/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "spdk/env.h" #include "spdk/event.h" #include "spdk/init.h" #include "spdk/string.h" #include "spdk/thread.h" #include "spdk/bdev.h" #include "spdk/rpc.h" #include "spdk/nvmf.h" #include "spdk/likely.h" #include "spdk_internal/event.h" #define NVMF_DEFAULT_SUBSYSTEMS 32 #define ACCEPT_TIMEOUT_US 10000 /* 10ms */ static const char *g_rpc_addr = SPDK_DEFAULT_RPC_ADDR; static uint32_t g_acceptor_poll_rate = ACCEPT_TIMEOUT_US; enum nvmf_target_state { NVMF_INIT_SUBSYSTEM = 0, NVMF_INIT_TARGET, NVMF_INIT_POLL_GROUPS, NVMF_INIT_START_SUBSYSTEMS, NVMF_RUNNING, NVMF_FINI_STOP_SUBSYSTEMS, NVMF_FINI_POLL_GROUPS, NVMF_FINI_TARGET, NVMF_FINI_SUBSYSTEM, }; struct nvmf_lw_thread { TAILQ_ENTRY(nvmf_lw_thread) link; bool resched; }; struct nvmf_reactor { uint32_t core; struct spdk_ring *threads; TAILQ_ENTRY(nvmf_reactor) link; }; struct nvmf_target_poll_group { struct spdk_nvmf_poll_group *group; struct spdk_thread *thread; TAILQ_ENTRY(nvmf_target_poll_group) link; }; struct nvmf_target { struct spdk_nvmf_tgt *tgt; int max_subsystems; }; TAILQ_HEAD(, nvmf_reactor) g_reactors = TAILQ_HEAD_INITIALIZER(g_reactors); TAILQ_HEAD(, nvmf_target_poll_group) g_poll_groups = TAILQ_HEAD_INITIALIZER(g_poll_groups); static uint32_t g_num_poll_groups = 0; static struct nvmf_reactor *g_main_reactor = NULL; static struct nvmf_reactor *g_next_reactor = NULL; static struct spdk_thread *g_init_thread = NULL; static struct spdk_thread *g_fini_thread = NULL; static struct nvmf_target g_nvmf_tgt = { .max_subsystems = NVMF_DEFAULT_SUBSYSTEMS, }; static struct nvmf_target_poll_group *g_next_pg = NULL; static pthread_mutex_t g_mutex = PTHREAD_MUTEX_INITIALIZER; static bool g_reactors_exit = false; static enum nvmf_target_state g_target_state; static bool g_intr_received = false; static uint32_t g_migrate_pg_period_us = 0; static struct spdk_poller *g_migrate_pg_poller = NULL; static void nvmf_target_advance_state(void); static int nvmf_schedule_spdk_thread(struct spdk_thread *thread); static void usage(char *program_name) { printf("%s options", program_name); printf("\n"); printf("\t[-g period of round robin poll group migration (us) (default: 0 (disabled))]\n"); printf("\t[-h show this usage]\n"); printf("\t[-i shared memory ID (optional)]\n"); printf("\t[-m core mask for DPDK]\n"); printf("\t[-n max subsystems for target(default: 32)]\n"); printf("\t[-p acceptor poller rate in us for target(default: 10000us)]\n"); printf("\t[-r RPC listen address (default /var/tmp/spdk.sock)]\n"); printf("\t[-s memory size in MB for DPDK (default: 0MB)]\n"); printf("\t[-u disable PCI access]\n"); } static int parse_args(int argc, char **argv, struct spdk_env_opts *opts) { int op; long int value; while ((op = getopt(argc, argv, "g:i:m:n:p:r:s:u:h")) != -1) { switch (op) { case 'g': value = spdk_strtol(optarg, 10); if (value < 0) { fprintf(stderr, "converting a string to integer failed\n"); return -EINVAL; } g_migrate_pg_period_us = value; break; case 'i': value = spdk_strtol(optarg, 10); if (value < 0) { fprintf(stderr, "converting a string to integer failed\n"); return -EINVAL; } opts->shm_id = value; break; case 'm': opts->core_mask = optarg; break; case 'n': g_nvmf_tgt.max_subsystems = spdk_strtol(optarg, 10); if (g_nvmf_tgt.max_subsystems < 0) { fprintf(stderr, "converting a string to integer failed\n"); return -EINVAL; } break; case 'p': value = spdk_strtol(optarg, 10); if (value < 0) { fprintf(stderr, "converting a string to integer failed\n"); return -EINVAL; } g_acceptor_poll_rate = value; break; case 'r': g_rpc_addr = optarg; break; case 's': value = spdk_strtol(optarg, 10); if (value < 0) { fprintf(stderr, "converting a string to integer failed\n"); return -EINVAL; } opts->mem_size = value; break; case 'u': opts->no_pci = true; break; case 'h': usage(argv[0]); exit(EXIT_SUCCESS); default: usage(argv[0]); return 1; } } return 0; } static int nvmf_reactor_run(void *arg) { struct nvmf_reactor *nvmf_reactor = arg; struct nvmf_lw_thread *lw_thread; struct spdk_thread *thread; /* run all the lightweight threads in this nvmf_reactor by FIFO. */ do { if (spdk_ring_dequeue(nvmf_reactor->threads, (void **)&lw_thread, 1)) { thread = spdk_thread_get_from_ctx(lw_thread); spdk_thread_poll(thread, 0, 0); if (spdk_unlikely(spdk_thread_is_exited(thread) && spdk_thread_is_idle(thread))) { spdk_thread_destroy(thread); } else if (spdk_unlikely(lw_thread->resched)) { lw_thread->resched = false; nvmf_schedule_spdk_thread(thread); } else { spdk_ring_enqueue(nvmf_reactor->threads, (void **)&lw_thread, 1, NULL); } } } while (!g_reactors_exit); /* free all the lightweight threads */ while (spdk_ring_dequeue(nvmf_reactor->threads, (void **)&lw_thread, 1)) { thread = spdk_thread_get_from_ctx(lw_thread); spdk_set_thread(thread); if (spdk_thread_is_exited(thread)) { spdk_thread_destroy(thread); } else { /* This thread is not exited yet, and may need to communicate with other threads * to be exited. So mark it as exiting, and check again after traversing other threads. */ spdk_thread_exit(thread); spdk_thread_poll(thread, 0, 0); spdk_ring_enqueue(nvmf_reactor->threads, (void **)&lw_thread, 1, NULL); } } return 0; } static int nvmf_schedule_spdk_thread(struct spdk_thread *thread) { struct nvmf_reactor *nvmf_reactor; struct nvmf_lw_thread *lw_thread; struct spdk_cpuset *cpumask; uint32_t i; /* Lightweight threads may have a requested cpumask. * This is a request only - the scheduler does not have to honor it. * For this scheduler implementation, each reactor is pinned to * a particular core so honoring the request is reasonably easy. */ cpumask = spdk_thread_get_cpumask(thread); lw_thread = spdk_thread_get_ctx(thread); assert(lw_thread != NULL); memset(lw_thread, 0, sizeof(*lw_thread)); /* assign lightweight threads to nvmf reactor(core) * Here we use the mutex.The way the actual SPDK event framework * solves this is by using internal rings for messages between reactors */ pthread_mutex_lock(&g_mutex); for (i = 0; i < spdk_env_get_core_count(); i++) { if (g_next_reactor == NULL) { g_next_reactor = TAILQ_FIRST(&g_reactors); } nvmf_reactor = g_next_reactor; g_next_reactor = TAILQ_NEXT(g_next_reactor, link); /* each spdk_thread has the core affinity */ if (spdk_cpuset_get_cpu(cpumask, nvmf_reactor->core)) { spdk_ring_enqueue(nvmf_reactor->threads, (void **)&lw_thread, 1, NULL); break; } } pthread_mutex_unlock(&g_mutex); if (i == spdk_env_get_core_count()) { fprintf(stderr, "failed to schedule spdk thread\n"); return -1; } return 0; } static void nvmf_request_spdk_thread_reschedule(struct spdk_thread *thread) { struct nvmf_lw_thread *lw_thread; assert(thread == spdk_get_thread()); lw_thread = spdk_thread_get_ctx(thread); assert(lw_thread != NULL); lw_thread->resched = true; } static int nvmf_reactor_thread_op(struct spdk_thread *thread, enum spdk_thread_op op) { switch (op) { case SPDK_THREAD_OP_NEW: return nvmf_schedule_spdk_thread(thread); case SPDK_THREAD_OP_RESCHED: nvmf_request_spdk_thread_reschedule(thread); return 0; default: return -ENOTSUP; } } static bool nvmf_reactor_thread_op_supported(enum spdk_thread_op