/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "spdk_cunit.h" #include "reduce/reduce.c" #include "spdk_internal/mock.h" #include "common/lib/test_env.c" static struct spdk_reduce_vol *g_vol; static int g_reduce_errno; static char *g_volatile_pm_buf; static size_t g_volatile_pm_buf_len; static char *g_persistent_pm_buf; static size_t g_persistent_pm_buf_len; static char *g_backing_dev_buf; static char g_path[REDUCE_PATH_MAX]; #define TEST_MD_PATH "/tmp" enum ut_reduce_bdev_io_type { UT_REDUCE_IO_READV = 1, UT_REDUCE_IO_WRITEV = 2, UT_REDUCE_IO_UNMAP = 3, }; struct ut_reduce_bdev_io { enum ut_reduce_bdev_io_type type; struct spdk_reduce_backing_dev *backing_dev; struct iovec *iov; int iovcnt; uint64_t lba; uint32_t lba_count; struct spdk_reduce_vol_cb_args *args; TAILQ_ENTRY(ut_reduce_bdev_io) link; }; static bool g_defer_bdev_io = false; static TAILQ_HEAD(, ut_reduce_bdev_io) g_pending_bdev_io = TAILQ_HEAD_INITIALIZER(g_pending_bdev_io); static uint32_t g_pending_bdev_io_count = 0; static void sync_pm_buf(const void *addr, size_t length) { uint64_t offset = (char *)addr - g_volatile_pm_buf; memcpy(&g_persistent_pm_buf[offset], addr, length); } int pmem_msync(const void *addr, size_t length) { sync_pm_buf(addr, length); return 0; } void pmem_persist(const void *addr, size_t len) { sync_pm_buf(addr, len); } static void get_pm_file_size(void) { struct spdk_reduce_vol_params params; uint64_t pm_size, expected_pm_size; params.backing_io_unit_size = 4096; params.chunk_size = 4096 * 4; params.vol_size = 4096 * 4 * 100; pm_size = _get_pm_file_size(¶ms); expected_pm_size = sizeof(struct spdk_reduce_vol_superblock); /* 100 chunks in logical map * 8 bytes per chunk */ expected_pm_size += 100 * sizeof(uint64_t); /* 100 chunks * 4 backing io units per chunk * 8 bytes per backing io unit */ expected_pm_size += 100 * 4 * sizeof(uint64_t); /* reduce allocates some extra chunks too for in-flight writes when logical map * is full. REDUCE_EXTRA_CHUNKS is a private #ifdef in reduce.c. */ expected_pm_size += REDUCE_NUM_EXTRA_CHUNKS * 4 * sizeof(uint64_t); /* reduce will add some padding so numbers may not match exactly. Make sure * they are close though. */ CU_ASSERT((pm_size - expected_pm_size) < REDUCE_PM_SIZE_ALIGNMENT); } static void get_vol_size(void) { uint64_t chunk_size, backing_dev_size; chunk_size = 16 * 1024; backing_dev_size = 16 * 1024 * 1000; CU_ASSERT(_get_vol_size(chunk_size, backing_dev_size) < backing_dev_size); } void * pmem_map_file(const char *path, size_t len, int flags, mode_t mode, size_t *mapped_lenp, int *is_pmemp) { CU_ASSERT(g_volatile_pm_buf == NULL); snprintf(g_path, sizeof(g_path), "%s", path); *is_pmemp = 1; if (g_persistent_pm_buf == NULL) { g_persistent_pm_buf = calloc(1, len); g_persistent_pm_buf_len = len; SPDK_CU_ASSERT_FATAL(g_persistent_pm_buf != NULL); } *mapped_lenp = g_persistent_pm_buf_len; g_volatile_pm_buf = calloc(1, g_persistent_pm_buf_len); SPDK_CU_ASSERT_FATAL(g_volatile_pm_buf != NULL); memcpy(g_volatile_pm_buf, g_persistent_pm_buf, g_persistent_pm_buf_len); g_volatile_pm_buf_len = g_persistent_pm_buf_len; return g_volatile_pm_buf; } int pmem_unmap(void *addr, size_t len) { CU_ASSERT(addr == g_volatile_pm_buf); CU_ASSERT(len == g_volatile_pm_buf_len); free(g_volatile_pm_buf); g_volatile_pm_buf = NULL; g_volatile_pm_buf_len = 0; return 0; } static void persistent_pm_buf_destroy(void) { CU_ASSERT(g_persistent_pm_buf != NULL); free(g_persistent_pm_buf); g_persistent_pm_buf = NULL; g_persistent_pm_buf_len = 0; } int __wrap_unlink(const char *path); int __wrap_unlink(const char *path) { if (strcmp(g_path, path) != 0) { return ENOENT; } persistent_pm_buf_destroy(); return 0; } static void init_cb(void *cb_arg, struct spdk_reduce_vol *vol, int reduce_errno) { g_vol = vol; g_reduce_errno = reduce_errno; } static void load_cb(void *cb_arg, struct spdk_reduce_vol *vol, int reduce_errno) { g_vol = vol; g_reduce_errno = reduce_errno; } static void unload_cb(void *cb_arg, int reduce_errno) { g_reduce_errno = reduce_errno; } static void init_failure(void) { struct spdk_reduce_vol_params params = {}; struct spdk_reduce_backing_dev backing_dev = {}; backing_dev.blocklen = 512; /* This blockcnt is too small for a reduce vol - there needs to be * enough space for at least REDUCE_NUM_EXTRA_CHUNKS + 1 chunks. */ backing_dev.blockcnt = 20; params.vol_size = 0; params.chunk_size = 16 * 1024; params.backing_io_unit_size = backing_dev.blocklen; params.logical_block_size = 512; /* backing_dev has an invalid size. This should fail. */ g_vol = NULL; g_reduce_errno = 0; spdk_reduce_vol_init(¶ms, &backing_dev, TEST_MD_PATH, init_cb, NULL); CU_ASSERT(g_reduce_errno == -EINVAL); SPDK_CU_ASSERT_FATAL(g_vol == NULL); /* backing_dev now has valid size, but backing_dev still has null * function pointers. This should fail. */ backing_dev.blockcnt = 20000; g_vol = NULL; g_reduce_errno = 0; spdk_reduce_vol_init(¶ms, &backing_dev, TEST_MD_PATH, init_cb, NULL); CU_ASSERT(g_reduce_errno == -EINVAL); SPDK_CU_ASSERT_FATAL(g_vol == NULL); } static void backing_dev_readv_execute(struct spdk_reduce_backing_dev *backing_dev, struct iovec *iov, int iovcnt, uint64_t lba, uint32_t lba_count, struct spdk_reduce_vol_cb_args *args) { char *offset; int i; offset = g_backing_dev_buf + lba * backing_dev->blocklen; for (i = 0; i < iovcnt; i++) { memcpy(iov[i].iov_base, offset, iov[i].iov_len); offset += iov[i].iov_len; } args->cb_fn(args->cb_arg, 0); } static void backing_dev_insert_io(enum ut_reduce_bdev_io_type type, struct spdk_reduce_backing_dev *backing_dev, struct iovec *iov, int iovcnt, uint64_t lba, uint32_t lba_count, struct spdk_reduce_vol_cb_args *args) { struct ut_reduce_bdev_io *ut_bdev_io; ut_bdev_io = calloc(1, sizeof(*ut_bdev_io)); SPDK_CU_ASSERT_FATAL(ut_bdev_io != NULL); ut_bdev_io->type = type; ut_bdev_io->backing_dev = backing_dev; ut_bdev_io->iov = iov; ut_bdev_io->iovcnt = iovcnt; ut_bdev_io->lba = lba; ut_bdev_io->lba_count = lba_count; ut_bdev_io->args = args; TAILQ_INSERT_TAIL(&g_pending_bdev_io, ut_bdev_io, link); g_pending_bdev_io_count++; } static void backing_dev_readv(struct spdk_reduce_backing_dev *backing_dev, struct iovec *iov, int iovcnt, uint64_t lba, uint32_t lba_count, struct spdk_reduce_vol_cb_args *args) { if (g_defer_bdev_io == false) { CU_ASSERT(g_pending_bdev_io_count == 0); CU_ASSERT(TAILQ_EMPTY(&g_pending_bdev_io)); backing_dev_readv_execute(backing_dev, iov, iovcnt, lba, lba_count, args); return; } backing_dev_insert_io(UT_REDUCE_IO_READV, backing_dev, iov, iovcnt, lba, lba_count, args); } static void backing_dev_writev_execute(struct spdk_reduce_backing_dev *backing_dev, struct iovec *iov, int iovcnt, uint64_t lba, uint32_t lba_count, struct spdk_reduce_vol_cb_args *args) { char *offset; int i; offset = g_backing_dev_buf + lba * backing_dev->blocklen; for (i = 0; i < iovcnt; i++) { memcpy(offset, iov[i].iov_base, iov[i].iov_len); offset += iov[i].iov_len; } args->cb_fn(args->cb_arg, 0); } static void backing_dev_writev(struct spdk_reduce_backing_dev *backing_dev, struct iovec *iov, int iovcnt, uint64_t lba, uint32_t lba_count, struct spdk_reduce_vol_cb_args *args) { if (g_defer_bdev_io == false) { CU_ASSERT(g_pending_bdev_io_count == 0); CU_ASSERT(TAILQ_EMPTY(&g_pending_bdev_io)); backing_dev_writev_execute(backing_dev, iov, iovcnt, lba, lba_count, args); return; } backing_dev_insert_io(UT_REDUCE_IO_WRITEV, backing_dev, iov, iovcnt, lba, lba_count, args); } static void backing_dev_unmap_execute(struct spdk_reduce_backing_dev *backing_dev, uint64_t lba, uint32_t lba_count, struct spdk_reduce_vol_cb_args *args) { char *offset; offset = g_backing_dev_buf + lba * backing_dev->blocklen; memset(offset, 0, lba_count * backing_dev->blocklen); args->cb_fn(args->cb_arg, 0); } static void backing_dev_unmap(struct spdk_reduce_backing_dev *backing_dev, uint64_t lba, uint32_t lba_count, struct spdk_reduce_vol_cb_args *args) { if (g_defer_bdev_io == false) { CU_ASSERT(g_pending_bdev_io_count == 0); CU_ASSERT(TAILQ_EMPTY(&g_pending_bdev_io)); backing_dev_unmap_execute(backing_dev, lba, lba_count, args); return; } backing_dev_insert_io(UT_REDUCE_IO_UNMAP, backing_dev, NULL, 0, lba, lba_count, args); } static void backing_dev_io_execute(uint32_t count) { struct ut_reduce_bdev_io *ut_bdev_io; uint32_t done = 0; CU_ASSERT(g_defer_bdev_io == true); while (!TAILQ_EMPTY(&g_pending_bdev_io) && (count == 0 || done < count)) { ut_bdev_io = TAILQ_FIRST(&g_pending_bdev_io); TAILQ_REMOVE(&g_pending_bdev_io, ut_bdev_io, link); g_pending_bdev_io_count--; switch (ut_bdev_io->type) { case UT_REDUCE_IO_READV: backing_dev_readv_execute(ut_bdev_io->backing_dev, ut_bdev_io->iov, ut_bdev_io->iovcnt, ut_bdev_io->lba, ut_bdev_io->lba_count, ut_bdev_io->args); break; case UT_REDUCE_IO_WRITEV: backing_dev_writev_execute(ut_bdev_io->backing_dev, ut_bdev_io->iov, ut_bdev_io->iovcnt, ut_bdev_io->lba, ut_bdev_io->lba_count, ut_bdev_io->args); break; case UT_REDUCE_IO_UNMAP: backing_dev_unmap_execute(ut_bdev_io->backing_dev, ut_bdev_io->lba, ut_bdev_io->lba_count, ut_bdev_io->args); break; default: CU_ASSERT(false); break; } free(ut_bdev_io); done++; } } static void backing_dev_compress(struct spdk_reduce_backing_dev *backing_dev, struct iovec *src_iov, int src_iovcnt, struct iovec *dst_iov, int dst_iovcnt, struct spdk_reduce_vol_cb_args *args) { CU_ASSERT(src_iovcnt == 1); CU_ASSERT(dst_iovcnt == 1); CU_ASSERT(src_iov[0].iov_len == dst_iov[0].iov_len); memcpy(dst_iov[0].iov_base, src_iov[0].iov_base, src_iov[0].iov_len); args->cb_fn(args->cb_arg, src_iov[0].iov_len); } static void backing_dev_decompress(struct spdk_reduce_backing_dev *backing_dev, struct iovec *src_iov, int src_iovcnt, struct iovec *dst_iov, int dst_iovcnt, struct spdk_reduce_vol_cb_args *args) { CU_ASSERT(src_iovcnt == 1); CU_ASSERT(dst_iovcnt == 1); CU_ASSERT(src_iov[0].iov_len == dst_iov[0].iov_len); memcpy(dst_iov[0].iov_base, src_iov[0].iov_base, src_iov[0].iov_len); args->cb_fn(args->cb_arg, src_iov[0].iov_len); } static void backing_dev_destroy(struct spdk_reduce_backing_dev *backing_dev) { /* We don't free this during backing_dev_close so that we can test init/unload/load * scenarios. */ free(g_backing_dev_buf); g_backing_dev_buf = NULL; } static void backing_dev_init(struct spdk_reduce_backing_dev *backing_dev, struct spdk_reduce_vol_params *params, uint32_t backing_blocklen) { int64_t size; size = 4 * 1024 * 1024; backing_dev->blocklen = backing_blocklen; backing_dev->blockcnt = size / backing_dev->blocklen; backing_dev->readv = backing_dev_readv; backing_dev->writev = backing_dev_writev; backing_dev->unmap = backing_dev_unmap; backing_dev->compress = backing_dev_compress; backing_dev->decompress = backing_dev_decompress; g_backing_dev_buf = calloc(1, size); SPDK_CU_ASSERT_FATAL(g_backing_dev_buf != NULL); } static void init_md(void) { struct spdk_reduce_vol_params params = {}; struct spdk_reduce_vol_params *persistent_params; struct spdk_reduce_backing_dev backing_dev = {}; struct spdk_uuid uuid; uint64_t *entry; params.chunk_size = 16 * 1024; params.backing_io_unit_size = 512; params.logical_block_size = 512; backing_dev_init(&backing_dev, ¶ms, 512); g_vol = NULL; g_reduce_errno = -1; spdk_reduce_vol_init(¶ms, &backing_dev, TEST_MD_PATH, init_cb, NULL); CU_ASSERT(g_reduce_errno == 0); SPDK_CU_ASSERT_FATAL(g_vol != NULL); /* Confirm that reduce persisted the params to metadata. */ CU_ASSERT(memcmp(g_persistent_pm_buf, SPDK_REDUCE_SIGNATURE, 8) == 0); persistent_params = (struct spdk_reduce_vol_params *)(g_persistent_pm_buf + 8); CU_ASSERT(memcmp(persistent_params, ¶ms, sizeof(params)) == 0); /* Now confirm that contents of pm_file after the superblock have been initialized * to REDUCE_EMPTY_MAP_ENTRY. */ entry = (uint64_t *)(g_persistent_pm_buf + sizeof(struct spdk_reduce_vol_superblock)); while (entry != (uint64_t *)(g_persistent_pm_buf + g_vol->pm_file.size)) { CU_ASSERT(*entry == REDUCE_EMPTY_MAP_ENTRY); entry++; } /* Check that the pm file path was constructed correctly. It should be in * the form: * TEST_MD_PATH + "/" + */ CU_ASSERT(strncmp(&g_path[0], TEST_MD_PATH, strlen(TEST_MD_PATH)) == 0); CU_ASSERT(g_path[strlen(TEST_MD_PATH)] == '/'); CU_ASSERT(spdk_uuid_parse(&uuid, &g_path[strlen(TEST_MD_PATH) + 1]) == 0); CU_ASSERT(spdk_uuid_compare(&uuid, spdk_reduce_vol_get_uuid(g_vol)) == 0); g_reduce_errno = -1; spdk_reduce_vol_unload(g_vol, unload_cb, NULL); CU_ASSERT(g_reduce_errno == 0); CU_ASSERT(g_volatile_pm_buf == NULL); persistent_pm_buf_destroy(); backing_dev_destroy(&backing_dev); } static