/* SPDX-License-Identifier: BSD-3-Clause * Copyright (c) Intel Corporation. All rights reserved. * Copyright (c) 2020 Mellanox Technologies LTD. All rights reserved. * Copyright (c) 2021, 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. */ /* * NVMe/TCP transport */ #include "nvme_internal.h" #include "spdk/endian.h" #include "spdk/likely.h" #include "spdk/string.h" #include "spdk/stdinc.h" #include "spdk/crc32.h" #include "spdk/endian.h" #include "spdk/assert.h" #include "spdk/string.h" #include "spdk/thread.h" #include "spdk/trace.h" #include "spdk/util.h" #include "spdk_internal/nvme_tcp.h" #include "spdk_internal/trace_defs.h" #define NVME_TCP_RW_BUFFER_SIZE 131072 #define NVME_TCP_TIME_OUT_IN_SECONDS 2 #define NVME_TCP_HPDA_DEFAULT 0 #define NVME_TCP_MAX_R2T_DEFAULT 1 #define NVME_TCP_PDU_H2C_MIN_DATA_SIZE 4096 /* * Maximum value of transport_ack_timeout used by TCP controller */ #define NVME_TCP_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT 31 /* NVMe TCP transport extensions for spdk_nvme_ctrlr */ struct nvme_tcp_ctrlr { struct spdk_nvme_ctrlr ctrlr; }; struct nvme_tcp_poll_group { struct spdk_nvme_transport_poll_group group; struct spdk_sock_group *sock_group; uint32_t completions_per_qpair; int64_t num_completions; TAILQ_HEAD(, nvme_tcp_qpair) needs_poll; struct spdk_nvme_tcp_stat stats; }; /* NVMe TCP qpair extensions for spdk_nvme_qpair */ struct nvme_tcp_qpair { struct spdk_nvme_qpair qpair; struct spdk_sock *sock; TAILQ_HEAD(, nvme_tcp_req) free_reqs; TAILQ_HEAD(, nvme_tcp_req) outstanding_reqs; TAILQ_HEAD(, nvme_tcp_pdu) send_queue; struct nvme_tcp_pdu *recv_pdu; struct nvme_tcp_pdu *send_pdu; /* only for error pdu and init pdu */ struct nvme_tcp_pdu *send_pdus; /* Used by tcp_reqs */ enum nvme_tcp_pdu_recv_state recv_state; struct nvme_tcp_req *tcp_reqs; struct spdk_nvme_tcp_stat *stats; uint16_t num_entries; uint16_t async_complete; struct { uint16_t host_hdgst_enable: 1; uint16_t host_ddgst_enable: 1; uint16_t icreq_send_ack: 1; uint16_t in_connect_poll: 1; uint16_t reserved: 12; } flags; /** Specifies the maximum number of PDU-Data bytes per H2C Data Transfer PDU */ uint32_t maxh2cdata; uint32_t maxr2t; /* 0 based value, which is used to guide the padding */ uint8_t cpda; enum nvme_tcp_qpair_state state; TAILQ_ENTRY(nvme_tcp_qpair) link; bool needs_poll; uint64_t icreq_timeout_tsc; bool shared_stats; }; enum nvme_tcp_req_state { NVME_TCP_REQ_FREE, NVME_TCP_REQ_ACTIVE, NVME_TCP_REQ_ACTIVE_R2T, }; struct nvme_tcp_req { struct nvme_request *req; enum nvme_tcp_req_state state; uint16_t cid; uint16_t ttag; uint32_t datao; uint32_t expected_datao; uint32_t r2tl_remain; uint32_t active_r2ts; /* Used to hold a value received from subsequent R2T while we are still * waiting for H2C complete */ uint16_t ttag_r2t_next; bool in_capsule_data; bool pdu_in_use; /* It is used to track whether the req can be safely freed */ union { uint8_t raw; struct { /* The last send operation completed - kernel released send buffer */ uint8_t send_ack : 1; /* Data transfer completed - target send resp or last data bit */ uint8_t data_recv : 1; /* tcp_req is waiting for completion of the previous send operation (buffer reclaim notification * from kernel) to send H2C */ uint8_t h2c_send_waiting_ack : 1; /* tcp_req received subsequent r2t while it is still waiting for send_ack. * Rare case, actual when dealing with target that can send several R2T requests. * SPDK TCP target sends 1 R2T for the whole data buffer */ uint8_t r2t_waiting_h2c_complete : 1; uint8_t reserved : 4; } bits; } ordering; struct nvme_tcp_pdu *pdu; struct iovec iov[NVME_TCP_MAX_SGL_DESCRIPTORS]; uint32_t iovcnt; /* Used to hold a value received from subsequent R2T while we are still * waiting for H2C ack */ uint32_t r2tl_remain_next; struct nvme_tcp_qpair *tqpair; TAILQ_ENTRY(nvme_tcp_req) link; struct spdk_nvme_cpl rsp; }; static struct spdk_nvme_tcp_stat g_dummy_stats = {}; static void nvme_tcp_send_h2c_data(struct nvme_tcp_req *tcp_req); static int64_t nvme_tcp_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup, uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb); static void nvme_tcp_icresp_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu); static void nvme_tcp_req_complete(struct nvme_tcp_req *tcp_req, struct nvme_tcp_qpair *tqpair, struct spdk_nvme_cpl *rsp, bool print_on_error); static inline struct nvme_tcp_qpair * nvme_tcp_qpair(struct spdk_nvme_qpair *qpair) { assert(qpair->trtype == SPDK_NVME_TRANSPORT_TCP); return SPDK_CONTAINEROF(qpair, struct nvme_tcp_qpair, qpair); } static inline struct nvme_tcp_poll_group * nvme_tcp_poll_group(struct spdk_nvme_transport_poll_group *group) { return SPDK_CONTAINEROF(group, struct nvme_tcp_poll_group, group); } static inline struct nvme_tcp_ctrlr * nvme_tcp_ctrlr(struct spdk_nvme_ctrlr *ctrlr) { assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_TCP); return SPDK_CONTAINEROF(ctrlr, struct nvme_tcp_ctrlr, ctrlr); } static struct nvme_tcp_req * nvme_tcp_req_get(struct nvme_tcp_qpair *tqpair) { struct nvme_tcp_req *tcp_req; tcp_req = TAILQ_FIRST(&tqpair->free_reqs); if (!tcp_req) { return NULL; } assert(tcp_req->state == NVME_TCP_REQ_FREE); tcp_req->state = NVME_TCP_REQ_ACTIVE; TAILQ_REMOVE(&tqpair->free_reqs, tcp_req, link); tcp_req->datao = 0; tcp_req->expected_datao = 0; tcp_req->req = NULL; tcp_req->in_capsule_data = false; tcp_req->pdu_in_use = false; tcp_req->r2tl_remain = 0; tcp_req->r2tl_remain_next = 0; tcp_req->active_r2ts = 0; tcp_req->iovcnt = 0; tcp_req->ordering.raw = 0; memset(tcp_req->pdu, 0, sizeof(struct nvme_tcp_pdu)); memset(&tcp_req->rsp, 0, sizeof(struct spdk_nvme_cpl)); return tcp_req; } static void nvme_tcp_req_put(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_req *tcp_req) { assert(tcp_req->state != NVME_TCP_REQ_FREE); tcp_req->state = NVME_TCP_REQ_FREE; TAILQ_INSERT_HEAD(&tqpair->free_reqs, tcp_req, link); } static int nvme_tcp_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service) { struct addrinfo *res; struct addrinfo hints; int ret; memset(&hints, 0, sizeof(hints)); hints.ai_family = family; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = 0; ret = getaddrinfo(addr, service, &hints, &res); if (ret) { SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret); return ret; } if (res->ai_addrlen > sizeof(*sa)) { SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen); ret = -EINVAL; } else { memcpy(sa, res->ai_addr, res->ai_addrlen); } freeaddrinfo(res); return ret; } static void nvme_tcp_free_reqs(struct nvme_tcp_qpair *tqpair) { free(tqpair->tcp_reqs); tqpair->tcp_reqs = NULL; spdk_free(tqpair->send_pdus); tqpair->send_pdus = NULL; } static int nvme_tcp_alloc_reqs(struct nvme_tcp_qpair *tqpair) { uint16_t i; struct nvme_tcp_req *tcp_req; tqpair->tcp_reqs = calloc(tqpair->num_entries, sizeof(struct nvme_tcp_req)); if (tqpair->tcp_reqs == NULL) { SPDK_ERRLOG("Failed to allocate tcp_reqs on tqpair=%p\n", tqpair); goto fail; } /* Add additional 2 member for the send_pdu, recv_pdu owned by the tqpair */ tqpair->send_pdus = spdk_zmalloc((tqpair->num_entries + 2) * sizeof(struct nvme_tcp_pdu), 0x1000, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); if (tqpair->send_pdus == NULL) { SPDK_ERRLOG("Failed to allocate send_pdus on tqpair=%p\n", tqpair); goto fail; } TAILQ_INIT(&tqpair->send_queue); TAILQ_INIT(&tqpair->free_reqs); TAILQ_INIT(&tqpair->outstanding_reqs); for (i = 0; i < tqpair->num_entries; i++) { tcp_req = &tqpair->tcp_reqs[i]; tcp_req->cid = i; tcp_req->tqpair = tqpair; tcp_req->pdu = &tqpair->send_pdus[i]; TAILQ_INSERT_TAIL(&tqpair->free_reqs, tcp_req, link); } tqpair->send_pdu = &tqpair->send_pdus[i]; tqpair->recv_pdu = &tqpair->send_pdus[i + 1]; return 0; fail: nvme_tcp_free_reqs(tqpair); return -ENOMEM; } static void nvme_tcp_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr); static void nvme_tcp_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair); struct nvme_tcp_pdu *pdu; int rc; struct nvme_tcp_poll_group *group; if (tqpair->needs_poll) { group = nvme_tcp_poll_group(qpair->poll_group); TAILQ_REMOVE(&group->needs_poll, tqpair, link); tqpair->needs_poll = false; } rc = spdk_sock_close(&tqpair->sock); if (tqpair->sock != NULL) { SPDK_ERRLOG("tqpair=%p, errno=%d, rc=%d\n", tqpair, errno, rc); /* Set it to NULL manually */ tqpair->sock = NULL; } /* clear the send_queue */ while (!TAILQ_EMPTY(&tqpair->send_queue)) { pdu = TAILQ_FIRST(&tqpair->send_queue); /* Remove the pdu from the send_queue to prevent the wrong sending out * in the next round connection */ TAILQ_REMOVE(&tqpair->send_queue, pdu, tailq); } nvme_tcp_qpair_abort_reqs(qpair, 