/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "spdk_cunit.h" #include "spdk_internal/log.h" #include "common/lib/test_env.c" struct spdk_log_flag SPDK_LOG_NVME = { .name = "nvme", .enabled = false, }; #include "nvme/nvme_ctrlr.c" #include "nvme/nvme_quirks.c" pid_t g_spdk_nvme_pid; struct nvme_driver _g_nvme_driver = { .lock = PTHREAD_MUTEX_INITIALIZER, }; struct nvme_driver *g_spdk_nvme_driver = &_g_nvme_driver; struct spdk_nvme_registers g_ut_nvme_regs = {}; __thread int nvme_thread_ioq_index = -1; uint32_t set_size = 1; int set_status_cpl = -1; DEFINE_STUB(nvme_ctrlr_cmd_set_host_id, int, (struct spdk_nvme_ctrlr *ctrlr, void *host_id, uint32_t host_id_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg), 0); DEFINE_STUB_V(nvme_ns_set_identify_data, (struct spdk_nvme_ns *ns)); struct spdk_nvme_ctrlr *nvme_transport_ctrlr_construct(const struct spdk_nvme_transport_id *trid, const struct spdk_nvme_ctrlr_opts *opts, void *devhandle) { return NULL; } int nvme_transport_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) { nvme_ctrlr_destruct_finish(ctrlr); return 0; } int nvme_transport_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr) { return 0; } int nvme_transport_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value) { SPDK_CU_ASSERT_FATAL(offset <= sizeof(struct spdk_nvme_registers) - 4); *(uint32_t *)((uintptr_t)&g_ut_nvme_regs + offset) = value; return 0; } int nvme_transport_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value) { SPDK_CU_ASSERT_FATAL(offset <= sizeof(struct spdk_nvme_registers) - 8); *(uint64_t *)((uintptr_t)&g_ut_nvme_regs + offset) = value; return 0; } int nvme_transport_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value) { SPDK_CU_ASSERT_FATAL(offset <= sizeof(struct spdk_nvme_registers) - 4); *value = *(uint32_t *)((uintptr_t)&g_ut_nvme_regs + offset); return 0; } int nvme_transport_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value) { SPDK_CU_ASSERT_FATAL(offset <= sizeof(struct spdk_nvme_registers) - 8); *value = *(uint64_t *)((uintptr_t)&g_ut_nvme_regs + offset); return 0; } uint32_t nvme_transport_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr) { return UINT32_MAX; } uint16_t nvme_transport_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr) { return 1; } void * nvme_transport_ctrlr_alloc_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, size_t size) { return NULL; } int nvme_transport_ctrlr_free_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, void *buf, size_t size) { return 0; } struct spdk_nvme_qpair * nvme_transport_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, const struct spdk_nvme_io_qpair_opts *opts) { struct spdk_nvme_qpair *qpair; qpair = calloc(1, sizeof(*qpair)); SPDK_CU_ASSERT_FATAL(qpair != NULL); qpair->ctrlr = ctrlr; qpair->id = qid; qpair->qprio = opts->qprio; return qpair; } int nvme_transport_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { free(qpair); return 0; } int nvme_transport_ctrlr_reinit_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) { return 0; } int nvme_transport_qpair_reset(struct spdk_nvme_qpair *qpair) { return 0; } int nvme_driver_init(void) { return 0; } int nvme_qpair_init(struct spdk_nvme_qpair *qpair, uint16_t id, struct spdk_nvme_ctrlr *ctrlr, enum spdk_nvme_qprio qprio, uint32_t num_requests) { qpair->id = id; qpair->qprio = qprio; qpair->ctrlr = ctrlr; return 0; } static void fake_cpl_success(spdk_nvme_cmd_cb cb_fn, void *cb_arg) { struct spdk_nvme_cpl cpl = {}; cpl.status.sc = SPDK_NVME_SC_SUCCESS; cb_fn(cb_arg, &cpl); } int spdk_nvme_ctrlr_cmd_set_feature(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature, uint32_t cdw11, uint32_t cdw12, void *payload, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { CU_ASSERT(0); return -1; } int spdk_nvme_ctrlr_cmd_get_feature(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature, uint32_t cdw11, void *payload, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { CU_ASSERT(0); return -1; } int spdk_nvme_ctrlr_cmd_get_log_page(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page, uint32_t nsid, void *payload, uint32_t payload_size, uint64_t offset, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { fake_cpl_success(cb_fn, cb_arg); return 0; } int nvme_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req) { CU_ASSERT(req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST); /* * For the purposes of this unit test, we don't need to bother emulating request submission. */ return 0; } int32_t spdk_nvme_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions) { return 0; } void nvme_qpair_disable(struct spdk_nvme_qpair *qpair) { } void nvme_qpair_enable(struct spdk_nvme_qpair *qpair) { } void nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl) { struct nvme_completion_poll_status *status = arg; status->cpl = *cpl; status->done = true; } int spdk_nvme_wait_for_completion_robust_lock( struct spdk_nvme_qpair *qpair, struct nvme_completion_poll_status *status, pthread_mutex_t *robust_mutex) { status->done = true; memset(&status->cpl, 0, sizeof(status->cpl)); status->cpl.status.sc = 0; if (set_status_cpl == 1) { status->cpl.status.sc = 1; } return spdk_nvme_cpl_is_error(&status->cpl) ? -EIO : 0; } int spdk_nvme_wait_for_completion(struct spdk_nvme_qpair *qpair, struct nvme_completion_poll_status *status) { return spdk_nvme_wait_for_completion_robust_lock(qpair, status, NULL); } int spdk_nvme_wait_for_completion_timeout(struct spdk_nvme_qpair *qpair, struct nvme_completion_poll_status *status, uint64_t timeout_in_secs) { return spdk_nvme_wait_for_completion_robust_lock(qpair, status, NULL); } int nvme_ctrlr_cmd_set_async_event_config(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_feat_async_event_configuration config, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { fake_cpl_success(cb_fn, cb_arg); return 0; } int nvme_ctrlr_cmd_identify(struct spdk_nvme_ctrlr *ctrlr, uint8_t cns, uint16_t cntid, uint32_t nsid, void *payload, size_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { if (cns == SPDK_NVME_IDENTIFY_ACTIVE_NS_LIST) { uint32_t count = 0; uint32_t i = 0; struct spdk_nvme_ns_list *ns_list = (struct spdk_nvme_ns_list *)payload; for (i = 1; i <= ctrlr->num_ns; i++) { if (i <= nsid) { continue; } ns_list->ns_list[count++] = i; if (count == SPDK_COUNTOF(ns_list->ns_list)) { break; } } } fake_cpl_success(cb_fn, cb_arg); return 0; } int nvme_ctrlr_cmd_set_num_queues(struct spdk_nvme_ctrlr *ctrlr, uint32_t num_queues, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { fake_cpl_success(cb_fn, cb_arg); return 0; } int nvme_ctrlr_cmd_get_num_queues(struct spdk_nvme_ctrlr *ctrlr, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { fake_cpl_success(cb_fn, cb_arg); return 0; } int nvme_ctrlr_cmd_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, struct spdk_nvme_ctrlr_list *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { return 0; } int nvme_ctrlr_cmd_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, struct spdk_nvme_ctrlr_list *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { return 0; } int nvme_ctrlr_cmd_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { return 0; } int nvme_ctrlr_cmd_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { return 0; } int nvme_ctrlr_cmd_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, struct spdk_nvme_format *format, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { return 0; } int nvme_ctrlr_cmd_fw_commit(struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_fw_commit *fw_commit, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { CU_ASSERT(fw_commit->ca == SPDK_NVME_FW_COMMIT_REPLACE_IMG); if (fw_commit->fs == 0) { return -1; } set_status_cpl = 1; if (ctrlr->is_resetting == true) { set_status_cpl = 0; } return 0; } int nvme_ctrlr_cmd_fw_image_download(struct spdk_nvme_ctrlr *ctrlr, uint32_t size, uint32_t offset, void *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { if ((size != 0 && payload == NULL) || (size == 0 && payload != NULL)) { return -1; } CU_ASSERT(offset == 0); return 0; } int nvme_ctrlr_cmd_security_receive(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp, uint16_t spsp, uint8_t nssf, void *payload, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { return 0; } int nvme_ctrlr_cmd_security_send(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp, uint16_t spsp, uint8_t nssf, void *payload, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { return 0; } void nvme_ns_destruct(struct spdk_nvme_ns *ns) { } int nvme_ns_construct(struct spdk_nvme_ns *ns, uint32_t id, struct spdk_nvme_ctrlr *ctrlr) { return 0; } void spdk_pci_device_detach(struct spdk_pci_device *device) { } #define DECLARE_AND_CONSTRUCT_CTRLR() \ struct spdk_nvme_ctrlr ctrlr = {}; \ struct spdk_nvme_qpair adminq = {}; \ struct nvme_request req; \ \ STAILQ_INIT(&adminq.free_req); \ STAILQ_INSERT_HEAD(&adminq.free_req, &req, stailq); \ ctrlr.adminq = &adminq; static void test_nvme_ctrlr_init_en_1_rdy_0(void) { DECLARE_AND_CONSTRUCT_CTRLR(); memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs)); /* * Initial state: CC.EN = 1, CSTS.RDY = 0 */ g_ut_nvme_regs.cc.bits.en = 1; g_ut_nvme_regs.csts.bits.rdy = 0; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1); /* * Transition to CSTS.RDY = 1. * init() should set CC.EN = 0. */ g_ut_nvme_regs.csts.bits.rdy = 1; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0); /* * Transition