/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "nvmf.h" #include "spdk/nvmf_spec.h" #include "conn.h" #include "rdma.h" #include "request.h" #include "session.h" #include "spdk/queue.h" #include "spdk/log.h" #include "spdk/trace.h" /** \file */ static rte_atomic32_t g_num_connections[RTE_MAX_LCORE]; static int g_max_conns; static struct spdk_nvmf_conn *g_conns_array; static char g_shm_name[64]; static int g_conns_array_fd; static pthread_mutex_t g_conns_mutex; static struct rte_timer g_shutdown_timer; static int nvmf_allocate_reactor(uint64_t cpumask); static void spdk_nvmf_conn_do_work(void *arg); static struct spdk_nvmf_conn * allocate_conn(void) { struct spdk_nvmf_conn *conn; int i; pthread_mutex_lock(&g_conns_mutex); for (i = 0; i < g_max_conns; i++) { conn = &g_conns_array[i]; if (!conn->is_valid) { memset(conn, 0, sizeof(*conn)); conn->is_valid = 1; pthread_mutex_unlock(&g_conns_mutex); return conn; } } pthread_mutex_unlock(&g_conns_mutex); return NULL; } static void free_conn(struct spdk_nvmf_conn *conn) { conn->sess = NULL; conn->is_valid = 0; } static struct spdk_nvmf_conn * spdk_find_nvmf_conn_by_cntlid(int cntlid) { int i; for (i = 0; i < g_max_conns; i++) { if ((g_conns_array[i].is_valid == 1) && (g_conns_array[i].cntlid == cntlid) && (g_conns_array[i].qid == 0)) { return &g_conns_array[i]; } } return NULL; } int spdk_initialize_nvmf_conns(int max_connections) { size_t conns_size; int i, rc; SPDK_TRACELOG(SPDK_TRACE_DEBUG, "Enter\n"); rc = pthread_mutex_init(&g_conns_mutex, NULL); if (rc != 0) { SPDK_ERRLOG("mutex_init() failed\n"); return -1; } sprintf(g_shm_name, "nvmf_conns.%d", spdk_app_get_instance_id()); g_conns_array_fd = shm_open(g_shm_name, O_RDWR | O_CREAT, 0600); if (g_conns_array_fd < 0) { SPDK_ERRLOG("could not shm_open %s\n", g_shm_name); return -1; } g_max_conns = max_connections; conns_size = sizeof(struct spdk_nvmf_conn) * g_max_conns; if (ftruncate(g_conns_array_fd, conns_size) != 0) { SPDK_ERRLOG("could not ftruncate\n"); shm_unlink(g_shm_name); close(g_conns_array_fd); return -1; } g_conns_array = mmap(0, conns_size, PROT_READ | PROT_WRITE, MAP_SHARED, g_conns_array_fd, 0); memset(g_conns_array, 0, conns_size); for (i = 0; i < RTE_MAX_LCORE; i++) { rte_atomic32_set(&g_num_connections[i], 0); } return 0; } struct spdk_nvmf_conn * spdk_nvmf_allocate_conn(void) { struct spdk_nvmf_conn *conn; conn = allocate_conn(); if (conn == NULL) { SPDK_ERRLOG("Could not allocate new connection.\n"); goto err0; } /* all new connections initially default as AQ until nvmf connect */ conn->type = CONN_TYPE_AQ; /* no session association until nvmf connect */ conn->sess = NULL; conn->state = CONN_STATE_INVALID; conn->sq_head = 0; return conn; err0: return NULL; } /** \brief Create an NVMf fabric connection from the given parameters and schedule it on a reactor thread. \code # identify reactor where the new connections work item will be scheduled reactor = nvmf_allocate_reactor() schedule fabric connection work item on reactor \endcode */ int spdk_nvmf_startup_conn(struct spdk_nvmf_conn *conn) { int lcore; struct spdk_nvmf_conn *admin_conn; uint64_t nvmf_session_core = spdk_app_get_core_mask(); /* * if starting IO connection