op) { switch (op) { case SPDK_THREAD_OP_NEW: case SPDK_THREAD_OP_RESCHED: return true; default: return false; } } static int nvmf_init_threads(void) { int rc; uint32_t i; char thread_name[32]; struct nvmf_reactor *nvmf_reactor; struct spdk_cpuset cpumask; uint32_t main_core = spdk_env_get_current_core(); /* Whenever SPDK creates a new lightweight thread it will call * nvmf_schedule_spdk_thread asking for the application to begin * polling it via spdk_thread_poll(). Each lightweight thread in * SPDK optionally allocates extra memory to be used by the application * framework. The size of the extra memory allocated is the second parameter. */ spdk_thread_lib_init_ext(nvmf_reactor_thread_op, nvmf_reactor_thread_op_supported, sizeof(struct nvmf_lw_thread)); /* Spawn one system thread per CPU core. The system thread is called a reactor. * SPDK will spawn lightweight threads that must be mapped to reactors in * nvmf_schedule_spdk_thread. Using a single system thread per CPU core is a * choice unique to this application. SPDK itself does not require this specific * threading model. For example, another viable threading model would be * dynamically scheduling the lightweight threads onto a thread pool using a * work queue. */ SPDK_ENV_FOREACH_CORE(i) { nvmf_reactor = calloc(1, sizeof(struct nvmf_reactor)); if (!nvmf_reactor) { fprintf(stderr, "failed to alloc nvmf reactor\n"); rc = -ENOMEM; goto err_exit; } nvmf_reactor->core = i; nvmf_reactor->threads = spdk_ring_create(SPDK_RING_TYPE_MP_SC, 1024, SPDK_ENV_SOCKET_ID_ANY); if (!nvmf_reactor->threads) { fprintf(stderr, "failed to alloc ring\n"); free(nvmf_reactor); rc = -ENOMEM; goto err_exit; } TAILQ_INSERT_TAIL(&g_reactors, nvmf_reactor, link); if (i == main_core) { g_main_reactor = nvmf_reactor; g_next_reactor = g_main_reactor; } else { rc = spdk_env_thread_launch_pinned(i, nvmf_reactor_run, nvmf_reactor); if (rc) { fprintf(stderr, "failed to pin reactor launch\n"); goto err_exit; } } } /* Spawn a lightweight thread only on the current core to manage this application. */ spdk_cpuset_zero(&cpumask); spdk_cpuset_set_cpu(&cpumask, main_core, true); snprintf(thread_name, sizeof(thread_name), "nvmf_main_thread"); g_init_thread = spdk_thread_create(thread_name, &cpumask); if (!g_init_thread) { fprintf(stderr, "failed to create spdk thread\n"); return -1; } fprintf(stdout, "nvmf threads initlize successfully\n"); return 0; err_exit: return rc; } static void nvmf_destroy_threads(void) { struct nvmf_reactor *nvmf_reactor, *tmp; TAILQ_FOREACH_SAFE(nvmf_reactor, &g_reactors, link, tmp) { spdk_ring_free(nvmf_reactor->threads); free(nvmf_reactor); } pthread_mutex_destroy(&g_mutex); spdk_thread_lib_fini(); fprintf(stdout, "nvmf threads destroy successfully\n"); } static void nvmf_tgt_destroy_done(void *ctx, int status) { fprintf(stdout, "destroyed the nvmf target service\n"); g_target_state = NVMF_FINI_SUBSYSTEM; nvmf_target_advance_state(); } static void nvmf_destroy_nvmf_tgt(void) { if (g_nvmf_tgt.tgt) { spdk_nvmf_tgt_destroy(g_nvmf_tgt.tgt, nvmf_tgt_destroy_done, NULL); } else { g_target_state = NVMF_FINI_SUBSYSTEM; } } static void nvmf_create_nvmf_tgt(void) { struct spdk_nvmf_subsystem *subsystem; struct spdk_nvmf_target_opts tgt_opts; tgt_opts.max_subsystems = g_nvmf_tgt.max_subsystems; snprintf(tgt_opts.name, sizeof(tgt_opts.name), "%s", "nvmf_example"); /* Construct the default NVMe-oF target * An NVMe-oF target is a collection of subsystems, namespace, and poll * groups, and defines the scope of the NVMe-oF discovery service. */ g_nvmf_tgt.tgt = spdk_nvmf_tgt_create(&tgt_opts); if (g_nvmf_tgt.tgt == NULL) { fprintf(stderr, "spdk_nvmf_tgt_create() failed\n"); goto error; } /* Create and add discovery subsystem to the NVMe-oF target. * NVMe-oF defines a discovery mechanism that a host uses to determine * the NVM subsystems that expose namespaces that the host may access. * It provides a host with following capabilities: * 1,The ability to discover a list of NVM subsystems with namespaces * that are accessible to the host. * 2,The ability to discover multiple paths to an NVM subsystem. * 3,The ability to discover controllers that are statically configured. */ subsystem = spdk_nvmf_subsystem_create(g_nvmf_tgt.tgt, SPDK_NVMF_DISCOVERY_NQN, SPDK_NVMF_SUBTYPE_DISCOVERY, 0); if (subsystem == NULL) { fprintf(stderr, "failed to create discovery nvmf library subsystem\n"); goto error; } /* Allow any host to access the discovery subsystem */ spdk_nvmf_subsystem_set_allow_any_host(subsystem, true); fprintf(stdout, "created a nvmf target service\n"); g_target_state = NVMF_INIT_POLL_GROUPS; return; error: g_target_state = NVMF_FINI_TARGET; } static void nvmf_tgt_subsystem_stop_next(struct spdk_nvmf_subsystem *subsystem, void *cb_arg, int status) { int rc; subsystem = spdk_nvmf_subsystem_get_next(subsystem); if (subsystem) { rc = spdk_nvmf_subsystem_stop(subsystem, nvmf_tgt_subsystem_stop_next, cb_arg); if (rc) { nvmf_tgt_subsystem_stop_next(subsystem, cb_arg, 0); fprintf(stderr, "Unable to stop NVMe-oF subsystem. Trying others.\n"); } return; } fprintf(stdout, "all subsystems of target stopped\n"); g_target_state = NVMF_FINI_POLL_GROUPS; nvmf_target_advance_state(); } static void nvmf_tgt_stop_subsystems(struct nvmf_target *nvmf_tgt) { struct spdk_nvmf_subsystem *subsystem; int rc; subsystem = spdk_nvmf_subsystem_get_first(nvmf_tgt->tgt); if (spdk_likely(subsystem)) { rc = spdk_nvmf_subsystem_stop(subsystem, nvmf_tgt_subsystem_stop_next, NULL); if (rc) { nvmf_tgt_subsystem_stop_next(subsystem, NULL, 0); fprintf(stderr, "Unable to stop NVMe-oF subsystem. Trying others.\n"); } } else { g_target_state = NVMF_FINI_POLL_GROUPS; } } static void nvmf_tgt_subsystem_start_next(struct spdk_nvmf_subsystem *subsystem, void *cb_arg, int status) { int rc; subsystem = spdk_nvmf_subsystem_get_next(subsystem); if (subsystem) { rc = spdk_nvmf_subsystem_start(subsystem, nvmf_tgt_subsystem_start_next, cb_arg); if (rc) { g_target_state = NVMF_FINI_STOP_SUBSYSTEMS; fprintf(stderr, "Unable to start NVMe-oF subsystem. shutting down app.\n"); nvmf_target_advance_state(); } return; } fprintf(stdout, "all subsystems of target started\n"); g_target_state = NVMF_RUNNING; nvmf_target_advance_state(); } static void nvmf_tgt_start_subsystems(struct nvmf_target *nvmf_tgt) { struct spdk_nvmf_subsystem *subsystem; int rc; /* Subsystem is the NVM subsystem which is a combine of namespaces * except the discovery subsystem which is used for discovery service. * It also controls the hosts that means the subsystem determines whether * the host can access this subsystem. */ subsystem = spdk_nvmf_subsystem_get_first(nvmf_tgt->tgt); if (spdk_likely(subsystem)) { /* In SPDK there are three states in subsystem: Inactive, Active, Paused. * Start subsystem means make it from inactive to active that means * subsystem start to work or it can be accessed. */ rc = spdk_nvmf_subsystem_start(subsystem, nvmf_tgt_subsystem_start_next, NULL); if (rc) { fprintf(stderr, "Unable to start NVMe-oF subsystem. shutting down app.