to CSTS.RDY = 0. */ g_ut_nvme_regs.csts.bits.rdy = 0; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); /* * Transition to CC.EN = 1 */ CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); /* * Transition to CSTS.RDY = 1. */ g_ut_nvme_regs.csts.bits.rdy = 1; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_ADMIN_QUEUE); /* * Transition to READY. */ while (ctrlr.state != NVME_CTRLR_STATE_READY) { nvme_ctrlr_process_init(&ctrlr); } g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); } static void test_nvme_ctrlr_init_en_1_rdy_1(void) { DECLARE_AND_CONSTRUCT_CTRLR(); memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs)); /* * Initial state: CC.EN = 1, CSTS.RDY = 1 * init() should set CC.EN = 0. */ g_ut_nvme_regs.cc.bits.en = 1; g_ut_nvme_regs.csts.bits.rdy = 1; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0); /* * Transition to CSTS.RDY = 0. */ g_ut_nvme_regs.csts.bits.rdy = 0; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); /* * Transition to CC.EN = 1 */ CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); /* * Transition to CSTS.RDY = 1. */ g_ut_nvme_regs.csts.bits.rdy = 1; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_ADMIN_QUEUE); /* * Transition to READY. */ while (ctrlr.state != NVME_CTRLR_STATE_READY) { nvme_ctrlr_process_init(&ctrlr); } g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); } static void test_nvme_ctrlr_init_en_0_rdy_0_ams_rr(void) { DECLARE_AND_CONSTRUCT_CTRLR(); memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs)); /* * Initial state: CC.EN = 0, CSTS.RDY = 0 * init() should set CC.EN = 1. */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Default round robin enabled */ g_ut_nvme_regs.cap.bits.ams = 0x0; ctrlr.cap = g_ut_nvme_regs.cap; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; /* * Case 1: default round robin arbitration mechanism selected */ ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_RR; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_RR); CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_RR); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 2: weighted round robin arbitration mechanism selected */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_WRR; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 3: vendor specific arbitration mechanism selected */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 4: invalid arbitration mechanism selected */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS + 1; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 5: reset to default round robin arbitration mechanism */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_RR; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_RR); CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_RR); /* * Transition to CSTS.RDY = 1. */ g_ut_nvme_regs.csts.bits.rdy = 1; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_ADMIN_QUEUE); /* * Transition to READY. */ while (ctrlr.state != NVME_CTRLR_STATE_READY) { nvme_ctrlr_process_init(&ctrlr); } g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); } static void test_nvme_ctrlr_init_en_0_rdy_0_ams_wrr(void) { DECLARE_AND_CONSTRUCT_CTRLR(); memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs)); /* * Initial state: CC.EN = 0, CSTS.RDY = 0 * init() should set CC.EN = 1. */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Weighted round robin enabled */ g_ut_nvme_regs.cap.bits.ams = SPDK_NVME_CAP_AMS_WRR; ctrlr.cap = g_ut_nvme_regs.cap; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; /* * Case 1: default round robin arbitration mechanism selected */ ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_RR; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_RR); CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_RR); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 2: weighted round robin arbitration mechanism selected */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_WRR; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_WRR); CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_WRR); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 3: vendor specific arbitration mechanism selected */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 4: invalid arbitration mechanism selected */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS + 1; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 5: reset to weighted round robin arbitration mechanism */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_WRR; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_WRR); CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_WRR); /* * Transition to CSTS.RDY = 1. */ g_ut_nvme_regs.csts.bits.rdy = 1; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_ADMIN_QUEUE); /* * Transition to READY. */ while (ctrlr.state != NVME_CTRLR_STATE_READY) { nvme_ctrlr_process_init(&ctrlr); } g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); } static void test_nvme_ctrlr_init_en_0_rdy_0_ams_vs(void) { DECLARE_AND_CONSTRUCT_CTRLR(); memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs)); /* * Initial state: CC.EN = 0, CSTS.RDY = 0 * init() should set CC.EN = 1. */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Default round robin enabled */ g_ut_nvme_regs.cap.bits.ams = SPDK_NVME_CAP_AMS_VS; ctrlr.cap = g_ut_nvme_regs.cap; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; /* * Case 1: default round robin arbitration mechanism selected */ ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_RR; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_RR); CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_RR); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 2: weighted round robin arbitration mechanism selected */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_WRR; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 3: vendor specific arbitration mechanism selected */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_VS); CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_VS); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 4: invalid arbitration mechanism selected */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS + 1; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) != 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 0); /* * Complete and destroy the controller */ g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); /* * Reset to initial state */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; /* * Case 5: reset to vendor specific arbitration mechanism */ SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; ctrlr.opts.arb_mechanism = SPDK_NVME_CC_AMS_VS; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); CU_ASSERT(g_ut_nvme_regs.cc.bits.ams == SPDK_NVME_CC_AMS_VS); CU_ASSERT(ctrlr.opts.arb_mechanism == SPDK_NVME_CC_AMS_VS); /* * Transition to CSTS.RDY = 1. */ g_ut_nvme_regs.csts.bits.rdy = 1; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_ADMIN_QUEUE); /* * Transition to READY. */ while (ctrlr.state != NVME_CTRLR_STATE_READY) { nvme_ctrlr_process_init(&ctrlr); } g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); } static void test_nvme_ctrlr_init_en_0_rdy_0(void) { DECLARE_AND_CONSTRUCT_CTRLR(); memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs)); /* * Initial state: CC.EN = 0, CSTS.RDY = 0 * init() should set CC.EN = 1. */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 0; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); /* * Transition to CSTS.RDY = 1. */ g_ut_nvme_regs.csts.bits.rdy = 1; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_ADMIN_QUEUE); /* * Transition to READY. */ while (ctrlr.state != NVME_CTRLR_STATE_READY) { nvme_ctrlr_process_init(&ctrlr); } g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); } static void test_nvme_ctrlr_init_en_0_rdy_1(void) { DECLARE_AND_CONSTRUCT_CTRLR(); memset(&g_ut_nvme_regs, 0, sizeof(g_ut_nvme_regs)); /* * Initial state: CC.EN = 0, CSTS.RDY = 1 */ g_ut_nvme_regs.cc.bits.en = 0; g_ut_nvme_regs.csts.bits.rdy = 1; SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(&ctrlr) == 0); ctrlr.cdata.nn = 1; ctrlr.page_size = 0x1000; CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_INIT); CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0); /* * Transition to CSTS.RDY = 0. */ g_ut_nvme_regs.csts.bits.rdy = 0; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE); /* * Transition to CC.EN = 1 */ CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1); CU_ASSERT(g_ut_nvme_regs.cc.bits.en == 1); /* * Transition to CSTS.RDY = 1. */ g_ut_nvme_regs.csts.bits.rdy = 1; CU_ASSERT(nvme_ctrlr_process_init(&ctrlr) == 0); CU_ASSERT(ctrlr.state == NVME_CTRLR_STATE_ENABLE_ADMIN_QUEUE); /* * Transition to READY. */ while (ctrlr.state != NVME_CTRLR_STATE_READY) { nvme_ctrlr_process_init(&ctrlr); } g_ut_nvme_regs.csts.bits.shst = SPDK_NVME_SHST_COMPLETE; nvme_ctrlr_destruct(&ctrlr); } static void setup_qpairs(struct spdk_nvme_ctrlr *ctrlr, uint32_t num_io_queues) { uint32_t i; CU_ASSERT(pthread_mutex_init(&ctrlr->ctrlr_lock, NULL) == 0); SPDK_CU_ASSERT_FATAL(nvme_ctrlr_construct(ctrlr) == 0); ctrlr->page_size = 0x1000; ctrlr->opts.num_io_queues = num_io_queues; ctrlr->free_io_qids = spdk_bit_array_create(num_io_queues + 1); SPDK_CU_ASSERT_FATAL(ctrlr->free_io_qids != NULL); spdk_bit_array_clear(ctrlr->free_io_qids, 0); for (i = 1; i <= num_io_queues; i++) { spdk_bit_array_set(ctrlr->free_io_qids, i); } } static