void _init_backing_dev(uint32_t backing_blocklen) { struct spdk_reduce_vol_params params = {}; struct spdk_reduce_vol_params *persistent_params; struct spdk_reduce_backing_dev backing_dev = {}; params.chunk_size = 16 * 1024; params.backing_io_unit_size = 512; params.logical_block_size = 512; spdk_uuid_generate(¶ms.uuid); backing_dev_init(&backing_dev, ¶ms, backing_blocklen); g_vol = NULL; memset(g_path, 0, sizeof(g_path)); g_reduce_errno = -1; spdk_reduce_vol_init(¶ms, &backing_dev, TEST_MD_PATH, init_cb, NULL); CU_ASSERT(g_reduce_errno == 0); SPDK_CU_ASSERT_FATAL(g_vol != NULL); CU_ASSERT(strncmp(TEST_MD_PATH, g_path, strlen(TEST_MD_PATH)) == 0); /* Confirm that libreduce persisted the params to the backing device. */ CU_ASSERT(memcmp(g_backing_dev_buf, SPDK_REDUCE_SIGNATURE, 8) == 0); persistent_params = (struct spdk_reduce_vol_params *)(g_backing_dev_buf + 8); CU_ASSERT(memcmp(persistent_params, ¶ms, sizeof(params)) == 0); /* Confirm that the path to the persistent memory metadata file was persisted to * the backing device. */ CU_ASSERT(strncmp(g_path, g_backing_dev_buf + REDUCE_BACKING_DEV_PATH_OFFSET, REDUCE_PATH_MAX) == 0); g_reduce_errno = -1; spdk_reduce_vol_unload(g_vol, unload_cb, NULL); CU_ASSERT(g_reduce_errno == 0); persistent_pm_buf_destroy(); backing_dev_destroy(&backing_dev); } static void init_backing_dev(void) { _init_backing_dev(512); _init_backing_dev(4096); } static void _load(uint32_t backing_blocklen) { struct spdk_reduce_vol_params params = {}; struct spdk_reduce_backing_dev backing_dev = {}; char pmem_file_path[REDUCE_PATH_MAX]; params.chunk_size = 16 * 1024; params.backing_io_unit_size = 512; params.logical_block_size = 512; spdk_uuid_generate(¶ms.uuid); backing_dev_init(&backing_dev, ¶ms, backing_blocklen); g_vol = NULL; g_reduce_errno = -1; spdk_reduce_vol_init(¶ms, &backing_dev, TEST_MD_PATH, init_cb, NULL); CU_ASSERT(g_reduce_errno == 0); SPDK_CU_ASSERT_FATAL(g_vol != NULL); CU_ASSERT(strncmp(TEST_MD_PATH, g_path, strlen(TEST_MD_PATH)) == 0); memcpy(pmem_file_path, g_path, sizeof(pmem_file_path)); g_reduce_errno = -1; spdk_reduce_vol_unload(g_vol, unload_cb, NULL); CU_ASSERT(g_reduce_errno == 0); g_vol = NULL; memset(g_path, 0, sizeof(g_path)); g_reduce_errno = -1; spdk_reduce_vol_load(&backing_dev, load_cb, NULL); CU_ASSERT(g_reduce_errno == 0); SPDK_CU_ASSERT_FATAL(g_vol != NULL); CU_ASSERT(strncmp(g_path, pmem_file_path, sizeof(pmem_file_path)) == 0); CU_ASSERT(g_vol->params.vol_size == params.vol_size); CU_ASSERT(g_vol->params.chunk_size == params.chunk_size); CU_ASSERT(g_vol->params.backing_io_unit_size == params.backing_io_unit_size); g_reduce_errno = -1; spdk_reduce_vol_unload(g_vol, unload_cb, NULL); CU_ASSERT(g_reduce_errno == 0); persistent_pm_buf_destroy(); backing_dev_destroy(&backing_dev); } static void load(void) { _load(512); _load(4096); } static uint64_t _vol_get_chunk_map_index(struct spdk_reduce_vol *vol, uint64_t offset) { uint64_t logical_map_index = offset / vol->logical_blocks_per_chunk; return vol->pm_logical_map[logical_map_index]; } static void write_cb(void *arg, int reduce_errno) { g_reduce_errno = reduce_errno; } static void read_cb(void *arg, int reduce_errno) { g_reduce_errno = reduce_errno; } static void _write_maps(uint32_t backing_blocklen) { struct spdk_reduce_vol_params params = {}; struct spdk_reduce_backing_dev backing_dev = {}; struct iovec iov; char buf[16 * 1024]; /* chunk size */ uint32_t i; uint64_t old_chunk0_map_index, new_chunk0_map_index; struct spdk_reduce_chunk_map *old_chunk0_map, *new_chunk0_map; params.chunk_size = 16 * 1024; params.backing_io_unit_size = 4096; params.logical_block_size = 512; spdk_uuid_generate(¶ms.uuid); backing_dev_init(&backing_dev, ¶ms, backing_blocklen); g_vol = NULL; g_reduce_errno = -1; spdk_reduce_vol_init(¶ms, &backing_dev, TEST_MD_PATH, init_cb, NULL); CU_ASSERT(g_reduce_errno == 0); SPDK_CU_ASSERT_FATAL(g_vol != NULL); for (i = 0; i < g_vol->params.vol_size / g_vol->params.chunk_size; i++) { CU_ASSERT(_vol_get_chunk_map_index(g_vol, i) == REDUCE_EMPTY_MAP_ENTRY); } iov.iov_base = buf; iov.iov_len = params.logical_block_size; g_reduce_errno = -1; spdk_reduce_vol_writev(g_vol, &iov, 1, 0, 1, write_cb, NULL); CU_ASSERT(g_reduce_errno == 0); old_chunk0_map_index = _vol_get_chunk_map_index(g_vol, 0); CU_ASSERT(old_chunk0_map_index != REDUCE_EMPTY_MAP_ENTRY); CU_ASSERT(spdk_bit_array_get(g_vol->allocated_chunk_maps, old_chunk0_map_index) == true); old_chunk0_map = _reduce_vol_get_chunk_map(g_vol, old_chunk0_map_index); for (i = 0; i < g_vol->backing_io_units_per_chunk; i++) { CU_ASSERT(old_chunk0_map->io_unit_index[i] != REDUCE_EMPTY_MAP_ENTRY); CU_ASSERT(spdk_bit_array_get(g_vol->allocated_backing_io_units, old_chunk0_map->io_unit_index[i]) == true); } g_reduce_errno = -1; spdk_reduce_vol_writev(g_vol, &iov, 1, 0, 1, write_cb, NULL); CU_ASSERT(g_reduce_errno == 0); new_chunk0_map_index = _vol_get_chunk_map_index(g_vol, 0); CU_ASSERT(new_chunk0_map_index != REDUCE_EMPTY_MAP_ENTRY); CU_ASSERT(new_chunk0_map_index != old_chunk0_map_index); CU_ASSERT(spdk_bit_array_get(g_vol->allocated_chunk_maps, new_chunk0_map_index) == true); CU_ASSERT(spdk_bit_array_get(g_vol->allocated_chunk_maps, old_chunk0_map_index) == false); for (i = 0; i < g_vol->backing_io_units_per_chunk; i++) { CU_ASSERT(spdk_bit_array_get(g_vol->allocated_backing_io_units, old_chunk0_map->io_unit_index[i]) == false); } new_chunk0_map = _reduce_vol_get_chunk_map(g_vol, new_chunk0_map_index); for (i = 0; i < g_vol->backing_io_units_per_chunk; i++) { CU_ASSERT(new_chunk0_map->io_unit_index[i] != REDUCE_EMPTY_MAP_ENTRY); CU_ASSERT(spdk_bit_array_get(g_vol->allocated_backing_io_units, new_chunk0_map->io_unit_index[i]) == true); } g_reduce_errno = -1; spdk_reduce_vol_unload(g_vol, unload_cb, NULL); CU_ASSERT(g_reduce_errno == 0); g_vol = NULL; g_reduce_errno = -1; spdk_reduce_vol_load(&backing_dev, load_cb, NULL); CU_ASSERT(g_reduce_errno == 0); SPDK_CU_ASSERT_FATAL(g_vol != NULL); CU_ASSERT(g_vol->params.vol_size == params.vol_size); CU_ASSERT(g_vol->params.chunk_size == params.chunk_size); CU_ASSERT(g_vol->params.backing_io_unit_size == params.backing_io_unit_size); g_reduce_errno = -1; spdk_reduce_vol_unload(g_vol, unload_cb, NULL); CU_ASSERT(g_reduce_errno == 0); persistent_pm_buf_destroy(); backing_dev_destroy(&backing_dev); } static void write_maps(void) { _write_maps(512); _write_maps(4096); } static void _read_write(uint32_t backing_blocklen) { struct spdk_reduce_vol_params params = {}; struct spdk_reduce_backing_dev backing_dev = {}; struct iovec iov; char buf[16 * 1024]; /* chunk size */ char compare_buf[16 * 1024]; uint32_t i; params.chunk_size = 16 * 1024; params.backing_io_unit_size = 4096; params.logical_block_size = 512; spdk_uuid_generate(¶ms.uuid); backing_dev_init(&backing_dev, ¶ms, backing_blocklen); g_vol = NULL; g_reduce_errno = -1; spdk_reduce_vol_init(¶ms, &backing_dev, TEST_MD_PATH, init_cb, NULL); CU_ASSERT(g_reduce_errno == 0); SPDK_CU_ASSERT_FATAL(g_vol != NULL); /* Write 0xAA to 2 512-byte logical blocks, starting at LBA 2. */ memset(buf, 0xAA, 2 * params.logical_block_size); iov.iov_base = buf; iov.iov_len = 2 * params.logical_block_size; g_reduce_errno = -1; spdk_reduce_vol_writev(g_vol, &iov, 1, 2, 2, write_cb, NULL); CU_ASSERT(g_reduce_errno == 0); memset(compare_buf, 0xAA, sizeof(compare_buf)); for (i = 0; i < params.chunk_size / params.logical_block_size; i++) { memset(buf, 0xFF, params.logical_block_size); iov.iov_base = buf; iov.iov_len = params.logical_block_size; g_reduce_errno = -1; spdk_reduce_vol_readv(g_vol, &iov, 1, i, 1, read_cb, NULL); CU_ASSERT(g_reduce_errno == 0); switch (i) { case 2: case 3: CU_ASSERT(memcmp(buf, compare_buf, params.logical_block_size) == 0); break; default: CU_ASSERT(spdk_mem_all_zero(buf, params.logical_block_size)); break; } } g_reduce_errno = -1; spdk_reduce_vol_unload(g_vol, unload_cb, NULL); CU_ASSERT(g_reduce_errno == 0); /* Overwrite what we just wrote with 0xCC */ g_vol = NULL; g_reduce_errno = -1; spdk_reduce_vol_load(&backing_dev, load_cb, NULL); CU_ASSERT(g_reduce_errno == 0); SPDK_CU_ASSERT_FATAL(g_vol != NULL); CU_ASSERT(g_vol->params.vol_size == params.vol_size); CU_ASSERT(g_vol->params.chunk_size == params.chunk_size); CU_ASSERT(g_vol->params.backing_io_unit_size == params.backing_io_unit_size); memset(buf, 