\n"); g_target_state = NVMF_FINI_STOP_SUBSYSTEMS; } } else { g_target_state = NVMF_RUNNING; } } static void nvmf_tgt_create_poll_groups_done(void *ctx) { struct nvmf_target_poll_group *pg = ctx; if (!g_next_pg) { g_next_pg = pg; } TAILQ_INSERT_TAIL(&g_poll_groups, pg, link); assert(g_num_poll_groups < spdk_env_get_core_count()); if (++g_num_poll_groups == spdk_env_get_core_count()) { fprintf(stdout, "create targets's poll groups done\n"); g_target_state = NVMF_INIT_START_SUBSYSTEMS; nvmf_target_advance_state(); } } static void nvmf_tgt_create_poll_group(void *ctx) { struct nvmf_target_poll_group *pg; pg = calloc(1, sizeof(struct nvmf_target_poll_group)); if (!pg) { fprintf(stderr, "failed to allocate poll group\n"); assert(false); return; } pg->thread = spdk_get_thread(); pg->group = spdk_nvmf_poll_group_create(g_nvmf_tgt.tgt); if (!pg->group) { fprintf(stderr, "failed to create poll group of the target\n"); free(pg); assert(false); return; } spdk_thread_send_msg(g_init_thread, nvmf_tgt_create_poll_groups_done, pg); } /* Create a lightweight thread per poll group instead of assuming a pool of lightweight * threads already exist at start up time. A poll group is a collection of unrelated NVMe-oF * connections. Each poll group is only accessed from the associated lightweight thread. */ static void nvmf_poll_groups_create(void) { struct spdk_cpuset tmp_cpumask = {}; uint32_t i; char thread_name[32]; struct spdk_thread *thread; assert(g_init_thread != NULL); SPDK_ENV_FOREACH_CORE(i) { spdk_cpuset_zero(&tmp_cpumask); spdk_cpuset_set_cpu(&tmp_cpumask, i, true); snprintf(thread_name, sizeof(thread_name), "nvmf_tgt_poll_group_%u", i); thread = spdk_thread_create(thread_name, &tmp_cpumask); assert(thread != NULL); spdk_thread_send_msg(thread, nvmf_tgt_create_poll_group, NULL); } } static void _nvmf_tgt_destroy_poll_groups_done(void *ctx) { assert(g_num_poll_groups > 0); if (--g_num_poll_groups == 0) { fprintf(stdout, "destroy targets's poll groups done\n"); g_target_state = NVMF_FINI_TARGET; nvmf_target_advance_state(); } } static void nvmf_tgt_destroy_poll_groups_done(void *cb_arg, int status) { struct nvmf_target_poll_group *pg = cb_arg; free(pg); spdk_thread_send_msg(g_fini_thread, _nvmf_tgt_destroy_poll_groups_done, NULL); spdk_thread_exit(spdk_get_thread()); } static void nvmf_tgt_destroy_poll_group(void *ctx) { struct nvmf_target_poll_group *pg = ctx; spdk_nvmf_poll_group_destroy(pg->group, nvmf_tgt_destroy_poll_groups_done, pg); } static void nvmf_poll_groups_destroy(void) { struct nvmf_target_poll_group *pg, *tmp; g_fini_thread = spdk_get_thread(); assert(g_fini_thread != NULL); TAILQ_FOREACH_SAFE(pg, &g_poll_groups, link, tmp) { TAILQ_REMOVE(&g_poll_groups, pg, link); spdk_thread_send_msg(pg->thread, nvmf_tgt_destroy_poll_group, pg); } } static void nvmf_subsystem_fini_done(void *cb_arg) { fprintf(stdout, "bdev subsystem finish successfully\n"); spdk_rpc_finish(); g_reactors_exit = true; } static void nvmf_subsystem_init_done(int rc, void *cb_arg) { fprintf(stdout, "bdev subsystem init successfully\n"); rc = spdk_rpc_initialize(g_rpc_addr); if (rc) { spdk_app_stop(rc); return; } spdk_rpc_set_state(SPDK_RPC_RUNTIME); g_target_state = NVMF_INIT_TARGET; nvmf_target_advance_state(); } static void migrate_poll_group_by_rr(void *ctx) { uint32_t current_core, next_core; struct spdk_cpuset cpumask = {}; current_core = spdk_env_get_current_core(); next_core = spdk_env_get_next_core(current_core); if (next_core == UINT32_MAX) { next_core = spdk_env_get_first_core(); } spdk_cpuset_set_cpu(&cpumask, next_core, true); spdk_thread_set_cpumask(&cpumask); } static int migrate_poll_groups_by_rr(void *ctx) { struct