void cleanup_qpairs(struct spdk_nvme_ctrlr *ctrlr) { nvme_ctrlr_destruct(ctrlr); } static void test_alloc_io_qpair_rr_1(void) { struct spdk_nvme_io_qpair_opts opts; struct spdk_nvme_ctrlr ctrlr = {}; struct spdk_nvme_qpair *q0; setup_qpairs(&ctrlr, 1); /* * Fake to simulate the controller with default round robin * arbitration mechanism. */ g_ut_nvme_regs.cc.bits.ams = SPDK_NVME_CC_AMS_RR; spdk_nvme_ctrlr_get_default_io_qpair_opts(&ctrlr, &opts, sizeof(opts)); q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, NULL, 0); SPDK_CU_ASSERT_FATAL(q0 != NULL); SPDK_CU_ASSERT_FATAL(q0->qprio == 0); /* Only 1 I/O qpair was allocated, so this should fail */ SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, NULL, 0) == NULL); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0); /* * Now that the qpair has been returned to the free list, * we should be able to allocate it again. */ q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, NULL, 0); SPDK_CU_ASSERT_FATAL(q0 != NULL); SPDK_CU_ASSERT_FATAL(q0->qprio == 0); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0); /* Only 0 qprio is acceptable for default round robin arbitration mechanism */ opts.qprio = 1; q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q0 == NULL); opts.qprio = 2; q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q0 == NULL); opts.qprio = 3; q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q0 == NULL); /* Only 0 ~ 3 qprio is acceptable */ opts.qprio = 4; SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)) == NULL); cleanup_qpairs(&ctrlr); } static void test_alloc_io_qpair_wrr_1(void) { struct spdk_nvme_io_qpair_opts opts; struct spdk_nvme_ctrlr ctrlr = {}; struct spdk_nvme_qpair *q0, *q1; setup_qpairs(&ctrlr, 2); /* * Fake to simulate the controller with weighted round robin * arbitration mechanism. */ g_ut_nvme_regs.cc.bits.ams = SPDK_NVME_CC_AMS_WRR; spdk_nvme_ctrlr_get_default_io_qpair_opts(&ctrlr, &opts, sizeof(opts)); /* * Allocate 2 qpairs and free them */ opts.qprio = 0; q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q0 != NULL); SPDK_CU_ASSERT_FATAL(q0->qprio == 0); opts.qprio = 1; q1 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q1 != NULL); SPDK_CU_ASSERT_FATAL(q1->qprio == 1); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q1) == 0); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0); /* * Allocate 2 qpairs and free them in the reverse order */ opts.qprio = 2; q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q0 != NULL); SPDK_CU_ASSERT_FATAL(q0->qprio == 2); opts.qprio = 3; q1 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q1 != NULL); SPDK_CU_ASSERT_FATAL(q1->qprio == 3); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q1) == 0); /* Only 0 ~ 3 qprio is acceptable */ opts.qprio = 4; SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)) == NULL); cleanup_qpairs(&ctrlr); } static void test_alloc_io_qpair_wrr_2(void) { struct spdk_nvme_io_qpair_opts opts; struct spdk_nvme_ctrlr ctrlr = {}; struct spdk_nvme_qpair *q0, *q1, *q2, *q3; setup_qpairs(&ctrlr, 4); /* * Fake to simulate the controller with weighted round robin * arbitration mechanism. */ g_ut_nvme_regs.cc.bits.ams = SPDK_NVME_CC_AMS_WRR; spdk_nvme_ctrlr_get_default_io_qpair_opts(&ctrlr, &opts, sizeof(opts)); opts.qprio = 0; q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q0 != NULL); SPDK_CU_ASSERT_FATAL(q0->qprio == 0); opts.qprio = 1; q1 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q1 != NULL); SPDK_CU_ASSERT_FATAL(q1->qprio == 1); opts.qprio = 2; q2 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q2 != NULL); SPDK_CU_ASSERT_FATAL(q2->qprio == 2); opts.qprio = 3; q3 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q3 != NULL); SPDK_CU_ASSERT_FATAL(q3->qprio == 3); /* Only 4 I/O qpairs was allocated, so this should fail */ opts.qprio = 0; SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)) == NULL); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q3) == 0); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q2) == 0); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q1) == 0); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0); /* * Now that the qpair has been returned to the free list, * we should be able to allocate it again. * * Allocate 4 I/O qpairs and half of them with same qprio. */ opts.qprio = 1; q0 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q0 != NULL); SPDK_CU_ASSERT_FATAL(q0->qprio == 1); opts.qprio = 1; q1 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q1 != NULL); SPDK_CU_ASSERT_FATAL(q1->qprio == 1); opts.qprio = 3; q2 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q2 != NULL); SPDK_CU_ASSERT_FATAL(q2->qprio == 3); opts.qprio = 3; q3 = spdk_nvme_ctrlr_alloc_io_qpair(&ctrlr, &opts, sizeof(opts)); SPDK_CU_ASSERT_FATAL(q3 != NULL); SPDK_CU_ASSERT_FATAL(q3->qprio == 3); /* * Free all I/O qpairs in reverse order */ SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q0) == 0); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q1) == 0); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q2) == 0); SPDK_CU_ASSERT_FATAL(spdk_nvme_ctrlr_free_io_qpair(q3) == 0); cleanup_qpairs(&ctrlr); } static void test_nvme_ctrlr_fail(void) { struct spdk_nvme_ctrlr ctrlr = {}; ctrlr.opts.num_io_queues = 0; nvme_ctrlr_fail(&ctrlr, false); CU_ASSERT(ctrlr.is_failed == true); } static void test_nvme_ctrlr_construct_intel_support_log_page_list(void) { bool res; struct spdk_nvme_ctrlr ctrlr = {}; struct spdk_nvme_intel_log_page_directory payload = {}; struct spdk_pci_id pci_id = {}; /* Get quirks for a device with all 0 vendor/device id */ ctrlr.quirks = nvme_get_quirks(&pci_id); CU_ASSERT(ctrlr.quirks == 0); nvme_ctrlr_construct_intel_support_log_page_list(&ctrlr, &payload); res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_TEMPERATURE); CU_ASSERT(res == false); /* Set the vendor to Intel, but provide no device id */ ctrlr.cdata.vid = pci_id.vendor_id = SPDK_PCI_VID_INTEL; payload.temperature_statistics_log_len = 1; ctrlr.quirks = nvme_get_quirks(&pci_id); memset(ctrlr.log_page_supported, 0, sizeof(ctrlr.log_page_supported)); nvme_ctrlr_construct_intel_support_log_page_list(&ctrlr, &payload); res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY); CU_ASSERT(res == true); res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_TEMPERATURE); CU_ASSERT(res == true); res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY); CU_ASSERT(res == false); res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_SMART); CU_ASSERT(res == false); /* set valid vendor id, device id and sub device id */ ctrlr.cdata.vid = SPDK_PCI_VID_INTEL; payload.temperature_statistics_log_len = 0; pci_id.vendor_id = SPDK_PCI_VID_INTEL; pci_id.device_id = 0x0953; pci_id.subvendor_id = SPDK_PCI_VID_INTEL; pci_id.subdevice_id = 0x3702; ctrlr.quirks = nvme_get_quirks(&pci_id); memset(ctrlr.log_page_supported, 0, sizeof(ctrlr.log_page_supported)); nvme_ctrlr_construct_intel_support_log_page_list(&ctrlr, &payload); res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY); CU_ASSERT(res == true); res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_TEMPERATURE); CU_ASSERT(res == false); res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY); CU_ASSERT(res == true); res = spdk_nvme_ctrlr_is_log_page_supported(&ctrlr, SPDK_NVME_INTEL_LOG_SMART); CU_ASSERT(res == false); } static void test_nvme_ctrlr_set_supported_features(void) { bool res; struct spdk_nvme_ctrlr ctrlr = {}; /* set a invalid vendor id */ ctrlr.cdata.vid = 0xFFFF; nvme_ctrlr_set_supported_features(&ctrlr); res = spdk_nvme_ctrlr_is_feature_supported(&ctrlr, SPDK_NVME_FEAT_ARBITRATION); CU_ASSERT(res == true); res = spdk_nvme_ctrlr_is_feature_supported(&ctrlr, SPDK_NVME_INTEL_FEAT_MAX_LBA); CU_ASSERT(res == false); ctrlr.cdata.vid = SPDK_PCI_VID_INTEL; nvme_ctrlr_set_supported_features(&ctrlr); res = spdk_nvme_ctrlr_is_feature_supported(&ctrlr, SPDK_NVME_FEAT_ARBITRATION); CU_ASSERT(res == true); res = spdk_nvme_ctrlr_is_feature_supported(&ctrlr, SPDK_NVME_INTEL_FEAT_MAX_LBA); CU_ASSERT(res == true); } static void test_ctrlr_get_default_ctrlr_opts(void) { struct spdk_nvme_ctrlr_opts opts = {}; CU_ASSERT(spdk_uuid_parse(&g_spdk_nvme_driver->default_extended_host_id, "e53e9258-c93b-48b5-be1a-f025af6d232a") == 0); memset(&opts, 0, sizeof(opts)); /* set a smaller opts_size */ CU_ASSERT(sizeof(opts) > 8); spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, 8); CU_ASSERT_EQUAL(opts.num_io_queues, DEFAULT_MAX_IO_QUEUES); CU_ASSERT_TRUE(opts.use_cmb_sqs); /* check below fields are not initialized by default value */ CU_ASSERT_EQUAL(opts.arb_mechanism, 0); CU_ASSERT_EQUAL(opts.keep_alive_timeout_ms, 0); CU_ASSERT_EQUAL(opts.io_queue_size, 0); CU_ASSERT_EQUAL(opts.io_queue_requests, 0); for (int i = 0; i < 8; i++) { CU_ASSERT(opts.host_id[i] == 0); } for (int i = 0; i < 16; i++) { CU_ASSERT(opts.extended_host_id[i] == 0); } CU_ASSERT(strlen(opts.hostnqn) == 0); CU_ASSERT(strlen(opts.src_addr) == 0); CU_ASSERT(strlen(opts.src_svcid) == 0); CU_ASSERT_EQUAL(opts.admin_timeout_ms, 0); /* set a consistent opts_size */ spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, sizeof(opts)); CU_ASSERT_EQUAL(opts.num_io_queues, DEFAULT_MAX_IO_QUEUES); CU_ASSERT_TRUE(opts.use_cmb_sqs); CU_ASSERT_EQUAL(opts.arb_mechanism, SPDK_NVME_CC_AMS_RR); CU_ASSERT_EQUAL(opts.keep_alive_timeout_ms, 10 * 