/* SPDX-License-Identifier: BSD-3-Clause * Copyright (c) Intel Corporation. All rights reserved. * Copyright (c) 2020 Mellanox Technologies LTD. All rights reserved. * * Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved. */ #include "spdk/stdinc.h" #include "spdk/env.h" #include "spdk/nvme.h" #include "spdk/queue.h" #include "spdk/string.h" #include "spdk/util.h" #include "spdk/log.h" #include "spdk/likely.h" struct ctrlr_entry { struct spdk_nvme_ctrlr *ctrlr; struct spdk_nvme_transport_id failover_trid; enum spdk_nvme_transport_type trtype; TAILQ_ENTRY(ctrlr_entry) link; char name[1024]; int num_resets; }; struct ns_entry { struct spdk_nvme_ctrlr *ctrlr; struct spdk_nvme_ns *ns; TAILQ_ENTRY(ns_entry) link; uint32_t io_size_blocks; uint32_t num_io_requests; uint64_t size_in_ios; uint32_t block_size; uint32_t io_flags; char name[1024]; }; struct ns_worker_ctx { struct ns_entry *entry; uint64_t io_completed; uint64_t current_queue_depth; uint64_t offset_in_ios; bool is_draining; int num_qpairs; struct spdk_nvme_qpair **qpair; int last_qpair; TAILQ_ENTRY(ns_worker_ctx) link; }; struct perf_task { struct ns_worker_ctx *ns_ctx; struct iovec iov; bool is_read; }; struct worker_thread { TAILQ_HEAD(, ns_worker_ctx) ns_ctx; TAILQ_ENTRY(worker_thread) link; unsigned lcore; }; /* For basic reset handling. */ static int g_max_ctrlr_resets = 15; static TAILQ_HEAD(, ctrlr_entry) g_controllers = TAILQ_HEAD_INITIALIZER(g_controllers); static TAILQ_HEAD(, ns_entry) g_namespaces = TAILQ_HEAD_INITIALIZER(g_namespaces); static int g_num_namespaces = 0; static TAILQ_HEAD(, worker_thread) g_workers = TAILQ_HEAD_INITIALIZER(g_workers); static int g_num_workers = 0; static uint64_t g_tsc_rate; static uint32_t g_io_align = 0x200; static uint32_t g_io_size_bytes; static uint32_t g_max_io_size_blocks; static int g_rw_percentage; static int g_is_random; static int g_queue_depth; static int g_time_in_sec; static uint32_t g_max_completions; static int g_dpdk_mem; static bool g_warn; static uint32_t g_keep_alive_timeout_in_ms = 0; static uint8_t g_transport_retry_count = 4; static uint8_t g_transport_ack_timeout = 0; /* disabled */ static bool g_dpdk_mem_single_seg = false; static const char *g_core_mask; struct trid_entry { struct spdk_nvme_transport_id trid; struct spdk_nvme_transport_id failover_trid; TAILQ_ENTRY(trid_entry) tailq; }; static TAILQ_HEAD(, trid_entry) g_trid_list = TAILQ_HEAD_INITIALIZER(g_trid_list); static inline void task_complete(struct perf_task *task); static void submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth); static void io_complete(void *ctx, const struct spdk_nvme_cpl *cpl); static void nvme_setup_payload(struct perf_task *task) { /* maximum extended lba format size from all active namespace, * it's same with g_io_size_bytes for namespace without metadata. */ task->iov.iov_base = spdk_dma_zmalloc(g_io_size_bytes, g_io_align, NULL); task->iov.iov_len = g_io_size_bytes; if (task->iov.iov_base == NULL) { fprintf(stderr, "task->buf spdk_dma_zmalloc failed\n"); exit(1); } } static int nvme_submit_io(struct perf_task *task, struct ns_worker_ctx *ns_ctx, struct ns_entry *entry, uint64_t offset_in_ios) { uint64_t lba; int qp_num; lba = offset_in_ios * entry->io_size_blocks; qp_num = ns_ctx->last_qpair; ns_ctx->last_qpair++; if (ns_ctx->last_qpair == ns_ctx->num_qpairs) { ns_ctx->last_qpair = 0; } if (task->is_read) { return spdk_nvme_ns_cmd_read(entry->ns, ns_ctx->qpair[qp_num], task->iov.iov_base, lba, entry->io_size_blocks, io_complete, task, entry->io_flags); } return spdk_nvme_ns_cmd_write(entry->ns, ns_ctx->qpair[qp_num], task->iov.iov_base, lba, entry->io_size_blocks, io_complete, task, entry->io_flags); } static void nvme_check_io(struct ns_worker_ctx *ns_ctx) { int i, rc; for (i = 0; i < ns_ctx->num_qpairs; i++) { rc = spdk_nvme_qpair_process_completions(ns_ctx->qpair[i], g_max_completions); /* The transport level qpair is failed and we need to reconnect it. */ if (spdk_unlikely(rc == -ENXIO)) { rc = spdk_nvme_ctrlr_reconnect_io_qpair(ns_ctx->qpair[i]); /* successful reconnect */ if (rc == 0) { continue; } else if (rc == -ENXIO) { /* This means the controller is failed. Defer to it to restore the qpair. */ continue; } else { /* * We were unable to restore the qpair on this attempt. We don't * really know why. For naive handling, just keep trying. * TODO: add a retry limit, and destroy the qpair after x iterations. */ fprintf(stderr, "qpair failed and we were unable to recover it.\n"); } } else if (spdk_unlikely(rc < 0)) { fprintf(stderr, "Received an unknown error processing completions.\n"); exit(1); } } } /* * TODO: If a controller has multiple namespaces, they could all use the same queue. * For now, give each namespace/thread combination its own queue. */ static int nvme_init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx) { struct spdk_nvme_io_qpair_opts opts; struct ns_entry *entry = ns_ctx->entry; int i; ns_ctx->num_qpairs = 1; ns_ctx->qpair = calloc(ns_ctx->num_qpairs, sizeof(struct spdk_nvme_qpair *)); if (!ns_ctx->qpair) { return -1; } spdk_nvme_ctrlr_get_default_io_qpair_opts(entry->ctrlr, &opts, sizeof(opts)); if (opts.io_queue_requests < entry->num_io_requests) { opts.io_queue_requests = entry->num_io_requests; } for (i = 0; i < ns_ctx->num_qpairs; i++) { ns_ctx->qpair[i] = spdk_nvme_ctrlr_alloc_io_qpair(entry->ctrlr, &opts, sizeof(opts)); if (!ns_ctx->qpair[i]) { printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair failed\n"); return -1; } } return 0; } static void nvme_cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx) { int i; for (i = 0; i < ns_ctx->num_qpairs; i++) { spdk_nvme_ctrlr_free_io_qpair(ns_ctx->qpair[i]); } free(ns_ctx->qpair); } static void build_nvme_name(char *name, size_t length, struct spdk_nvme_ctrlr *ctrlr) { const struct spdk_nvme_transport_id *trid; trid = spdk_nvme_ctrlr_get_transport_id(ctrlr); switch (trid->trtype) { case SPDK_NVME_TRANSPORT_RDMA: snprintf(name, length, "RDMA (addr:%s subnqn:%s)", trid->traddr, trid->subnqn); break; case SPDK_NVME_TRANSPORT_TCP: snprintf(name, length, "TCP (addr:%s subnqn:%s)", trid->traddr, trid->subnqn); break; case SPDK_NVME_TRANSPORT_VFIOUSER: snprintf(name, length, "VFIOUSER (%s)", trid->traddr); break; case SPDK_NVME_TRANSPORT_CUSTOM: snprintf(name, length, "CUSTOM (%s)", trid->traddr); break; default: fprintf(stderr, "Unknown transport type %d\n", trid->trtype); break; } } static void register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns) { struct ns_entry *entry; const struct spdk_nvme_ctrlr_data *cdata; uint32_t max_xfer_size, entries, sector_size; uint64_t ns_size; struct