abort_all_buf_io(mgmt_channel, channel);
bdev_abort_all_buf_io(mgmt_channel, channel);
bdev_abort_all_queued_io(&tmp_queued, channel);
spdk_bdev_for_each_channel_continue(i, 0);
}
static void
bdev_start_reset(void *ctx)
{
struct spdk_bdev_channel *ch = ctx;
spdk_bdev_for_each_channel(ch->bdev, bdev_reset_freeze_channel, ch,
bdev_reset_freeze_channel_done);
}
static void
bdev_channel_start_reset(struct spdk_bdev_channel *ch)
{
struct spdk_bdev *bdev = ch->bdev;
assert(!TAILQ_EMPTY(&ch->queued_resets));
spdk_spin_lock(&bdev->internal.spinlock);
if (bdev->internal.reset_in_progress == NULL) {
bdev->internal.reset_in_progress = TAILQ_FIRST(&ch->queued_resets);
/*
* Take a channel reference for the target bdev for the life of this
* reset. This guards against the channel getting destroyed while
* spdk_bdev_for_each_channel() calls related to this reset IO are in
* progress. We will release the reference when this reset is
* completed.
*/
bdev->internal.reset_in_progress->u.reset.ch_ref = spdk_get_io_channel(__bdev_to_io_dev(bdev));
bdev_start_reset(ch);
}
spdk_spin_unlock(&bdev->internal.spinlock);
}
int
spdk_bdev_reset(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch);
bdev_io = bdev_channel_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->internal.submit_tsc = spdk_get_ticks();
bdev_io->type = SPDK_BDEV_IO_TYPE_RESET;
bdev_io->u.reset.ch_ref = NULL;
bdev_io_init(bdev_io, bdev, cb_arg, cb);
spdk_spin_lock(&bdev->internal.spinlock);
TAILQ_INSERT_TAIL(&channel->queued_resets, bdev_io, internal.link);
spdk_spin_unlock(&bdev->internal.spinlock);
TAILQ_INSERT_TAIL(&bdev_io->internal.ch->io_submitted, bdev_io,
internal.ch_link);
bdev_channel_start_reset(channel);
return 0;
}
void
spdk_bdev_get_io_stat(struct spdk_bdev *bdev, struct spdk_io_channel *ch,
struct spdk_bdev_io_stat *stat)
{
struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch);
bdev_get_io_stat(stat, channel->stat);
}
static void
bdev_get_device_stat_done(struct spdk_bdev *bdev, void *_ctx, int status)
{
struct spdk_bdev_iostat_ctx *bdev_iostat_ctx = _ctx;
bdev_iostat_ctx->cb(bdev, bdev_iostat_ctx->stat,
bdev_iostat_ctx->cb_arg, 0);
free(bdev_iostat_ctx);
}
static void
bdev_get_each_channel_stat(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev,
struct spdk_io_channel *ch, void *_ctx)
{
struct spdk_bdev_iostat_ctx *bdev_iostat_ctx = _ctx;
struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch);
spdk_bdev_add_io_stat(bdev_iostat_ctx->stat, channel->stat);
spdk_bdev_for_each_channel_continue(i, 0);
}
void
spdk_bdev_get_device_stat(struct spdk_bdev *bdev, struct spdk_bdev_io_stat *stat,
spdk_bdev_get_device_stat_cb cb, void *cb_arg)
{
struct spdk_bdev_iostat_ctx *bdev_iostat_ctx;
assert(bdev != NULL);
assert(stat != NULL);
assert(cb != NULL);
bdev_iostat_ctx = calloc(1, sizeof(struct spdk_bdev_iostat_ctx));
if (bdev_iostat_ctx == NULL) {
SPDK_ERRLOG("Unable to allocate memory for spdk_bdev_iostat_ctx\n");
cb(bdev, stat, cb_arg, -ENOMEM);
return;
}
bdev_iostat_ctx->stat = stat;
bdev_iostat_ctx->cb = cb;
bdev_iostat_ctx->cb_arg = cb_arg;
/* Start with the statistics from previously deleted channels. */
spdk_spin_lock(&bdev->internal.spinlock);
bdev_get_io_stat(bdev_iostat_ctx->stat, bdev->internal.stat);
spdk_spin_unlock(&bdev->internal.spinlock);
/* Then iterate and add the statistics from each existing channel. */
spdk_bdev_for_each_channel(bdev, bdev_get_each_channel_stat, bdev_iostat_ctx,
bdev_get_device_stat_done);
}
struct bdev_iostat_reset_ctx {
enum spdk_bdev_reset_stat_mode mode;
bdev_reset_device_stat_cb cb;
void *cb_arg;
};
static void
bdev_reset_device_stat_done(struct spdk_bdev *bdev, void *_ctx, int status)
{
struct bdev_iostat_reset_ctx *ctx = _ctx;
ctx->cb(bdev, ctx->cb_arg, 0);
free(ctx);
}
static void
bdev_reset_each_channel_stat(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev,
struct spdk_io_channel *ch, void *_ctx)
{
struct bdev_iostat_reset_ctx *ctx = _ctx;
struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch);
spdk_bdev_reset_io_stat(channel->stat, ctx->mode);
spdk_bdev_for_each_channel_continue(i, 0);
}
void
bdev_reset_device_stat(struct spdk_bdev *bdev, enum spdk_bdev_reset_stat_mode mode,
bdev_reset_device_stat_cb cb, void *cb_arg)
{
struct bdev_iostat_reset_ctx *ctx;
assert(bdev != NULL);
assert(cb != NULL);
ctx = calloc(1, sizeof(*ctx));
if (ctx == NULL) {
SPDK_ERRLOG("Unable to allocate bdev_iostat_reset_ctx.\n");
cb(bdev, cb_arg, -ENOMEM);
return;
}
ctx->mode = mode;
ctx->cb = cb;
ctx->cb_arg = cb_arg;
spdk_spin_lock(&bdev->internal.spinlock);
spdk_bdev_reset_io_stat(bdev->internal.stat, mode);
spdk_spin_unlock(&bdev->internal.spinlock);
spdk_bdev_for_each_channel(bdev,
bdev_reset_each_channel_stat,
ctx,
bdev_reset_device_stat_done);
}
int
spdk_bdev_nvme_admin_passthru(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch);
if (!desc->write) {
return -EBADF;
}
if (spdk_unlikely(!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_NVME_ADMIN))) {
return -ENOTSUP;
}
bdev_io = bdev_channel_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_ADMIN;
bdev_io->u.nvme_passthru.cmd = *cmd;
bdev_io->u.nvme_passthru.buf = buf;
bdev_io->u.nvme_passthru.nbytes = nbytes;
bdev_io->u.nvme_passthru.md_buf = NULL;
bdev_io->u.nvme_passthru.md_len = 0;
bdev_io_init(bdev_io, bdev, cb_arg, cb);
bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_nvme_io_passthru(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch);
if (!desc->write) {
/*
* Do not try to parse the NVMe command - we could maybe use bits in the opcode
* to easily determine if the command is a read or write, but for now just
* do not allow io_passthru with a read-only descriptor.
*/
return -EBADF;
}
if (spdk_unlikely(!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_NVME_IO))) {
return -ENOTSUP;
}
bdev_io = bdev_channel_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_IO;
bdev_io->u.nvme_passthru.cmd = *cmd;
bdev_io->u.nvme_passthru.buf = buf;
bdev_io->u.nvme_passthru.nbytes = nbytes;
bdev_io->u.nvme_passthru.md_buf = NULL;
bdev_io->u.nvme_passthru.md_len = 0;
bdev_io_init(bdev_io, bdev, cb_arg, cb);
bdev_io_submit(bdev_io);
return 0;
}
int
spdk_bdev_nvme_io_passthru_md(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
const struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes, void *md_buf, size_t md_len,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch);
if (!desc->write) {
/*
* Do not try to parse the NVMe command - we could maybe use bits in the opcode
* to easily determine if the command is a read or write, but for now just
* do not allow io_passthru with a read-only descriptor.
*/
return -EBADF;
}
if (spdk_unlikely(!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_NVME_IO_MD))) {
return -ENOTSUP;
}
bdev_io = bdev_channel_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_NVME_IO_MD;
bdev_io->u.nvme_passthru.cmd = *cmd;
bdev_io->u.nvme_passthru.buf = buf;
bdev_io->u.nvme_passthru.nbytes = nbytes;
bdev_io->u.nvme_passthru.md_buf = md_buf;
bdev_io->u.nvme_passthru.md_len = md_len;
bdev_io_init(bdev_io, bdev, cb_arg, cb);
bdev_io_submit(bdev_io);
return 0;
}
static void bdev_abort_retry(void *ctx);
static void bdev_abort(struct spdk_bdev_io *parent_io);
static void
bdev_abort_io_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct spdk_bdev_channel *channel = bdev_io->internal.ch;
struct spdk_bdev_io *parent_io = cb_arg;
struct spdk_bdev_io *bio_to_abort, *tmp_io;
bio_to_abort = bdev_io->u.abort.bio_to_abort;
spdk_bdev_free_io(bdev_io);
if (!success) {
/* Check if the target I/O completed in the meantime. */
TAILQ_FOREACH(tmp_io, &channel->io_submitted, internal.ch_link) {
if (tmp_io == bio_to_abort) {
break;
}
}
/* If the target I/O still exists, set the parent to failed. */
if (tmp_io != NULL) {
parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
}
}
parent_io->u.bdev.split_outstanding--;
if (parent_io->u.bdev.split_outstanding == 0) {
if (parent_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) {
bdev_abort_retry(parent_io);
} else {
bdev_io_complete(parent_io);
}
}
}
static int
bdev_abort_io(struct spdk_bdev_desc *desc, struct spdk_bdev_channel *channel,
struct spdk_bdev_io *bio_to_abort,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct spdk_bdev_io *bdev_io;
if (bio_to_abort->type == SPDK_BDEV_IO_TYPE_ABORT ||
bio_to_abort->type == SPDK_BDEV_IO_TYPE_RESET) {
/* TODO: Abort reset or abort request. */
return -ENOTSUP;
}
bdev_io = bdev_channel_get_io(channel);
if (bdev_io == NULL) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_ABORT;
bdev_io_init(bdev_io, bdev, cb_arg, cb);
if (bdev->split_on_optimal_io_boundary && bio_to_abort->internal.split) {
assert(bdev_io_should_split(bio_to_abort));
bdev_io->u.bdev.abort.bio_cb_arg = bio_to_abort;
/* Parent abort request is not submitted directly, but to manage its
* execution add it to the submitted list here.
*/
bdev_io->internal.submit_tsc = spdk_get_ticks();
TAILQ_INSERT_TAIL(&channel->io_submitted, bdev_io, internal.ch_link);
bdev_abort(bdev_io);
return 0;
}
bdev_io->u.abort.bio_to_abort = bio_to_abort;
/* Submit the abort request to the underlying bdev module. */
bdev_io_submit(bdev_io);
return 0;
}
static bool
bdev_io_on_tailq(struct spdk_bdev_io *bdev_io, bdev_io_tailq_t *tailq)
{
struct spdk_bdev_io *iter;
TAILQ_FOREACH(iter, tailq, internal.link) {
if (iter == bdev_io) {
return true;
}
}
return false;
}
static uint32_t
_bdev_abort(struct spdk_bdev_io *parent_io)
{
struct spdk_bdev_desc *desc = parent_io->internal.desc;
struct spdk_bdev_channel *channel = parent_io->internal.ch;
void *bio_cb_arg;
struct spdk_bdev_io *bio_to_abort;
uint32_t matched_ios;
int rc;
bio_cb_arg = parent_io->u.bdev.abort.bio_cb_arg;
/* matched_ios is returned and will be kept by the caller.
*
* This function will be used for two cases, 1) the same cb_arg is used for
* multiple I/Os, 2) a single large I/O is split into smaller ones.
* Incrementing split_outstanding directly here may confuse readers especially
* for the 1st case.
*
* Completion of I/O abort is processed after stack unwinding. Hence this trick
* works as expected.
*/
matched_ios = 0;
parent_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS;
TAILQ_FOREACH(bio_to_abort, &channel->io_submitted, internal.ch_link) {
if (bio_to_abort->internal.caller_ctx != bio_cb_arg) {
continue;
}
if (bio_to_abort->internal.submit_tsc > parent_io->internal.submit_tsc) {
/* Any I/O which was submitted after this abort command should be excluded. */
continue;
}
/* We can't abort a request that's being pushed/pulled or executed by accel */
if (bdev_io_on_tailq(bio_to_abort, &channel->io_accel_exec) ||
bdev_io_on_tailq(bio_to_abort, &channel->io_memory_domain)) {
parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
break;
}
rc = bdev_abort_io(desc, channel, bio_to_abort, bdev_abort_io_done, parent_io);
if (rc != 0) {
if (rc == -ENOMEM) {
parent_io->internal.status = SPDK_BDEV_IO_STATUS_NOMEM;
} else {
parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
}
break;
}
matched_ios++;
}
return matched_ios;
}
static void
bdev_abort_retry(void *ctx)
{
struct spdk_bdev_io *parent_io = ctx;
uint32_t matched_ios;
matched_ios = _bdev_abort(parent_io);
if (matched_ios == 0) {
if (parent_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) {
bdev_queue_io_wait_with_cb(parent_io, bdev_abort_retry);
} else {
/* For retry, the case that no target I/O was found is success
* because it means target I/Os completed in the meantime.