then determine core * allocated to admin queue to request core mask. * Can not assume nvmf session yet created at time * of fabric connection setup. Rely on fabric * function to locate matching controller session. */ if (conn->type == CONN_TYPE_IOQ && conn->cntlid != 0) { admin_conn = spdk_find_nvmf_conn_by_cntlid(conn->cntlid); if (admin_conn != NULL) { SPDK_TRACELOG(SPDK_TRACE_DEBUG, "Located admin conn session core %d\n", admin_conn->poller.lcore); nvmf_session_core = 1ULL << admin_conn->poller.lcore; } } lcore = nvmf_allocate_reactor(nvmf_session_core); if (lcore < 0) { SPDK_ERRLOG("Unable to find core to launch connection.\n"); goto err0; } conn->state = CONN_STATE_RUNNING; SPDK_NOTICELOG("Launching nvmf connection[qid=%d] on core: %d\n", conn->qid, lcore); conn->poller.fn = spdk_nvmf_conn_do_work; conn->poller.arg = conn; rte_atomic32_inc(&g_num_connections[lcore]); spdk_poller_register(&conn->poller, lcore, NULL); return 0; err0: free_conn(conn); return -1; } static void _conn_destruct(spdk_event_t event) { struct spdk_nvmf_conn *conn = spdk_event_get_arg1(event); /* * Notify NVMf library of the fabric connection * going away. If this is the AQ connection then * set state for other connections to abort. */ nvmf_disconnect((void *)conn, conn->sess); if (conn->type == CONN_TYPE_AQ) { SPDK_TRACELOG(SPDK_TRACE_DEBUG, "AQ connection destruct, trigger session closure\n"); /* Trigger all I/O connections to shutdown */ conn->state = CONN_STATE_FABRIC_DISCONNECT; } nvmf_rdma_conn_cleanup(conn); pthread_mutex_lock(&g_conns_mutex); free_conn(conn); pthread_mutex_unlock(&g_conns_mutex); } static void spdk_nvmf_conn_destruct(struct spdk_nvmf_conn *conn) { struct spdk_event *event; SPDK_TRACELOG(SPDK_TRACE_DEBUG, "conn %p\n", conn); conn->state = CONN_STATE_INVALID; event = spdk_event_allocate(rte_lcore_id(), _conn_destruct, conn, NULL, NULL); spdk_poller_unregister(&conn->poller, event); rte_atomic32_dec(&g_num_connections[rte_lcore_id()]); } static int spdk_nvmf_get_active_conns(void) { struct spdk_nvmf_conn *conn; int num = 0; int i; pthread_mutex_lock(&g_conns_mutex); for (i = 0; i < g_max_conns; i++) { conn = &g_conns_array[i]; if (!conn->is_valid) continue; num++; } pthread_mutex_unlock(&g_conns_mutex); return num; } static void spdk_nvmf_cleanup_conns(void) { munmap(g_conns_array, sizeof(struct spdk_nvmf_conn) * g_max_conns); shm_unlink(g_shm_name); close(g_conns_array_fd); } static void spdk_nvmf_conn_check_shutdown(struct rte_timer *timer, void *arg) { if (spdk_nvmf_get_active_conns() == 0) { RTE_VERIFY(timer == &g_shutdown_timer); rte_timer_stop(timer); spdk_nvmf_cleanup_conns(); spdk_app_stop(0); } } void spdk_shutdown_nvmf_conns(void) { struct spdk_nvmf_conn *conn; int i; pthread_mutex_lock(&g_conns_mutex); for (i = 0; i < g_max_conns; i++) { conn = &g_conns_array[i]; if (!conn->is_valid) continue; SPDK_TRACELOG(SPDK_TRACE_DEBUG, "Set conn %d state to exiting\n", i); conn->state = CONN_STATE_EXITING; } pthread_mutex_unlock(&g_conns_mutex); rte_timer_init(&g_shutdown_timer); rte_timer_reset(&g_shutdown_timer, rte_get_timer_hz() / 1000, PERIODICAL, rte_get_master_lcore(), spdk_nvmf_conn_check_shutdown, NULL); } void nvmf_init_conn_properites(struct