spdk_nvme_io_qpair_opts opts; cdata = spdk_nvme_ctrlr_get_data(ctrlr); if (!spdk_nvme_ns_is_active(ns)) { printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n", cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns)); g_warn = true; return; } ns_size = spdk_nvme_ns_get_size(ns); sector_size = spdk_nvme_ns_get_sector_size(ns); if (ns_size < g_io_size_bytes || sector_size > g_io_size_bytes) { printf("WARNING: controller %-20.20s (%-20.20s) ns %u has invalid " "ns size %" PRIu64 " / block size %u for I/O size %u\n", cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns), ns_size, spdk_nvme_ns_get_sector_size(ns), g_io_size_bytes); g_warn = true; return; } max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns); spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts)); /* NVMe driver may add additional entries based on * stripe size and maximum transfer size, we assume * 1 more entry be used for stripe. */ entries = (g_io_size_bytes - 1) / max_xfer_size + 2; if ((g_queue_depth * entries) > opts.io_queue_size) { printf("controller IO queue size %u less than required\n", opts.io_queue_size); printf("Consider using lower queue depth or small IO size because " "IO requests may be queued at the NVMe driver.\n"); g_warn = true; } /* For requests which have children requests, parent request itself * will also occupy 1 entry. */ entries += 1; entry = calloc(1, sizeof(struct ns_entry)); if (entry == NULL) { perror("ns_entry malloc"); exit(1); } entry->ctrlr = ctrlr; entry->ns = ns; entry->num_io_requests = g_queue_depth * entries; entry->size_in_ios = ns_size / g_io_size_bytes; entry->io_size_blocks = g_io_size_bytes / sector_size; entry->block_size = spdk_nvme_ns_get_sector_size(ns); if (g_max_io_size_blocks < entry->io_size_blocks) { g_max_io_size_blocks = entry->io_size_blocks; } build_nvme_name(entry->name, sizeof(entry->name), ctrlr); g_num_namespaces++; TAILQ_INSERT_TAIL(&g_namespaces, entry, link); } static void unregister_namespaces(void) { struct ns_entry *entry, *tmp; TAILQ_FOREACH_SAFE(entry, &g_namespaces, link, tmp) { TAILQ_REMOVE(&g_namespaces, entry, link); free(entry); } } static void register_ctrlr(struct spdk_nvme_ctrlr *ctrlr, struct trid_entry *trid_entry) { struct spdk_nvme_ns *ns; struct ctrlr_entry *entry = calloc(1, sizeof(struct ctrlr_entry)); const struct spdk_nvme_transport_id *ctrlr_trid; uint32_t nsid; if (entry == NULL) { perror("ctrlr_entry malloc"); exit(1); } ctrlr_trid = spdk_nvme_ctrlr_get_transport_id(ctrlr); assert(ctrlr_trid != NULL); /* each controller needs a unique failover trid. */ entry->failover_trid = trid_entry->failover_trid; /* * Users are allowed to leave the trid subnqn blank or specify a discovery controller subnqn. * In those cases, the controller subnqn will not equal the trid_entry subnqn and, by association, * the failover_trid subnqn. * When we do failover, we want to reconnect to the same nqn so explicitly set the failover nqn to * the ctrlr nqn here. */ snprintf(entry->failover_trid.subnqn, SPDK_NVMF_NQN_MAX_LEN + 1, "%s", ctrlr_trid->subnqn); build_nvme_name(entry->name, sizeof(entry->name), ctrlr); entry->ctrlr = ctrlr; entry->trtype = trid_entry->trid.trtype; TAILQ_INSERT_TAIL(&g_controllers, entry, link); for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) { ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); if (ns == NULL) { continue; } register_ns(ctrlr, ns); } } static __thread unsigned int seed = 0; static inline void submit_single_io(struct perf_task *task) { uint64_t offset_in_ios; int rc; struct ns_worker_ctx *ns_ctx = task->ns_ctx; struct ns_entry *entry = ns_ctx->entry; if (g_is_random) { offset_in_ios = rand_r(&seed) % entry->size_in_ios; } else { offset_in_ios = ns_ctx->offset_in_ios++; if (ns_ctx->offset_in_ios == entry->size_in_ios) { ns_ctx->offset_in_ios = 0; } } if ((g_rw_percentage == 100) || (g_rw_percentage != 0 && ((rand_r(&seed) % 100) < g_rw_percentage))) { task->is_read = true; } else { task->is_read = false; } rc = nvme_submit_io(task, ns_ctx, entry, offset_in_ios); if (spdk_unlikely(rc != 0)) { fprintf(stderr, "starting I/O failed\n"); } else { ns_ctx->current_queue_depth++; } } static inline void task_complete(struct perf_task *task) { struct ns_worker_ctx *ns_ctx; ns_ctx = task->ns_ctx; ns_ctx->current_queue_depth--; ns_ctx->io_completed++; /* * is_draining indicates when time has expired for the test run * and we are just waiting for the previously submitted I/O * to complete. In this case, do not submit a new I/O to replace * the one just completed. */ if (spdk_unlikely(ns_ctx->is_draining)) { spdk_dma_free(task->iov.iov_base); free(task); } else { submit_single_io(task); } } static void io_complete(void *ctx, const struct spdk_nvme_cpl *cpl) { struct perf_task *task = ctx; if (spdk_unlikely(spdk_nvme_cpl_is_error(cpl))) { fprintf(stderr, "%s completed with error (sct=%d, sc=%d)\n", task->is_read ? "Read" : "Write", cpl->status.sct, cpl->status.sc); } task_complete(task); } static void check_io(struct ns_worker_ctx *ns_ctx) { nvme_check_io(ns_ctx); } static struct perf_task * allocate_task(struct ns_worker_ctx *ns_ctx, int queue_depth) { struct perf_task *task; task = calloc(1, sizeof(*task)); if (task == NULL) { fprintf(stderr, "Out of memory allocating tasks\n"); exit(1); } nvme_setup_payload(task); task->ns_ctx = ns_ctx; return task; } static void submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth) { struct perf_task *task; while (queue_depth-- > 0) { task = allocate_task(ns_ctx, queue_depth); submit_single_io(task); } } static int work_fn(void *arg) { uint64_t tsc_end; struct worker_thread *worker = (struct worker_thread *)arg; struct ns_worker_ctx *ns_ctx = NULL; uint32_t unfinished_ns_ctx; printf("Starting thread on core %u\n", worker->lcore); /* Allocate queue pairs for each namespace. */ TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { if (nvme_init_ns_worker_ctx(ns_ctx) != 0) { printf("ERROR: init_ns_worker_ctx() failed\n"); return 1; } } tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate; /* Submit initial I/O for each namespace. */ TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { submit_io(ns_ctx, g_queue_depth); } while (1) { /* * Check for completed I/O for each controller. A new * I/O will be submitted in the io_complete callback * to replace each I/O that is completed. */ TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { check_io(ns_ctx); } if (spdk_get_ticks() > tsc_end) { break; } } /* drain the io of each ns_ctx in round robin to make the fairness */ do { unfinished_ns_ctx = 0; TAILQ_FOREACH(ns_ctx, &worker->ns_ctx, link) { /* first time