0); nvme_transport_ctrlr_disconnect_qpair_done(qpair); } static int nvme_tcp_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { struct nvme_tcp_qpair *tqpair; assert(qpair != NULL); nvme_tcp_qpair_abort_reqs(qpair, 0); nvme_qpair_deinit(qpair); tqpair = nvme_tcp_qpair(qpair); nvme_tcp_free_reqs(tqpair); if (!tqpair->shared_stats) { free(tqpair->stats); } free(tqpair); return 0; } static int nvme_tcp_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr) { return 0; } static int nvme_tcp_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) { struct nvme_tcp_ctrlr *tctrlr = nvme_tcp_ctrlr(ctrlr); if (ctrlr->adminq) { nvme_tcp_ctrlr_delete_io_qpair(ctrlr, ctrlr->adminq); } nvme_ctrlr_destruct_finish(ctrlr); free(tctrlr); return 0; } static void _pdu_write_done(void *cb_arg, int err) { struct nvme_tcp_pdu *pdu = cb_arg; struct nvme_tcp_qpair *tqpair = pdu->qpair; struct nvme_tcp_poll_group *pgroup; /* If there are queued requests, we assume they are queued because they are waiting * for resources to be released. Those resources are almost certainly released in * response to a PDU completing here. However, to attempt to make forward progress * the qpair needs to be polled and we can't rely on another network event to make * that happen. Add it to a list of qpairs to poll regardless of network activity * here. * Besides, when tqpair state is NVME_TCP_QPAIR_STATE_FABRIC_CONNECT_POLL or * NVME_TCP_QPAIR_STATE_INITIALIZING, need to add it to needs_poll list too to make * forward progress in case that the resources are released after icreq's or CONNECT's * resp is processed. */ if (tqpair->qpair.poll_group && !tqpair->needs_poll && (!STAILQ_EMPTY(&tqpair->qpair.queued_req) || tqpair->state == NVME_TCP_QPAIR_STATE_FABRIC_CONNECT_POLL || tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING)) { pgroup = nvme_tcp_poll_group(tqpair->qpair.poll_group); TAILQ_INSERT_TAIL(&pgroup->needs_poll, tqpair, link); tqpair->needs_poll = true; } TAILQ_REMOVE(&tqpair->send_queue, pdu, tailq); if (err != 0) { nvme_transport_ctrlr_disconnect_qpair(tqpair->qpair.ctrlr, &tqpair->qpair); return; } assert(pdu->cb_fn != NULL); pdu->cb_fn(pdu->cb_arg); } static void _tcp_write_pdu(struct nvme_tcp_pdu *pdu) { uint32_t mapped_length = 0; struct nvme_tcp_qpair *tqpair = pdu->qpair; pdu->sock_req.iovcnt = nvme_tcp_build_iovs(pdu->iov, NVME_TCP_MAX_SGL_DESCRIPTORS, pdu, (bool)tqpair->flags.host_hdgst_enable, (bool)tqpair->flags.host_ddgst_enable, &mapped_length); pdu->sock_req.cb_fn = _pdu_write_done; pdu->sock_req.cb_arg = pdu; TAILQ_INSERT_TAIL(&tqpair->send_queue, pdu, tailq); tqpair->stats->submitted_requests++; spdk_sock_writev_async(tqpair->sock, &pdu->sock_req); } static void data_crc32_accel_done(void *cb_arg, int status) { struct nvme_tcp_pdu *pdu = cb_arg; if (spdk_unlikely(status)) { SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu); _pdu_write_done(pdu, status); return; } pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR; MAKE_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32); _tcp_write_pdu(pdu); } static void pdu_data_crc32_compute(struct nvme_tcp_pdu *pdu) { struct nvme_tcp_qpair *tqpair = pdu->qpair; uint32_t crc32c; struct nvme_tcp_poll_group *tgroup = nvme_tcp_poll_group(tqpair->qpair.poll_group); /* Data Digest */ if (pdu->data_len > 0 && g_nvme_tcp_ddgst[pdu->hdr.common.pdu_type] && tqpair->flags.host_ddgst_enable) { /* Only suport this limited case for the first step */ if ((nvme_qpair_get_state(&tqpair->qpair) >= NVME_QPAIR_CONNECTED) && (tgroup != NULL && tgroup->group.group->accel_fn_table.submit_accel_crc32c) && spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0))) { tgroup->group.group->accel_fn_table.submit_accel_crc32c(tgroup->group.group->ctx, &pdu->data_digest_crc32, pdu->data_iov, pdu->data_iovcnt, 0, data_crc32_accel_done, pdu); return; } crc32c = nvme_tcp_pdu_calc_data_digest(pdu); crc32c = crc32c ^ SPDK_CRC32C_XOR; MAKE_DIGEST_WORD(pdu->data_digest, crc32c); } _tcp_write_pdu(pdu); } static int nvme_tcp_qpair_write_pdu(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu, nvme_tcp_qpair_xfer_complete_cb cb_fn, void *cb_arg) { int hlen; uint32_t crc32c; hlen = pdu->hdr.common.hlen; pdu->cb_fn = cb_fn; pdu->cb_arg = cb_arg; pdu->qpair = tqpair; /* Header Digest */ if (g_nvme_tcp_hdgst[pdu->hdr.common.pdu_type] && tqpair->flags.host_hdgst_enable) { crc32c = nvme_tcp_pdu_calc_header_digest(pdu); MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c); } pdu_data_crc32_compute(pdu); return 0; } /* * Build SGL describing contiguous payload buffer. */ static int nvme_tcp_build_contig_request(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_req *tcp_req) { struct nvme_request *req = tcp_req->req; tcp_req->iov[0].iov_base = req->payload.contig_or_cb_arg + req->payload_offset; tcp_req->iov[0].iov_len = req->payload_size; tcp_req->iovcnt = 1; SPDK_DEBUGLOG(nvme, "enter\n"); assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG); return 0; } /* * Build SGL describing scattered payload buffer. */ static int nvme_tcp_build_sgl_request(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_req *tcp_req) { int rc; uint32_t length, remaining_size, iovcnt = 0, max_num_sgl; struct nvme_request *req = tcp_req->req; SPDK_DEBUGLOG(nvme, "enter\n"); assert(req->payload_size != 0); assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); assert(req->payload.reset_sgl_fn != NULL); assert(req->payload.next_sge_fn != NULL); req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); max_num_sgl = spdk_min(req->qpair->ctrlr->max_sges, NVME_TCP_MAX_SGL_DESCRIPTORS); remaining_size = req->payload_size; do { rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &tcp_req->iov[iovcnt].iov_base, &length); if (rc) { return -1; } length = spdk_min(length, remaining_size); tcp_req->iov[iovcnt].iov_len = length; remaining_size -= length; iovcnt++; } while (remaining_size > 0 && iovcnt < max_num_sgl); /* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */ if (remaining_size > 0) { SPDK_ERRLOG("Failed to construct tcp_req=%p, and the iovcnt=%u, remaining_size=%u\n", tcp_req, iovcnt, remaining_size); return -1; } tcp_req->iovcnt = iovcnt; return 0; } static int nvme_tcp_req_init(struct nvme_tcp_qpair *tqpair, struct nvme_request *req, struct nvme_tcp_req *tcp_req) { struct spdk_nvme_ctrlr *ctrlr = tqpair->qpair.ctrlr; int rc = 0; enum spdk_nvme_data_transfer xfer; uint32_t max_in_capsule_data_size; tcp_req->req = req; req->cmd.cid = tcp_req->cid; req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK; req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_TRANSPORT; req->cmd.dptr.sgl1.unkeyed.length = req->payload_size; if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG) { rc = nvme_tcp_build_contig_request(tqpair, tcp_req); } else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL) { rc = nvme_tcp_build_sgl_request(tqpair, tcp_req); } else { rc = -1; } if (rc) { return rc; } if (req->cmd.opc == SPDK_NVME_OPC_FABRIC) { struct spdk_nvmf_capsule_cmd *nvmf_cmd = (struct spdk_nvmf_capsule_cmd *)&req->cmd; xfer = spdk_nvme_opc_get_data_transfer(nvmf_cmd->fctype); } else { xfer = spdk_nvme_opc_get_data_transfer(req->cmd.opc); } if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) { max_in_capsule_data_size = ctrlr->ioccsz_bytes; if ((req->cmd.opc == SPDK_NVME_OPC_FABRIC) || nvme_qpair_is_admin_queue(&tqpair->qpair)) { max_in_capsule_data_size = SPDK_NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE; } if (req->payload_size <= max_in_capsule_data_size) { req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; req->cmd.dptr.sgl1.address = 0; tcp_req->in_capsule_data = true; } } return 0; } static inline bool nvme_tcp_req_complete_safe(struct nvme_tcp_req *tcp_req) { if (!