/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "spdk/likely.h" #include "spdk/event.h" #include "spdk/log.h" #include "spdk/env.h" #include "spdk_internal/thread.h" #include "spdk_internal/event.h" static uint32_t g_next_lcore = SPDK_ENV_LCORE_ID_ANY; static uint32_t g_main_lcore; static bool g_core_mngmnt_available; uint64_t g_last_main_core_busy, g_last_main_core_idle; #define SCHEDULER_THREAD_BUSY 100 #define SCHEDULER_LOAD_LIMIT 50 static uint32_t _get_next_target_core(void) { uint32_t target_lcore; if (g_next_lcore == SPDK_ENV_LCORE_ID_ANY) { g_next_lcore = spdk_env_get_first_core(); } target_lcore = g_next_lcore; g_next_lcore = spdk_env_get_next_core(g_next_lcore); return target_lcore; } static uint8_t _get_thread_load(struct spdk_lw_thread *lw_thread) { uint64_t busy, idle; busy = lw_thread->snapshot_stats.busy_tsc - lw_thread->last_stats.busy_tsc; idle = lw_thread->snapshot_stats.idle_tsc - lw_thread->last_stats.idle_tsc; lw_thread->last_stats.busy_tsc = lw_thread->snapshot_stats.busy_tsc; lw_thread->last_stats.idle_tsc = lw_thread->snapshot_stats.idle_tsc; /* return percentage of time thread was busy */ return busy * 100 / (busy + idle); } static int init(struct spdk_governor *governor) { int rc; g_main_lcore = spdk_env_get_current_core(); rc = _spdk_governor_set("dpdk_governor"); g_core_mngmnt_available = !rc; g_last_main_core_busy = 0; g_last_main_core_idle = 0; return 0; } static int deinit(struct spdk_governor *governor) { uint32_t i; int rc = 0; if (!g_core_mngmnt_available) { return 0; } if (governor->deinit_core) { SPDK_ENV_FOREACH_CORE(i) { rc = governor->deinit_core(i); if (rc != 0) { SPDK_ERRLOG("Failed to deinitialize governor for core %d\n", i); } } } if (governor->deinit) { rc = governor->deinit(); } return rc; } static void balance(struct spdk_scheduler_core_info *cores_info, int cores_count, struct spdk_governor *governor) { struct spdk_reactor *reactor; struct spdk_lw_thread *lw_thread; struct spdk_thread *thread; struct spdk_scheduler_core_info *core; struct spdk_cpuset *cpumask; uint64_t main_core_busy; uint64_t main_core_idle; uint64_t thread_busy; uint32_t target_lcore; uint32_t i, j, k; int rc; uint8_t load; bool busy_threads_present = false; main_core_busy = cores_info[g_main_lcore].core_busy_tsc - g_last_main_core_busy; main_core_idle = cores_info[g_main_lcore].core_idle_tsc - g_last_main_core_idle; g_last_main_core_busy = cores_info[g_main_lcore].core_busy_tsc; g_last_main_core_idle = cores_info[g_main_lcore].core_idle_tsc; SPDK_ENV_FOREACH_CORE(i) { cores_info[i].pending_threads_count = cores_info[i].threads_count; } /* Distribute active threads across all cores and move idle threads to main core */ SPDK_ENV_FOREACH_CORE(i) { core = &cores_info[i]; for (j = 0; j < core->threads_count; j++) { lw_thread = core->threads[j]; lw_thread->new_lcore = lw_thread->lcore; thread = spdk_thread_get_from_ctx(lw_thread); cpumask = spdk_thread_get_cpumask(thread); if (lw_thread->last_stats.busy_tsc + lw_thread->last_stats.idle_tsc == 0) { lw_thread->last_stats.busy_tsc = lw_thread->snapshot_stats.busy_tsc; lw_thread->last_stats.idle_tsc = lw_thread->snapshot_stats.idle_tsc; if (i != g_main_lcore) { busy_threads_present = true; } continue; } thread_busy = lw_thread->snapshot_stats.busy_tsc - lw_thread->last_stats.busy_tsc; load = _get_thread_load(lw_thread); if (i == g_main_lcore && load >= SCHEDULER_LOAD_LIMIT) { /* This thread is active and on the main core, we need to pick a core to move it to */ for (k = 0; k < spdk_env_get_core_count(); k++) { target_lcore = _get_next_target_core(); /* Do not use main core if it is too busy for new thread */ if (target_lcore == g_main_lcore && thread_busy > main_core_idle) { continue; } if (spdk_cpuset_get_cpu(cpumask, target_lcore)) { lw_thread->new_lcore = target_lcore; cores_info[target_lcore].pending_threads_count++; core->pending_threads_count--; if (target_lcore != g_main_lcore) { busy_threads_present = true; main_core_idle += spdk_min(UINT64_MAX - main_core_idle, thread_busy); main_core_busy -= spdk_min(main_core_busy, thread_busy); } break; } } } else if (i != g_main_lcore && load < SCHEDULER_LOAD_LIMIT) { /* This thread is idle but not on the main core, so we need to move it to the main core */ lw_thread->new_lcore = g_main_lcore; cores_info[g_main_lcore].pending_threads_count++; core->pending_threads_count--; main_core_busy += spdk_min(UINT64_MAX - main_core_busy, thread_busy); main_core_idle -= spdk_min(main_core_idle, thread_busy); } else { /* Move busy thread only if cpumask does not match current core (except main core) */ if (i != g_main_lcore) { if (!spdk_cpuset_get_cpu(cpumask, i)) { for (k = 0; k < spdk_env_get_core_count(); k++) { target_lcore = _get_next_target_core(); if (spdk_cpuset_get_cpu(cpumask, target_lcore)) { lw_thread->new_lcore = target_lcore; cores_info[target_lcore].pending_threads_count++; core->pending_threads_count--; if (target_lcore == g_main_lcore) { main_core_busy += spdk_min(UINT64_MAX - main_core_busy, thread_busy); main_core_idle -= spdk_min(main_core_idle, thread_busy); } break; } } } busy_threads_present = true; } } } } /* Switch unused cores to interrupt mode and switch cores to polled mode * if they will be used after rebalancing */ SPDK_ENV_FOREACH_CORE(i) { reactor = spdk_reactor_get(i); core = &cores_info[i]; /* We can switch mode only if reactor already does not have any threads */ if (core->pending_threads_count == 0 && TAILQ_EMPTY(&reactor->threads)) { core->interrupt_mode = true; } else if (core->pending_threads_count != 0) { core->interrupt_mode = false; } } if (!g_core_mngmnt_available) { return; } /* Change main core frequency if needed */ if (busy_threads_present) { rc = governor->set_core_freq_max(g_main_lcore); if (rc < 0) { SPDK_ERRLOG("setting default frequency for core %u failed\n", g_main_lcore); } } else if (main_core_busy > main_core_idle) { rc = governor->core_freq_up(g_main_lcore); if (rc < 0) { SPDK_ERRLOG("increasing frequency for core %u failed\n", g_main_lcore); } } else { rc = governor->core_freq_down(g_main_lcore); if (rc < 0) { SPDK_ERRLOG("lowering frequency for core %u failed\n", g_main_lcore); } } } static struct spdk_scheduler scheduler_dynamic = { .name = "dynamic", .init = init, .deinit = deinit, .balance = balance, }; SPDK_SCHEDULER_REGISTER(scheduler_dynamic);