/*- * BSD LICENSE * * Copyright(c) 2010-2015 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include "spdk/file.h" #include "spdk/nvme.h" #include "spdk/pci.h" #include "spdk/string.h" #if HAVE_LIBAIO #include #include #include #endif struct ctrlr_entry { struct nvme_controller *ctrlr; struct ctrlr_entry *next; }; enum entry_type { ENTRY_TYPE_NVME_NS, ENTRY_TYPE_AIO_FILE, }; struct ns_entry { enum entry_type type; union { struct { struct nvme_controller *ctrlr; struct nvme_namespace *ns; } nvme; #if HAVE_LIBAIO struct { int fd; io_context_t ctx; struct io_event *events; } aio; #endif } u; struct ns_entry *next; uint32_t io_size_blocks; int io_completed; int current_queue_depth; uint64_t size_in_ios; uint64_t offset_in_ios; bool is_draining; char name[1024]; }; struct perf_task { struct ns_entry *entry; void *buf; #if HAVE_LIBAIO struct iocb iocb; #endif }; struct worker_thread { struct ns_entry *namespaces; struct worker_thread *next; unsigned lcore; }; struct rte_mempool *request_mempool; static struct rte_mempool *task_pool; static struct ctrlr_entry *g_controllers = NULL; static struct worker_thread *g_workers = NULL; static struct worker_thread *g_current_worker = NULL; static uint64_t g_tsc_rate; static int g_io_size_bytes; static int g_rw_percentage; static int g_is_random; static int g_queue_depth; static int g_time_in_sec; static const char *g_core_mask; static int g_aio_optind; /* Index of first AIO filename in argv */ static void task_complete(struct perf_task *task); static void register_ns(struct nvme_controller *ctrlr, struct pci_device *pci_dev, struct nvme_namespace *ns) { struct worker_thread *worker; struct ns_entry *entry = malloc(sizeof(struct ns_entry)); const struct nvme_controller_data *cdata = nvme_ctrlr_get_data(ctrlr); worker = g_current_worker; entry->type = ENTRY_TYPE_NVME_NS; entry->u.nvme.ctrlr = ctrlr; entry->u.nvme.ns = ns; entry->next = worker->namespaces; entry->io_completed = 0; entry->current_queue_depth = 0; entry->offset_in_ios = 0; entry->size_in_ios = nvme_ns_get_size(ns) / g_io_size_bytes; entry->io_size_blocks = g_io_size_bytes / nvme_ns_get_sector_size(ns); entry->is_draining = false; snprintf(entry->name, sizeof(cdata->mn), "%s", cdata->mn); printf("Assigning namespace %s to lcore %u\n", entry->name, worker->lcore); worker->namespaces = entry; if (worker->next == NULL) { g_current_worker = g_workers; } else { g_current_worker = worker->next; } } static void register_ctrlr(struct nvme_controller *ctrlr, struct pci_device *pci_dev) { int nsid, num_ns; struct ctrlr_entry *entry = malloc(sizeof(struct ctrlr_entry)); entry->ctrlr = ctrlr; entry->next = g_controllers; g_controllers = entry; num_ns = nvme_ctrlr_get_num_ns(ctrlr); for (nsid = 1; nsid <= num_ns; nsid++) { register_ns(ctrlr, pci_dev, nvme_ctrlr_get_ns(ctrlr, nsid)); } } #if HAVE_LIBAIO static int register_aio_file(const char *path) { struct worker_thread *worker; struct ns_entry *entry; int flags, fd; uint64_t size; uint32_t blklen; if (g_rw_percentage == 100) { flags = O_RDONLY; } else { flags = O_RDWR; } flags |= O_DIRECT; fd = open(path, flags); if (fd < 0) { fprintf(stderr, "Could not open AIO device %s: %s\n", path, strerror(errno)); return -1; } size = file_get_size(fd); if (size == 0) { fprintf(stderr, "Could not determine size of AIO device %s\n", path); close(fd); return -1; } blklen = dev_get_blocklen(fd); if (blklen == 0) { fprintf(stderr, "Could not determine block size of AIO device %s\n", path); close(fd); return -1; } worker = g_current_worker; entry = malloc(sizeof(struct ns_entry)); entry->type = ENTRY_TYPE_AIO_FILE; entry->u.aio.fd = fd; entry->u.aio.ctx = 0; if (io_setup(g_queue_depth, &entry->u.aio.ctx) < 0) { perror("io_setup"); return -1; } entry->u.aio.events = calloc(g_queue_depth, sizeof(struct io_event)); entry->next = worker->namespaces; entry->io_completed = 0; entry->current_queue_depth = 