0xCC, 2 * params.logical_block_size); iov.iov_base = buf; iov.iov_len = 2 * params.logical_block_size; g_reduce_errno = -1; spdk_reduce_vol_writev(g_vol, &iov, 1, 2, 2, write_cb, NULL); CU_ASSERT(g_reduce_errno == 0); memset(compare_buf, 0xCC, sizeof(compare_buf)); for (i = 0; i < params.chunk_size / params.logical_block_size; i++) { memset(buf, 0xFF, params.logical_block_size); iov.iov_base = buf; iov.iov_len = params.logical_block_size; g_reduce_errno = -1; spdk_reduce_vol_readv(g_vol, &iov, 1, i, 1, read_cb, NULL); CU_ASSERT(g_reduce_errno == 0); switch (i) { case 2: case 3: CU_ASSERT(memcmp(buf, compare_buf, params.logical_block_size) == 0); break; default: CU_ASSERT(spdk_mem_all_zero(buf, params.logical_block_size)); break; } } g_reduce_errno = -1; spdk_reduce_vol_unload(g_vol, unload_cb, NULL); CU_ASSERT(g_reduce_errno == 0); g_vol = NULL; g_reduce_errno = -1; spdk_reduce_vol_load(&backing_dev, load_cb, NULL); CU_ASSERT(g_reduce_errno == 0); SPDK_CU_ASSERT_FATAL(g_vol != NULL); CU_ASSERT(g_vol->params.vol_size == params.vol_size); CU_ASSERT(g_vol->params.chunk_size == params.chunk_size); CU_ASSERT(g_vol->params.backing_io_unit_size == params.backing_io_unit_size); g_reduce_errno = -1; /* Write 0xBB to 2 512-byte logical blocks, starting at LBA 37. * This is writing into the second chunk of the volume. This also * enables implicitly checking that we reloaded the bit arrays * correctly - making sure we don't use the first chunk map again * for this new write - the first chunk map was already used by the * write from before we unloaded and reloaded. */ memset(buf, 0xBB, 2 * params.logical_block_size); iov.iov_base = buf; iov.iov_len = 2 * params.logical_block_size; g_reduce_errno = -1; spdk_reduce_vol_writev(g_vol, &iov, 1, 37, 2, write_cb, NULL); CU_ASSERT(g_reduce_errno == 0); for (i = 0; i < 2 * params.chunk_size / params.logical_block_size; i++) { memset(buf, 0xFF, params.logical_block_size); iov.iov_base = buf; iov.iov_len = params.logical_block_size; g_reduce_errno = -1; spdk_reduce_vol_readv(g_vol, &iov, 1, i, 1, read_cb, NULL); CU_ASSERT(g_reduce_errno == 0); switch (i) { case 2: case 3: memset(compare_buf, 0xCC, sizeof(compare_buf)); CU_ASSERT(memcmp(buf, compare_buf, params.logical_block_size) == 0); break; case 37: case 38: memset(compare_buf, 0xBB, sizeof(compare_buf)); CU_ASSERT(memcmp(buf, compare_buf, params.logical_block_size) == 0); break; default: CU_ASSERT(spdk_mem_all_zero(buf, params.logical_block_size)); break; } } g_reduce_errno = -1; spdk_reduce_vol_unload(g_vol, unload_cb, NULL); CU_ASSERT(g_reduce_errno == 0); persistent_pm_buf_destroy(); backing_dev_destroy(&backing_dev); } static void read_write(void) { _read_write(512); _read_write(4096); } static void destroy_cb(void *ctx, int reduce_errno) { g_reduce_errno = reduce_errno; } static void destroy(void) { struct spdk_reduce_vol_params params = {}; struct spdk_reduce_backing_dev backing_dev = {}; params.chunk_size = 16 * 1024; params.backing_io_unit_size = 512; params.logical_block_size = 512; spdk_uuid_generate(¶ms.uuid); backing_dev_init(&backing_dev, ¶ms, 512); g_vol = NULL; g_reduce_errno = -1; spdk_reduce_vol_init(¶ms, &backing_dev, TEST_MD_PATH, init_cb, NULL); CU_ASSERT(g_reduce_errno == 0); SPDK_CU_ASSERT_FATAL(g_vol != NULL); g_reduce_errno = -1; spdk_reduce_vol_unload(g_vol, unload_cb, NULL); CU_ASSERT(g_reduce_errno == 0); g_vol = NULL; g_reduce_errno = -1; spdk_reduce_vol_load(&backing_dev, load_cb, NULL); CU_ASSERT(g_reduce_errno == 0); SPDK_CU_ASSERT_FATAL(g_vol != NULL); g_reduce_errno = -1; spdk_reduce_vol_unload(g_vol, unload_cb, NULL); CU_ASSERT(g_reduce_errno == 0); g_reduce_errno = -1; MOCK_CLEAR(spdk_dma_zmalloc); MOCK_CLEAR(spdk_malloc); MOCK_CLEAR(spdk_zmalloc); spdk_reduce_vol_destroy(&backing_dev, destroy_cb, NULL); CU_ASSERT(g_reduce_errno == 0); g_reduce_errno = 0; spdk_reduce_vol_load(&backing_dev, load_cb, NULL); CU_ASSERT(g_reduce_errno == -EILSEQ); backing_dev_destroy(&backing_dev); } /* This test primarily checks that the reduce unit test infrastructure for asynchronous * backing device I/O operations is working correctly. */ static void