(tcp_req->ordering.bits.send_ack && tcp_req->ordering.bits.data_recv)) { return false; } assert(tcp_req->state == NVME_TCP_REQ_ACTIVE); assert(tcp_req->tqpair != NULL); assert(tcp_req->req != NULL); SPDK_DEBUGLOG(nvme, "complete tcp_req(%p) on tqpair=%p\n", tcp_req, tcp_req->tqpair); if (!tcp_req->tqpair->qpair.in_completion_context) { tcp_req->tqpair->async_complete++; } nvme_tcp_req_complete(tcp_req, tcp_req->tqpair, &tcp_req->rsp, true); return true; } static void nvme_tcp_qpair_cmd_send_complete(void *cb_arg) { struct nvme_tcp_req *tcp_req = cb_arg; SPDK_DEBUGLOG(nvme, "tcp req %p, cid %u, qid %u\n", tcp_req, tcp_req->cid, tcp_req->tqpair->qpair.id); tcp_req->ordering.bits.send_ack = 1; /* Handle the r2t case */ if (spdk_unlikely(tcp_req->ordering.bits.h2c_send_waiting_ack)) { SPDK_DEBUGLOG(nvme, "tcp req %p, send H2C data\n", tcp_req); nvme_tcp_send_h2c_data(tcp_req); } else { nvme_tcp_req_complete_safe(tcp_req); } } static int nvme_tcp_qpair_capsule_cmd_send(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_req *tcp_req) { struct nvme_tcp_pdu *pdu; struct spdk_nvme_tcp_cmd *capsule_cmd; uint32_t plen = 0, alignment; uint8_t pdo; SPDK_DEBUGLOG(nvme, "enter\n"); pdu = tcp_req->pdu; capsule_cmd = &pdu->hdr.capsule_cmd; capsule_cmd->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD; plen = capsule_cmd->common.hlen = sizeof(*capsule_cmd); capsule_cmd->ccsqe = tcp_req->req->cmd; SPDK_DEBUGLOG(nvme, "capsule_cmd cid=%u on tqpair(%p)\n", tcp_req->req->cmd.cid, tqpair); if (tqpair->flags.host_hdgst_enable) { SPDK_DEBUGLOG(nvme, "Header digest is enabled for capsule command on tcp_req=%p\n", tcp_req); capsule_cmd->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF; plen += SPDK_NVME_TCP_DIGEST_LEN; } if ((tcp_req->req->payload_size == 0) || !tcp_req->in_capsule_data) { goto end; } pdo = plen; pdu->padding_len = 0; if (tqpair->cpda) { alignment = (tqpair->cpda + 1) << 2; if (alignment > plen) { pdu->padding_len = alignment - plen; pdo = alignment; plen = alignment; } } capsule_cmd->common.pdo = pdo; plen += tcp_req->req->payload_size; if (tqpair->flags.host_ddgst_enable) { capsule_cmd->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF; plen += SPDK_NVME_TCP_DIGEST_LEN; } tcp_req->datao = 0; nvme_tcp_pdu_set_data_buf(pdu, tcp_req->iov, tcp_req->iovcnt, 0, tcp_req->req->payload_size); end: capsule_cmd->common.plen = plen; return nvme_tcp_qpair_write_pdu(tqpair, pdu, nvme_tcp_qpair_cmd_send_complete, tcp_req); } static int nvme_tcp_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req) { struct nvme_tcp_qpair *tqpair; struct nvme_tcp_req *tcp_req; tqpair = nvme_tcp_qpair(qpair); assert(tqpair != NULL); assert(req != NULL); tcp_req = nvme_tcp_req_get(tqpair); if (!tcp_req) { tqpair->stats->queued_requests++; /* Inform the upper layer to try again later. */ return -EAGAIN; } if (nvme_tcp_req_init(tqpair, req, tcp_req)) { SPDK_ERRLOG("nvme_tcp_req_init() failed\n"); nvme_tcp_req_put(tqpair, tcp_req); return -1; } spdk_trace_record(TRACE_NVME_TCP_SUBMIT, qpair->id, 0, (uintptr_t)req, req->cb_arg, (uint32_t)req->cmd.cid, (uint32_t)req->cmd.opc, req->cmd.cdw10, req->cmd.cdw11, req->cmd.cdw12); TAILQ_INSERT_TAIL(&tqpair->outstanding_reqs, tcp_req, link); return nvme_tcp_qpair_capsule_cmd_send(tqpair, tcp_req); } static int nvme_tcp_qpair_reset(struct spdk_nvme_qpair *qpair) { return 0; } static void nvme_tcp_req_complete(struct nvme_tcp_req *tcp_req, struct nvme_tcp_qpair *tqpair, struct spdk_nvme_cpl *rsp, bool print_on_error) { struct spdk_nvme_cpl cpl; spdk_nvme_cmd_cb user_cb; void *user_cb_arg; struct spdk_nvme_qpair *qpair; struct nvme_request *req; bool error, print_error; assert(tcp_req->req != NULL); req = tcp_req->req; /* Cache arguments to be passed to nvme_complete_request since tcp_req can be zeroed when released */ memcpy(&cpl, rsp, sizeof(cpl)); user_cb = req->cb_fn; user_cb_arg = req->cb_arg; qpair = req->qpair; error = spdk_nvme_cpl_is_error(rsp); print_error = error && print_on_error && !qpair->ctrlr->opts.disable_error_logging; if (print_error) { spdk_nvme_qpair_print_command(qpair, &req->cmd); } if (print_error || SPDK_DEBUGLOG_FLAG_ENABLED("nvme")) { spdk_nvme_qpair_print_completion(qpair, rsp); } spdk_trace_record(TRACE_NVME_TCP_COMPLETE, qpair->id, 0, (uintptr_t)req, req->cb_arg, (uint32_t)req->cmd.cid, (uint32_t)cpl.status_raw); TAILQ_REMOVE(&tcp_req->tqpair->outstanding_reqs, tcp_req, link); nvme_tcp_req_put(tqpair, tcp_req); nvme_free_request(req); nvme_complete_request(user_cb, user_cb_arg, qpair, req, &cpl); } static void nvme_tcp_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr) { struct nvme_tcp_req *tcp_req, *tmp; struct spdk_nvme_cpl cpl = {}; struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair); cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION; cpl.status.sct = SPDK_NVME_SCT_GENERIC; cpl.status.dnr = dnr; TAILQ_FOREACH_SAFE(tcp_req, &tqpair->outstanding_reqs, link, tmp) { nvme_tcp_req_complete(tcp_req, tqpair, &cpl, true); } } static void nvme_tcp_qpair_set_recv_state(struct nvme_tcp_qpair *tqpair, enum nvme_tcp_pdu_recv_state state) { if (tqpair->recv_state == state) { SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n", tqpair, state); return; } tqpair->recv_state = state; switch (state) { case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY: case NVME_TCP_PDU_RECV_STATE_ERROR: memset(tqpair->recv_pdu, 0, sizeof(struct nvme_tcp_pdu)); break; case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH: case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH: case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD: default: break; } } static void nvme_tcp_qpair_send_h2c_term_req_complete(void *cb_arg) { struct nvme_tcp_qpair *tqpair = cb_arg; tqpair->state = NVME_TCP_QPAIR_STATE_EXITING; } static void nvme_tcp_qpair_send_h2c_term_req(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu, enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset) { struct nvme_tcp_pdu *rsp_pdu; struct spdk_nvme_tcp_term_req_hdr *h2c_term_req; uint32_t h2c_term_req_hdr_len = sizeof(*h2c_term_req); uint8_t copy_len; rsp_pdu = tqpair->send_pdu; memset(rsp_pdu, 0, sizeof(*rsp_pdu)); h2c_term_req = &rsp_pdu->hdr.term_req; h2c_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ; h2c_term_req->common.hlen = h2c_term_req_hdr_len; if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) || (fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) { DSET32(&h2c_term_req->fei, error_offset); } copy_len = pdu->hdr.common.hlen; if (copy_len > SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE) { copy_len = SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE; } /* Copy the error info into the buffer */ memcpy((uint8_t *)rsp_pdu->hdr.raw + h2c_term_req_hdr_len, pdu->hdr.raw, copy_len); nvme_tcp_pdu_set_data(rsp_pdu, (uint8_t *)rsp_pdu->hdr.raw + h2c_term_req_hdr_len, copy_len); /* Contain the header len of the wrong received pdu */ h2c_term_req->common.plen = h2c_term_req->common.hlen + copy_len; nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR); nvme_tcp_qpair_write_pdu(tqpair, rsp_pdu, nvme_tcp_qpair_send_h2c_term_req_complete, tqpair); } static bool nvme_tcp_qpair_recv_state_valid(struct nvme_tcp_qpair *tqpair) { switch (tqpair->state) { case NVME_TCP_QPAIR_STATE_FABRIC_CONNECT_SEND: case NVME_TCP_QPAIR_STATE_FABRIC_CONNECT_POLL: case NVME_TCP_QPAIR_STATE_RUNNING: return true; default: return false; } } static void nvme_tcp_pdu_ch_handle(struct nvme_tcp_qpair *tqpair) { struct nvme_tcp_pdu *pdu; uint32_t error_offset = 0; enum spdk_nvme_tcp_term_req_fes fes; uint32_t expected_hlen, hd_len = 0; bool plen_error = false; pdu = tqpair->recv_pdu; SPDK_DEBUGLOG(nvme, "pdu type = %d\n", pdu->hdr.common.pdu_type); if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP) { if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) { SPDK_ERRLOG("Already received IC_RESP PDU, and we should reject this pdu=%p\n", pdu); fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR; goto err; } expected_hlen = sizeof(struct spdk_nvme_tcp_ic_resp); if (pdu->hdr.common.plen != expected_hlen) { plen_error = true; } } else { if (spdk_unlikely(!nvme_tcp_qpair_recv_state_valid(tqpair))) { SPDK_ERRLOG("The TCP/IP tqpair connection is not negotiated\n"); fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR; goto err; } switch (pdu->hdr.common.pdu_type) { case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP: expected_hlen = sizeof(struct spdk_nvme_tcp_rsp); if (pdu->hdr.common.flags & SPDK_NVME_TCP_CH_FLAGS_HDGSTF) { hd_len = SPDK_NVME_TCP_DIGEST_LEN; } if (pdu->hdr.common.plen != (expected_hlen + hd_len)) { plen_error = true; } break; case SPDK_NVME_TCP_PDU_TYPE_C2H_DATA: expected_hlen = sizeof(struct spdk_nvme_tcp_c2h_data_hdr); if (pdu->hdr.common.plen < pdu->hdr.common.pdo) { plen_error = true; } break; case SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ: expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr); if ((pdu->hdr.common.plen <= expected_hlen) || (pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) { plen_error = true; } break; case SPDK_NVME_TCP_PDU_TYPE_R2T: expected_hlen = sizeof(struct spdk_nvme_tcp_r2t_hdr); if (pdu->hdr.common.flags & SPDK_NVME_TCP_CH_FLAGS_HDGSTF) { hd_len = SPDK_NVME_TCP_DIGEST_LEN; } if (pdu->hdr.common.plen != (expected_hlen + hd_len)) { plen_error = true; } break; default: SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->recv_pdu->hdr.common.pdu_type); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type); goto err; } } if (pdu->hdr.common.hlen != expected_hlen) { SPDK_ERRLOG("Expected PDU header length %u, got %u\n", expected_hlen, pdu->hdr.common.hlen); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen); goto err; } else if (plen_error) { fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen); goto err; } else { nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH); nvme_tcp_pdu_calc_psh_len(tqpair->recv_pdu, tqpair->flags.host_hdgst_enable); return; } err: nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); } static struct nvme_tcp_req * get_nvme_active_req_by_cid(struct nvme_tcp_qpair *tqpair, uint32_t cid) { assert(tqpair != NULL); if ((cid >= tqpair->num_entries) || (tqpair->tcp_reqs[cid].state == NVME_TCP_REQ_FREE)) { return NULL; } return &tqpair->tcp_reqs[cid]; } static void nvme_tcp_c2h_data_payload_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu, uint32_t *reaped) { struct nvme_tcp_req *tcp_req; struct spdk_nvme_tcp_c2h_data_hdr *c2h_data; uint8_t flags; tcp_req = pdu->req; assert(tcp_req != NULL); SPDK_DEBUGLOG(nvme, "enter\n"); c2h_data = &pdu->hdr.c2h_data; tcp_req->datao += pdu->data_len; flags = c2h_data->common.flags; if (flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU) { if (tcp_req->datao == tcp_req->req->payload_size) { tcp_req->rsp.status.p = 0; } else { tcp_req->rsp.status.p = 1; } tcp_req->rsp.cid = tcp_req->cid; tcp_req->rsp.sqid = tqpair->qpair.id; if (flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) { tcp_req->ordering.bits.data_recv = 1; if (nvme_tcp_req_complete_safe(tcp_req)) { (*reaped)++; } } } } static const char *spdk_nvme_tcp_term_req_fes_str[] = { "Invalid PDU Header Field", "PDU Sequence Error", "Header Digest Error", "Data Transfer Out of Range", "Data Transfer Limit Exceeded", "Unsupported parameter", }; static void nvme_tcp_c2h_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *c2h_term_req) { SPDK_ERRLOG("Error info of pdu(%p): %s\n", c2h_term_req, spdk_nvme_tcp_term_req_fes_str[c2h_term_req->fes]); if ((c2h_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) || (c2h_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) { SPDK_DEBUGLOG(nvme, "The offset from the start of the PDU header is %u\n", DGET32(c2h_term_req->fei)); } /* we may also need to dump some other info here */ } static void nvme_tcp_c2h_term_req_payload_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu) { nvme_tcp_c2h_term_req_dump(&pdu->hdr.term_req); nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR); } static void _nvme_tcp_pdu_payload_handle(struct nvme_tcp_qpair *tqpair, uint32_t *reaped) { struct nvme_tcp_pdu *pdu; assert(tqpair != NULL); pdu = tqpair->recv_pdu; switch (pdu->hdr.common.pdu_type) { case SPDK_NVME_TCP_PDU_TYPE_C2H_DATA: nvme_tcp_c2h_data_payload_handle(tqpair, pdu, reaped); nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY); break; case SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ: nvme_tcp_c2h_term_req_payload_handle(tqpair, pdu); break; default: /* The code should not go to here */ SPDK_ERRLOG("The code should not go to here\n"); break; } } static void tcp_data_recv_crc32_done(void *cb_arg, int status) { struct nvme_tcp_req *tcp_req = cb_arg; struct nvme_tcp_pdu *pdu; struct nvme_tcp_qpair *tqpair; int rc; struct nvme_tcp_poll_group *pgroup; int dummy_reaped = 0; pdu = tcp_req->pdu; assert(pdu != NULL); tqpair = tcp_req->tqpair; assert(tqpair != NULL); if (tqpair->qpair.poll_group && !tqpair->needs_poll) { pgroup = nvme_tcp_poll_group(tqpair->qpair.poll_group); TAILQ_INSERT_TAIL(&pgroup->needs_poll, tqpair, link); tqpair->needs_poll = true; } if (spdk_unlikely(status)) { SPDK_ERRLOG("Failed to compute the data digest for pdu =%p\n", pdu); tcp_req->rsp.status.sc = SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR; goto end; } pdu->data_digest_crc32 ^= SPDK_CRC32C_XOR; rc = MATCH_DIGEST_WORD(pdu->data_digest, pdu->data_digest_crc32); if (rc == 0) { SPDK_ERRLOG("data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu); tcp_req->rsp.status.sc = SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR; } end: tcp_req->pdu_in_use = false; nvme_tcp_c2h_data_payload_handle(tqpair, tcp_req->pdu, &dummy_reaped); } static void nvme_tcp_pdu_payload_handle(struct nvme_tcp_qpair *tqpair, uint32_t *reaped) { int rc = 0; struct nvme_tcp_pdu *pdu = tqpair->recv_pdu; uint32_t crc32c; struct nvme_tcp_poll_group *tgroup; struct nvme_tcp_req *tcp_req = pdu->req; assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD); SPDK_DEBUGLOG(nvme, "enter\n"); /* The request can be NULL, e.g. in case of C2HTermReq */ if (spdk_likely(tcp_req != NULL)) { tcp_req->expected_datao += pdu->data_len; } /* check data digest if need */ if (pdu->ddgst_enable) { /* But if the data digest is enabled, tcp_req cannot be NULL */ assert(tcp_req != NULL); tgroup = nvme_tcp_poll_group(tqpair->qpair.poll_group); /* Only suport this limitated case for the first step */ if ((nvme_qpair_get_state(&tqpair->qpair) >= NVME_QPAIR_CONNECTED) && (tgroup != NULL && tgroup->group.group->accel_fn_table.submit_accel_crc32c) && spdk_likely(!pdu->dif_ctx && (pdu->data_len % SPDK_NVME_TCP_DIGEST_ALIGNMENT == 0) && !tcp_req->pdu_in_use)) { tcp_req->pdu_in_use = true; tcp_req->pdu->hdr = pdu->hdr; tcp_req->pdu->req = tcp_req; memcpy(tcp_req->pdu->data_digest, pdu->data_digest, sizeof(pdu->data_digest)); memcpy(tcp_req->pdu->data_iov, pdu->data_iov, sizeof(pdu->data_iov[0]) * pdu->data_iovcnt); tcp_req->pdu->data_iovcnt = pdu->data_iovcnt; tcp_req->pdu->data_len = pdu->data_len; nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY); tgroup->group.group->accel_fn_table.submit_accel_crc32c(tgroup->group.group->ctx, &tcp_req->pdu->data_digest_crc32, tcp_req->pdu->data_iov, tcp_req->pdu->data_iovcnt, 0, tcp_data_recv_crc32_done, tcp_req); return; } crc32c = nvme_tcp_pdu_calc_data_digest(pdu); crc32c = crc32c ^ SPDK_CRC32C_XOR; rc = MATCH_DIGEST_WORD(pdu->data_digest, crc32c); if (rc == 0) { SPDK_ERRLOG("data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu); tcp_req = pdu->req; assert(tcp_req != NULL); tcp_req->rsp.status.sc = SPDK_NVME_SC_COMMAND_TRANSIENT_TRANSPORT_ERROR; } } _nvme_tcp_pdu_payload_handle(tqpair, reaped); } static void nvme_tcp_send_icreq_complete(void *cb_arg) { struct nvme_tcp_qpair *tqpair = cb_arg; SPDK_DEBUGLOG(nvme, "Complete the icreq send for tqpair=%p %u\n", tqpair, tqpair->qpair.id); tqpair->flags.icreq_send_ack = true; if (tqpair->state == NVME_TCP_QPAIR_STATE_INITIALIZING) { SPDK_DEBUGLOG(nvme, "tqpair %p %u, finalize icresp\n", tqpair, tqpair->qpair.id); tqpair->state = NVME_TCP_QPAIR_STATE_FABRIC_CONNECT_SEND; } } static void nvme_tcp_icresp_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu) { struct spdk_nvme_tcp_ic_resp *ic_resp = &pdu->hdr.ic_resp; uint32_t error_offset = 0; enum spdk_nvme_tcp_term_req_fes fes; int recv_buf_size; /* Only PFV 0 is defined currently */ if (ic_resp->pfv != 0) { SPDK_ERRLOG("Expected ICResp PFV %u, got %u\n", 0u, ic_resp->pfv); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_ic_resp, pfv); goto end; } if (ic_resp->maxh2cdata < NVME_TCP_PDU_H2C_MIN_DATA_SIZE) { SPDK_ERRLOG("Expected ICResp maxh2cdata >=%u, got %u\n", NVME_TCP_PDU_H2C_MIN_DATA_SIZE, ic_resp->maxh2cdata); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_ic_resp, maxh2cdata); goto end; } tqpair->maxh2cdata = ic_resp->maxh2cdata; if (ic_resp->cpda > SPDK_NVME_TCP_CPDA_MAX) { SPDK_ERRLOG("Expected ICResp cpda <=%u, got %u\n", SPDK_NVME_TCP_CPDA_MAX, ic_resp->cpda); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_ic_resp, cpda); goto end; } tqpair->cpda = ic_resp->cpda; tqpair->flags.host_hdgst_enable = ic_resp->dgst.bits.hdgst_enable ? true : false; tqpair->flags.host_ddgst_enable = ic_resp->dgst.bits.ddgst_enable ? true : false; SPDK_DEBUGLOG(nvme, "host_hdgst_enable: %u\n", tqpair->flags.host_hdgst_enable); SPDK_DEBUGLOG(nvme, "host_ddgst_enable: %u\n", tqpair->flags.host_ddgst_enable); /* Now that we know whether digests are enabled, properly size the receive buffer to * handle several incoming 4K read commands according to SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR * parameter. */ recv_buf_size = 0x1000 + sizeof(struct spdk_nvme_tcp_c2h_data_hdr); if (tqpair->flags.host_hdgst_enable) { recv_buf_size += SPDK_NVME_TCP_DIGEST_LEN; } if (tqpair->flags.host_ddgst_enable) { recv_buf_size += SPDK_NVME_TCP_DIGEST_LEN; } if (spdk_sock_set_recvbuf(tqpair->sock, recv_buf_size * SPDK_NVMF_TCP_RECV_BUF_SIZE_FACTOR) < 0) { SPDK_WARNLOG("Unable to allocate