will enter into this if case */ if (!ns_ctx->is_draining) { ns_ctx->is_draining = true; } if (ns_ctx->current_queue_depth > 0) { check_io(ns_ctx); if (ns_ctx->current_queue_depth == 0) { nvme_cleanup_ns_worker_ctx(ns_ctx); } else { unfinished_ns_ctx++; } } } } while (unfinished_ns_ctx > 0); return 0; } static void usage(char *program_name) { printf("%s options", program_name); printf("\n"); printf("\t[-q io depth]\n"); printf("\t[-o io size in bytes]\n"); printf("\t[-w io pattern type, must be one of\n"); printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n"); printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n"); printf("\t[-t time in seconds]\n"); printf("\t[-c core mask for I/O submission/completion.]\n"); printf("\t\t(default: 1)\n"); printf("\t[-r Transport ID for NVMeoF]\n"); printf("\t Format: 'key:value [key:value] ...'\n"); printf("\t Keys:\n"); printf("\t trtype Transport type (e.g. RDMA)\n"); printf("\t adrfam Address family (e.g. IPv4, IPv6)\n"); printf("\t traddr Transport address (e.g. 192.168.100.8 for RDMA)\n"); printf("\t trsvcid Transport service identifier (e.g. 4420)\n"); printf("\t subnqn Subsystem NQN (default: %s)\n", SPDK_NVMF_DISCOVERY_NQN); printf("\t alt_traddr (Optional) Alternative Transport address for failover.\n"); printf("\t Example: -r 'trtype:RDMA adrfam:IPv4 traddr:192.168.100.8 trsvcid:4420' for NVMeoF\n"); printf("\t[-k keep alive timeout period in millisecond]\n"); printf("\t[-s DPDK huge memory size in MB.]\n"); printf("\t[-m max completions per poll]\n"); printf("\t\t(default: 0 - unlimited)\n"); printf("\t[-i shared memory group ID]\n"); printf("\t[-A transport ACK timeout]\n"); printf("\t[-R transport retry count]\n"); printf("\t"); spdk_log_usage(stdout, "-T"); #ifdef DEBUG printf("\t[-G enable debug logging]\n"); #else printf("\t[-G enable debug logging (flag disabled, must reconfigure with --enable-debug)]\n"); #endif } static void unregister_trids(void) { struct trid_entry *trid_entry, *tmp; TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, tmp) { TAILQ_REMOVE(&g_trid_list, trid_entry, tailq); free(trid_entry); } } static int add_trid(const char *trid_str) { struct trid_entry *trid_entry; struct spdk_nvme_transport_id *trid; char *alt_traddr; int len; trid_entry = calloc(1, sizeof(*trid_entry)); if (trid_entry == NULL) { return -1; } trid = &trid_entry->trid; snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN); if (spdk_nvme_transport_id_parse(trid, trid_str) != 0) { fprintf(stderr, "Invalid transport ID format '%s'\n", trid_str); free(trid_entry); return 1; } trid_entry->failover_trid = trid_entry->trid; alt_traddr = strcasestr(trid_str, "alt_traddr:"); if (alt_traddr) { alt_traddr += strlen("alt_traddr:"); len = strcspn(alt_traddr, " \t\n"); if (len > SPDK_NVMF_TRADDR_MAX_LEN) { fprintf(stderr, "The failover traddr %s is too long.