*/
bdev_io_complete(parent_io);
}
return;
}
/* Use split_outstanding to manage the progress of aborting I/Os. */
parent_io->u.bdev.split_outstanding = matched_ios;
}
static void
bdev_abort(struct spdk_bdev_io *parent_io)
{
uint32_t matched_ios;
matched_ios = _bdev_abort(parent_io);
if (matched_ios == 0) {
if (parent_io->internal.status == SPDK_BDEV_IO_STATUS_NOMEM) {
bdev_queue_io_wait_with_cb(parent_io, bdev_abort_retry);
} else {
/* The case the no target I/O was found is failure. */
parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
bdev_io_complete(parent_io);
}
return;
}
/* Use split_outstanding to manage the progress of aborting I/Os. */
parent_io->u.bdev.split_outstanding = matched_ios;
}
int
spdk_bdev_abort(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
void *bio_cb_arg,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch);
struct spdk_bdev_io *bdev_io;
if (bio_cb_arg == NULL) {
return -EINVAL;
}
if (!spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_ABORT)) {
return -ENOTSUP;
}
bdev_io = bdev_channel_get_io(channel);
if (bdev_io == NULL) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->internal.submit_tsc = spdk_get_ticks();
bdev_io->type = SPDK_BDEV_IO_TYPE_ABORT;
bdev_io_init(bdev_io, bdev, cb_arg, cb);
bdev_io->u.bdev.abort.bio_cb_arg = bio_cb_arg;
/* Parent abort request is not submitted directly, but to manage its execution,
* add it to the submitted list here.
*/
TAILQ_INSERT_TAIL(&channel->io_submitted, bdev_io, internal.ch_link);
bdev_abort(bdev_io);
return 0;
}
int
spdk_bdev_queue_io_wait(struct spdk_bdev *bdev, struct spdk_io_channel *ch,
struct spdk_bdev_io_wait_entry *entry)
{
struct spdk_bdev_channel *channel = __io_ch_to_bdev_ch(ch);
struct spdk_bdev_mgmt_channel *mgmt_ch = channel->shared_resource->mgmt_ch;
if (bdev != entry->bdev) {
SPDK_ERRLOG("bdevs do not match\n");
return -EINVAL;
}
if (mgmt_ch->per_thread_cache_count > 0) {
SPDK_ERRLOG("Cannot queue io_wait if spdk_bdev_io available in per-thread cache\n");
return -EINVAL;
}
TAILQ_INSERT_TAIL(&mgmt_ch->io_wait_queue, entry, link);
return 0;
}
static inline void
bdev_io_update_io_stat(struct spdk_bdev_io *bdev_io, uint64_t tsc_diff)
{
enum spdk_bdev_io_status io_status = bdev_io->internal.status;
struct spdk_bdev_io_stat *io_stat = bdev_io->internal.ch->stat;
uint64_t num_blocks = bdev_io->u.bdev.num_blocks;
uint32_t blocklen = bdev_io->bdev->blocklen;
if (spdk_likely(io_status == SPDK_BDEV_IO_STATUS_SUCCESS)) {
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_READ:
io_stat->bytes_read += num_blocks * blocklen;
io_stat->num_read_ops++;
io_stat->read_latency_ticks += tsc_diff;
if (io_stat->max_read_latency_ticks < tsc_diff) {
io_stat->max_read_latency_ticks = tsc_diff;
}
if (io_stat->min_read_latency_ticks > tsc_diff) {
io_stat->min_read_latency_ticks = tsc_diff;
}
break;
case SPDK_BDEV_IO_TYPE_WRITE:
io_stat->bytes_written += num_blocks * blocklen;
io_stat->num_write_ops++;
io_stat->write_latency_ticks += tsc_diff;
if (io_stat->max_write_latency_ticks < tsc_diff) {
io_stat->max_write_latency_ticks = tsc_diff;
}
if (io_stat->min_write_latency_ticks > tsc_diff) {
io_stat->min_write_latency_ticks = tsc_diff;
}
break;
case SPDK_BDEV_IO_TYPE_UNMAP:
io_stat->bytes_unmapped += num_blocks * blocklen;
io_stat->num_unmap_ops++;
io_stat->unmap_latency_ticks += tsc_diff;
if (io_stat->max_unmap_latency_ticks < tsc_diff) {
io_stat->max_unmap_latency_ticks = tsc_diff;
}
if (io_stat->min_unmap_latency_ticks > tsc_diff) {
io_stat->min_unmap_latency_ticks = tsc_diff;
}
break;
case SPDK_BDEV_IO_TYPE_ZCOPY:
/* Track the data in the start phase only */
if (bdev_io->u.bdev.zcopy.start) {
if (bdev_io->u.bdev.zcopy.populate) {
io_stat->bytes_read += num_blocks * blocklen;
io_stat->num_read_ops++;
io_stat->read_latency_ticks += tsc_diff;
if (io_stat->max_read_latency_ticks < tsc_diff) {
io_stat->max_read_latency_ticks = tsc_diff;
}
if (io_stat->min_read_latency_ticks > tsc_diff) {
io_stat->min_read_latency_ticks = tsc_diff;
}
} else {
io_stat->bytes_written += num_blocks * blocklen;
io_stat->num_write_ops++;
io_stat->write_latency_ticks += tsc_diff;
if (io_stat->max_write_latency_ticks < tsc_diff) {
io_stat->max_write_latency_ticks = tsc_diff;
}
if (io_stat->min_write_latency_ticks > tsc_diff) {
io_stat->min_write_latency_ticks = tsc_diff;
}
}
}
break;
case SPDK_BDEV_IO_TYPE_COPY:
io_stat->bytes_copied += num_blocks * blocklen;
io_stat->num_copy_ops++;
bdev_io->internal.ch->stat->copy_latency_ticks += tsc_diff;
if (io_stat->max_copy_latency_ticks < tsc_diff) {
io_stat->max_copy_latency_ticks = tsc_diff;
}
if (io_stat->min_copy_latency_ticks > tsc_diff) {
io_stat->min_copy_latency_ticks = tsc_diff;
}
break;
default:
break;
}
} else if (io_status <= SPDK_BDEV_IO_STATUS_FAILED && io_status >= SPDK_MIN_BDEV_IO_STATUS) {
io_stat = bdev_io->bdev->internal.stat;
assert(io_stat->io_error != NULL);
spdk_spin_lock(&bdev_io->bdev->internal.spinlock);
io_stat->io_error->error_status[-io_status - 1]++;
spdk_spin_unlock(&bdev_io->bdev->internal.spinlock);
}
#ifdef SPDK_CONFIG_VTUNE
uint64_t now_tsc = spdk_get_ticks();
if (now_tsc > (bdev_io->internal.ch->start_tsc + bdev_io->internal.ch->interval_tsc)) {
uint64_t data[5];
struct spdk_bdev_io_stat *prev_stat = bdev_io->internal.ch->prev_stat;
data[0] = io_stat->num_read_ops - prev_stat->num_read_ops;
data[1] = io_stat->bytes_read - prev_stat->bytes_read;
data[2] = io_stat->num_write_ops - prev_stat->num_write_ops;
data[3] = io_stat->bytes_written - prev_stat->bytes_written;
data[4] = bdev_io->bdev->fn_table->get_spin_time ?
bdev_io->bdev->fn_table->get_spin_time(spdk_bdev_io_get_io_channel(bdev_io)) : 0;
__itt_metadata_add(g_bdev_mgr.domain, __itt_null, bdev_io->internal.ch->handle,
__itt_metadata_u64, 5, data);
memcpy(prev_stat, io_stat, sizeof(struct spdk_bdev_io_stat));
bdev_io->internal.ch->start_tsc = now_tsc;
}
#endif
}
static inline void
_bdev_io_complete(void *ctx)
{
struct spdk_bdev_io *bdev_io = ctx;
if (spdk_unlikely(bdev_io->internal.accel_sequence != NULL)) {
assert(bdev_io->internal.status != SPDK_BDEV_IO_STATUS_SUCCESS);
spdk_accel_sequence_abort(bdev_io->internal.accel_sequence);
}
assert(bdev_io->internal.cb != NULL);
assert(spdk_get_thread() == spdk_bdev_io_get_thread(bdev_io));
bdev_io->internal.cb(bdev_io, bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS,
bdev_io->internal.caller_ctx);
}
static inline void
bdev_io_complete(void *ctx)
{
struct spdk_bdev_io *bdev_io = ctx;
struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch;
uint64_t tsc, tsc_diff;
if (spdk_unlikely(bdev_io->internal.in_submit_request)) {
/*
* Defer completion to avoid potential infinite recursion if the
* user's completion callback issues a new I/O.
*/
spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
bdev_io_complete, bdev_io);
return;
}
tsc = spdk_get_ticks();
tsc_diff = tsc - bdev_io->internal.submit_tsc;
spdk_trace_record_tsc(tsc, TRACE_BDEV_IO_DONE, 0, 0, (uintptr_t)bdev_io,
bdev_io->internal.caller_ctx);
TAILQ_REMOVE(&bdev_ch->io_submitted, bdev_io, internal.ch_link);
if (bdev_io->internal.ch->histogram) {
spdk_histogram_data_tally(bdev_io->internal.ch->histogram, tsc_diff);
}
bdev_io_update_io_stat(bdev_io, tsc_diff);
_bdev_io_complete(bdev_io);
}
/* The difference between this function and bdev_io_complete() is that this should be called to
* complete IOs that haven't been submitted via bdev_io_submit(), as they weren't added onto the
* io_submitted list and don't have submit_tsc updated.
*/
static inline void
bdev_io_complete_unsubmitted(struct spdk_bdev_io *bdev_io)
{
/* Since the IO hasn't been submitted it's bound to be failed */
assert(bdev_io->internal.status != SPDK_BDEV_IO_STATUS_SUCCESS);
/* At this point we don't know if the IO is completed from submission context or not, but,
* since this is an error path, we can always do an spdk_thread_send_msg(). */
spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
_bdev_io_complete, bdev_io);
}
static void bdev_destroy_cb(void *io_device);
static void
bdev_reset_complete(struct spdk_bdev *bdev, void *_ctx, int status)
{
struct spdk_bdev_io *bdev_io = _ctx;
if (bdev_io->u.reset.ch_ref != NULL) {
spdk_put_io_channel(bdev_io->u.reset.ch_ref);
bdev_io->u.reset.ch_ref = NULL;
}
bdev_io_complete(bdev_io);
if (bdev->internal.status == SPDK_BDEV_STATUS_REMOVING &&
TAILQ_EMPTY(&bdev->internal.open_descs)) {
spdk_io_device_unregister(__bdev_to_io_dev(bdev), bdev_destroy_cb);
}
}
static void
bdev_unfreeze_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev,
struct spdk_io_channel *_ch, void *_ctx)
{
struct spdk_bdev_io *bdev_io = _ctx;
struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch);
struct spdk_bdev_io *queued_reset;
ch->flags &= ~BDEV_CH_RESET_IN_PROGRESS;
while (!TAILQ_EMPTY(&ch->queued_resets)) {
queued_reset = TAILQ_FIRST(&ch->queued_resets);
TAILQ_REMOVE(&ch->queued_resets, queued_reset, internal.link);
spdk_bdev_io_complete(queued_reset, bdev_io->internal.status);
}
spdk_bdev_for_each_channel_continue(i, 0);
}
static void
bdev_io_complete_sequence_cb(void *ctx, int status)
{
struct spdk_bdev_io *bdev_io = ctx;
/* u.bdev.accel_sequence should have already been cleared at this point */
assert(bdev_io->u.bdev.accel_sequence == NULL);
assert(bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS);
bdev_io->internal.accel_sequence = NULL;
if (spdk_unlikely(status != 0)) {
SPDK_ERRLOG("Failed to execute accel sequence, status=%d\n", status);
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
}
bdev_io_complete(bdev_io);
}
void
spdk_bdev_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status)
{
struct spdk_bdev *bdev = bdev_io->bdev;
struct spdk_bdev_channel *bdev_ch = bdev_io->internal.ch;
struct spdk_bdev_shared_resource *shared_resource = bdev_ch->shared_resource;
if (bdev_io->internal.status != SPDK_BDEV_IO_STATUS_PENDING) {
SPDK_ERRLOG("Unexpected completion on IO from %s module, status was %s\n",
spdk_bdev_get_module_name(bdev),
bdev_io_status_get_string(bdev_io->internal.status));
assert(false);
}
bdev_io->internal.status = status;
if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_RESET)) {
bool unlock_channels = false;
if (status == SPDK_BDEV_IO_STATUS_NOMEM) {
SPDK_ERRLOG("NOMEM returned for reset\n");
}
spdk_spin_lock(&bdev->internal.spinlock);
if (bdev_io == bdev->internal.reset_in_progress) {
bdev->internal.reset_in_progress = NULL;
unlock_channels = true;
}
spdk_spin_unlock(&bdev->internal.spinlock);
if (unlock_channels) {
spdk_bdev_for_each_channel(bdev, bdev_unfreeze_channel, bdev_io,
bdev_reset_complete);
return;
}
} else {
bdev_io_decrement_outstanding(bdev_ch, shared_resource);
if (spdk_likely(status == SPDK_BDEV_IO_STATUS_SUCCESS)) {
if (bdev_io_needs_sequence_exec(bdev_io->internal.desc, bdev_io)) {
bdev_io_exec_sequence(bdev_io, bdev_io_complete_sequence_cb);
return;
} else if (spdk_unlikely(bdev_io->internal.orig_iovcnt != 0)) {
_bdev_io_push_bounce_data_buffer(bdev_io,
_bdev_io_complete_push_bounce_done);
/* bdev IO will be completed in the callback */
return;
}
}
if (spdk_unlikely(_bdev_io_handle_no_mem(bdev_io, BDEV_IO_RETRY_STATE_SUBMIT))) {
return;
}
}
bdev_io_complete(bdev_io);
}
void
spdk_bdev_io_complete_scsi_status(struct spdk_bdev_io *bdev_io, enum spdk_scsi_status sc,
enum spdk_scsi_sense sk, uint8_t asc, uint8_t ascq)
{
enum spdk_bdev_io_status status;
if (sc == SPDK_SCSI_STATUS_GOOD) {
status = SPDK_BDEV_IO_STATUS_SUCCESS;
} else {
status = SPDK_BDEV_IO_STATUS_SCSI_ERROR;