1000); CU_ASSERT_EQUAL(opts.io_queue_size, DEFAULT_IO_QUEUE_SIZE); CU_ASSERT_EQUAL(opts.io_queue_requests, DEFAULT_IO_QUEUE_REQUESTS); for (int i = 0; i < 8; i++) { CU_ASSERT(opts.host_id[i] == 0); } CU_ASSERT_STRING_EQUAL(opts.hostnqn, "2014-08.org.nvmexpress:uuid:e53e9258-c93b-48b5-be1a-f025af6d232a"); CU_ASSERT(memcmp(opts.extended_host_id, &g_spdk_nvme_driver->default_extended_host_id, sizeof(opts.extended_host_id)) == 0); CU_ASSERT(strlen(opts.src_addr) == 0); CU_ASSERT(strlen(opts.src_svcid) == 0); CU_ASSERT_EQUAL(opts.admin_timeout_ms, NVME_MAX_ADMIN_TIMEOUT_IN_SECS * 1000); } static void test_ctrlr_get_default_io_qpair_opts(void) { struct spdk_nvme_ctrlr ctrlr = {}; struct spdk_nvme_io_qpair_opts opts = {}; memset(&opts, 0, sizeof(opts)); /* set a smaller opts_size */ ctrlr.opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE; CU_ASSERT(sizeof(opts) > 8); spdk_nvme_ctrlr_get_default_io_qpair_opts(&ctrlr, &opts, 8); CU_ASSERT_EQUAL(opts.qprio, SPDK_NVME_QPRIO_URGENT); CU_ASSERT_EQUAL(opts.io_queue_size, DEFAULT_IO_QUEUE_SIZE); /* check below field is not initialized by default value */ CU_ASSERT_EQUAL(opts.io_queue_requests, 0); /* set a consistent opts_size */ ctrlr.opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE; ctrlr.opts.io_queue_requests = DEFAULT_IO_QUEUE_REQUESTS; spdk_nvme_ctrlr_get_default_io_qpair_opts(&ctrlr, &opts, sizeof(opts)); CU_ASSERT_EQUAL(opts.qprio, SPDK_NVME_QPRIO_URGENT); CU_ASSERT_EQUAL(opts.io_queue_size, DEFAULT_IO_QUEUE_SIZE); CU_ASSERT_EQUAL(opts.io_queue_requests, DEFAULT_IO_QUEUE_REQUESTS); } #if 0 /* TODO: move to PCIe-specific unit test */ static void test_nvme_ctrlr_alloc_cmb(void) { int rc; uint64_t offset; struct spdk_nvme_ctrlr ctrlr = {}; ctrlr.cmb_size = 0x1000000; ctrlr.cmb_current_offset = 0x100; rc = nvme_ctrlr_alloc_cmb(&ctrlr, 0x200, 0x1000, &offset); CU_ASSERT(rc == 0); CU_ASSERT(offset == 0x1000); CU_ASSERT(ctrlr.cmb_current_offset == 0x1200); rc = nvme_ctrlr_alloc_cmb(&ctrlr, 0x800, 0x1000, &offset); CU_ASSERT(rc == 0); CU_ASSERT(offset == 0x2000); CU_ASSERT(ctrlr.cmb_current_offset == 0x2800); rc = nvme_ctrlr_alloc_cmb(&ctrlr, 0x800000, 0x100000, &offset); CU_ASSERT(rc == 0); CU_ASSERT(offset == 0x100000); CU_ASSERT(ctrlr.cmb_current_offset == 0x900000); rc = nvme_ctrlr_alloc_cmb(&ctrlr, 0x8000000, 0x1000, &offset); CU_ASSERT(rc == -1); } #endif static void test_spdk_nvme_ctrlr_update_firmware(void) { struct spdk_nvme_ctrlr ctrlr = {}; void *payload = NULL; int point_payload = 1; int slot = 0; int ret = 0; struct spdk_nvme_status status; enum spdk_nvme_fw_commit_action commit_action = SPDK_NVME_FW_COMMIT_REPLACE_IMG; /* Set invalid size check function return value */ set_size = 5; ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status); CU_ASSERT(ret == -1); /* When payload is NULL but set_size < min_page_size */ set_size = 4; ctrlr.min_page_size = 5; ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status); CU_ASSERT(ret == -1); /* When payload not NULL but min_page_size is 0 */ set_size = 4; ctrlr.min_page_size = 0; payload = &point_payload; ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status); CU_ASSERT(ret == -1); /* Check firmware image download when payload not NULL and min_page_size not 0 , status.cpl value is 1 */ set_status_cpl = 1; set_size = 4; ctrlr.min_page_size = 5; payload = &point_payload; ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status); CU_ASSERT(ret == -ENXIO); /* Check firmware image download and set status.cpl value is 0 */ set_status_cpl = 0; set_size = 4; ctrlr.min_page_size = 5; payload = &point_payload; ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status); CU_ASSERT(ret == -1); /* Check firmware commit */ ctrlr.is_resetting = false; set_status_cpl = 0; slot = 1; set_size = 4; ctrlr.min_page_size = 5; payload = &point_payload; ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status); CU_ASSERT(ret == -ENXIO); /* Set size check firmware download and firmware commit */ ctrlr.is_resetting = true; set_status_cpl = 0; slot = 1; set_size = 4; ctrlr.min_page_size = 5; payload = &point_payload; ret = spdk_nvme_ctrlr_update_firmware(&ctrlr, payload, set_size, slot, commit_action, &status); CU_ASSERT(ret == 0); set_status_cpl = 0; } int nvme_ctrlr_cmd_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr, uint64_t prp1, uint64_t prp2, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { fake_cpl_success(cb_fn, cb_arg); return 0; } static void test_spdk_nvme_ctrlr_doorbell_buffer_config(void) { struct spdk_nvme_ctrlr ctrlr = {}; int ret = -1; ctrlr.cdata.oacs.doorbell_buffer_config = 1; ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE; ctrlr.page_size = 