enough memory for receive buffer on tqpair=%p with size=%d\n", tqpair, recv_buf_size); /* Not fatal. */ } nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY); if (!tqpair->flags.icreq_send_ack) { tqpair->state = NVME_TCP_QPAIR_STATE_INITIALIZING; SPDK_DEBUGLOG(nvme, "tqpair %p %u, waiting icreq ack\n", tqpair, tqpair->qpair.id); return; } tqpair->state = NVME_TCP_QPAIR_STATE_FABRIC_CONNECT_SEND; return; end: nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); } static void nvme_tcp_capsule_resp_hdr_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu, uint32_t *reaped) { struct nvme_tcp_req *tcp_req; struct spdk_nvme_tcp_rsp *capsule_resp = &pdu->hdr.capsule_resp; uint32_t cid, error_offset = 0; enum spdk_nvme_tcp_term_req_fes fes; SPDK_DEBUGLOG(nvme, "enter\n"); cid = capsule_resp->rccqe.cid; tcp_req = get_nvme_active_req_by_cid(tqpair, cid); if (!tcp_req) { SPDK_ERRLOG("no tcp_req is found with cid=%u for tqpair=%p\n", cid, tqpair); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_rsp, rccqe); goto end; } assert(tcp_req->req != NULL); tcp_req->rsp = capsule_resp->rccqe; tcp_req->ordering.bits.data_recv = 1; /* Recv the pdu again */ nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY); if (nvme_tcp_req_complete_safe(tcp_req)) { (*reaped)++; } return; end: nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); } static void nvme_tcp_c2h_term_req_hdr_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu) { struct spdk_nvme_tcp_term_req_hdr *c2h_term_req = &pdu->hdr.term_req; uint32_t error_offset = 0; enum spdk_nvme_tcp_term_req_fes fes; if (c2h_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) { SPDK_ERRLOG("Fatal Error Status(FES) is unknown for c2h_term_req pdu=%p\n", pdu); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes); goto end; } /* set the data buffer */ nvme_tcp_pdu_set_data(pdu, (uint8_t *)pdu->hdr.raw + c2h_term_req->common.hlen, c2h_term_req->common.plen - c2h_term_req->common.hlen); nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD); return; end: nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); } static void nvme_tcp_c2h_data_hdr_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu) { struct nvme_tcp_req *tcp_req; struct spdk_nvme_tcp_c2h_data_hdr *c2h_data = &pdu->hdr.c2h_data; uint32_t error_offset = 0; enum spdk_nvme_tcp_term_req_fes fes; int flags = c2h_data->common.flags; SPDK_DEBUGLOG(nvme, "enter\n"); SPDK_DEBUGLOG(nvme, "c2h_data info on tqpair(%p): datao=%u, datal=%u, cccid=%d\n", tqpair, c2h_data->datao, c2h_data->datal, c2h_data->cccid); tcp_req = get_nvme_active_req_by_cid(tqpair, c2h_data->cccid); if (!tcp_req) { SPDK_ERRLOG("no tcp_req found for c2hdata cid=%d\n", c2h_data->cccid); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_c2h_data_hdr, cccid); goto end; } SPDK_DEBUGLOG(nvme, "tcp_req(%p) on tqpair(%p): expected_datao=%u, payload_size=%u\n", tcp_req, tqpair, tcp_req->expected_datao, tcp_req->req->payload_size); if (spdk_unlikely((flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) && !(flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_LAST_PDU))) { SPDK_ERRLOG("Invalid flag flags=%d in c2h_data=%p\n", flags, c2h_data); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_c2h_data_hdr, common); goto end; } if (c2h_data->datal > tcp_req->req->payload_size) { SPDK_ERRLOG("Invalid datal for tcp_req(%p), datal(%u) exceeds payload_size(%u)\n", tcp_req, c2h_data->datal, tcp_req->req->payload_size); fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE; goto end; } if (tcp_req->expected_datao != c2h_data->datao) { SPDK_ERRLOG("Invalid datao for tcp_req(%p), received datal(%u) != expected datao(%u) in tcp_req\n", tcp_req, c2h_data->datao, tcp_req->expected_datao); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_c2h_data_hdr, datao); goto end; } if ((c2h_data->datao + c2h_data->datal) > tcp_req->req->payload_size) { SPDK_ERRLOG("Invalid data range for tcp_req(%p), received (datao(%u) + datal(%u)) > datao(%u) in tcp_req\n", tcp_req, c2h_data->datao, c2h_data->datal, tcp_req->req->payload_size); fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE; error_offset = offsetof(struct spdk_nvme_tcp_c2h_data_hdr, datal); goto end; } nvme_tcp_pdu_set_data_buf(pdu, tcp_req->iov, tcp_req->iovcnt, c2h_data->datao, c2h_data->datal); pdu->req = tcp_req; nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD); return; end: nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); } static void nvme_tcp_qpair_h2c_data_send_complete(void *cb_arg) { struct nvme_tcp_req *tcp_req = cb_arg; assert(tcp_req != NULL); tcp_req->ordering.bits.send_ack = 1; if (tcp_req->r2tl_remain) { nvme_tcp_send_h2c_data(tcp_req); } else { assert(tcp_req->active_r2ts > 0); tcp_req->active_r2ts--; tcp_req->state = NVME_TCP_REQ_ACTIVE; if (tcp_req->ordering.bits.r2t_waiting_h2c_complete) { tcp_req->ordering.bits.r2t_waiting_h2c_complete = 0; SPDK_DEBUGLOG(nvme, "tcp_req %p: continue r2t\n", tcp_req); assert(tcp_req->active_r2ts > 0); tcp_req->ttag = tcp_req->ttag_r2t_next; tcp_req->r2tl_remain = tcp_req->r2tl_remain_next; tcp_req->state = NVME_TCP_REQ_ACTIVE_R2T; nvme_tcp_send_h2c_data(tcp_req); return; } /* Need also call this function to free the resource */ nvme_tcp_req_complete_safe(tcp_req); } } static void nvme_tcp_send_h2c_data(struct nvme_tcp_req *tcp_req) { struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(tcp_req->req->qpair); struct nvme_tcp_pdu *rsp_pdu; struct spdk_nvme_tcp_h2c_data_hdr *h2c_data; uint32_t plen, pdo, alignment; /* Reinit the send_ack and h2c_send_waiting_ack bits */ tcp_req->ordering.bits.send_ack = 0; tcp_req->ordering.bits.h2c_send_waiting_ack = 0; rsp_pdu = tcp_req->pdu; memset(rsp_pdu, 0, sizeof(*rsp_pdu)); h2c_data = &rsp_pdu->hdr.h2c_data; h2c_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_H2C_DATA; plen = h2c_data->common.hlen = sizeof(*h2c_data); h2c_data->cccid = tcp_req->cid; h2c_data->ttag = tcp_req->ttag; h2c_data->datao = tcp_req->datao; h2c_data->datal = spdk_min(tcp_req->r2tl_remain, tqpair->maxh2cdata); nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req->iov, tcp_req->iovcnt, h2c_data->datao, h2c_data->datal); tcp_req->r2tl_remain -= h2c_data->datal; if (tqpair->flags.host_hdgst_enable) { h2c_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF; plen += SPDK_NVME_TCP_DIGEST_LEN; } rsp_pdu->padding_len = 0; pdo = plen; if (tqpair->cpda) { alignment = (tqpair->cpda + 1) << 2; if (alignment > plen) { rsp_pdu->padding_len = alignment - plen; pdo = plen = alignment; } } h2c_data->common.pdo = pdo; plen += h2c_data->datal; if (tqpair->flags.host_ddgst_enable) { h2c_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF; plen += SPDK_NVME_TCP_DIGEST_LEN; } h2c_data->common.plen = plen; tcp_req->datao += h2c_data->datal; if (!tcp_req->r2tl_remain) { h2c_data->common.flags |= SPDK_NVME_TCP_H2C_DATA_FLAGS_LAST_PDU; } SPDK_DEBUGLOG(nvme, "h2c_data info: datao=%u, datal=%u, pdu_len=%u for tqpair=%p\n", h2c_data->datao, h2c_data->datal, h2c_data->common.plen, tqpair); nvme_tcp_qpair_write_pdu(tqpair, rsp_pdu, nvme_tcp_qpair_h2c_data_send_complete, tcp_req); } static void nvme_tcp_r2t_hdr_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu) { struct nvme_tcp_req *tcp_req; struct spdk_nvme_tcp_r2t_hdr *r2t = &pdu->hdr.r2t; uint32_t cid, error_offset = 0; enum spdk_nvme_tcp_term_req_fes fes; SPDK_DEBUGLOG(nvme, "enter\n"); cid = r2t->cccid; tcp_req = get_nvme_active_req_by_cid(tqpair, cid); if (!tcp_req) { SPDK_ERRLOG("Cannot find tcp_req for tqpair=%p\n", tqpair); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_r2t_hdr, cccid); goto end; } SPDK_DEBUGLOG(nvme, "r2t info: r2to=%u, r2tl=%u for tqpair=%p\n", r2t->r2to, r2t->r2tl, tqpair); if (tcp_req->state == NVME_TCP_REQ_ACTIVE) { assert(tcp_req->active_r2ts == 0); tcp_req->state = NVME_TCP_REQ_ACTIVE_R2T; } if (tcp_req->datao != r2t->r2to) { fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = offsetof(struct spdk_nvme_tcp_r2t_hdr, r2to); goto end; } if ((r2t->r2tl + r2t->r2to) > tcp_req->req->payload_size) { SPDK_ERRLOG("Invalid R2T info for tcp_req=%p: (r2to(%u) + r2tl(%u)) exceeds payload_size(%u)\n", tcp_req, r2t->r2to, r2t->r2tl, tqpair->maxh2cdata); fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE; error_offset = offsetof(struct spdk_nvme_tcp_r2t_hdr, r2tl); goto end; } tcp_req->active_r2ts++; if (spdk_unlikely(tcp_req->active_r2ts > tqpair->maxr2t)) { if (tcp_req->state == NVME_TCP_REQ_ACTIVE_R2T && !tcp_req->ordering.bits.send_ack) { /* We receive a subsequent R2T while we are waiting for H2C transfer to complete */ SPDK_DEBUGLOG(nvme, "received