defer_bdev_io(void) { struct spdk_reduce_vol_params params = {}; struct spdk_reduce_backing_dev backing_dev = {}; const uint32_t logical_block_size = 512; struct iovec iov; char buf[logical_block_size]; char compare_buf[logical_block_size]; params.chunk_size = 16 * 1024; params.backing_io_unit_size = 4096; params.logical_block_size = logical_block_size; spdk_uuid_generate(¶ms.uuid); backing_dev_init(&backing_dev, ¶ms, 512); g_vol = NULL; g_reduce_errno = -1; spdk_reduce_vol_init(¶ms, &backing_dev, TEST_MD_PATH, init_cb, NULL); CU_ASSERT(g_reduce_errno == 0); SPDK_CU_ASSERT_FATAL(g_vol != NULL); /* Write 0xAA to 1 512-byte logical block. */ memset(buf, 0xAA, params.logical_block_size); iov.iov_base = buf; iov.iov_len = params.logical_block_size; g_reduce_errno = -100; g_defer_bdev_io = true; spdk_reduce_vol_writev(g_vol, &iov, 1, 0, 1, write_cb, NULL); /* Callback should not have executed, so this should still equal -100. */ CU_ASSERT(g_reduce_errno == -100); CU_ASSERT(!TAILQ_EMPTY(&g_pending_bdev_io)); /* We wrote to part of one chunk which was previously unallocated. This should result in * 4 pending I/O - one for each backing io unit in the chunk. */ CU_ASSERT(g_pending_bdev_io_count == params.chunk_size / params.backing_io_unit_size); backing_dev_io_execute(0); CU_ASSERT(TAILQ_EMPTY(&g_pending_bdev_io)); CU_ASSERT(g_reduce_errno == 0); g_defer_bdev_io = false; memset(compare_buf, 0xAA, sizeof(compare_buf)); memset(buf, 0xFF, sizeof(buf)); iov.iov_base = buf; iov.iov_len = params.logical_block_size; g_reduce_errno = -100; spdk_reduce_vol_readv(g_vol, &iov, 1, 0, 1, read_cb, NULL); CU_ASSERT(g_reduce_errno == 0); CU_ASSERT(memcmp(buf, compare_buf, sizeof(buf)) == 0); g_reduce_errno = -1; spdk_reduce_vol_unload(g_vol, unload_cb, NULL); CU_ASSERT(g_reduce_errno == 0); persistent_pm_buf_destroy(); backing_dev_destroy(&backing_dev); } static void overlapped(void) { struct spdk_reduce_vol_params params = {}; struct spdk_reduce_backing_dev backing_dev = {}; const uint32_t logical_block_size = 512; struct iovec iov; char buf[2 * logical_block_size]; char compare_buf[2 * logical_block_size]; params.chunk_size = 16 * 1024; params.backing_io_unit_size = 4096; params.logical_block_size = logical_block_size; spdk_uuid_generate(¶ms.uuid); backing_dev_init(&backing_dev, ¶ms, 512); g_vol = NULL; g_reduce_errno = -1; spdk_reduce_vol_init(¶ms, &backing_dev, TEST_MD_PATH, init_cb, NULL); CU_ASSERT(g_reduce_errno == 0); SPDK_CU_ASSERT_FATAL(g_vol != NULL); /* Write 0xAA to 1 512-byte logical block. */ memset(buf, 0xAA, logical_block_size); iov.iov_base = buf; iov.iov_len = logical_block_size; g_reduce_errno = -100; g_defer_bdev_io = true; spdk_reduce_vol_writev(g_vol, &iov, 1, 0, 1, write_cb, NULL); /* Callback should not have executed, so this should still equal -100. */ CU_ASSERT(g_reduce_errno == -100); CU_ASSERT(!TAILQ_EMPTY(&g_pending_bdev_io)); CU_ASSERT(g_pending_bdev_io_count == params.chunk_size / params.backing_io_unit_size); /* Now do an overlapped I/O to the same chunk. */ spdk_reduce_vol_writev(g_vol, &iov, 1, 1, 1, write_cb, NULL); /* Callback should not have executed, so this should still equal -100. */ CU_ASSERT(g_reduce_errno == -100); CU_ASSERT(!TAILQ_EMPTY(&g_pending_bdev_io)); /* The second I/O overlaps with the first one. So we should only see pending bdev_io * related to the first I/O here - the second one won't start until the first one is completed. */ CU_ASSERT(g_pending_bdev_io_count == params.chunk_size / params.backing_io_unit_size); backing_dev_io_execute(0); CU_ASSERT(g_reduce_errno == 0); g_defer_bdev_io = false; memset(compare_buf, 0xAA, sizeof(compare_buf)); memset(buf, 0xFF, sizeof(buf)); iov.iov_base = buf; iov.iov_len = 2 * logical_block_size; g_reduce_errno = -100; spdk_reduce_vol_readv(g_vol, &iov, 1, 0, 2, read_cb, NULL); CU_ASSERT(g_reduce_errno == 0); CU_ASSERT(memcmp(buf, compare_buf, 2 * logical_block_size) == 0); g_reduce_errno = -1; spdk_reduce_vol_unload(g_vol, unload_cb, NULL); CU_ASSERT(g_reduce_errno == 0); persistent_pm_buf_destroy(); backing_dev_destroy(&backing_dev); } static int ut_compress(char *outbuf, uint32_t *compressed_len, char *inbuf, uint32_t