\n", alt_traddr); free(trid_entry); return -1; } snprintf(trid_entry->failover_trid.traddr, SPDK_NVMF_TRADDR_MAX_LEN + 1, "%s", alt_traddr); } TAILQ_INSERT_TAIL(&g_trid_list, trid_entry, tailq); return 0; } static int parse_args(int argc, char **argv) { struct trid_entry *trid_entry, *trid_entry_tmp; const char *workload_type; int op; bool mix_specified = false; long int val; int rc; /* default value */ g_queue_depth = 0; g_io_size_bytes = 0; workload_type = NULL; g_time_in_sec = 0; g_rw_percentage = -1; g_core_mask = NULL; g_max_completions = 0; while ((op = getopt(argc, argv, "c:gm:o:q:r:k:s:t:w:A:GM:R:T:")) != -1) { switch (op) { case 'm': case 'o': case 'q': case 'k': case 's': case 't': case 'A': case 'M': case 'R': val = spdk_strtol(optarg, 10); if (val < 0) { fprintf(stderr, "Converting a string to integer failed\n"); return val; } switch (op) { case 'm': g_max_completions = val; break; case 'o': g_io_size_bytes = val; break; case 'q': g_queue_depth = val; break; case 'k': g_keep_alive_timeout_in_ms = val; break; case 's': g_dpdk_mem = val; break; case 't': g_time_in_sec = val; break; case 'A': g_transport_ack_timeout = val; break; case 'M': g_rw_percentage = val; mix_specified = true; break; case 'R': g_transport_retry_count = val; break; } break; case 'c': g_core_mask = optarg; break; case 'g': g_dpdk_mem_single_seg = true; break; case 'r': if (add_trid(optarg)) { usage(argv[0]); return 1; } break; case 'w': workload_type = optarg; break; case 'G': #ifndef DEBUG fprintf(stderr, "%s must be configured with --enable-debug for -G flag\n", argv[0]); usage(argv[0]); return 1; #else spdk_log_set_flag("nvme"); spdk_log_set_print_level(SPDK_LOG_DEBUG); break; #endif case 'T': rc = spdk_log_set_flag(optarg); if (rc < 0) { fprintf(stderr, "unknown flag\n"); usage(argv[0]); exit(EXIT_FAILURE); } #ifdef DEBUG spdk_log_set_print_level(SPDK_LOG_DEBUG); #endif break; default: usage(argv[0]); return 1; } } if (!g_queue_depth) { usage(argv[0]); return 1; } if (!g_io_size_bytes) { usage(argv[0]); return 1; } if (!workload_type) { usage(argv[0]); return 1; } if (!g_time_in_sec) { usage(argv[0]); return 1; } if (strcmp(workload_type, "read") && strcmp(workload_type, "write") && strcmp(workload_type, "randread") && strcmp(workload_type, "randwrite") && strcmp(workload_type, "rw") && strcmp(workload_type, "randrw")) { fprintf(stderr, "io pattern type must be one of\n" "(read, write, randread, randwrite, rw, randrw)\n"); return 1; } if (!strcmp(workload_type, "read") || !strcmp(workload_type, "randread")) { g_rw_percentage = 100; } if (!strcmp(workload_type, "write") || !strcmp(workload_type, "randwrite")) { g_rw_percentage = 0; } if (!strcmp(workload_type, "read") || !strcmp(workload_type, "randread") || !strcmp(workload_type, "write") || !strcmp(workload_type, "randwrite")) { if (mix_specified) { fprintf(stderr, "Ignoring -M option... Please use -M option" " only when using rw or randrw.\n"); } } if (!strcmp(workload_type, "rw") || !strcmp(workload_type, "randrw")) { if (g_rw_percentage < 0 || g_rw_percentage > 100) { fprintf(stderr, "-M must be specified to value from 0 to 100 " "for rw or randrw.\n"); return 1; } } if (!strcmp(workload_type, "read") || !strcmp(workload_type, "write") || !strcmp(workload_type, "rw")) { g_is_random = 0; } else { g_is_random = 1; } if (TAILQ_EMPTY(&g_trid_list)) { fprintf(stderr, "You must specify at least one fabrics TRID.\n"); return -1; } /* check whether there is local PCIe type and fail. */ TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, trid_entry_tmp) { if (trid_entry->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) { fprintf(stderr, "This application was not intended to be run on PCIe controllers.