a subsequent R2T\n"); assert(tcp_req->active_r2ts == tqpair->maxr2t + 1); tcp_req->ttag_r2t_next = r2t->ttag; tcp_req->r2tl_remain_next = r2t->r2tl; tcp_req->ordering.bits.r2t_waiting_h2c_complete = 1; nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY); return; } else { fes = SPDK_NVME_TCP_TERM_REQ_FES_R2T_LIMIT_EXCEEDED; SPDK_ERRLOG("Invalid R2T: Maximum number of R2T exceeded! Max: %u for tqpair=%p\n", tqpair->maxr2t, tqpair); goto end; } } tcp_req->ttag = r2t->ttag; tcp_req->r2tl_remain = r2t->r2tl; nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY); if (spdk_likely(tcp_req->ordering.bits.send_ack)) { nvme_tcp_send_h2c_data(tcp_req); } else { tcp_req->ordering.bits.h2c_send_waiting_ack = 1; } return; end: nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); } static void nvme_tcp_pdu_psh_handle(struct nvme_tcp_qpair *tqpair, uint32_t *reaped) { struct nvme_tcp_pdu *pdu; int rc; uint32_t crc32c, error_offset = 0; enum spdk_nvme_tcp_term_req_fes fes; assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH); pdu = tqpair->recv_pdu; SPDK_DEBUGLOG(nvme, "enter: pdu type =%u\n", pdu->hdr.common.pdu_type); /* check header digest if needed */ if (pdu->has_hdgst) { crc32c = nvme_tcp_pdu_calc_header_digest(pdu); rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c); if (rc == 0) { SPDK_ERRLOG("header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu); fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR; nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); return; } } switch (pdu->hdr.common.pdu_type) { case SPDK_NVME_TCP_PDU_TYPE_IC_RESP: nvme_tcp_icresp_handle(tqpair, pdu); break; case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP: nvme_tcp_capsule_resp_hdr_handle(tqpair, pdu, reaped); break; case SPDK_NVME_TCP_PDU_TYPE_C2H_DATA: nvme_tcp_c2h_data_hdr_handle(tqpair, pdu); break; case SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ: nvme_tcp_c2h_term_req_hdr_handle(tqpair, pdu); break; case SPDK_NVME_TCP_PDU_TYPE_R2T: nvme_tcp_r2t_hdr_handle(tqpair, pdu); break; default: SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->recv_pdu->hdr.common.pdu_type); fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD; error_offset = 1; nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset); break; } } static int nvme_tcp_read_pdu(struct nvme_tcp_qpair *tqpair, uint32_t *reaped) { int rc = 0; struct nvme_tcp_pdu *pdu; uint32_t data_len; enum nvme_tcp_pdu_recv_state prev_state; /* The loop here is to allow for several back-to-back state changes. */ do { prev_state = tqpair->recv_state; switch (tqpair->recv_state) { /* If in a new state */ case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY: nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH); break; /* common header */ case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH: pdu = tqpair->recv_pdu; if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) { rc = nvme_tcp_read_data(tqpair->sock, sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes, (uint8_t *)&pdu->hdr.common + pdu->ch_valid_bytes); if (rc < 0) { nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR); break; } pdu->ch_valid_bytes += rc; if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) { rc = NVME_TCP_PDU_IN_PROGRESS; goto out; } } /* The command header of this PDU has now been read from the socket. */ nvme_tcp_pdu_ch_handle(tqpair); break; /* Wait for the pdu specific header */ case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH: pdu = tqpair->recv_pdu; rc = nvme_tcp_read_data(tqpair->sock, pdu->psh_len - pdu->psh_valid_bytes, (uint8_t *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes); if (rc < 0) { nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR); break; } pdu->psh_valid_bytes += rc; if (pdu->psh_valid_bytes < pdu->psh_len) { rc = NVME_TCP_PDU_IN_PROGRESS; goto out; } /* All header(ch, psh, head digist) of this PDU has now been read from the socket. */ nvme_tcp_pdu_psh_handle(tqpair, reaped); break; case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD: pdu = tqpair->recv_pdu; /* check whether the data is valid, if not we just return */ if (!pdu->data_len) { return NVME_TCP_PDU_IN_PROGRESS; } data_len = pdu->data_len; /* data digest */ if (spdk_unlikely((pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_DATA) && tqpair->flags.host_ddgst_enable)) { data_len += SPDK_NVME_TCP_DIGEST_LEN; pdu->ddgst_enable = true; } rc = nvme_tcp_read_payload_data(tqpair->sock, pdu); if (rc < 0) { nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR); break; } pdu->rw_offset += rc; if (pdu->rw_offset < data_len) { rc = NVME_TCP_PDU_IN_PROGRESS; goto out; } assert(pdu->rw_offset == data_len); /* All of this PDU has now been read from the socket. */ nvme_tcp_pdu_payload_handle(tqpair, reaped); break; case NVME_TCP_PDU_RECV_STATE_ERROR: rc = NVME_TCP_PDU_FATAL; break; default: assert(0); break; } } while (prev_state != tqpair->recv_state); out: *reaped += tqpair->async_complete; tqpair->async_complete = 0; return rc; } static void nvme_tcp_qpair_check_timeout(struct spdk_nvme_qpair *qpair) { uint64_t t02; struct nvme_tcp_req *tcp_req, *tmp; struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair); struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; struct spdk_nvme_ctrlr_process *active_proc; /* Don't check timeouts during controller initialization. */ if (ctrlr->state != NVME_CTRLR_STATE_READY) { return; } if (nvme_qpair_is_admin_queue(qpair)) { active_proc = nvme_ctrlr_get_current_process(ctrlr); } else { active_proc = qpair->active_proc; } /* Only check timeouts if the current process has a timeout callback. */ if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) { return; } t02 = spdk_get_ticks(); TAILQ_FOREACH_SAFE(tcp_req, &tqpair->outstanding_reqs, link, tmp) { assert(tcp_req->req != NULL); if (nvme_request_check_timeout(tcp_req->req, tcp_req->cid, active_proc, t02)) { /* * The requests are in order, so as soon as one has not timed out, * stop iterating. */ break; } } } static int nvme_tcp_ctrlr_connect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair); static int nvme_tcp_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions) { struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair); uint32_t reaped; int rc; if (qpair->poll_group == NULL) { rc = spdk_sock_flush(tqpair->sock); if (rc < 0) { if (spdk_unlikely(tqpair->qpair.ctrlr->timeout_enabled)) { nvme_tcp_qpair_check_timeout(qpair); } return rc; } } if (max_completions == 0) { max_completions = tqpair->num_entries; } else { max_completions = spdk_min(max_completions, tqpair->num_entries); } reaped = 0; do { rc = nvme_tcp_read_pdu(tqpair, &reaped); if (rc < 0) { SPDK_DEBUGLOG(nvme, "Error polling CQ! (%d): %s\n", errno, spdk_strerror(errno)); goto fail; } else if (rc == 0) { /* Partial PDU is read */ break; } } while (reaped < max_completions); if (spdk_unlikely(tqpair->qpair.ctrlr->timeout_enabled)) { nvme_tcp_qpair_check_timeout(qpair); } if (spdk_unlikely(nvme_qpair_get_state(qpair) == NVME_QPAIR_CONNECTING)) { rc = nvme_tcp_ctrlr_connect_qpair_poll(qpair->ctrlr, qpair); if (rc != 0 && rc != -EAGAIN) { SPDK_ERRLOG("Failed to connect tqpair=%p\n", tqpair); goto fail; } else if (rc == 0) { /* Once the connection is completed, we can submit queued requests */ nvme_qpair_resubmit_requests(qpair, tqpair->num_entries); } } return reaped; fail: /* * Since admin queues take the ctrlr_lock before entering this function, * we can call nvme_transport_ctrlr_disconnect_qpair. For other qpairs we need * to call the generic function which will take the lock for us. */ qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN; if (nvme_qpair_is_admin_queue(qpair)) { nvme_transport_ctrlr_disconnect_qpair(qpair->ctrlr, qpair); } else { nvme_ctrlr_disconnect_qpair(qpair); } return -ENXIO; } static void nvme_tcp_qpair_sock_cb(void *ctx, struct spdk_sock_group *group, struct spdk_sock *sock) { struct spdk_nvme_qpair *qpair = ctx; struct nvme_tcp_poll_group *pgroup = nvme_tcp_poll_group(qpair->poll_group); int32_t num_completions; struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair); if (tqpair->needs_poll) { TAILQ_REMOVE(&pgroup->needs_poll, tqpair, link); tqpair->needs_poll = false; } num_completions = spdk_nvme_qpair_process_completions(qpair, pgroup->completions_per_qpair); if (pgroup->num_completions >= 0 && num_completions >= 0) { pgroup->num_completions += num_completions; pgroup->stats.nvme_completions += num_completions; } else { pgroup->num_completions = -ENXIO; } } static int nvme_tcp_qpair_icreq_send(struct nvme_tcp_qpair *tqpair) { struct