bdev_io->internal.error.scsi.sc = sc;
bdev_io->internal.error.scsi.sk = sk;
bdev_io->internal.error.scsi.asc = asc;
bdev_io->internal.error.scsi.ascq = ascq;
}
spdk_bdev_io_complete(bdev_io, status);
}
void
spdk_bdev_io_get_scsi_status(const struct spdk_bdev_io *bdev_io,
int *sc, int *sk, int *asc, int *ascq)
{
assert(sc != NULL);
assert(sk != NULL);
assert(asc != NULL);
assert(ascq != NULL);
switch (bdev_io->internal.status) {
case SPDK_BDEV_IO_STATUS_SUCCESS:
*sc = SPDK_SCSI_STATUS_GOOD;
*sk = SPDK_SCSI_SENSE_NO_SENSE;
*asc = SPDK_SCSI_ASC_NO_ADDITIONAL_SENSE;
*ascq = SPDK_SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
break;
case SPDK_BDEV_IO_STATUS_NVME_ERROR:
spdk_scsi_nvme_translate(bdev_io, sc, sk, asc, ascq);
break;
case SPDK_BDEV_IO_STATUS_SCSI_ERROR:
*sc = bdev_io->internal.error.scsi.sc;
*sk = bdev_io->internal.error.scsi.sk;
*asc = bdev_io->internal.error.scsi.asc;
*ascq = bdev_io->internal.error.scsi.ascq;
break;
default:
*sc = SPDK_SCSI_STATUS_CHECK_CONDITION;
*sk = SPDK_SCSI_SENSE_ABORTED_COMMAND;
*asc = SPDK_SCSI_ASC_NO_ADDITIONAL_SENSE;
*ascq = SPDK_SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
break;
}
}
void
spdk_bdev_io_complete_aio_status(struct spdk_bdev_io *bdev_io, int aio_result)
{
enum spdk_bdev_io_status status;
if (aio_result == 0) {
status = SPDK_BDEV_IO_STATUS_SUCCESS;
} else {
status = SPDK_BDEV_IO_STATUS_AIO_ERROR;
}
bdev_io->internal.error.aio_result = aio_result;
spdk_bdev_io_complete(bdev_io, status);
}
void
spdk_bdev_io_get_aio_status(const struct spdk_bdev_io *bdev_io, int *aio_result)
{
assert(aio_result != NULL);
if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_AIO_ERROR) {
*aio_result = bdev_io->internal.error.aio_result;
} else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) {
*aio_result = 0;
} else {
*aio_result = -EIO;
}
}
void
spdk_bdev_io_complete_nvme_status(struct spdk_bdev_io *bdev_io, uint32_t cdw0, int sct, int sc)
{
enum spdk_bdev_io_status status;
if (sct == SPDK_NVME_SCT_GENERIC && sc == SPDK_NVME_SC_SUCCESS) {
status = SPDK_BDEV_IO_STATUS_SUCCESS;
} else if (sct == SPDK_NVME_SCT_GENERIC && sc == SPDK_NVME_SC_ABORTED_BY_REQUEST) {
status = SPDK_BDEV_IO_STATUS_ABORTED;
} else {
status = SPDK_BDEV_IO_STATUS_NVME_ERROR;
}
bdev_io->internal.error.nvme.cdw0 = cdw0;
bdev_io->internal.error.nvme.sct = sct;
bdev_io->internal.error.nvme.sc = sc;
spdk_bdev_io_complete(bdev_io, status);
}
void
spdk_bdev_io_get_nvme_status(const struct spdk_bdev_io *bdev_io, uint32_t *cdw0, int *sct, int *sc)
{
assert(sct != NULL);
assert(sc != NULL);
assert(cdw0 != NULL);
if (spdk_unlikely(bdev_io->type == SPDK_BDEV_IO_TYPE_ABORT)) {
*sct = SPDK_NVME_SCT_GENERIC;
*sc = SPDK_NVME_SC_SUCCESS;
if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) {
*cdw0 = 0;
} else {
*cdw0 = 1U;
}
return;
}
if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NVME_ERROR) {
*sct = bdev_io->internal.error.nvme.sct;
*sc = bdev_io->internal.error.nvme.sc;
} else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) {
*sct = SPDK_NVME_SCT_GENERIC;
*sc = SPDK_NVME_SC_SUCCESS;
} else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_ABORTED) {
*sct = SPDK_NVME_SCT_GENERIC;
*sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
} else {
*sct = SPDK_NVME_SCT_GENERIC;
*sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
}
*cdw0 = bdev_io->internal.error.nvme.cdw0;
}
void
spdk_bdev_io_get_nvme_fused_status(const struct spdk_bdev_io *bdev_io, uint32_t *cdw0,
int *first_sct, int *first_sc, int *second_sct, int *second_sc)
{
assert(first_sct != NULL);
assert(first_sc != NULL);
assert(second_sct != NULL);
assert(second_sc != NULL);
assert(cdw0 != NULL);
if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_NVME_ERROR) {
if (bdev_io->internal.error.nvme.sct == SPDK_NVME_SCT_MEDIA_ERROR &&
bdev_io->internal.error.nvme.sc == SPDK_NVME_SC_COMPARE_FAILURE) {
*first_sct = bdev_io->internal.error.nvme.sct;
*first_sc = bdev_io->internal.error.nvme.sc;
*second_sct = SPDK_NVME_SCT_GENERIC;
*second_sc = SPDK_NVME_SC_ABORTED_FAILED_FUSED;
} else {
*first_sct = SPDK_NVME_SCT_GENERIC;
*first_sc = SPDK_NVME_SC_SUCCESS;
*second_sct = bdev_io->internal.error.nvme.sct;
*second_sc = bdev_io->internal.error.nvme.sc;
}
} else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_ABORTED) {
*first_sct = SPDK_NVME_SCT_GENERIC;
*first_sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
*second_sct = SPDK_NVME_SCT_GENERIC;
*second_sc = SPDK_NVME_SC_ABORTED_BY_REQUEST;
} else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_SUCCESS) {
*first_sct = SPDK_NVME_SCT_GENERIC;
*first_sc = SPDK_NVME_SC_SUCCESS;
*second_sct = SPDK_NVME_SCT_GENERIC;
*second_sc = SPDK_NVME_SC_SUCCESS;
} else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_FIRST_FUSED_FAILED) {
*first_sct = SPDK_NVME_SCT_GENERIC;
*first_sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
*second_sct = SPDK_NVME_SCT_GENERIC;
*second_sc = SPDK_NVME_SC_ABORTED_FAILED_FUSED;
} else if (bdev_io->internal.status == SPDK_BDEV_IO_STATUS_MISCOMPARE) {
*first_sct = SPDK_NVME_SCT_MEDIA_ERROR;
*first_sc = SPDK_NVME_SC_COMPARE_FAILURE;
*second_sct = SPDK_NVME_SCT_GENERIC;
*second_sc = SPDK_NVME_SC_ABORTED_FAILED_FUSED;
} else {
*first_sct = SPDK_NVME_SCT_GENERIC;
*first_sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
*second_sct = SPDK_NVME_SCT_GENERIC;
*second_sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
}
*cdw0 = bdev_io->internal.error.nvme.cdw0;
}
struct spdk_thread *
spdk_bdev_io_get_thread(struct spdk_bdev_io *bdev_io)
{
return spdk_io_channel_get_thread(bdev_io->internal.ch->channel);
}
struct spdk_io_channel *
spdk_bdev_io_get_io_channel(struct spdk_bdev_io *bdev_io)
{
return bdev_io->internal.ch->channel;
}
static int
bdev_register(struct spdk_bdev *bdev)
{
char *bdev_name;
char uuid[SPDK_UUID_STRING_LEN];
struct spdk_iobuf_opts iobuf_opts;
int ret, i;
assert(bdev->module != NULL);
if (!bdev->name) {
SPDK_ERRLOG("Bdev name is NULL\n");
return -EINVAL;
}
if (!strlen(bdev->name)) {
SPDK_ERRLOG("Bdev name must not be an empty string\n");
return -EINVAL;
}
for (i = 0; i < SPDK_BDEV_NUM_IO_TYPES; ++i) {
if (bdev->fn_table->accel_sequence_supported == NULL) {
continue;
}
if (!bdev->fn_table->accel_sequence_supported(bdev->ctxt,
(enum spdk_bdev_io_type)i)) {
continue;
}
if (spdk_bdev_get_memory_domains(bdev, NULL, 0) <= 0) {
SPDK_ERRLOG("bdev supporting accel sequence is required to support "
"memory domains\n");
return -EINVAL;
}
if (spdk_bdev_is_md_separate(bdev)) {
SPDK_ERRLOG("Separate metadata is currently unsupported for bdevs with "
"accel sequence support\n");
return -EINVAL;
}
}
/* Users often register their own I/O devices using the bdev name. In
* order to avoid conflicts, prepend bdev_. */
bdev_name = spdk_sprintf_alloc("bdev_%s", bdev->name);
if (!bdev_name) {
SPDK_ERRLOG("Unable to allocate memory for internal bdev name.\n");
return -ENOMEM;
}
bdev->internal.stat = bdev_alloc_io_stat(true);
if (!bdev->internal.stat) {
SPDK_ERRLOG("Unable to allocate I/O statistics structure.\n");
free(bdev_name);
return -ENOMEM;
}
bdev->internal.status = SPDK_BDEV_STATUS_READY;
bdev->internal.measured_queue_depth = UINT64_MAX;
bdev->internal.claim_type = SPDK_BDEV_CLAIM_NONE;
memset(&bdev->internal.claim, 0, sizeof(bdev->internal.claim));
bdev->internal.qd_poller = NULL;
bdev->internal.qos = NULL;
TAILQ_INIT(&bdev->internal.open_descs);
TAILQ_INIT(&bdev->internal.locked_ranges);
TAILQ_INIT(&bdev->internal.pending_locked_ranges);
TAILQ_INIT(&bdev->aliases);
ret = bdev_name_add(&bdev->internal.bdev_name, bdev, bdev->name);
if (ret != 0) {
bdev_free_io_stat(bdev->internal.stat);
free(bdev_name);
return ret;
}
/* UUID may be specified by the user or defined by bdev itself.
* Otherwise it will be generated here, so this field will never be empty. */
if (spdk_uuid_is_null(&bdev->uuid)) {
spdk_uuid_generate(&bdev->uuid);
}
/* Add the UUID alias only if it's different than the name */
spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
if (strcmp(bdev->name, uuid) != 0) {
ret = spdk_bdev_alias_add(bdev, uuid);
if (ret != 0) {
SPDK_ERRLOG("Unable to add uuid:%s alias for bdev %s\n", uuid, bdev->name);
bdev_name_del(&bdev->internal.bdev_name);
bdev_free_io_stat(bdev->internal.stat);
free(bdev_name);
return ret;
}
}
if (spdk_bdev_get_buf_align(bdev) > 1) {
if (bdev->split_on_optimal_io_boundary) {
bdev->optimal_io_boundary = spdk_min(bdev->optimal_io_boundary,
SPDK_BDEV_LARGE_BUF_MAX_SIZE / bdev->blocklen);
} else {
bdev->split_on_optimal_io_boundary = true;
bdev->optimal_io_boundary = SPDK_BDEV_LARGE_BUF_MAX_SIZE / bdev->blocklen;
}
}
/* If the user didn't specify a write unit size, set it to one. */
if (bdev->write_unit_size == 0) {
bdev->write_unit_size = 1;
}
/* Set ACWU value to the write unit size if bdev module did not set it (does not support it natively) */
if (bdev->acwu == 0) {
bdev->acwu = bdev->write_unit_size;
}
if (bdev->phys_blocklen == 0) {
bdev->phys_blocklen = spdk_bdev_get_data_block_size(bdev);
}
if (!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COPY)) {
spdk_iobuf_get_opts(&iobuf_opts);
bdev->max_copy = bdev_get_max_write(bdev, iobuf_opts.large_bufsize);
}
if (!bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_WRITE_ZEROES)) {
bdev->max_write_zeroes = bdev_get_max_write(bdev, ZERO_BUFFER_SIZE);
}
bdev->internal.reset_in_progress = NULL;
bdev->internal.qd_poll_in_progress = false;
bdev->internal.period = 0;
bdev->internal.new_period = 0;
spdk_io_device_register(__bdev_to_io_dev(bdev),
bdev_channel_create, bdev_channel_destroy,
sizeof(struct spdk_bdev_channel),
bdev_name);
free(bdev_name);
spdk_spin_init(&bdev->internal.spinlock);
SPDK_DEBUGLOG(bdev, "Inserting bdev %s into list\n", bdev->name);
TAILQ_INSERT_TAIL(&g_bdev_mgr.bdevs, bdev, internal.link);
return 0;
}
static void
bdev_destroy_cb(void *io_device)
{
int rc;
struct spdk_bdev *bdev;
spdk_bdev_unregister_cb cb_fn;
void *cb_arg;
bdev = __bdev_from_io_dev(io_device);
if (bdev->internal.unregister_td != spdk_get_thread()) {
spdk_thread_send_msg(bdev->internal.unregister_td, bdev_destroy_cb, io_device);
return;
}
cb_fn = bdev->internal.unregister_cb;
cb_arg = bdev->internal.unregister_ctx;
spdk_spin_destroy(&bdev->internal.spinlock);
free(bdev->internal.qos);
bdev_free_io_stat(bdev->internal.stat);
rc = bdev->fn_table->destruct(bdev->ctxt);
if (rc < 0) {
SPDK_ERRLOG("destruct failed\n");
}
if (rc <= 0 && cb_fn != NULL) {
cb_fn(cb_arg, rc);
}
}
void
spdk_bdev_destruct_done(struct spdk_bdev *bdev, int bdeverrno)
{
if (bdev->internal.unregister_cb != NULL) {
bdev->internal.unregister_cb(bdev->internal.unregister_ctx, bdeverrno);
}
}
static void
_remove_notify(void *arg)
{
struct spdk_bdev_desc *desc = arg;
_event_notify(desc, SPDK_BDEV_EVENT_REMOVE);
}
/* returns: 0 - bdev removed and ready to be destructed.
* -EBUSY - bdev can't be destructed yet. */
static int
bdev_unregister_unsafe(struct spdk_bdev *bdev)
{
struct spdk_bdev_desc *desc, *tmp;
int rc = 0;
char uuid[SPDK_UUID_STRING_LEN];
assert(spdk_spin_held(&g_bdev_mgr.spinlock));
assert(spdk_spin_held(&bdev->internal.spinlock));
/* Notify each descriptor about hotremoval */
TAILQ_FOREACH_SAFE(desc, &bdev->internal.open_descs, link, tmp) {
rc = -EBUSY;
/*
* Defer invocation of the event_cb to a separate message that will
* run later on its thread. This ensures this context unwinds and
* we don't recursively unregister this bdev again if the event_cb
* immediately closes its descriptor.