inbuflen) { uint32_t len = 0; uint8_t count; char last; while (true) { if (inbuflen == 0) { *compressed_len = len; return 0; } if (*compressed_len < (len + 2)) { return -ENOSPC; } last = *inbuf; count = 1; inbuflen--; inbuf++; while (inbuflen > 0 && *inbuf == last && count < UINT8_MAX) { count++; inbuflen--; inbuf++; } outbuf[len] = count; outbuf[len + 1] = last; len += 2; } } static int ut_decompress(uint8_t *outbuf, uint32_t *compressed_len, uint8_t *inbuf, uint32_t inbuflen) { uint32_t len = 0; SPDK_CU_ASSERT_FATAL(inbuflen % 2 == 0); while (true) { if (inbuflen == 0) { *compressed_len = len; return 0; } if ((len + inbuf[0]) > *compressed_len) { return -ENOSPC; } memset(outbuf, inbuf[1], inbuf[0]); outbuf += inbuf[0]; len += inbuf[0]; inbuflen -= 2; inbuf += 2; } } #define BUFSIZE 4096 static void compress_algorithm(void) { uint8_t original_data[BUFSIZE]; uint8_t compressed_data[BUFSIZE]; uint8_t decompressed_data[BUFSIZE]; uint32_t compressed_len, decompressed_len, i; int rc; memset(original_data, 0xAA, BUFSIZE); compressed_len = sizeof(compressed_data); rc = ut_compress(compressed_data, &compressed_len, original_data, UINT8_MAX); CU_ASSERT(rc == 0); CU_ASSERT(compressed_len == 2); CU_ASSERT(compressed_data[0] == UINT8_MAX); CU_ASSERT(compressed_data[1] == 0xAA); decompressed_len = sizeof(decompressed_data); rc = ut_decompress(decompressed_data, &decompressed_len, compressed_data, compressed_len); CU_ASSERT(rc == 0); CU_ASSERT(decompressed_len == UINT8_MAX); CU_ASSERT(memcmp(original_data, decompressed_data, decompressed_len) == 0); compressed_len = sizeof(compressed_data); rc = ut_compress(compressed_data, &compressed_len, original_data, UINT8_MAX + 1); CU_ASSERT(rc == 0); CU_ASSERT(compressed_len == 4); CU_ASSERT(compressed_data[0] == UINT8_MAX); CU_ASSERT(compressed_data[1] == 0xAA); CU_ASSERT(compressed_data[2] == 1); CU_ASSERT(compressed_data[3] == 0xAA); decompressed_len = sizeof(decompressed_data); rc = ut_decompress(decompressed_data, &decompressed_len, compressed_data, compressed_len); CU_ASSERT(rc == 0); CU_ASSERT(decompressed_len == UINT8_MAX + 1); CU_ASSERT(memcmp(original_data, decompressed_data, decompressed_len) == 0); for (i = 0; i < sizeof(original_data); i++) { original_data[i] = i & 0xFF; } compressed_len = sizeof(compressed_data); rc = ut_compress(compressed_data, &compressed_len, original_data, 2048); CU_ASSERT(rc == 0); CU_ASSERT(compressed_len == 4096); CU_ASSERT(compressed_data[0] == 1); CU_ASSERT(compressed_data[1] == 0); CU_ASSERT(compressed_data[4094] == 1); CU_ASSERT(compressed_data[4095] == 0xFF); decompressed_len = sizeof(decompressed_data); rc = ut_decompress(decompressed_data, &decompressed_len, compressed_data, compressed_len); CU_ASSERT(rc == 0); CU_ASSERT(decompressed_len == 2048); CU_ASSERT(memcmp(original_data, decompressed_data, decompressed_len) == 0); compressed_len = sizeof(compressed_data); rc = ut_compress(compressed_data, &compressed_len, original_data, 2049); CU_ASSERT(rc == -ENOSPC); } int main(int argc, char **argv) { CU_pSuite suite = NULL; unsigned int num_failures; if (CU_initialize_registry() != CUE_SUCCESS) { return CU_get_error(); } suite = CU_add_suite("reduce", NULL, NULL); if (suite == NULL) { CU_cleanup_registry(); return CU_get_error(); } if ( CU_add_test(suite, "get_pm_file_size", get_pm_file_size) == NULL || CU_add_test(suite, "get_vol_size", get_vol_size) == NULL || CU_add_test(suite, "init_failure", init_failure) == NULL || CU_add_test(suite, "init_md", init_md) == NULL || CU_add_test(suite, "init_backing_dev", init_backing_dev) == NULL || CU_add_test(suite, "load", load) == NULL || CU_add_test(suite, "write_maps", write_maps) == NULL || CU_add_test(suite, "read_write", read_write) == NULL || CU_add_test(suite, "destroy", destroy) == NULL || CU_add_test(suite, "defer_bdev_io", defer_bdev_io) == NULL || CU_add_test(suite, "overlapped", overlapped) == NULL || CU_add_test(suite, "compress_algorithm", compress_algorithm) == NULL ) { CU_cleanup_registry(); return CU_get_error(); } CU_basic_set_mode(CU_BRM_VERBOSE); CU_basic_run_tests(); num_failures = CU_get_number_of_failures(); CU_cleanup_registry(); return num_failures; }