0; entry->offset_in_ios = 0; entry->size_in_ios = size / g_io_size_bytes; entry->io_size_blocks = g_io_size_bytes / blklen; entry->is_draining = false; snprintf(entry->name, sizeof(entry->name), "%s", path); printf("Assigning AIO device %s to lcore %u\n", entry->name, worker->lcore); worker->namespaces = entry; if (worker->next == NULL) { g_current_worker = g_workers; } else { g_current_worker = worker->next; } return 0; } static int aio_submit(io_context_t aio_ctx, struct iocb *iocb, int fd, enum io_iocb_cmd cmd, void *buf, unsigned long nbytes, uint64_t offset, void *cb_ctx) { iocb->aio_fildes = fd; iocb->aio_reqprio = 0; iocb->aio_lio_opcode = cmd; iocb->u.c.buf = buf; iocb->u.c.nbytes = nbytes; iocb->u.c.offset = offset; iocb->data = cb_ctx; if (io_submit(aio_ctx, 1, &iocb) < 0) { perror("io_submit"); return -1; } return 0; } static void aio_check_io(struct ns_entry *entry) { int count, i; struct timespec timeout; timeout.tv_sec = 0; timeout.tv_nsec = 0; count = io_getevents(entry->u.aio.ctx, 1, g_queue_depth, entry->u.aio.events, &timeout); if (count < 0) { fprintf(stderr, "io_getevents error\n"); exit(1); } for (i = 0; i < count; i++) { task_complete(entry->u.aio.events[i].data); } } #endif /* HAVE_LIBAIO */ void task_ctor(struct rte_mempool *mp, void *arg, void *__task, unsigned id) { struct perf_task *task = __task; task->buf = rte_malloc(NULL, g_io_size_bytes, 0x200); } static void io_complete(void *ctx, const struct nvme_completion *completion); static unsigned int __thread seed = 0; static void submit_single_io(struct ns_entry *entry) { struct perf_task *task = NULL; uint64_t offset_in_ios; int rc; rte_mempool_get(task_pool, (void **)&task); task->entry = entry; if (g_is_random) { offset_in_ios = rand_r(&seed) % entry->size_in_ios; } else { offset_in_ios = entry->offset_in_ios++; if (entry->offset_in_ios == entry->size_in_ios) { entry->offset_in_ios = 0; } } if ((g_rw_percentage == 100) || (g_rw_percentage != 0 && ((rand_r(&seed) % 100) < g_rw_percentage))) { #if HAVE_LIBAIO if (entry->type == ENTRY_TYPE_AIO_FILE) { rc = aio_submit(entry->u.aio.ctx, &task->iocb, entry->u.aio.fd, IO_CMD_PREAD, task->buf, g_io_size_bytes, offset_in_ios * g_io_size_bytes, task); } else #endif { rc = nvme_ns_cmd_read(entry->u.nvme.ns, task->buf, offset_in_ios * entry->io_size_blocks, entry->io_size_blocks, io_complete, task); } } else { #if HAVE_LIBAIO if (entry->type == ENTRY_TYPE_AIO_FILE) { rc = aio_submit(entry->u.aio.ctx, &task->iocb, entry->u.aio.fd, IO_CMD_PWRITE, task->buf, g_io_size_bytes, offset_in_ios * g_io_size_bytes, task); } else #endif { rc = nvme_ns_cmd_write(entry->u.nvme.ns, task->buf, offset_in_ios * entry->io_size_blocks, entry->io_size_blocks, io_complete, task); } } if (rc != 0) { fprintf(stderr, "starting I/O failed\n"); } entry->current_queue_depth++; } static void task_complete(struct perf_task *task) { struct ns_entry *entry; entry = task->entry; entry->current_queue_depth--; entry->io_completed++; rte_mempool_put(task_pool, task); /* * is_draining indicates when time has expired for the test run * and we are just waiting for the previously submitted I/O * to complete. In this case, do not submit a new I/O to replace * the one just completed. */ if (!entry->is_draining) { submit_single_io(entry); } } static void io_complete(void *ctx, const struct nvme_completion *completion) { task_complete((struct perf_task *)ctx); } static void check_io(struct ns_entry *entry) { #if HAVE_LIBAIO if (entry->type == ENTRY_TYPE_AIO_FILE) { aio_check_io(entry); } else #endif { nvme_ctrlr_process_io_completions(entry->u.nvme.ctrlr); } } static void submit_io(struct ns_entry *entry, int queue_depth) { while (queue_depth-- > 0) { submit_single_io(entry); } } static void drain_io(struct ns_entry *entry) { entry->is_draining = true; while (entry->current_queue_depth > 0) { check_io(entry); } } static int work_fn(void *arg) { uint64_t