*/
event_notify(desc, _remove_notify);
}
/* If there are no descriptors, proceed removing the bdev */
if (rc == 0) {
TAILQ_REMOVE(&g_bdev_mgr.bdevs, bdev, internal.link);
SPDK_DEBUGLOG(bdev, "Removing bdev %s from list done\n", bdev->name);
/* Delete the name and the UUID alias */
spdk_uuid_fmt_lower(uuid, sizeof(uuid), &bdev->uuid);
bdev_name_del_unsafe(&bdev->internal.bdev_name);
bdev_alias_del(bdev, uuid, bdev_name_del_unsafe);
spdk_notify_send("bdev_unregister", spdk_bdev_get_name(bdev));
if (bdev->internal.reset_in_progress != NULL) {
/* If reset is in progress, let the completion callback for reset
* unregister the bdev.
*/
rc = -EBUSY;
}
}
return rc;
}
static void
bdev_unregister_abort_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev,
struct spdk_io_channel *io_ch, void *_ctx)
{
struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(io_ch);
bdev_channel_abort_queued_ios(bdev_ch);
spdk_bdev_for_each_channel_continue(i, 0);
}
static void
bdev_unregister(struct spdk_bdev *bdev, void *_ctx, int status)
{
int rc;
spdk_spin_lock(&g_bdev_mgr.spinlock);
spdk_spin_lock(&bdev->internal.spinlock);
/*
* Set the status to REMOVING after completing to abort channels. Otherwise,
* the last spdk_bdev_close() may call spdk_io_device_unregister() while
* spdk_bdev_for_each_channel() is executed and spdk_io_device_unregister()
* may fail.
*/
bdev->internal.status = SPDK_BDEV_STATUS_REMOVING;
rc = bdev_unregister_unsafe(bdev);
spdk_spin_unlock(&bdev->internal.spinlock);
spdk_spin_unlock(&g_bdev_mgr.spinlock);
if (rc == 0) {
spdk_io_device_unregister(__bdev_to_io_dev(bdev), bdev_destroy_cb);
}
}
void
spdk_bdev_unregister(struct spdk_bdev *bdev, spdk_bdev_unregister_cb cb_fn, void *cb_arg)
{
struct spdk_thread *thread;
SPDK_DEBUGLOG(bdev, "Removing bdev %s from list\n", bdev->name);
thread = spdk_get_thread();
if (!thread) {
/* The user called this from a non-SPDK thread. */
if (cb_fn != NULL) {
cb_fn(cb_arg, -ENOTSUP);
}
return;
}
spdk_spin_lock(&g_bdev_mgr.spinlock);
if (bdev->internal.status == SPDK_BDEV_STATUS_UNREGISTERING ||
bdev->internal.status == SPDK_BDEV_STATUS_REMOVING) {
spdk_spin_unlock(&g_bdev_mgr.spinlock);
if (cb_fn) {
cb_fn(cb_arg, -EBUSY);
}
return;
}
spdk_spin_lock(&bdev->internal.spinlock);
bdev->internal.status = SPDK_BDEV_STATUS_UNREGISTERING;
bdev->internal.unregister_cb = cb_fn;
bdev->internal.unregister_ctx = cb_arg;
bdev->internal.unregister_td = thread;
spdk_spin_unlock(&bdev->internal.spinlock);
spdk_spin_unlock(&g_bdev_mgr.spinlock);
spdk_bdev_set_qd_sampling_period(bdev, 0);
spdk_bdev_for_each_channel(bdev, bdev_unregister_abort_channel, bdev,
bdev_unregister);
}
int
spdk_bdev_unregister_by_name(const char *bdev_name, struct spdk_bdev_module *module,
spdk_bdev_unregister_cb cb_fn, void *cb_arg)
{
struct spdk_bdev_desc *desc;
struct spdk_bdev *bdev;
int rc;
rc = spdk_bdev_open_ext(bdev_name, false, _tmp_bdev_event_cb, NULL, &desc);
if (rc != 0) {
SPDK_ERRLOG("Failed to open bdev with name: %s\n", bdev_name);
return rc;
}
bdev = spdk_bdev_desc_get_bdev(desc);
if (bdev->module != module) {
spdk_bdev_close(desc);
SPDK_ERRLOG("Bdev %s was not registered by the specified module.\n",
bdev_name);
return -ENODEV;
}
spdk_bdev_unregister(bdev, cb_fn, cb_arg);
spdk_bdev_close(desc);
return 0;
}
static int
bdev_start_qos(struct spdk_bdev *bdev)
{
struct set_qos_limit_ctx *ctx;
/* Enable QoS */
if (bdev->internal.qos && bdev->internal.qos->thread == NULL) {
ctx = calloc(1, sizeof(*ctx));
if (ctx == NULL) {
SPDK_ERRLOG("Failed to allocate memory for QoS context\n");
return -ENOMEM;
}
ctx->bdev = bdev;
spdk_bdev_for_each_channel(bdev, bdev_enable_qos_msg, ctx, bdev_enable_qos_done);
}
return 0;
}
static void
log_already_claimed(enum spdk_log_level level, const int line, const char *func, const char *detail,
struct spdk_bdev *bdev)
{
enum spdk_bdev_claim_type type;
const char *typename, *modname;
extern struct spdk_log_flag SPDK_LOG_bdev;
assert(spdk_spin_held(&bdev->internal.spinlock));
if (level >= SPDK_LOG_INFO && !SPDK_LOG_bdev.enabled) {
return;
}
type = bdev->internal.claim_type;
typename = spdk_bdev_claim_get_name(type);
if (type == SPDK_BDEV_CLAIM_EXCL_WRITE) {
modname = bdev->internal.claim.v1.module->name;
spdk_log(level, __FILE__, line, func, "bdev %s %s: type %s by module %s\n",
bdev->name, detail, typename, modname);
return;
}
if (claim_type_is_v2(type)) {
struct spdk_bdev_module_claim *claim;
TAILQ_FOREACH(claim, &bdev->internal.claim.v2.claims, link) {
modname = claim->module->name;
spdk_log(level, __FILE__, line, func, "bdev %s %s: type %s by module %s\n",
bdev->name, detail, typename, modname);
}
return;
}
assert(false);
}
static int
bdev_open(struct spdk_bdev *bdev, bool write, struct spdk_bdev_desc *desc)
{
struct spdk_thread *thread;
int rc = 0;
thread = spdk_get_thread();
if (!thread) {
SPDK_ERRLOG("Cannot open bdev from non-SPDK thread.\n");
return -ENOTSUP;
}
SPDK_DEBUGLOG(bdev, "Opening descriptor %p for bdev %s on thread %p\n", desc, bdev->name,
spdk_get_thread());
desc->bdev = bdev;
desc->thread = thread;
desc->write = write;
spdk_spin_lock(&bdev->internal.spinlock);
if (bdev->internal.status == SPDK_BDEV_STATUS_UNREGISTERING ||
bdev->internal.status == SPDK_BDEV_STATUS_REMOVING) {
spdk_spin_unlock(&bdev->internal.spinlock);
return -ENODEV;
}
if (write && bdev->internal.claim_type != SPDK_BDEV_CLAIM_NONE) {
LOG_ALREADY_CLAIMED_ERROR("already claimed", bdev);
spdk_spin_unlock(&bdev->internal.spinlock);
return -EPERM;
}
rc = bdev_start_qos(bdev);
if (rc != 0) {
SPDK_ERRLOG("Failed to start QoS on bdev %s\n", bdev->name);
spdk_spin_unlock(&bdev->internal.spinlock);
return rc;
}
TAILQ_INSERT_TAIL(&bdev->internal.open_descs, desc, link);
spdk_spin_unlock(&bdev->internal.spinlock);
return 0;
}
static int
bdev_desc_alloc(struct spdk_bdev *bdev, spdk_bdev_event_cb_t event_cb, void *event_ctx,
struct spdk_bdev_desc **_desc)
{
struct spdk_bdev_desc *desc;
unsigned int i;
desc = calloc(1, sizeof(*desc));
if (desc == NULL) {
SPDK_ERRLOG("Failed to allocate memory for bdev descriptor\n");
return -ENOMEM;
}
TAILQ_INIT(&desc->pending_media_events);
TAILQ_INIT(&desc->free_media_events);
desc->memory_domains_supported = spdk_bdev_get_memory_domains(bdev, NULL, 0) > 0;
desc->callback.event_fn = event_cb;
desc->callback.ctx = event_ctx;
spdk_spin_init(&desc->spinlock);
if (bdev->media_events) {
desc->media_events_buffer = calloc(MEDIA_EVENT_POOL_SIZE,
sizeof(*desc->media_events_buffer));
if (desc->media_events_buffer == NULL) {
SPDK_ERRLOG("Failed to initialize media event pool\n");
bdev_desc_free(desc);
return -ENOMEM;
}
for (i = 0; i < MEDIA_EVENT_POOL_SIZE; ++i) {
TAILQ_INSERT_TAIL(&desc->free_media_events,
&desc->media_events_buffer[i], tailq);
}
}
if (bdev->fn_table->accel_sequence_supported != NULL) {
for (i = 0; i < SPDK_BDEV_NUM_IO_TYPES; ++i) {
desc->accel_sequence_supported[i] =
bdev->fn_table->accel_sequence_supported(bdev->ctxt,
(enum spdk_bdev_io_type)i);
}
}
*_desc = desc;
return 0;
}
int
spdk_bdev_open_ext(const char *bdev_name, bool write, spdk_bdev_event_cb_t event_cb,
void *event_ctx, struct spdk_bdev_desc **_desc)
{
struct spdk_bdev_desc *desc;
struct spdk_bdev *bdev;
int rc;
if (event_cb == NULL) {
SPDK_ERRLOG("Missing event callback function\n");
return -EINVAL;
}
spdk_spin_lock(&g_bdev_mgr.spinlock);
bdev = bdev_get_by_name(bdev_name);
if (bdev == NULL) {
SPDK_NOTICELOG("Currently unable to find bdev with name: %s\n", bdev_name);
spdk_spin_unlock(&g_bdev_mgr.spinlock);
return -ENODEV;
}
rc = bdev_desc_alloc(bdev, event_cb, event_ctx, &desc);
if (rc != 0) {
spdk_spin_unlock(&g_bdev_mgr.spinlock);
return rc;
}
rc = bdev_open(bdev, write, desc);
if (rc != 0) {
bdev_desc_free(desc);
desc = NULL;
}
*_desc = desc;
spdk_spin_unlock(&g_bdev_mgr.spinlock);
return rc;
}
static void
bdev_close(struct spdk_bdev *bdev, struct spdk_bdev_desc *desc)
{
int rc;
spdk_spin_lock(&bdev->internal.spinlock);
spdk_spin_lock(&desc->spinlock);
TAILQ_REMOVE(&bdev->internal.open_descs, desc, link);
desc->closed = true;
if (desc->claim != NULL) {
bdev_desc_release_claims(desc);
}
if (0 == desc->refs) {
spdk_spin_unlock(&desc->spinlock);
bdev_desc_free(desc);
} else {
spdk_spin_unlock(&desc->spinlock);
}
/* If no more descriptors, kill QoS channel */
if (bdev->internal.qos && TAILQ_EMPTY(&bdev->internal.open_descs)) {
SPDK_DEBUGLOG(bdev, "Closed last descriptor for bdev %s on thread %p. Stopping QoS.\n",
bdev->name, spdk_get_thread());
if (bdev_qos_destroy(bdev)) {
/* There isn't anything we can do to recover here. Just let the
* old QoS poller keep running. The QoS handling won't change
* cores when the user allocates a new channel, but it won't break. */
SPDK_ERRLOG("Unable to shut down QoS poller. It will continue running on the current thread.\n");
}
}
if (bdev->internal.status == SPDK_BDEV_STATUS_REMOVING && TAILQ_EMPTY(&bdev->internal.open_descs)) {
rc = bdev_unregister_unsafe(bdev);
spdk_spin_unlock(&bdev->internal.spinlock);
if (rc == 0) {
spdk_io_device_unregister(__bdev_to_io_dev(bdev), bdev_destroy_cb);
}
} else {
spdk_spin_unlock(&bdev->internal.spinlock);
}
}
void
spdk_bdev_close(struct spdk_bdev_desc *desc)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
SPDK_DEBUGLOG(bdev, "Closing descriptor %p for bdev %s on thread %p\n", desc, bdev->name,
spdk_get_thread());
assert(desc->thread == spdk_get_thread());
spdk_poller_unregister(&desc->io_timeout_poller);
spdk_spin_lock(&g_bdev_mgr.spinlock);
bdev_close(bdev, desc);
spdk_spin_unlock(&g_bdev_mgr.spinlock);
}
static void
bdev_register_finished(void *arg)
{
struct spdk_bdev_desc *desc = arg;
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
spdk_notify_send("bdev_register", spdk_bdev_get_name(bdev));
spdk_spin_lock(&g_bdev_mgr.spinlock);
bdev_close(bdev, desc);
spdk_spin_unlock(&g_bdev_mgr.spinlock);
}
int
spdk_bdev_register(struct spdk_bdev *bdev)
{
struct spdk_bdev_desc *desc;
struct spdk_thread *thread = spdk_get_thread();
int rc;
if (spdk_unlikely(spdk_thread_get_app_thread() != spdk_get_thread())) {
SPDK_ERRLOG("Cannot examine bdev %s on thread %p (%s)\n", bdev->name, thread,
thread ? spdk_thread_get_name(thread) : "null");
return -EINVAL;
}
rc = bdev_register(bdev);
if (rc != 0) {
return rc;
}
/* A descriptor is opened to prevent bdev deletion during examination */
rc = bdev_desc_alloc(bdev, _tmp_bdev_event_cb, NULL, &desc);
if (rc != 0) {
spdk_bdev_unregister(bdev, NULL, NULL);
return rc;
}
rc = bdev_open(bdev, false, desc);
if (rc != 0) {
bdev_desc_free(desc);
spdk_bdev_unregister(bdev, NULL, NULL);
return rc;
}
/* Examine configuration before initializing I/O */
bdev_examine(bdev);
rc = spdk_bdev_wait_for_examine(bdev_register_finished, desc);
if (rc != 0) {
bdev_close(bdev, desc);
spdk_bdev_unregister(bdev, NULL, NULL);
}
return rc;
}
int
spdk_bdev_module_claim_bdev(struct spdk_bdev *bdev, struct spdk_bdev_desc *desc,
struct spdk_bdev_module *module)
{
spdk_spin_lock(&bdev->internal.spinlock);
if (bdev->internal.claim_type != SPDK_BDEV_CLAIM_NONE) {
LOG_ALREADY_CLAIMED_ERROR("already claimed", bdev);
spdk_spin_unlock(&bdev->internal.spinlock);
return -EPERM;
}
if (desc && !desc->write) {
desc->write = true;
}
bdev->internal.claim_type = SPDK_BDEV_CLAIM_EXCL_WRITE;
bdev->internal.claim.v1.module = module;
spdk_spin_unlock(&bdev->internal.spinlock);
return 0;
}
void
spdk_bdev_module_release_bdev(struct spdk_bdev *bdev)
{
spdk_spin_lock(&bdev->internal.spinlock);
assert(bdev->internal.claim.v1.module != NULL);
assert(bdev->internal.claim_type == SPDK_BDEV_CLAIM_EXCL_WRITE);
bdev->internal.claim_type = SPDK_BDEV_CLAIM_NONE;
bdev->internal.claim.v1.module = NULL;
spdk_spin_unlock(&bdev->internal.spinlock);
}
/*
* Start claims v2
*/
const char *
spdk_bdev_claim_get_name(enum spdk_bdev_claim_type type)
{
switch (type) {
case SPDK_BDEV_CLAIM_NONE:
return "not_claimed";
case SPDK_BDEV_CLAIM_EXCL_WRITE:
return "exclusive_write";
case SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE:
return "read_many_write_one";
case SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE:
return "read_many_write_none";
case SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED:
return "read_many_write_many";
default:
break;
}