spdk_nvme_tcp_ic_req *ic_req; struct nvme_tcp_pdu *pdu; pdu = tqpair->send_pdu; memset(tqpair->send_pdu, 0, sizeof(*tqpair->send_pdu)); ic_req = &pdu->hdr.ic_req; ic_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_REQ; ic_req->common.hlen = ic_req->common.plen = sizeof(*ic_req); ic_req->pfv = 0; ic_req->maxr2t = NVME_TCP_MAX_R2T_DEFAULT - 1; ic_req->hpda = NVME_TCP_HPDA_DEFAULT; ic_req->dgst.bits.hdgst_enable = tqpair->qpair.ctrlr->opts.header_digest; ic_req->dgst.bits.ddgst_enable = tqpair->qpair.ctrlr->opts.data_digest; nvme_tcp_qpair_write_pdu(tqpair, pdu, nvme_tcp_send_icreq_complete, tqpair); tqpair->icreq_timeout_tsc = spdk_get_ticks() + (NVME_TCP_TIME_OUT_IN_SECONDS * spdk_get_ticks_hz()); return 0; } static int nvme_tcp_qpair_connect_sock(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { struct sockaddr_storage dst_addr; struct sockaddr_storage src_addr; int rc; struct nvme_tcp_qpair *tqpair; int family; long int port; struct spdk_sock_opts opts; tqpair = nvme_tcp_qpair(qpair); switch (ctrlr->trid.adrfam) { case SPDK_NVMF_ADRFAM_IPV4: family = AF_INET; break; case SPDK_NVMF_ADRFAM_IPV6: family = AF_INET6; break; default: SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam); rc = -1; return rc; } SPDK_DEBUGLOG(nvme, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family); memset(&dst_addr, 0, sizeof(dst_addr)); SPDK_DEBUGLOG(nvme, "trsvcid is %s\n", ctrlr->trid.trsvcid); rc = nvme_tcp_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid); if (rc != 0) { SPDK_ERRLOG("dst_addr nvme_tcp_parse_addr() failed\n"); return rc; } if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) { memset(&src_addr, 0, sizeof(src_addr)); rc = nvme_tcp_parse_addr(&src_addr, family, ctrlr->opts.src_addr, ctrlr->opts.src_svcid); if (rc != 0) { SPDK_ERRLOG("src_addr nvme_tcp_parse_addr() failed\n"); return rc; } } port = spdk_strtol(ctrlr->trid.trsvcid, 10); if (port <= 0 || port >= INT_MAX) { SPDK_ERRLOG("Invalid port: %s\n", ctrlr->trid.trsvcid); rc = -1; return rc; } opts.opts_size = sizeof(opts); spdk_sock_get_default_opts(&opts); opts.priority = ctrlr->trid.priority; opts.zcopy = !nvme_qpair_is_admin_queue(qpair); if (ctrlr->opts.transport_ack_timeout) { opts.ack_timeout = 1ULL << ctrlr->opts.transport_ack_timeout; } tqpair->sock = spdk_sock_connect_ext(ctrlr->trid.traddr, port, NULL, &opts); if (!tqpair->sock) { SPDK_ERRLOG("sock connection error of tqpair=%p with addr=%s, port=%ld\n", tqpair, ctrlr->trid.traddr, port); rc = -1; return rc; } return 0; } static int nvme_tcp_ctrlr_connect_qpair_poll(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { struct nvme_tcp_qpair *tqpair; int rc; tqpair = nvme_tcp_qpair(qpair); /* Prevent this function from being called recursively, as it could lead to issues with * nvme_fabric_qpair_connect_poll() if the connect response is received in the recursive * call. */ if (tqpair->flags.in_connect_poll) { return -EAGAIN; } tqpair->flags.in_connect_poll = 1; switch (tqpair->state) { case NVME_TCP_QPAIR_STATE_INVALID: case NVME_TCP_QPAIR_STATE_INITIALIZING: if (spdk_get_ticks() > tqpair->icreq_timeout_tsc) { SPDK_ERRLOG("Failed to construct the tqpair=%p via correct icresp\n", tqpair); rc = -ETIMEDOUT; break; } rc = -EAGAIN; break; case NVME_TCP_QPAIR_STATE_FABRIC_CONNECT_SEND: rc = nvme_fabric_qpair_connect_async(&tqpair->qpair, tqpair->num_entries + 1); if (rc < 0) { SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n"); break; } tqpair->state = NVME_TCP_QPAIR_STATE_FABRIC_CONNECT_POLL; rc = -EAGAIN; break; case NVME_TCP_QPAIR_STATE_FABRIC_CONNECT_POLL: rc = nvme_fabric_qpair_connect_poll(&tqpair->qpair); if (rc == 0) { tqpair->state = NVME_TCP_QPAIR_STATE_RUNNING; nvme_qpair_set_state(qpair, NVME_QPAIR_CONNECTED); } else if (rc != -EAGAIN) { SPDK_ERRLOG("Failed to poll NVMe-oF Fabric CONNECT command\n"); } break; case NVME_TCP_QPAIR_STATE_RUNNING: rc = 0; break; default: assert(false); rc = -EINVAL; break; } tqpair->flags.in_connect_poll = 0; return rc; } static int nvme_tcp_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { int rc = 0; struct nvme_tcp_qpair *tqpair; struct nvme_tcp_poll_group *tgroup; tqpair = nvme_tcp_qpair(qpair); if (!tqpair->sock) { rc = nvme_tcp_qpair_connect_sock(ctrlr, qpair); if (rc < 0) { return rc; } } if (qpair->poll_group) { rc = nvme_poll_group_connect_qpair(qpair); if (rc) { SPDK_ERRLOG("Unable to activate the tcp qpair.\n"); return rc; } tgroup = nvme_tcp_poll_group(qpair->poll_group); tqpair->stats = &tgroup->stats; tqpair->shared_stats = true; } else { tqpair->stats = calloc(1, sizeof(*tqpair->stats)); if (!tqpair->stats) { SPDK_ERRLOG("tcp stats memory allocation failed\n"); return -ENOMEM; } } tqpair->maxr2t = NVME_TCP_MAX_R2T_DEFAULT; /* Explicitly set the state and recv_state of tqpair */ tqpair->state = NVME_TCP_QPAIR_STATE_INVALID; if (tqpair->recv_state != NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY) { nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY); } rc = nvme_tcp_qpair_icreq_send(tqpair); if (rc != 0) { SPDK_ERRLOG("Unable to connect the tqpair\n"); return rc; } return rc; } static struct spdk_nvme_qpair * nvme_tcp_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, uint32_t qsize, enum spdk_nvme_qprio qprio, uint32_t num_requests, bool async) { struct nvme_tcp_qpair *tqpair; struct spdk_nvme_qpair *qpair; int rc; if (qsize < SPDK_NVME_QUEUE_MIN_ENTRIES) { SPDK_ERRLOG("Failed to create qpair with size %u. Minimum queue size is %d.\n", qsize, SPDK_NVME_QUEUE_MIN_ENTRIES); return NULL; } tqpair = calloc(1, sizeof(struct nvme_tcp_qpair)); if (!tqpair) { SPDK_ERRLOG("failed to get create tqpair\n"); return NULL; } /* Set num_entries one less than queue size. According to NVMe * and NVMe-oF specs we can not submit queue size requests, * one slot shall always remain empty. */ tqpair->num_entries = qsize - 1; qpair = &tqpair->qpair; rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests, async); if (rc != 0) { free(tqpair); return NULL; } rc = nvme_tcp_alloc_reqs(tqpair); if (rc) { nvme_tcp_ctrlr_delete_io_qpair(ctrlr, qpair); return NULL; } /* spdk_nvme_qpair_get_optimal_poll_group needs socket information. * So create the socket first when creating a qpair. */ rc = nvme_tcp_qpair_connect_sock(ctrlr, qpair); if (rc) { nvme_tcp_ctrlr_delete_io_qpair(ctrlr, qpair); return NULL; } return qpair; } static struct spdk_nvme_qpair * nvme_tcp_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, const struct spdk_nvme_io_qpair_opts *opts) { return nvme_tcp_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio, opts->io_queue_requests, opts->async_mode); } /* We have to use the typedef in the function declaration to appease astyle. */ typedef struct spdk_nvme_ctrlr spdk_nvme_ctrlr_t; static spdk_nvme_ctrlr_t * nvme_tcp_ctrlr_construct(const struct spdk_nvme_transport_id *trid, const struct spdk_nvme_ctrlr_opts *opts, void *devhandle) { struct nvme_tcp_ctrlr *tctrlr; int rc; tctrlr = calloc(1, sizeof(*tctrlr)); if (tctrlr == NULL) { SPDK_ERRLOG("could not allocate ctrlr\n"); return NULL; } tctrlr->ctrlr.opts = *opts; tctrlr->ctrlr.trid = *trid; if (opts->transport_ack_timeout > NVME_TCP_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT) { SPDK_NOTICELOG("transport_ack_timeout exceeds max value %d, use max value\n", NVME_TCP_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT); tctrlr->ctrlr.opts.transport_ack_timeout = NVME_TCP_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT; } rc = nvme_ctrlr_construct(&tctrlr->ctrlr); if (rc != 0) { free(tctrlr); return NULL; } tctrlr->ctrlr.adminq = nvme_tcp_ctrlr_create_qpair(&tctrlr->ctrlr, 0, tctrlr->ctrlr.opts.admin_queue_size, 0, tctrlr->ctrlr.opts.admin_queue_size, true); if (!tctrlr->ctrlr.adminq) { SPDK_ERRLOG("failed to create admin qpair\n"); nvme_tcp_ctrlr_destruct(&tctrlr->ctrlr); return NULL; } if (nvme_ctrlr_add_process(&tctrlr->ctrlr, 0) != 0) { SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n"); nvme_ctrlr_destruct(&tctrlr->ctrlr); return NULL; } return &tctrlr->ctrlr; } static uint32_t nvme_tcp_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr) { /* TCP transport doesn't limit maximum IO transfer size. */ return UINT32_MAX; } static uint16_t nvme_tcp_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr) { /* * We do not support >1 SGE in the initiator currently, * so we can only return 1 here. Once that support is * added, this should return ctrlr->cdata.nvmf_specific.msdbd * instead. */ return 1; } static int nvme_tcp_qpair_iterate_requests(struct spdk_nvme_qpair *qpair, int (*iter_fn)(struct nvme_request *req, void *arg), void *arg) { struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair); struct nvme_tcp_req *tcp_req, *tmp; int rc; assert(iter_fn != NULL); TAILQ_FOREACH_SAFE(tcp_req, &tqpair->outstanding_reqs, link, tmp) { assert(tcp_req->req != NULL); rc = iter_fn(tcp_req->req, arg); if (rc != 0) { return rc; } } return 0; } static void nvme_tcp_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair) { struct nvme_tcp_req *tcp_req, *tmp; struct spdk_nvme_cpl cpl = {}; struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair); cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION; cpl.status.sct = SPDK_NVME_SCT_GENERIC; TAILQ_FOREACH_SAFE(tcp_req, &tqpair->outstanding_reqs, link, tmp) { assert(tcp_req->req != NULL); if (tcp_req->req->cmd.opc != SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) { continue; } nvme_tcp_req_complete(tcp_req, tqpair, &cpl, false); } } static struct spdk_nvme_transport_poll_group * nvme_tcp_poll_group_create(void) { struct nvme_tcp_poll_group *group = calloc(1, sizeof(*group)); if (group == NULL) { SPDK_ERRLOG("Unable to allocate poll group.