spdk_nvmf_conn *conn, struct nvmf_session *session, struct spdk_nvmf_fabric_connect_rsp *response) { struct spdk_nvmf_extended_identify_ctrlr_data *lcdata; uint32_t mdts; conn->cntlid = response->status_code_specific.success.cntlid; session->max_connections_allowed = g_nvmf_tgt.MaxConnectionsPerSession; nvmf_init_session_properties(session, conn->rdma.sq_depth); /* Update the session logical controller data with any * application fabric side limits */ /* reset mdts in vcdata to equal the application default maximum */ mdts = SPDK_NVMF_MAX_RECV_DATA_TRANSFER_SIZE / (1 << (12 + session->vcprop.cap_hi.bits.mpsmin)); if (mdts == 0) { SPDK_ERRLOG("Min page size exceeds max transfer size!\n"); SPDK_ERRLOG("Verify setting of SPDK_NVMF_MAX_RECV_DATA_TRANSFER_SIZE and mpsmin\n"); session->vcdata.mdts = 1; /* Support single page for now */ } else { /* set mdts as a power of 2 representing number of mpsmin units */ session->vcdata.mdts = 0; while ((1ULL << session->vcdata.mdts) < mdts) { session->vcdata.mdts++; } } /* increase the I/O recv capsule size for in_capsule data */ lcdata = (struct spdk_nvmf_extended_identify_ctrlr_data *)&session->vcdata.reserved5[1088]; lcdata->ioccsz += (g_nvmf_tgt.MaxInCapsuleData / 16); } static void spdk_nvmf_conn_do_work(void *arg) { struct spdk_nvmf_conn *conn = arg; /* process pending NVMe device completions */ if (conn->sess) { if (conn->type == CONN_TYPE_AQ) { nvmf_check_admin_completions(conn->sess); } else { nvmf_check_io_completions(conn->sess); } } /* process pending RDMA completions */ nvmf_check_rdma_completions(conn); if (conn->state == CONN_STATE_EXITING || conn->state == CONN_STATE_FABRIC_DISCONNECT) { spdk_nvmf_conn_destruct(conn); } } static int nvmf_allocate_reactor(uint64_t cpumask) { int i, selected_core; enum rte_lcore_state_t state; int master_lcore = rte_get_master_lcore(); int32_t num_pollers, min_pollers; cpumask &= spdk_app_get_core_mask(); if (cpumask == 0) { return 0; } min_pollers = INT_MAX; selected_core = 0; /* we use u64 as CPU core mask */ for (i = 0; i < RTE_MAX_LCORE && i < 64; i++) { if (!((1ULL << i) & cpumask)) { continue; } /* * DPDK returns WAIT for the master lcore instead of RUNNING. * So we always treat the reactor on master core as RUNNING. */ if (i == master_lcore) { state = RUNNING; } else { state = rte_eal_get_lcore_state(i); } if (state == FINISHED) { rte_eal_wait_lcore(i); } switch (state) { case WAIT: case FINISHED: /* Idle cores have 0 pollers */ if (0 < min_pollers) { selected_core = i; min_pollers = 0; } break; case RUNNING: /* This lcore is running, check how many pollers it already has */ num_pollers = rte_atomic32_read(&g_num_connections[i]); /* Fill each lcore to target minimum, else select least loaded lcore */ if (num_pollers < (SPDK_NVMF_DEFAULT_NUM_SESSIONS_PER_LCORE * g_nvmf_tgt.MaxConnectionsPerSession)) { /* If fewer than the target number of session connections * exist then add to this lcore */ return i; } else if (num_pollers < min_pollers) { /* Track the lcore that has the minimum number of pollers * to be used if no lcores have already met our criteria */ selected_core = i; min_pollers = num_pollers; } break; } } return selected_core; }