0x1000; MOCK_CLEAR(spdk_malloc); MOCK_CLEAR(spdk_zmalloc); MOCK_CLEAR(spdk_dma_malloc); MOCK_CLEAR(spdk_dma_zmalloc); ret = nvme_ctrlr_set_doorbell_buffer_config(&ctrlr); CU_ASSERT(ret == 0); nvme_ctrlr_free_doorbell_buffer(&ctrlr); } static void test_nvme_ctrlr_test_active_ns(void) { uint32_t nsid, minor; size_t ns_id_count; struct spdk_nvme_ctrlr ctrlr = {}; ctrlr.page_size = 0x1000; for (minor = 0; minor <= 2; minor++) { ctrlr.cdata.ver.bits.mjr = 1; ctrlr.cdata.ver.bits.mnr = minor; ctrlr.cdata.ver.bits.ter = 0; ctrlr.num_ns = 1531; nvme_ctrlr_identify_active_ns(&ctrlr); for (nsid = 1; nsid <= ctrlr.num_ns; nsid++) { CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, nsid) == true); } ctrlr.num_ns = 1559; for (; nsid <= ctrlr.num_ns; nsid++) { CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, nsid) == false); } ctrlr.num_ns = 1531; for (nsid = 0; nsid < ctrlr.num_ns; nsid++) { ctrlr.active_ns_list[nsid] = 0; } CU_ASSERT(spdk_nvme_ctrlr_get_first_active_ns(&ctrlr) == 0); ctrlr.active_ns_list[0] = 1; CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1) == true); CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 2) == false); nsid = spdk_nvme_ctrlr_get_first_active_ns(&ctrlr); CU_ASSERT(nsid == 1); ctrlr.active_ns_list[1] = 3; CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 1) == true); CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 2) == false); CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, 3) == true); nsid = spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, nsid); CU_ASSERT(nsid == 3); nsid = spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, nsid); CU_ASSERT(nsid == 0); memset(ctrlr.active_ns_list, 0, ctrlr.num_ns); for (nsid = 0; nsid < ctrlr.num_ns; nsid++) { ctrlr.active_ns_list[nsid] = nsid + 1; } ns_id_count = 0; for (nsid = spdk_nvme_ctrlr_get_first_active_ns(&ctrlr); nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(&ctrlr, nsid)) { CU_ASSERT(spdk_nvme_ctrlr_is_active_ns(&ctrlr, nsid) == true); ns_id_count++; } CU_ASSERT(ns_id_count == ctrlr.num_ns); nvme_ctrlr_destruct(&ctrlr); } } int main(int argc, char **argv) { CU_pSuite suite = NULL; unsigned int num_failures; if (CU_initialize_registry() != CUE_SUCCESS) { return CU_get_error(); } suite = CU_add_suite("nvme_ctrlr", NULL, NULL); if (suite == NULL) { CU_cleanup_registry(); return CU_get_error(); } if ( CU_add_test(suite, "test nvme_ctrlr init CC.EN = 1 CSTS.RDY = 0", test_nvme_ctrlr_init_en_1_rdy_0) == NULL || CU_add_test(suite, "test nvme_ctrlr init CC.EN = 1 CSTS.RDY = 1", test_nvme_ctrlr_init_en_1_rdy_1) == NULL || CU_add_test(suite, "test nvme_ctrlr init CC.EN = 0 CSTS.RDY = 0", test_nvme_ctrlr_init_en_0_rdy_0) == NULL || CU_add_test(suite, "test nvme_ctrlr init CC.EN = 0 CSTS.RDY = 1", test_nvme_ctrlr_init_en_0_rdy_1) == NULL || CU_add_test(suite, "test nvme_ctrlr init CC.EN = 0 CSTS.RDY = 0 AMS = RR", test_nvme_ctrlr_init_en_0_rdy_0_ams_rr) == NULL || CU_add_test(suite, "test nvme_ctrlr init CC.EN = 0 CSTS.RDY = 0 AMS = WRR", test_nvme_ctrlr_init_en_0_rdy_0_ams_wrr) == NULL || CU_add_test(suite, "test nvme_ctrlr init CC.EN = 0 CSTS.RDY = 0 AMS = VS", test_nvme_ctrlr_init_en_0_rdy_0_ams_vs) == NULL || CU_add_test(suite, "alloc_io_qpair_rr 1", test_alloc_io_qpair_rr_1) == NULL || CU_add_test(suite, "get_default_ctrlr_opts", test_ctrlr_get_default_ctrlr_opts) == NULL || CU_add_test(suite, "get_default_io_qpair_opts", test_ctrlr_get_default_io_qpair_opts) == NULL || CU_add_test(suite, "alloc_io_qpair_wrr 1", test_alloc_io_qpair_wrr_1) == NULL || CU_add_test(suite, "alloc_io_qpair_wrr 2", test_alloc_io_qpair_wrr_2) == NULL || CU_add_test(suite, "test nvme ctrlr function update_firmware", test_spdk_nvme_ctrlr_update_firmware) == NULL || CU_add_test(suite, "test nvme_ctrlr function nvme_ctrlr_fail", test_nvme_ctrlr_fail) == NULL || CU_add_test(suite, "test nvme ctrlr function nvme_ctrlr_construct_intel_support_log_page_list", test_nvme_ctrlr_construct_intel_support_log_page_list) == NULL || CU_add_test(suite, "test nvme ctrlr function nvme_ctrlr_set_supported_features", test_nvme_ctrlr_set_supported_features) == NULL || CU_add_test(suite, "test nvme ctrlr function nvme_ctrlr_set_doorbell_buffer_config", test_spdk_nvme_ctrlr_doorbell_buffer_config) == NULL #if 0 /* TODO: move to PCIe-specific unit test */ || CU_add_test(suite, "test nvme ctrlr function nvme_ctrlr_alloc_cmb", test_nvme_ctrlr_alloc_cmb) == NULL #endif || CU_add_test(suite, "test nvme ctrlr function test_nvme_ctrlr_test_active_ns", test_nvme_ctrlr_test_active_ns) == NULL ) { CU_cleanup_registry(); return CU_get_error(); } CU_basic_set_mode(CU_BRM_VERBOSE); CU_basic_run_tests(); num_failures = CU_get_number_of_failures(); CU_cleanup_registry(); return num_failures; }