return "invalid_claim";
}
static bool
claim_type_is_v2(enum spdk_bdev_claim_type type)
{
switch (type) {
case SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE:
case SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE:
case SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED:
return true;
default:
break;
}
return false;
}
/* Returns true if taking a claim with desc->write == false should make the descriptor writable. */
static bool
claim_type_promotes_to_write(enum spdk_bdev_claim_type type)
{
switch (type) {
case SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE:
case SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED:
return true;
default:
break;
}
return false;
}
void
spdk_bdev_claim_opts_init(struct spdk_bdev_claim_opts *opts, size_t size)
{
if (opts == NULL) {
SPDK_ERRLOG("opts should not be NULL\n");
assert(opts != NULL);
return;
}
if (size == 0) {
SPDK_ERRLOG("size should not be zero\n");
assert(size != 0);
return;
}
memset(opts, 0, size);
opts->opts_size = size;
#define FIELD_OK(field) \
offsetof(struct spdk_bdev_claim_opts, field) + sizeof(opts->field) <= size
#define SET_FIELD(field, value) \
if (FIELD_OK(field)) { \
opts->field = value; \
} \
SET_FIELD(shared_claim_key, 0);
#undef FIELD_OK
#undef SET_FIELD
}
static int
claim_opts_copy(struct spdk_bdev_claim_opts *src, struct spdk_bdev_claim_opts *dst)
{
if (src->opts_size == 0) {
SPDK_ERRLOG("size should not be zero\n");
return -1;
}
memset(dst, 0, sizeof(*dst));
dst->opts_size = src->opts_size;
#define FIELD_OK(field) \
offsetof(struct spdk_bdev_claim_opts, field) + sizeof(src->field) <= src->opts_size
#define SET_FIELD(field) \
if (FIELD_OK(field)) { \
dst->field = src->field; \
} \
if (FIELD_OK(name)) {
snprintf(dst->name, sizeof(dst->name), "%s", src->name);
}
SET_FIELD(shared_claim_key);
/* You should not remove this statement, but need to update the assert statement
* if you add a new field, and also add a corresponding SET_FIELD statement */
SPDK_STATIC_ASSERT(sizeof(struct spdk_bdev_claim_opts) == 48, "Incorrect size");
#undef FIELD_OK
#undef SET_FIELD
return 0;
}
/* Returns 0 if a read-write-once claim can be taken. */
static int
claim_verify_rwo(struct spdk_bdev_desc *desc, enum spdk_bdev_claim_type type,
struct spdk_bdev_claim_opts *opts, struct spdk_bdev_module *module)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_desc *open_desc;
assert(spdk_spin_held(&bdev->internal.spinlock));
assert(type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE);
if (opts->shared_claim_key != 0) {
SPDK_ERRLOG("%s: key option not supported with read-write-once claims\n",
bdev->name);
return -EINVAL;
}
if (bdev->internal.claim_type != SPDK_BDEV_CLAIM_NONE) {
LOG_ALREADY_CLAIMED_ERROR("already claimed", bdev);
return -EPERM;
}
if (desc->claim != NULL) {
SPDK_NOTICELOG("%s: descriptor already claimed bdev with module %s\n",
bdev->name, desc->claim->module->name);
return -EPERM;
}
TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
if (desc != open_desc && open_desc->write) {
SPDK_NOTICELOG("%s: Cannot obtain read-write-once claim while "
"another descriptor is open for writing\n",
bdev->name);
return -EPERM;
}
}
return 0;
}
/* Returns 0 if a read-only-many claim can be taken. */
static int
claim_verify_rom(struct spdk_bdev_desc *desc, enum spdk_bdev_claim_type type,
struct spdk_bdev_claim_opts *opts, struct spdk_bdev_module *module)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_desc *open_desc;
assert(spdk_spin_held(&bdev->internal.spinlock));
assert(type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE);
assert(desc->claim == NULL);
if (desc->write) {
SPDK_ERRLOG("%s: Cannot obtain read-only-many claim with writable descriptor\n",
bdev->name);
return -EINVAL;
}
if (opts->shared_claim_key != 0) {
SPDK_ERRLOG("%s: key option not supported with read-only-may claims\n", bdev->name);
return -EINVAL;
}
if (bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE) {
TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
if (open_desc->write) {
SPDK_NOTICELOG("%s: Cannot obtain read-only-many claim while "
"another descriptor is open for writing\n",
bdev->name);
return -EPERM;
}
}
}
return 0;
}
/* Returns 0 if a read-write-many claim can be taken. */
static int
claim_verify_rwm(struct spdk_bdev_desc *desc, enum spdk_bdev_claim_type type,
struct spdk_bdev_claim_opts *opts, struct spdk_bdev_module *module)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_desc *open_desc;
assert(spdk_spin_held(&bdev->internal.spinlock));
assert(type == SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED);
assert(desc->claim == NULL);
if (opts->shared_claim_key == 0) {
SPDK_ERRLOG("%s: shared_claim_key option required with read-write-may claims\n",
bdev->name);
return -EINVAL;
}
switch (bdev->internal.claim_type) {
case SPDK_BDEV_CLAIM_NONE:
TAILQ_FOREACH(open_desc, &bdev->internal.open_descs, link) {
if (open_desc == desc) {
continue;
}
if (open_desc->write) {
SPDK_NOTICELOG("%s: Cannot obtain read-write-many claim while "
"another descriptor is open for writing without a "
"claim\n", bdev->name);
return -EPERM;
}
}
break;
case SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED:
if (opts->shared_claim_key != bdev->internal.claim.v2.key) {
LOG_ALREADY_CLAIMED_ERROR("already claimed with another key", bdev);
return -EPERM;
}
break;
default:
LOG_ALREADY_CLAIMED_ERROR("already claimed", bdev);
return -EBUSY;
}
return 0;
}
/* Updates desc and its bdev with a v2 claim. */
static int
claim_bdev(struct spdk_bdev_desc *desc, enum spdk_bdev_claim_type type,
struct spdk_bdev_claim_opts *opts, struct spdk_bdev_module *module)
{
struct spdk_bdev *bdev = desc->bdev;
struct spdk_bdev_module_claim *claim;
assert(spdk_spin_held(&bdev->internal.spinlock));
assert(claim_type_is_v2(type));
assert(desc->claim == NULL);
claim = calloc(1, sizeof(*desc->claim));
if (claim == NULL) {
SPDK_ERRLOG("%s: out of memory while allocating claim\n", bdev->name);
return -ENOMEM;
}
claim->module = module;
claim->desc = desc;
SPDK_STATIC_ASSERT(sizeof(claim->name) == sizeof(opts->name), "sizes must match");
memcpy(claim->name, opts->name, sizeof(claim->name));
desc->claim = claim;
if (bdev->internal.claim_type == SPDK_BDEV_CLAIM_NONE) {
bdev->internal.claim_type = type;
TAILQ_INIT(&bdev->internal.claim.v2.claims);
bdev->internal.claim.v2.key = opts->shared_claim_key;
}
assert(type == bdev->internal.claim_type);
TAILQ_INSERT_TAIL(&bdev->internal.claim.v2.claims, claim, link);
if (!desc->write && claim_type_promotes_to_write(type)) {
desc->write = true;
}
return 0;
}
int
spdk_bdev_module_claim_bdev_desc(struct spdk_bdev_desc *desc, enum spdk_bdev_claim_type type,
struct spdk_bdev_claim_opts *_opts,
struct spdk_bdev_module *module)
{
struct spdk_bdev *bdev;
struct spdk_bdev_claim_opts opts;
int rc = 0;
if (desc == NULL) {
SPDK_ERRLOG("descriptor must not be NULL\n");
return -EINVAL;
}
bdev = desc->bdev;
if (_opts == NULL) {
spdk_bdev_claim_opts_init(&opts, sizeof(opts));
} else if (claim_opts_copy(_opts, &opts) != 0) {
return -EINVAL;
}
spdk_spin_lock(&bdev->internal.spinlock);
if (bdev->internal.claim_type != SPDK_BDEV_CLAIM_NONE &&
bdev->internal.claim_type != type) {
LOG_ALREADY_CLAIMED_ERROR("already claimed", bdev);
spdk_spin_unlock(&bdev->internal.spinlock);
return -EPERM;
}
if (claim_type_is_v2(type) && desc->claim != NULL) {
SPDK_ERRLOG("%s: descriptor already has %s claim with name '%s'\n",
bdev->name, spdk_bdev_claim_get_name(type), desc->claim->name);
spdk_spin_unlock(&bdev->internal.spinlock);
return -EPERM;
}
switch (type) {
case SPDK_BDEV_CLAIM_EXCL_WRITE:
spdk_spin_unlock(&bdev->internal.spinlock);
return spdk_bdev_module_claim_bdev(bdev, desc, module);
case SPDK_BDEV_CLAIM_READ_MANY_WRITE_ONE:
rc = claim_verify_rwo(desc, type, &opts, module);
break;
case SPDK_BDEV_CLAIM_READ_MANY_WRITE_NONE:
rc = claim_verify_rom(desc, type, &opts, module);
break;
case SPDK_BDEV_CLAIM_READ_MANY_WRITE_SHARED:
rc = claim_verify_rwm(desc, type, &opts, module);
break;
default:
SPDK_ERRLOG("%s: claim type %d not supported\n", bdev->name, type);
rc = -ENOTSUP;
}
if (rc == 0) {
rc = claim_bdev(desc, type, &opts, module);
}
spdk_spin_unlock(&bdev->internal.spinlock);
return rc;
}
static void
claim_reset(struct spdk_bdev *bdev)
{
assert(spdk_spin_held(&bdev->internal.spinlock));
assert(claim_type_is_v2(bdev->internal.claim_type));
assert(TAILQ_EMPTY(&bdev->internal.claim.v2.claims));
memset(&bdev->internal.claim, 0, sizeof(bdev->internal.claim));
bdev->internal.claim_type = SPDK_BDEV_CLAIM_NONE;
}
static void
bdev_desc_release_claims(struct spdk_bdev_desc *desc)
{
struct spdk_bdev *bdev = desc->bdev;
assert(spdk_spin_held(&bdev->internal.spinlock));
assert(claim_type_is_v2(bdev->internal.claim_type));
if (bdev->internal.examine_in_progress == 0) {
TAILQ_REMOVE(&bdev->internal.claim.v2.claims, desc->claim, link);
free(desc->claim);
if (TAILQ_EMPTY(&bdev->internal.claim.v2.claims)) {
claim_reset(bdev);
}
} else {
/* This is a dead claim that will be cleaned up when bdev_examine() is done. */
desc->claim->module = NULL;
desc->claim->desc = NULL;
}
desc->claim = NULL;
}
/*
* End claims v2
*/
struct spdk_bdev *
spdk_bdev_desc_get_bdev(struct spdk_bdev_desc *desc)
{
assert(desc != NULL);
return desc->bdev;
}
int
spdk_for_each_bdev(void *ctx, spdk_for_each_bdev_fn fn)
{
struct spdk_bdev *bdev, *tmp;
struct spdk_bdev_desc *desc;
int rc = 0;
assert(fn != NULL);
spdk_spin_lock(&g_bdev_mgr.spinlock);
bdev = spdk_bdev_first();
while (bdev != NULL) {
rc = bdev_desc_alloc(bdev, _tmp_bdev_event_cb, NULL, &desc);
if (rc != 0) {
break;
}
rc = bdev_open(bdev, false, desc);
if (rc != 0) {
bdev_desc_free(desc);
if (rc == -ENODEV) {
/* Ignore the error and move to the next bdev. */
rc = 0;
bdev = spdk_bdev_next(bdev);
continue;
}
break;
}
spdk_spin_unlock(&g_bdev_mgr.spinlock);
rc = fn(ctx, bdev);
spdk_spin_lock(&g_bdev_mgr.spinlock);
tmp = spdk_bdev_next(bdev);
bdev_close(bdev, desc);
if (rc != 0) {
break;
}
bdev = tmp;
}
spdk_spin_unlock(&g_bdev_mgr.spinlock);
return rc;
}
int
spdk_for_each_bdev_leaf(void *ctx, spdk_for_each_bdev_fn fn)
{
struct spdk_bdev *bdev, *tmp;
struct spdk_bdev_desc *desc;
int rc = 0;
assert(fn != NULL);
spdk_spin_lock(&g_bdev_mgr.spinlock);
bdev = spdk_bdev_first_leaf();
while (bdev != NULL) {
rc = bdev_desc_alloc(bdev, _tmp_bdev_event_cb, NULL, &desc);
if (rc != 0) {
break;
}
rc = bdev_open(bdev, false, desc);
if (rc != 0) {
bdev_desc_free(desc);
if (rc == -ENODEV) {
/* Ignore the error and move to the next bdev. */
rc = 0;
bdev = spdk_bdev_next_leaf(bdev);
continue;
}
break;
}
spdk_spin_unlock(&g_bdev_mgr.spinlock);
rc = fn(ctx, bdev);
spdk_spin_lock(&g_bdev_mgr.spinlock);
tmp = spdk_bdev_next_leaf(bdev);
bdev_close(bdev, desc);
if (rc != 0) {
break;
}
bdev = tmp;
}
spdk_spin_unlock(&g_bdev_mgr.spinlock);
return rc;
}
void
spdk_bdev_io_get_iovec(struct spdk_bdev_io *bdev_io, struct iovec **iovp, int *iovcntp)
{
struct iovec *iovs;
int iovcnt;
if (bdev_io == NULL) {
return;
}
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_READ:
case SPDK_BDEV_IO_TYPE_WRITE:
case SPDK_BDEV_IO_TYPE_ZCOPY:
iovs = bdev_io->u.bdev.iovs;
iovcnt = bdev_io->u.bdev.iovcnt;
break;
default:
iovs = NULL;
iovcnt = 0;
break;
}
if (iovp) {
*iovp = iovs;
}
if (iovcntp) {
*iovcntp = iovcnt;
}
}
void *
spdk_bdev_io_get_md_buf(struct spdk_bdev_io *bdev_io)
{
if (bdev_io == NULL) {
return NULL;
}
if (!spdk_bdev_is_md_separate(bdev_io->bdev)) {
return NULL;
}
if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ ||
bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) {
return bdev_io->u.bdev.md_buf;
}
return NULL;
}
void *
spdk_bdev_io_get_cb_arg(struct spdk_bdev_io *bdev_io)
{
if (bdev_io == NULL) {
assert(false);
return NULL;
}
return bdev_io->internal.caller_ctx;
}
void
spdk_bdev_module_list_add(struct spdk_bdev_module *bdev_module)
{
if (spdk_bdev_module_list_find(bdev_module->name)) {
SPDK_ERRLOG("ERROR: module '%s' already registered.\n", bdev_module->name);
assert(false);
}
spdk_spin_init(&bdev_module->internal.spinlock);
/*
* Modules with examine callbacks must be initialized first, so they are
* ready to handle examine callbacks from later modules that will
* register physical bdevs.