\n"); return 1; } } return 0; } static int register_workers(void) { uint32_t i; struct worker_thread *worker; SPDK_ENV_FOREACH_CORE(i) { worker = calloc(1, sizeof(*worker)); if (worker == NULL) { fprintf(stderr, "Unable to allocate worker\n"); return -1; } TAILQ_INIT(&worker->ns_ctx); worker->lcore = i; TAILQ_INSERT_TAIL(&g_workers, worker, link); g_num_workers++; } return 0; } static void unregister_workers(void) { struct worker_thread *worker, *tmp_worker; struct ns_worker_ctx *ns_ctx, *tmp_ns_ctx; /* Free namespace context and worker thread */ TAILQ_FOREACH_SAFE(worker, &g_workers, link, tmp_worker) { TAILQ_REMOVE(&g_workers, worker, link); TAILQ_FOREACH_SAFE(ns_ctx, &worker->ns_ctx, link, tmp_ns_ctx) { TAILQ_REMOVE(&worker->ns_ctx, ns_ctx, link); free(ns_ctx); } free(worker); } } static bool probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr_opts *opts) { /* These should have been weeded out earlier. */ assert(trid->trtype != SPDK_NVME_TRANSPORT_PCIE); printf("Attaching to NVMe over Fabrics controller at %s:%s: %s\n", trid->traddr, trid->trsvcid, trid->subnqn); /* Set io_queue_size to UINT16_MAX, NVMe driver * will then reduce this to MQES to maximize * the io_queue_size as much as possible. */ opts->io_queue_size = UINT16_MAX; opts->keep_alive_timeout_ms = spdk_max(opts->keep_alive_timeout_ms, g_keep_alive_timeout_in_ms); opts->transport_retry_count = g_transport_retry_count; opts->transport_ack_timeout = g_transport_ack_timeout; return true; } static void attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) { struct trid_entry *trid_entry = cb_ctx; printf("Attached to NVMe over Fabrics controller at %s:%s: %s\n", trid->traddr, trid->trsvcid, trid->subnqn); register_ctrlr(ctrlr, trid_entry); } static int register_controllers(void) { struct trid_entry *trid_entry; printf("Initializing NVMe Controllers\n"); TAILQ_FOREACH(trid_entry, &g_trid_list, tailq) { if (spdk_nvme_probe(&trid_entry->trid, trid_entry, probe_cb, attach_cb, NULL) != 0) { fprintf(stderr, "spdk_nvme_probe() failed for transport address '%s'\n", trid_entry->trid.traddr); return -1; } } return 0; } static void unregister_controllers(void) { struct ctrlr_entry *entry, *tmp; struct spdk_nvme_detach_ctx *detach_ctx = NULL; TAILQ_FOREACH_SAFE(entry, &g_controllers, link, tmp) { TAILQ_REMOVE(&g_controllers, entry, link); spdk_nvme_detach_async(entry->ctrlr, &detach_ctx); free(entry); } if (detach_ctx) { spdk_nvme_detach_poll(detach_ctx); } } static int associate_workers_with_ns(void) { struct ns_entry *entry = TAILQ_FIRST(&g_namespaces); struct worker_thread *worker = TAILQ_FIRST(&g_workers); struct ns_worker_ctx *ns_ctx; int i, count; count = g_num_namespaces > g_num_workers ? g_num_namespaces : g_num_workers; for (i = 0; i < count; i++) { if (entry == NULL) { break; } ns_ctx = calloc(1, sizeof(struct ns_worker_ctx)); if (!ns_ctx) { return -1; } printf("Associating %s with lcore %d\n", entry->name, worker->lcore); ns_ctx->entry = entry; TAILQ_INSERT_TAIL(&worker->ns_ctx, ns_ctx, link); worker = TAILQ_NEXT(worker, link); if (worker == NULL) { worker = TAILQ_FIRST(&g_workers); } entry = TAILQ_NEXT(entry, link); if (entry == NULL) { entry = TAILQ_FIRST(&g_namespaces); } } return 0; } static void * nvme_poll_ctrlrs(void *arg) { struct ctrlr_entry *entry; const struct spdk_nvme_transport_id *old_trid; int oldstate; int rc; spdk_unaffinitize_thread(); while (true) { pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &oldstate); TAILQ_FOREACH(entry, &g_controllers, link) { rc = spdk_nvme_ctrlr_process_admin_completions(entry->ctrlr); /* This controller has encountered a failure at the transport level. reset it. */ if (rc == -ENXIO) { if (entry->num_resets == 0) { old_trid = spdk_nvme_ctrlr_get_transport_id(entry->ctrlr); fprintf(stderr, "A controller has encountered a failure and is being reset.