nvmf_target_poll_group *pg; TAILQ_FOREACH(pg, &g_poll_groups, link) { spdk_thread_send_msg(pg->thread, migrate_poll_group_by_rr, NULL); } return 1; } static void nvmf_target_advance_state(void) { enum nvmf_target_state prev_state; do { prev_state = g_target_state; switch (g_target_state) { case NVMF_INIT_SUBSYSTEM: /* initlize the bdev layer */ spdk_subsystem_init(nvmf_subsystem_init_done, NULL); return; case NVMF_INIT_TARGET: nvmf_create_nvmf_tgt(); break; case NVMF_INIT_POLL_GROUPS: nvmf_poll_groups_create(); break; case NVMF_INIT_START_SUBSYSTEMS: nvmf_tgt_start_subsystems(&g_nvmf_tgt); break; case NVMF_RUNNING: fprintf(stdout, "nvmf target is running\n"); if (g_migrate_pg_period_us != 0) { g_migrate_pg_poller = SPDK_POLLER_REGISTER(migrate_poll_groups_by_rr, NULL, g_migrate_pg_period_us); } break; case NVMF_FINI_STOP_SUBSYSTEMS: spdk_poller_unregister(&g_migrate_pg_poller); nvmf_tgt_stop_subsystems(&g_nvmf_tgt); break; case NVMF_FINI_POLL_GROUPS: nvmf_poll_groups_destroy(); break; case NVMF_FINI_TARGET: nvmf_destroy_nvmf_tgt(); break; case NVMF_FINI_SUBSYSTEM: spdk_subsystem_fini(nvmf_subsystem_fini_done, NULL); break; } } while (g_target_state != prev_state); } static void nvmf_target_app_start(void *arg) { g_target_state = NVMF_INIT_SUBSYSTEM; nvmf_target_advance_state(); } static void _nvmf_shutdown_cb(void *ctx) { /* Still in initialization state, defer shutdown operation */ if (g_target_state < NVMF_RUNNING) { spdk_thread_send_msg(spdk_get_thread(), _nvmf_shutdown_cb, NULL); return; } else if (g_target_state > NVMF_RUNNING) { /* Already in Shutdown status, ignore the signal */ return; } g_target_state = NVMF_FINI_STOP_SUBSYSTEMS; nvmf_target_advance_state(); } static void nvmf_shutdown_cb(int signo) { if (!g_intr_received) { g_intr_received = true; spdk_thread_send_msg(g_init_thread, _nvmf_shutdown_cb, NULL); } } static int nvmf_setup_signal_handlers(void) { struct sigaction sigact; sigset_t sigmask; int signals[] = {SIGINT, SIGTERM}; int num_signals = sizeof(signals) / sizeof(int); int rc, i; rc = sigemptyset(&sigmask); if (rc) { fprintf(stderr, "errno:%d--failed to empty signal set\n", errno); return rc; } memset(&sigact, 0, sizeof(sigact)); rc = sigemptyset(&sigact.sa_mask); if (rc) { fprintf(stderr, "errno:%d--failed to empty signal set\n", errno); return rc; } /* Install the same handler for SIGINT and SIGTERM */ sigact.sa_handler = nvmf_shutdown_cb; for (i = 0; i < num_signals; i++) { rc = sigaction(signals[i], &sigact, NULL); if (rc < 0) { fprintf(stderr, "errno:%d--sigaction() failed\n", errno); return rc; } rc = sigaddset(&sigmask, signals[i]); if (rc) { fprintf(stderr, "errno:%d--failed to add set\n", errno); return rc; } } pthread_sigmask(SIG_UNBLOCK, &sigmask, NULL); return 0; } int main(int argc, char **argv) { int rc; struct spdk_env_opts opts; spdk_env_opts_init(&opts); opts.name = "nvmf-example"; rc = parse_args(argc, argv, &opts); if (rc != 0) { return rc; } if (spdk_env_init(&opts) < 0) { fprintf(stderr, "unable to initialize SPDK env\n"); return -EINVAL; } /* Initialize the threads */ rc = nvmf_init_threads(); assert(rc == 0); /* Send a message to the thread assigned to the main reactor * that continues initialization. This is how we bootstrap the * program so that all code from here on is running on an SPDK thread. */ assert(g_init_thread != NULL); rc = nvmf_setup_signal_handlers(); assert(rc == 0); spdk_thread_send_msg(g_init_thread, nvmf_target_app_start, NULL); nvmf_reactor_run(g_main_reactor); spdk_env_thread_wait_all(); nvmf_destroy_threads(); return rc; }