*/
if (bdev_module->examine_config != NULL || bdev_module->examine_disk != NULL) {
TAILQ_INSERT_HEAD(&g_bdev_mgr.bdev_modules, bdev_module, internal.tailq);
} else {
TAILQ_INSERT_TAIL(&g_bdev_mgr.bdev_modules, bdev_module, internal.tailq);
}
}
struct spdk_bdev_module *
spdk_bdev_module_list_find(const char *name)
{
struct spdk_bdev_module *bdev_module;
TAILQ_FOREACH(bdev_module, &g_bdev_mgr.bdev_modules, internal.tailq) {
if (strcmp(name, bdev_module->name) == 0) {
break;
}
}
return bdev_module;
}
static int
bdev_write_zero_buffer(struct spdk_bdev_io *bdev_io)
{
uint64_t num_blocks;
void *md_buf = NULL;
num_blocks = bdev_io->u.bdev.num_blocks;
if (spdk_bdev_is_md_separate(bdev_io->bdev)) {
md_buf = (char *)g_bdev_mgr.zero_buffer +
spdk_bdev_get_block_size(bdev_io->bdev) * num_blocks;
}
return bdev_write_blocks_with_md(bdev_io->internal.desc,
spdk_io_channel_from_ctx(bdev_io->internal.ch),
g_bdev_mgr.zero_buffer, md_buf,
bdev_io->u.bdev.offset_blocks, num_blocks,
bdev_write_zero_buffer_done, bdev_io);
}
static void
bdev_write_zero_buffer_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct spdk_bdev_io *parent_io = cb_arg;
spdk_bdev_free_io(bdev_io);
parent_io->internal.status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
parent_io->internal.cb(parent_io, success, parent_io->internal.caller_ctx);
}
static void
bdev_set_qos_limit_done(struct set_qos_limit_ctx *ctx, int status)
{
spdk_spin_lock(&ctx->bdev->internal.spinlock);
ctx->bdev->internal.qos_mod_in_progress = false;
spdk_spin_unlock(&ctx->bdev->internal.spinlock);
if (ctx->cb_fn) {
ctx->cb_fn(ctx->cb_arg, status);
}
free(ctx);
}
static void
bdev_disable_qos_done(void *cb_arg)
{
struct set_qos_limit_ctx *ctx = cb_arg;
struct spdk_bdev *bdev = ctx->bdev;
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_qos *qos;
spdk_spin_lock(&bdev->internal.spinlock);
qos = bdev->internal.qos;
bdev->internal.qos = NULL;
spdk_spin_unlock(&bdev->internal.spinlock);
while (!TAILQ_EMPTY(&qos->queued)) {
/* Send queued I/O back to their original thread for resubmission. */
bdev_io = TAILQ_FIRST(&qos->queued);
TAILQ_REMOVE(&qos->queued, bdev_io, internal.link);
if (bdev_io->internal.io_submit_ch) {
/*
* Channel was changed when sending it to the QoS thread - change it back
* before sending it back to the original thread.
*/
bdev_io->internal.ch = bdev_io->internal.io_submit_ch;
bdev_io->internal.io_submit_ch = NULL;
}
spdk_thread_send_msg(spdk_bdev_io_get_thread(bdev_io),
_bdev_io_submit, bdev_io);
}
if (qos->thread != NULL) {
spdk_put_io_channel(spdk_io_channel_from_ctx(qos->ch));
spdk_poller_unregister(&qos->poller);
}
free(qos);
bdev_set_qos_limit_done(ctx, 0);
}
static void
bdev_disable_qos_msg_done(struct spdk_bdev *bdev, void *_ctx, int status)
{
struct set_qos_limit_ctx *ctx = _ctx;
struct spdk_thread *thread;
spdk_spin_lock(&bdev->internal.spinlock);
thread = bdev->internal.qos->thread;
spdk_spin_unlock(&bdev->internal.spinlock);
if (thread != NULL) {
spdk_thread_send_msg(thread, bdev_disable_qos_done, ctx);
} else {
bdev_disable_qos_done(ctx);
}
}
static void
bdev_disable_qos_msg(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev,
struct spdk_io_channel *ch, void *_ctx)
{
struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(ch);
bdev_ch->flags &= ~BDEV_CH_QOS_ENABLED;
spdk_bdev_for_each_channel_continue(i, 0);
}
static void
bdev_update_qos_rate_limit_msg(void *cb_arg)
{
struct set_qos_limit_ctx *ctx = cb_arg;
struct spdk_bdev *bdev = ctx->bdev;
spdk_spin_lock(&bdev->internal.spinlock);
bdev_qos_update_max_quota_per_timeslice(bdev->internal.qos);
spdk_spin_unlock(&bdev->internal.spinlock);
bdev_set_qos_limit_done(ctx, 0);
}
static void
bdev_enable_qos_msg(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev,
struct spdk_io_channel *ch, void *_ctx)
{
struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(ch);
spdk_spin_lock(&bdev->internal.spinlock);
bdev_enable_qos(bdev, bdev_ch);
spdk_spin_unlock(&bdev->internal.spinlock);
spdk_bdev_for_each_channel_continue(i, 0);
}
static void
bdev_enable_qos_done(struct spdk_bdev *bdev, void *_ctx, int status)
{
struct set_qos_limit_ctx *ctx = _ctx;
bdev_set_qos_limit_done(ctx, status);
}
static void
bdev_set_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits)
{
int i;
assert(bdev->internal.qos != NULL);
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
if (limits[i] != SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) {
bdev->internal.qos->rate_limits[i].limit = limits[i];
if (limits[i] == 0) {
bdev->internal.qos->rate_limits[i].limit =
SPDK_BDEV_QOS_LIMIT_NOT_DEFINED;
}
}
}
}
void
spdk_bdev_set_qos_rate_limits(struct spdk_bdev *bdev, uint64_t *limits,
void (*cb_fn)(void *cb_arg, int status), void *cb_arg)
{
struct set_qos_limit_ctx *ctx;
uint32_t limit_set_complement;
uint64_t min_limit_per_sec;
int i;
bool disable_rate_limit = true;
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
if (limits[i] == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED) {
continue;
}
if (limits[i] > 0) {
disable_rate_limit = false;
}
if (bdev_qos_is_iops_rate_limit(i) == true) {
min_limit_per_sec = SPDK_BDEV_QOS_MIN_IOS_PER_SEC;
} else {
/* Change from megabyte to byte rate limit */
limits[i] = limits[i] * 1024 * 1024;
min_limit_per_sec = SPDK_BDEV_QOS_MIN_BYTES_PER_SEC;
}
limit_set_complement = limits[i] % min_limit_per_sec;
if (limit_set_complement) {
SPDK_ERRLOG("Requested rate limit %" PRIu64 " is not a multiple of %" PRIu64 "\n",
limits[i], min_limit_per_sec);
limits[i] += min_limit_per_sec - limit_set_complement;
SPDK_ERRLOG("Round up the rate limit to %" PRIu64 "\n", limits[i]);
}
}
ctx = calloc(1, sizeof(*ctx));
if (ctx == NULL) {
cb_fn(cb_arg, -ENOMEM);
return;
}
ctx->cb_fn = cb_fn;
ctx->cb_arg = cb_arg;
ctx->bdev = bdev;
spdk_spin_lock(&bdev->internal.spinlock);
if (bdev->internal.qos_mod_in_progress) {
spdk_spin_unlock(&bdev->internal.spinlock);
free(ctx);
cb_fn(cb_arg, -EAGAIN);
return;
}
bdev->internal.qos_mod_in_progress = true;
if (disable_rate_limit == true && bdev->internal.qos) {
for (i = 0; i < SPDK_BDEV_QOS_NUM_RATE_LIMIT_TYPES; i++) {
if (limits[i] == SPDK_BDEV_QOS_LIMIT_NOT_DEFINED &&
(bdev->internal.qos->rate_limits[i].limit > 0 &&
bdev->internal.qos->rate_limits[i].limit !=
SPDK_BDEV_QOS_LIMIT_NOT_DEFINED)) {
disable_rate_limit = false;
break;
}
}
}
if (disable_rate_limit == false) {
if (bdev->internal.qos == NULL) {
bdev->internal.qos = calloc(1, sizeof(*bdev->internal.qos));
if (!bdev->internal.qos) {
spdk_spin_unlock(&bdev->internal.spinlock);
SPDK_ERRLOG("Unable to allocate memory for QoS tracking\n");
bdev_set_qos_limit_done(ctx, -ENOMEM);
return;
}
}
if (bdev->internal.qos->thread == NULL) {
/* Enabling */
bdev_set_qos_rate_limits(bdev, limits);
spdk_bdev_for_each_channel(bdev, bdev_enable_qos_msg, ctx,
bdev_enable_qos_done);
} else {
/* Updating */
bdev_set_qos_rate_limits(bdev, limits);
spdk_thread_send_msg(bdev->internal.qos->thread,
bdev_update_qos_rate_limit_msg, ctx);
}
} else {
if (bdev->internal.qos != NULL) {
bdev_set_qos_rate_limits(bdev, limits);
/* Disabling */
spdk_bdev_for_each_channel(bdev, bdev_disable_qos_msg, ctx,
bdev_disable_qos_msg_done);
} else {
spdk_spin_unlock(&bdev->internal.spinlock);
bdev_set_qos_limit_done(ctx, 0);
return;
}
}
spdk_spin_unlock(&bdev->internal.spinlock);
}
struct spdk_bdev_histogram_ctx {
spdk_bdev_histogram_status_cb cb_fn;
void *cb_arg;
struct spdk_bdev *bdev;
int status;
};
static void
bdev_histogram_disable_channel_cb(struct spdk_bdev *bdev, void *_ctx, int status)
{
struct spdk_bdev_histogram_ctx *ctx = _ctx;
spdk_spin_lock(&ctx->bdev->internal.spinlock);
ctx->bdev->internal.histogram_in_progress = false;
spdk_spin_unlock(&ctx->bdev->internal.spinlock);
ctx->cb_fn(ctx->cb_arg, ctx->status);
free(ctx);
}
static void
bdev_histogram_disable_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev,
struct spdk_io_channel *_ch, void *_ctx)
{
struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch);
if (ch->histogram != NULL) {
spdk_histogram_data_free(ch->histogram);
ch->histogram = NULL;
}
spdk_bdev_for_each_channel_continue(i, 0);
}
static void
bdev_histogram_enable_channel_cb(struct spdk_bdev *bdev, void *_ctx, int status)
{
struct spdk_bdev_histogram_ctx *ctx = _ctx;
if (status != 0) {
ctx->status = status;
ctx->bdev->internal.histogram_enabled = false;
spdk_bdev_for_each_channel(ctx->bdev, bdev_histogram_disable_channel, ctx,
bdev_histogram_disable_channel_cb);
} else {
spdk_spin_lock(&ctx->bdev->internal.spinlock);
ctx->bdev->internal.histogram_in_progress = false;
spdk_spin_unlock(&ctx->bdev->internal.spinlock);
ctx->cb_fn(ctx->cb_arg, ctx->status);
free(ctx);
}
}
static void
bdev_histogram_enable_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev,
struct spdk_io_channel *_ch, void *_ctx)
{
struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch);
int status = 0;
if (ch->histogram == NULL) {
ch->histogram = spdk_histogram_data_alloc();
if (ch->histogram == NULL) {
status = -ENOMEM;
}
}
spdk_bdev_for_each_channel_continue(i, status);
}
void
spdk_bdev_histogram_enable(struct spdk_bdev *bdev, spdk_bdev_histogram_status_cb cb_fn,
void *cb_arg, bool enable)
{
struct spdk_bdev_histogram_ctx *ctx;
ctx = calloc(1, sizeof(struct spdk_bdev_histogram_ctx));
if (ctx == NULL) {
cb_fn(cb_arg, -ENOMEM);
return;
}
ctx->bdev = bdev;
ctx->status = 0;
ctx->cb_fn = cb_fn;
ctx->cb_arg = cb_arg;
spdk_spin_lock(&bdev->internal.spinlock);
if (bdev->internal.histogram_in_progress) {
spdk_spin_unlock(&bdev->internal.spinlock);
free(ctx);
cb_fn(cb_arg, -EAGAIN);
return;
}
bdev->internal.histogram_in_progress = true;
spdk_spin_unlock(&bdev->internal.spinlock);
bdev->internal.histogram_enabled = enable;
if (enable) {
/* Allocate histogram for each channel */
spdk_bdev_for_each_channel(bdev, bdev_histogram_enable_channel, ctx,
bdev_histogram_enable_channel_cb);
} else {
spdk_bdev_for_each_channel(bdev, bdev_histogram_disable_channel, ctx,
bdev_histogram_disable_channel_cb);
}
}
struct spdk_bdev_histogram_data_ctx {
spdk_bdev_histogram_data_cb cb_fn;
void *cb_arg;
struct spdk_bdev *bdev;
/** merged histogram data from all channels */
struct spdk_histogram_data *histogram;
};
static void
bdev_histogram_get_channel_cb(struct spdk_bdev *bdev, void *_ctx, int status)
{
struct spdk_bdev_histogram_data_ctx *ctx = _ctx;
ctx->cb_fn(ctx->cb_arg, status, ctx->histogram);
free(ctx);
}
static void
bdev_histogram_get_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev,