tsc_end = rte_get_timer_cycles() + g_time_in_sec * g_tsc_rate; struct worker_thread *worker = (struct worker_thread *)arg; struct ns_entry *entry = NULL; printf("Starting thread on core %u\n", worker->lcore); nvme_register_io_thread(); /* Submit initial I/O for each namespace. */ entry = worker->namespaces; while (entry != NULL) { submit_io(entry, g_queue_depth); entry = entry->next; } while (1) { /* * Check for completed I/O for each controller. A new * I/O will be submitted in the io_complete callback * to replace each I/O that is completed. */ entry = worker->namespaces; while (entry != NULL) { check_io(entry); entry = entry->next; } if (rte_get_timer_cycles() > tsc_end) { break; } } entry = worker->namespaces; while (entry != NULL) { drain_io(entry); entry = entry->next; } nvme_unregister_io_thread(); return 0; } static void usage(char *program_name) { printf("%s options", program_name); #if HAVE_LIBAIO printf(" [AIO device(s)]..."); #endif printf("\n"); printf("\t[-q io depth]\n"); printf("\t[-s io size in bytes]\n"); printf("\t[-w io pattern type, must be one of\n"); printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n"); printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n"); printf("\t[-t time in seconds]\n"); printf("\t[-m core mask for I/O submission/completion.]\n"); printf("\t\t(default: 1)]\n"); } static void print_stats(void) { float io_per_second, mb_per_second; float total_io_per_second, total_mb_per_second; struct worker_thread *worker; total_io_per_second = 0; total_mb_per_second = 0; worker = g_workers; while (worker != NULL) { struct ns_entry *entry = worker->namespaces; while (entry != NULL) { io_per_second = (float)entry->io_completed / g_time_in_sec; mb_per_second = io_per_second * g_io_size_bytes / (1024 * 1024); printf("%-.20s: %10.2f IO/s %10.2f MB/s on lcore %u\n", entry->name, io_per_second, mb_per_second, worker->lcore); total_io_per_second += io_per_second; total_mb_per_second += mb_per_second; entry = entry->next; } worker = worker->next; } printf("=====================================================\n"); printf("%-20s: %10.2f IO/s %10.2f MB/s\n", "Total", total_io_per_second, total_mb_per_second); } static int parse_args(int argc, char **argv) { const char *workload_type; int op; bool mix_specified = false; /* default value*/ g_queue_depth = 0; g_io_size_bytes = 0; workload_type = NULL; g_time_in_sec = 0; g_rw_percentage = -1; g_core_mask = NULL; while ((op = getopt(argc, argv, "m:q:s:t:w:M:")) != -1) { switch (op) { case 'm': g_core_mask = optarg; break; case 'q': g_queue_depth = atoi(optarg); break; case 's': g_io_size_bytes = atoi(optarg); break; case 't': g_time_in_sec = atoi(optarg); break; case 'w': workload_type = optarg; break; case 'M': g_rw_percentage = atoi(optarg); mix_specified = true; break; default: usage(argv[0]); return 1; } } if (!g_queue_depth) { usage(argv[0]); return 1; } if (!g_io_size_bytes) { usage(argv[0]); return 1; } if (!workload_type) { usage(argv[0]); return 1; } if (!g_time_in_sec) { usage(argv[0]); return 1; } if (strcmp(workload_type, "read") && strcmp(workload_type, "write") && strcmp(workload_type, "randread") && strcmp(workload_type, "randwrite") && strcmp(workload_type, "rw") && strcmp(workload_type, "randrw")) { fprintf(stderr, "io pattern type must be one of\n" "(read, write, randread, randwrite, rw, randrw)\n"); return 1; } if (!strcmp(workload_type, "read") || !strcmp(workload_type, "randread")) { g_rw_percentage = 100; } if (!strcmp(workload_type, "write") || !strcmp(workload_type, "randwrite")) { g_rw_percentage = 0; } if (!strcmp(workload_type, "read") || !strcmp(workload_type, "randread") || !strcmp(workload_type, "write") || !strcmp(workload_type, "randwrite")) { if (mix_specified) { fprintf(stderr, "Ignoring -M option... Please use -M option" " only when using rw or randrw.