\n"); if (spdk_nvme_transport_id_compare(old_trid, &entry->failover_trid)) { fprintf(stderr, "Resorting to new failover address %s\n", entry->failover_trid.traddr); spdk_nvme_ctrlr_fail(entry->ctrlr); rc = spdk_nvme_ctrlr_set_trid(entry->ctrlr, &entry->failover_trid); if (rc != 0) { fprintf(stderr, "Unable to fail over to back up trid.\n"); } } } rc = spdk_nvme_ctrlr_reset(entry->ctrlr); if (rc != 0) { entry->num_resets++; fprintf(stderr, "Unable to reset the controller.\n"); if (entry->num_resets > g_max_ctrlr_resets) { fprintf(stderr, "Controller cannot be recovered. Exiting.\n"); exit(1); } } else { fprintf(stderr, "Controller properly reset.\n"); } } } pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate); /* This is a pthread cancellation point and cannot be removed. */ sleep(1); } return NULL; } int main(int argc, char **argv) { int rc; struct worker_thread *worker, *main_worker; unsigned main_core; struct spdk_env_opts opts; pthread_t thread_id = 0; rc = parse_args(argc, argv); if (rc != 0) { return rc; } spdk_env_opts_init(&opts); opts.name = "reconnect"; if (g_core_mask) { opts.core_mask = g_core_mask; } if (g_dpdk_mem) { opts.mem_size = g_dpdk_mem; } opts.hugepage_single_segments = g_dpdk_mem_single_seg; if (spdk_env_init(&opts) < 0) { fprintf(stderr, "Unable to initialize SPDK env\n"); unregister_trids(); return 1; } g_tsc_rate = spdk_get_ticks_hz(); if (register_workers() != 0) { rc = 1; goto cleanup; } if (register_controllers() != 0) { rc = 1; goto cleanup; } if (g_warn) { printf("WARNING: Some requested NVMe devices were skipped\n"); } if (g_num_namespaces == 0) { fprintf(stderr, "No valid NVMe controllers found\n"); goto cleanup; } rc = pthread_create(&thread_id, NULL, &nvme_poll_ctrlrs, NULL); if (rc != 0) { fprintf(stderr, "Unable to spawn a thread to poll admin queues.\n"); goto cleanup; } if (associate_workers_with_ns() != 0) { rc = 1; goto cleanup; } printf("Initialization complete. Launching workers.\n"); /* Launch all of the secondary workers */ main_core = spdk_env_get_current_core(); main_worker = NULL; TAILQ_FOREACH(worker, &g_workers, link) { if (worker->lcore != main_core) { spdk_env_thread_launch_pinned(worker->lcore, work_fn, worker); } else { assert(main_worker == NULL); main_worker = worker; } } assert(main_worker != NULL); rc = work_fn(main_worker); spdk_env_thread_wait_all(); cleanup: if (thread_id && pthread_cancel(thread_id) == 0) { pthread_join(thread_id, NULL); } unregister_trids(); unregister_namespaces(); unregister_controllers(); unregister_workers(); spdk_env_fini(); if (rc != 0) { fprintf(stderr, "%s: errors occurred\n", argv[0]); /* * return a generic error to the caller. This allows us to * distinguish between a failure in the script and something * like a segfault or an invalid access which causes the program * to crash. */ rc = 1; } return rc; }