struct spdk_io_channel *_ch, void *_ctx)
{
struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch);
struct spdk_bdev_histogram_data_ctx *ctx = _ctx;
int status = 0;
if (ch->histogram == NULL) {
status = -EFAULT;
} else {
spdk_histogram_data_merge(ctx->histogram, ch->histogram);
}
spdk_bdev_for_each_channel_continue(i, status);
}
void
spdk_bdev_histogram_get(struct spdk_bdev *bdev, struct spdk_histogram_data *histogram,
spdk_bdev_histogram_data_cb cb_fn,
void *cb_arg)
{
struct spdk_bdev_histogram_data_ctx *ctx;
ctx = calloc(1, sizeof(struct spdk_bdev_histogram_data_ctx));
if (ctx == NULL) {
cb_fn(cb_arg, -ENOMEM, NULL);
return;
}
ctx->bdev = bdev;
ctx->cb_fn = cb_fn;
ctx->cb_arg = cb_arg;
ctx->histogram = histogram;
spdk_bdev_for_each_channel(bdev, bdev_histogram_get_channel, ctx,
bdev_histogram_get_channel_cb);
}
void
spdk_bdev_channel_get_histogram(struct spdk_io_channel *ch, spdk_bdev_histogram_data_cb cb_fn,
void *cb_arg)
{
struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(ch);
int status = 0;
assert(cb_fn != NULL);
if (bdev_ch->histogram == NULL) {
status = -EFAULT;
}
cb_fn(cb_arg, status, bdev_ch->histogram);
}
size_t
spdk_bdev_get_media_events(struct spdk_bdev_desc *desc, struct spdk_bdev_media_event *events,
size_t max_events)
{
struct media_event_entry *entry;
size_t num_events = 0;
for (; num_events < max_events; ++num_events) {
entry = TAILQ_FIRST(&desc->pending_media_events);
if (entry == NULL) {
break;
}
events[num_events] = entry->event;
TAILQ_REMOVE(&desc->pending_media_events, entry, tailq);
TAILQ_INSERT_TAIL(&desc->free_media_events, entry, tailq);
}
return num_events;
}
int
spdk_bdev_push_media_events(struct spdk_bdev *bdev, const struct spdk_bdev_media_event *events,
size_t num_events)
{
struct spdk_bdev_desc *desc;
struct media_event_entry *entry;
size_t event_id;
int rc = 0;
assert(bdev->media_events);
spdk_spin_lock(&bdev->internal.spinlock);
TAILQ_FOREACH(desc, &bdev->internal.open_descs, link) {
if (desc->write) {
break;
}
}
if (desc == NULL || desc->media_events_buffer == NULL) {
rc = -ENODEV;
goto out;
}
for (event_id = 0; event_id < num_events; ++event_id) {
entry = TAILQ_FIRST(&desc->free_media_events);
if (entry == NULL) {
break;
}
TAILQ_REMOVE(&desc->free_media_events, entry, tailq);
TAILQ_INSERT_TAIL(&desc->pending_media_events, entry, tailq);
entry->event = events[event_id];
}
rc = event_id;
out:
spdk_spin_unlock(&bdev->internal.spinlock);
return rc;
}
static void
_media_management_notify(void *arg)
{
struct spdk_bdev_desc *desc = arg;
_event_notify(desc, SPDK_BDEV_EVENT_MEDIA_MANAGEMENT);
}
void
spdk_bdev_notify_media_management(struct spdk_bdev *bdev)
{
struct spdk_bdev_desc *desc;
spdk_spin_lock(&bdev->internal.spinlock);
TAILQ_FOREACH(desc, &bdev->internal.open_descs, link) {
if (!TAILQ_EMPTY(&desc->pending_media_events)) {
event_notify(desc, _media_management_notify);
}
}
spdk_spin_unlock(&bdev->internal.spinlock);
}
struct locked_lba_range_ctx {
struct lba_range range;
struct spdk_bdev *bdev;
struct lba_range *current_range;
struct lba_range *owner_range;
struct spdk_poller *poller;
lock_range_cb cb_fn;
void *cb_arg;
};
static void
bdev_lock_error_cleanup_cb(struct spdk_bdev *bdev, void *_ctx, int status)
{
struct locked_lba_range_ctx *ctx = _ctx;
ctx->cb_fn(ctx->cb_arg, -ENOMEM);
free(ctx);
}
static void bdev_unlock_lba_range_get_channel(struct spdk_bdev_channel_iter *i,
struct spdk_bdev *bdev, struct spdk_io_channel *ch, void *_ctx);
static void
bdev_lock_lba_range_cb(struct spdk_bdev *bdev, void *_ctx, int status)
{
struct locked_lba_range_ctx *ctx = _ctx;
if (status == -ENOMEM) {
/* One of the channels could not allocate a range object.
* So we have to go back and clean up any ranges that were
* allocated successfully before we return error status to
* the caller. We can reuse the unlock function to do that
* clean up.
*/
spdk_bdev_for_each_channel(bdev, bdev_unlock_lba_range_get_channel, ctx,
bdev_lock_error_cleanup_cb);
return;
}
/* All channels have locked this range and no I/O overlapping the range
* are outstanding! Set the owner_ch for the range object for the
* locking channel, so that this channel will know that it is allowed
* to write to this range.
*/
ctx->owner_range->owner_ch = ctx->range.owner_ch;
ctx->cb_fn(ctx->cb_arg, status);
/* Don't free the ctx here. Its range is in the bdev's global list of
* locked ranges still, and will be removed and freed when this range
* is later unlocked.
*/
}
static int
bdev_lock_lba_range_check_io(void *_i)
{
struct spdk_bdev_channel_iter *i = _i;
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i->i);
struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch);
struct locked_lba_range_ctx *ctx = i->ctx;
struct lba_range *range = ctx->current_range;
struct spdk_bdev_io *bdev_io;
spdk_poller_unregister(&ctx->poller);
/* The range is now in the locked_ranges, so no new IO can be submitted to this
* range. But we need to wait until any outstanding IO overlapping with this range
* are completed.
*/
TAILQ_FOREACH(bdev_io, &ch->io_submitted, internal.ch_link) {
if (bdev_io_range_is_locked(bdev_io, range)) {
ctx->poller = SPDK_POLLER_REGISTER(bdev_lock_lba_range_check_io, i, 100);
return SPDK_POLLER_BUSY;
}
}
spdk_bdev_for_each_channel_continue(i, 0);
return SPDK_POLLER_BUSY;
}
static void
bdev_lock_lba_range_get_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev,
struct spdk_io_channel *_ch, void *_ctx)
{
struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch);
struct locked_lba_range_ctx *ctx = _ctx;
struct lba_range *range;
TAILQ_FOREACH(range, &ch->locked_ranges, tailq) {
if (range->length == ctx->range.length &&
range->offset == ctx->range.offset &&
range->locked_ctx == ctx->range.locked_ctx) {
/* This range already exists on this channel, so don't add
* it again. This can happen when a new channel is created
* while the for_each_channel operation is in progress.
* Do not check for outstanding I/O in that case, since the
* range was locked before any I/O could be submitted to the
* new channel.
*/
spdk_bdev_for_each_channel_continue(i, 0);
return;
}
}
range = calloc(1, sizeof(*range));
if (range == NULL) {
spdk_bdev_for_each_channel_continue(i, -ENOMEM);
return;
}
range->length = ctx->range.length;
range->offset = ctx->range.offset;
range->locked_ctx = ctx->range.locked_ctx;
ctx->current_range = range;
if (ctx->range.owner_ch == ch) {
/* This is the range object for the channel that will hold
* the lock. Store it in the ctx object so that we can easily
* set its owner_ch after the lock is finally acquired.
*/
ctx->owner_range = range;
}
TAILQ_INSERT_TAIL(&ch->locked_ranges, range, tailq);
bdev_lock_lba_range_check_io(i);
}
static void
bdev_lock_lba_range_ctx(struct spdk_bdev *bdev, struct locked_lba_range_ctx *ctx)
{
assert(spdk_get_thread() == spdk_io_channel_get_thread(ctx->range.owner_ch->channel));
/* We will add a copy of this range to each channel now. */
spdk_bdev_for_each_channel(bdev, bdev_lock_lba_range_get_channel, ctx,
bdev_lock_lba_range_cb);
}
static bool
bdev_lba_range_overlaps_tailq(struct lba_range *range, lba_range_tailq_t *tailq)
{
struct lba_range *r;
TAILQ_FOREACH(r, tailq, tailq) {
if (bdev_lba_range_overlapped(range, r)) {
return true;
}
}
return false;
}
static int
bdev_lock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch,
uint64_t offset, uint64_t length,
lock_range_cb cb_fn, void *cb_arg)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch);
struct locked_lba_range_ctx *ctx;
if (cb_arg == NULL) {
SPDK_ERRLOG("cb_arg must not be NULL\n");
return -EINVAL;
}
ctx = calloc(1, sizeof(*ctx));
if (ctx == NULL) {
return -ENOMEM;
}
ctx->range.offset = offset;
ctx->range.length = length;
ctx->range.owner_ch = ch;
ctx->range.locked_ctx = cb_arg;
ctx->bdev = bdev;
ctx->cb_fn = cb_fn;
ctx->cb_arg = cb_arg;
spdk_spin_lock(&bdev->internal.spinlock);
if (bdev_lba_range_overlaps_tailq(&ctx->range, &bdev->internal.locked_ranges)) {
/* There is an active lock overlapping with this range.
* Put it on the pending list until this range no
* longer overlaps with another.
*/
TAILQ_INSERT_TAIL(&bdev->internal.pending_locked_ranges, &ctx->range, tailq);
} else {
TAILQ_INSERT_TAIL(&bdev->internal.locked_ranges, &ctx->range, tailq);
bdev_lock_lba_range_ctx(bdev, ctx);
}
spdk_spin_unlock(&bdev->internal.spinlock);
return 0;
}
static void
bdev_lock_lba_range_ctx_msg(void *_ctx)
{
struct locked_lba_range_ctx *ctx = _ctx;
bdev_lock_lba_range_ctx(ctx->bdev, ctx);
}
static void
bdev_unlock_lba_range_cb(struct spdk_bdev *bdev, void *_ctx, int status)
{
struct locked_lba_range_ctx *ctx = _ctx;
struct locked_lba_range_ctx *pending_ctx;
struct lba_range *range, *tmp;
spdk_spin_lock(&bdev->internal.spinlock);
/* Check if there are any pending locked ranges that overlap with this range
* that was just unlocked. If there are, check that it doesn't overlap with any
* other locked ranges before calling bdev_lock_lba_range_ctx which will start
* the lock process.
*/
TAILQ_FOREACH_SAFE(range, &bdev->internal.pending_locked_ranges, tailq, tmp) {
if (bdev_lba_range_overlapped(range, &ctx->range) &&
!bdev_lba_range_overlaps_tailq(range, &bdev->internal.locked_ranges)) {
TAILQ_REMOVE(&bdev->internal.pending_locked_ranges, range, tailq);
pending_ctx = SPDK_CONTAINEROF(range, struct locked_lba_range_ctx, range);
TAILQ_INSERT_TAIL(&bdev->internal.locked_ranges, range, tailq);
spdk_thread_send_msg(spdk_io_channel_get_thread(pending_ctx->range.owner_ch->channel),
bdev_lock_lba_range_ctx_msg, pending_ctx);
}
}
spdk_spin_unlock(&bdev->internal.spinlock);
ctx->cb_fn(ctx->cb_arg, status);
free(ctx);
}
static void
bdev_unlock_lba_range_get_channel(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev,
struct spdk_io_channel *_ch, void *_ctx)
{
struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch);
struct locked_lba_range_ctx *ctx = _ctx;
TAILQ_HEAD(, spdk_bdev_io) io_locked;
struct spdk_bdev_io *bdev_io;
struct lba_range *range;
TAILQ_FOREACH(range, &ch->locked_ranges, tailq) {
if (ctx->range.offset == range->offset &&
ctx->range.length == range->length &&
ctx->range.locked_ctx == range->locked_ctx) {
TAILQ_REMOVE(&ch->locked_ranges, range, tailq);
free(range);
break;
}
}
/* Note: we should almost always be able to assert that the range specified
* was found. But there are some very rare corner cases where a new channel
* gets created simultaneously with a range unlock, where this function
* would execute on that new channel and wouldn't have the range.