\n"); } } if (!strcmp(workload_type, "rw") || !strcmp(workload_type, "randrw")) { if (g_rw_percentage < 0 || g_rw_percentage > 100) { fprintf(stderr, "-M must be specified to value from 0 to 100 " "for rw or randrw.\n"); return 1; } } if (!strcmp(workload_type, "read") || !strcmp(workload_type, "write") || !strcmp(workload_type, "rw")) { g_is_random = 0; } else { g_is_random = 1; } g_aio_optind = optind; optind = 1; return 0; } static int register_workers(void) { unsigned lcore; struct worker_thread *worker; struct worker_thread *prev_worker; worker = malloc(sizeof(struct worker_thread)); memset(worker, 0, sizeof(struct worker_thread)); worker->lcore = rte_get_master_lcore(); g_workers = g_current_worker = worker; RTE_LCORE_FOREACH_SLAVE(lcore) { prev_worker = worker; worker = malloc(sizeof(struct worker_thread)); memset(worker, 0, sizeof(struct worker_thread)); worker->lcore = lcore; prev_worker->next = worker; } return 0; } static int register_controllers(void) { struct pci_device_iterator *pci_dev_iter; struct pci_device *pci_dev; struct pci_id_match match; int rc; printf("Initializing NVMe Controllers\n"); pci_system_init(); match.vendor_id = PCI_MATCH_ANY; match.subvendor_id = PCI_MATCH_ANY; match.subdevice_id = PCI_MATCH_ANY; match.device_id = PCI_MATCH_ANY; match.device_class = NVME_CLASS_CODE; match.device_class_mask = 0xFFFFFF; pci_dev_iter = pci_id_match_iterator_create(&match); rc = 0; while ((pci_dev = pci_device_next(pci_dev_iter))) { struct nvme_controller *ctrlr; if (pci_device_has_non_null_driver(pci_dev)) { fprintf(stderr, "non-null kernel driver attached to nvme\n"); fprintf(stderr, " controller at pci bdf %d:%d:%d\n", pci_dev->bus, pci_dev->dev, pci_dev->func); fprintf(stderr, " skipping...\n"); continue; } pci_device_probe(pci_dev); ctrlr = nvme_attach(pci_dev); if (ctrlr == NULL) { fprintf(stderr, "nvme_attach failed for controller at pci bdf %d:%d:%d\n", pci_dev->bus, pci_dev->dev, pci_dev->func); rc = 1; continue; } register_ctrlr(ctrlr, pci_dev); } pci_iterator_destroy(pci_dev_iter); return rc; } static void unregister_controllers(void) { struct ctrlr_entry *entry = g_controllers; while (entry) { struct ctrlr_entry *next = entry->next; nvme_detach(entry->ctrlr); free(entry); entry = next; } } static int register_aio_files(int argc, char **argv) { #if HAVE_LIBAIO int i; /* Treat everything after the options as files for AIO */ for (i = g_aio_optind; i < argc; i++) { if (register_aio_file(argv[i]) != 0) { return 1; } } #endif /* HAVE_LIBAIO */ return 0; } static char *ealargs[] = { "perf", "-c 0x1", /* This must be the second parameter. It is overwritten by index in main(). */ "-n 4", }; int main(int argc, char **argv) { int rc; struct worker_thread *worker; rc = parse_args(argc, argv); if (rc != 0) { return rc; } ealargs[1] = sprintf_alloc("-c %s", g_core_mask ? g_core_mask : "0x1"); rc = rte_eal_init(sizeof(ealargs) / sizeof(ealargs[0]), ealargs); free(ealargs[1]); if (rc < 0) { fprintf(stderr, "could not initialize dpdk\n"); return 1; } request_mempool = rte_mempool_create("nvme_request", 8192, nvme_request_size(), 128, 0, NULL, NULL, NULL, NULL, SOCKET_ID_ANY, 0); if (request_mempool == NULL) { fprintf(stderr, "could not initialize request mempool\n"); return 1; } task_pool = rte_mempool_create("task_pool", 2048, sizeof(struct perf_task), 64, 0, NULL, NULL, task_ctor, NULL, SOCKET_ID_ANY, 0); g_tsc_rate = rte_get_timer_hz(); register_workers(); if (register_aio_files(argc, argv) != 0) { return 1; } register_controllers(); /* Launch all of the slave workers */ worker = g_workers->next; while (worker != NULL) { if (worker->namespaces != NULL) { rte_eal_remote_launch(work_fn, worker, worker->lcore); } worker = worker->next; } work_fn(g_workers); worker = g_workers->next; while (worker != NULL) { if (worker->namespaces != NULL) { if (rte_eal_wait_lcore(worker->lcore) < 0) { return -1; } } worker = worker->next; } print_stats(); unregister_controllers(); return 0; }