\n"); return NULL; } TAILQ_INIT(&group->needs_poll); group->sock_group = spdk_sock_group_create(group); if (group->sock_group == NULL) { free(group); SPDK_ERRLOG("Unable to allocate sock group.\n"); return NULL; } return &group->group; } static struct spdk_nvme_transport_poll_group * nvme_tcp_qpair_get_optimal_poll_group(struct spdk_nvme_qpair *qpair) { struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair); struct spdk_sock_group *group = NULL; int rc; rc = spdk_sock_get_optimal_sock_group(tqpair->sock, &group, NULL); if (!rc && group != NULL) { return spdk_sock_group_get_ctx(group); } return NULL; } static int nvme_tcp_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair) { struct nvme_tcp_poll_group *group = nvme_tcp_poll_group(qpair->poll_group); struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair); if (spdk_sock_group_add_sock(group->sock_group, tqpair->sock, nvme_tcp_qpair_sock_cb, qpair)) { return -EPROTO; } return 0; } static int nvme_tcp_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair) { struct nvme_tcp_poll_group *group = nvme_tcp_poll_group(qpair->poll_group); struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair); if (tqpair->needs_poll) { TAILQ_REMOVE(&group->needs_poll, tqpair, link); tqpair->needs_poll = false; } if (tqpair->sock && group->sock_group) { if (spdk_sock_group_remove_sock(group->sock_group, tqpair->sock)) { return -EPROTO; } } return 0; } static int nvme_tcp_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup, struct spdk_nvme_qpair *qpair) { struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair); struct nvme_tcp_poll_group *group = nvme_tcp_poll_group(tgroup); /* disconnected qpairs won't have a sock to add. */ if (nvme_qpair_get_state(qpair) >= NVME_QPAIR_CONNECTED) { if (spdk_sock_group_add_sock(group->sock_group, tqpair->sock, nvme_tcp_qpair_sock_cb, qpair)) { return -EPROTO; } } return 0; } static int nvme_tcp_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup, struct spdk_nvme_qpair *qpair) { struct nvme_tcp_qpair *tqpair; struct nvme_tcp_poll_group *group; assert(qpair->poll_group_tailq_head == &tgroup->disconnected_qpairs); tqpair = nvme_tcp_qpair(qpair); group = nvme_tcp_poll_group(tgroup); assert(tqpair->shared_stats == true); tqpair->stats = &g_dummy_stats; if (tqpair->needs_poll) { TAILQ_REMOVE(&group->needs_poll, tqpair, link); tqpair->needs_poll = false; } return 0; } static int64_t nvme_tcp_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup, uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb) { struct nvme_tcp_poll_group *group = nvme_tcp_poll_group(tgroup); struct spdk_nvme_qpair *qpair, *tmp_qpair; struct nvme_tcp_qpair *tqpair, *tmp_tqpair; int num_events; group->completions_per_qpair = completions_per_qpair; group->num_completions = 0; group->stats.polls++; num_events = spdk_sock_group_poll(group->sock_group); STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) { disconnected_qpair_cb(qpair, tgroup->group->ctx); } /* If any qpairs were marked as needing to be polled due to an asynchronous write completion * and they weren't polled as a consequence of calling spdk_sock_group_poll above, poll them now. */ TAILQ_FOREACH_SAFE(tqpair, &group->needs_poll, link, tmp_tqpair) { nvme_tcp_qpair_sock_cb(&tqpair->qpair, group->sock_group, tqpair->sock); } if (spdk_unlikely(num_events < 0)) { return num_events; } group->stats.idle_polls += !num_events; group->stats.socket_completions += num_events; return group->num_completions; } static int nvme_tcp_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup) { int rc; struct nvme_tcp_poll_group *group = nvme_tcp_poll_group(tgroup); if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) { return -EBUSY; } rc = spdk_sock_group_close(&group->sock_group); if (rc != 0) { SPDK_ERRLOG("Failed to close the sock group for a tcp poll group.\n"); assert(false); } free(tgroup); return 0; } static int nvme_tcp_poll_group_get_stats(struct spdk_nvme_transport_poll_group *tgroup, struct spdk_nvme_transport_poll_group_stat **_stats) { struct nvme_tcp_poll_group *group; struct spdk_nvme_transport_poll_group_stat *stats; if (tgroup == NULL || _stats == NULL) { SPDK_ERRLOG("Invalid stats or group pointer\n"); return -EINVAL; } group = nvme_tcp_poll_group(tgroup); stats = calloc(1, sizeof(*stats)); if (!stats) { SPDK_ERRLOG("Can't allocate memory for TCP stats\n"); return -ENOMEM; } stats->trtype = SPDK_NVME_TRANSPORT_TCP; memcpy(&stats->tcp, &group->stats, sizeof(group->stats)); *_stats = stats; return 0; } static void nvme_tcp_poll_group_free_stats(struct spdk_nvme_transport_poll_group *tgroup, struct spdk_nvme_transport_poll_group_stat *stats) { free(stats); } const struct spdk_nvme_transport_ops tcp_ops = { .name = "TCP", .type = SPDK_NVME_TRANSPORT_TCP, .ctrlr_construct = nvme_tcp_ctrlr_construct, .ctrlr_scan = nvme_fabric_ctrlr_scan, .ctrlr_destruct = nvme_tcp_ctrlr_destruct, .ctrlr_enable = nvme_tcp_ctrlr_enable, .ctrlr_set_reg_4 = nvme_fabric_ctrlr_set_reg_4, .ctrlr_set_reg_8 = nvme_fabric_ctrlr_set_reg_8, .ctrlr_get_reg_4 = nvme_fabric_ctrlr_get_reg_4, .ctrlr_get_reg_8 = nvme_fabric_ctrlr_get_reg_8, .ctrlr_set_reg_4_async = nvme_fabric_ctrlr_set_reg_4_async, .ctrlr_set_reg_8_async = nvme_fabric_ctrlr_set_reg_8_async, .ctrlr_get_reg_4_async = nvme_fabric_ctrlr_get_reg_4_async, .ctrlr_get_reg_8_async = nvme_fabric_ctrlr_get_reg_8_async, .ctrlr_get_max_xfer_size = nvme_tcp_ctrlr_get_max_xfer_size, .ctrlr_get_max_sges = nvme_tcp_ctrlr_get_max_sges, .ctrlr_create_io_qpair = nvme_tcp_ctrlr_create_io_qpair, .ctrlr_delete_io_qpair = nvme_tcp_ctrlr_delete_io_qpair, .ctrlr_connect_qpair = nvme_tcp_ctrlr_connect_qpair, .ctrlr_disconnect_qpair = nvme_tcp_ctrlr_disconnect_qpair, .qpair_abort_reqs = nvme_tcp_qpair_abort_reqs, .qpair_reset = nvme_tcp_qpair_reset, .qpair_submit_request = nvme_tcp_qpair_submit_request, .qpair_process_completions = nvme_tcp_qpair_process_completions, .qpair_iterate_requests = nvme_tcp_qpair_iterate_requests, .admin_qpair_abort_aers = nvme_tcp_admin_qpair_abort_aers, .poll_group_create = nvme_tcp_poll_group_create, .qpair_get_optimal_poll_group = nvme_tcp_qpair_get_optimal_poll_group, .poll_group_connect_qpair = nvme_tcp_poll_group_connect_qpair, .poll_group_disconnect_qpair = nvme_tcp_poll_group_disconnect_qpair, .poll_group_add = nvme_tcp_poll_group_add, .poll_group_remove = nvme_tcp_poll_group_remove, .poll_group_process_completions = nvme_tcp_poll_group_process_completions, .poll_group_destroy = nvme_tcp_poll_group_destroy, .poll_group_get_stats = nvme_tcp_poll_group_get_stats, .poll_group_free_stats = nvme_tcp_poll_group_free_stats, }; SPDK_NVME_TRANSPORT_REGISTER(tcp, &tcp_ops); SPDK_TRACE_REGISTER_FN(nvme_tcp, "nvme_tcp", TRACE_GROUP_NVME_TCP) { struct spdk_trace_tpoint_opts opts[] = { { "NVME_TCP_SUBMIT", TRACE_NVME_TCP_SUBMIT, OWNER_NVME_TCP_QP, OBJECT_NVME_TCP_REQ, 1, { { "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }, { "cid", SPDK_TRACE_ARG_TYPE_INT, 4 }, { "opc", SPDK_TRACE_ARG_TYPE_INT, 4 }, { "dw10", SPDK_TRACE_ARG_TYPE_PTR, 4 }, { "dw11", SPDK_TRACE_ARG_TYPE_PTR, 4 }, { "dw12", SPDK_TRACE_ARG_TYPE_PTR, 4 } } }, { "NVME_TCP_COMPLETE", TRACE_NVME_TCP_COMPLETE, OWNER_NVME_TCP_QP, OBJECT_NVME_TCP_REQ, 0, { { "ctx", SPDK_TRACE_ARG_TYPE_PTR, 8 }, { "cid", SPDK_TRACE_ARG_TYPE_INT, 4 }, { "cpl", SPDK_TRACE_ARG_TYPE_PTR, 4 } } }, }; spdk_trace_register_object(OBJECT_NVME_TCP_REQ, 'p'); spdk_trace_register_owner(OWNER_NVME_TCP_QP, 'q'); spdk_trace_register_description_ext(opts, SPDK_COUNTOF(opts)); }