* We also use this to clean up range allocations when a later allocation
* fails in the locking path.
* So we can't actually assert() here.
*/
/* Swap the locked IO into a temporary list, and then try to submit them again.
* We could hyper-optimize this to only resubmit locked I/O that overlap
* with the range that was just unlocked, but this isn't a performance path so
* we go for simplicity here.
*/
TAILQ_INIT(&io_locked);
TAILQ_SWAP(&ch->io_locked, &io_locked, spdk_bdev_io, internal.ch_link);
while (!TAILQ_EMPTY(&io_locked)) {
bdev_io = TAILQ_FIRST(&io_locked);
TAILQ_REMOVE(&io_locked, bdev_io, internal.ch_link);
bdev_io_submit(bdev_io);
}
spdk_bdev_for_each_channel_continue(i, 0);
}
static int
bdev_unlock_lba_range(struct spdk_bdev_desc *desc, struct spdk_io_channel *_ch,
uint64_t offset, uint64_t length,
lock_range_cb cb_fn, void *cb_arg)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct spdk_bdev_channel *ch = __io_ch_to_bdev_ch(_ch);
struct locked_lba_range_ctx *ctx;
struct lba_range *range;
bool range_found = false;
/* Let's make sure the specified channel actually has a lock on
* the specified range. Note that the range must match exactly.
*/
TAILQ_FOREACH(range, &ch->locked_ranges, tailq) {
if (range->offset == offset && range->length == length &&
range->owner_ch == ch && range->locked_ctx == cb_arg) {
range_found = true;
break;
}
}
if (!range_found) {
return -EINVAL;
}
spdk_spin_lock(&bdev->internal.spinlock);
/* We confirmed that this channel has locked the specified range. To
* start the unlock the process, we find the range in the bdev's locked_ranges
* and remove it. This ensures new channels don't inherit the locked range.
* Then we will send a message to each channel (including the one specified
* here) to remove the range from its per-channel list.
*/
TAILQ_FOREACH(range, &bdev->internal.locked_ranges, tailq) {
if (range->offset == offset && range->length == length &&
range->locked_ctx == cb_arg) {
break;
}
}
if (range == NULL) {
assert(false);
spdk_spin_unlock(&bdev->internal.spinlock);
return -EINVAL;
}
TAILQ_REMOVE(&bdev->internal.locked_ranges, range, tailq);
ctx = SPDK_CONTAINEROF(range, struct locked_lba_range_ctx, range);
spdk_spin_unlock(&bdev->internal.spinlock);
ctx->cb_fn = cb_fn;
ctx->cb_arg = cb_arg;
spdk_bdev_for_each_channel(bdev, bdev_unlock_lba_range_get_channel, ctx,
bdev_unlock_lba_range_cb);
return 0;
}
int
spdk_bdev_get_memory_domains(struct spdk_bdev *bdev, struct spdk_memory_domain **domains,
int array_size)
{
if (!bdev) {
return -EINVAL;
}
if (bdev->fn_table->get_memory_domains) {
return bdev->fn_table->get_memory_domains(bdev->ctxt, domains, array_size);
}
return 0;
}
struct spdk_bdev_for_each_io_ctx {
void *ctx;
spdk_bdev_io_fn fn;
spdk_bdev_for_each_io_cb cb;
};
static void
bdev_channel_for_each_io(struct spdk_bdev_channel_iter *i, struct spdk_bdev *bdev,
struct spdk_io_channel *io_ch, void *_ctx)
{
struct spdk_bdev_for_each_io_ctx *ctx = _ctx;
struct spdk_bdev_channel *bdev_ch = __io_ch_to_bdev_ch(io_ch);
struct spdk_bdev_io *bdev_io;
int rc = 0;
TAILQ_FOREACH(bdev_io, &bdev_ch->io_submitted, internal.ch_link) {
rc = ctx->fn(ctx->ctx, bdev_io);
if (rc != 0) {
break;
}
}
spdk_bdev_for_each_channel_continue(i, rc);
}
static void
bdev_for_each_io_done(struct spdk_bdev *bdev, void *_ctx, int status)
{
struct spdk_bdev_for_each_io_ctx *ctx = _ctx;
ctx->cb(ctx->ctx, status);
free(ctx);
}
void
spdk_bdev_for_each_bdev_io(struct spdk_bdev *bdev, void *_ctx, spdk_bdev_io_fn fn,
spdk_bdev_for_each_io_cb cb)
{
struct spdk_bdev_for_each_io_ctx *ctx;
assert(fn != NULL && cb != NULL);
ctx = calloc(1, sizeof(*ctx));
if (ctx == NULL) {
SPDK_ERRLOG("Failed to allocate context.\n");
cb(_ctx, -ENOMEM);
return;
}
ctx->ctx = _ctx;
ctx->fn = fn;
ctx->cb = cb;
spdk_bdev_for_each_channel(bdev, bdev_channel_for_each_io, ctx,
bdev_for_each_io_done);
}
void
spdk_bdev_for_each_channel_continue(struct spdk_bdev_channel_iter *iter, int status)
{
spdk_for_each_channel_continue(iter->i, status);
}
static struct spdk_bdev *
io_channel_iter_get_bdev(struct spdk_io_channel_iter *i)
{
void *io_device = spdk_io_channel_iter_get_io_device(i);
return __bdev_from_io_dev(io_device);
}
static void
bdev_each_channel_msg(struct spdk_io_channel_iter *i)
{
struct spdk_bdev_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
struct spdk_bdev *bdev = io_channel_iter_get_bdev(i);
struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
iter->i = i;
iter->fn(iter, bdev, ch, iter->ctx);
}
static void
bdev_each_channel_cpl(struct spdk_io_channel_iter *i, int status)
{
struct spdk_bdev_channel_iter *iter = spdk_io_channel_iter_get_ctx(i);
struct spdk_bdev *bdev = io_channel_iter_get_bdev(i);
iter->i = i;
iter->cpl(bdev, iter->ctx, status);
free(iter);
}
void
spdk_bdev_for_each_channel(struct spdk_bdev *bdev, spdk_bdev_for_each_channel_msg fn,
void *ctx, spdk_bdev_for_each_channel_done cpl)
{
struct spdk_bdev_channel_iter *iter;
assert(bdev != NULL && fn != NULL && ctx != NULL);
iter = calloc(1, sizeof(struct spdk_bdev_channel_iter));
if (iter == NULL) {
SPDK_ERRLOG("Unable to allocate iterator\n");
assert(false);
return;
}
iter->fn = fn;
iter->cpl = cpl;
iter->ctx = ctx;
spdk_for_each_channel(__bdev_to_io_dev(bdev), bdev_each_channel_msg,
iter, bdev_each_channel_cpl);
}
static void
bdev_copy_do_write_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct spdk_bdev_io *parent_io = cb_arg;
spdk_bdev_free_io(bdev_io);
/* Check return status of write */
parent_io->internal.status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
parent_io->internal.cb(parent_io, success, parent_io->internal.caller_ctx);
}
static void
bdev_copy_do_write(void *_bdev_io)
{
struct spdk_bdev_io *bdev_io = _bdev_io;
int rc;
/* Write blocks */
rc = spdk_bdev_write_blocks_with_md(bdev_io->internal.desc,
spdk_io_channel_from_ctx(bdev_io->internal.ch),
bdev_io->u.bdev.iovs[0].iov_base,
bdev_io->u.bdev.md_buf, bdev_io->u.bdev.offset_blocks,
bdev_io->u.bdev.num_blocks, bdev_copy_do_write_done, bdev_io);
if (rc == -ENOMEM) {
bdev_queue_io_wait_with_cb(bdev_io, bdev_copy_do_write);
} else if (rc != 0) {
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx);
}
}
static void
bdev_copy_do_read_done(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct spdk_bdev_io *parent_io = cb_arg;
spdk_bdev_free_io(bdev_io);
/* Check return status of read */
if (!success) {
parent_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
parent_io->internal.cb(parent_io, false, parent_io->internal.caller_ctx);
return;
}
/* Do write */
bdev_copy_do_write(parent_io);
}
static void
bdev_copy_do_read(void *_bdev_io)
{
struct spdk_bdev_io *bdev_io = _bdev_io;
int rc;
/* Read blocks */
rc = spdk_bdev_read_blocks_with_md(bdev_io->internal.desc,
spdk_io_channel_from_ctx(bdev_io->internal.ch),
bdev_io->u.bdev.iovs[0].iov_base,
bdev_io->u.bdev.md_buf, bdev_io->u.bdev.copy.src_offset_blocks,
bdev_io->u.bdev.num_blocks, bdev_copy_do_read_done, bdev_io);
if (rc == -ENOMEM) {
bdev_queue_io_wait_with_cb(bdev_io, bdev_copy_do_read);
} else if (rc != 0) {
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx);
}
}
static void
bdev_copy_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io, bool success)
{
if (!success) {
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED;
bdev_io->internal.cb(bdev_io, false, bdev_io->internal.caller_ctx);
return;
}
bdev_copy_do_read(bdev_io);
}
int
spdk_bdev_copy_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch,
uint64_t dst_offset_blocks, uint64_t src_offset_blocks, uint64_t num_blocks,
spdk_bdev_io_completion_cb cb, void *cb_arg)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(desc);
struct spdk_bdev_io *bdev_io;
struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch);
if (!desc->write) {
return -EBADF;
}
if (num_blocks == 0) {
SPDK_ERRLOG("Can't copy 0 blocks\n");
return -EINVAL;
}
if (!bdev_io_valid_blocks(bdev, dst_offset_blocks, num_blocks) ||
!bdev_io_valid_blocks(bdev, src_offset_blocks, num_blocks)) {
SPDK_DEBUGLOG(bdev,
"Invalid offset or number of blocks: dst %lu, src %lu, count %lu\n",
dst_offset_blocks, src_offset_blocks, num_blocks);
return -EINVAL;
}
bdev_io = bdev_channel_get_io(channel);
if (!bdev_io) {
return -ENOMEM;
}
bdev_io->internal.ch = channel;
bdev_io->internal.desc = desc;
bdev_io->type = SPDK_BDEV_IO_TYPE_COPY;
bdev_io->u.bdev.offset_blocks = dst_offset_blocks;
bdev_io->u.bdev.copy.src_offset_blocks = src_offset_blocks;
bdev_io->u.bdev.num_blocks = num_blocks;
bdev_io->u.bdev.memory_domain = NULL;
bdev_io->u.bdev.memory_domain_ctx = NULL;
bdev_io->u.bdev.iovs = NULL;
bdev_io->u.bdev.iovcnt = 0;
bdev_io->u.bdev.md_buf = NULL;
bdev_io->u.bdev.accel_sequence = NULL;
bdev_io_init(bdev_io, bdev, cb_arg, cb);
if (dst_offset_blocks == src_offset_blocks) {
bdev_io->internal.status = SPDK_BDEV_IO_STATUS_SUCCESS;
bdev_io->internal.cb(bdev_io, true, bdev_io->internal.caller_ctx);
return 0;
}
/* If the copy size is large and should be split, use the generic split logic
* regardless of whether SPDK_BDEV_IO_TYPE_COPY is supported or not.
*
* Then, send the copy request if SPDK_BDEV_IO_TYPE_COPY is supported or
* emulate it using regular read and write requests otherwise.
*/
if (spdk_bdev_io_type_supported(bdev, SPDK_BDEV_IO_TYPE_COPY) ||
bdev_io->internal.split) {
bdev_io_submit(bdev_io);
return 0;
}
spdk_bdev_io_get_buf(bdev_io, bdev_copy_get_buf_cb, num_blocks * spdk_bdev_get_block_size(bdev));
return 0;
}
SPDK_LOG_REGISTER_COMPONENT(bdev)
SPDK_TRACE_REGISTER_FN(bdev_trace, "bdev", TRACE_GROUP_BDEV)
{
struct spdk_trace_tpoint_opts opts[] = {
{
"BDEV_IO_START", TRACE_BDEV_IO_START,
OWNER_BDEV, OBJECT_BDEV_IO, 1,
{
{ "type", SPDK_TRACE_ARG_TYPE_INT, 8 },
{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 },
{ "offset", SPDK_TRACE_ARG_TYPE_INT, 8 },
{ "len", SPDK_TRACE_ARG_TYPE_INT, 8 },
{ "name", SPDK_TRACE_ARG_TYPE_STR, 40}
}
},
{
"BDEV_IO_DONE", TRACE_BDEV_IO_DONE,
OWNER_BDEV, OBJECT_BDEV_IO, 0,
{{ "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }}
},
{
"BDEV_IOCH_CREATE", TRACE_BDEV_IOCH_CREATE,
OWNER_BDEV, OBJECT_NONE, 1,
{
{ "name", SPDK_TRACE_ARG_TYPE_STR, 40 },
{ "thread_id", SPDK_TRACE_ARG_TYPE_INT, 8}
}
},
{
"BDEV_IOCH_DESTROY", TRACE_BDEV_IOCH_DESTROY,
OWNER_BDEV, OBJECT_NONE, 0,
{
{ "name", SPDK_TRACE_ARG_TYPE_STR, 40 },
{ "thread_id", SPDK_TRACE_ARG_TYPE_INT, 8}
}
},
};
spdk_trace_register_owner(OWNER_BDEV, 'b');
spdk_trace_register_object(OBJECT_BDEV_IO, 'i');
spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts));
spdk_trace_tpoint_register_relation(TRACE_BDEV_NVME_IO_START, OBJECT_BDEV_IO, 0);
spdk_trace_tpoint_register_relation(TRACE_BDEV_NVME_IO_DONE, OBJECT_BDEV_IO, 0);
}