/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "spdk_cunit.h" #include "spdk/env.h" #include "spdk_internal/mock.h" #include "bdev/raid/bdev_raid.c" #include "bdev/raid/bdev_raid_rpc.c" #define MAX_BASE_DRIVES 32 #define MAX_RAIDS 2 #define INVALID_IO_SUBMIT 0xFFFF #define MAX_TEST_IO_RANGE (3 * 3 * 3 * (MAX_BASE_DRIVES + 5)) #define BLOCK_CNT (1024ul * 1024ul * 1024ul * 1024ul) struct spdk_bdev_channel { struct spdk_io_channel *channel; }; /* Data structure to capture the output of IO for verification */ struct io_output { struct spdk_bdev_desc *desc; struct spdk_io_channel *ch; uint64_t offset_blocks; uint64_t num_blocks; spdk_bdev_io_completion_cb cb; void *cb_arg; enum spdk_bdev_io_type iotype; }; struct raid_io_ranges { uint64_t lba; uint64_t nblocks; }; /* Globals */ int g_bdev_io_submit_status; struct io_output *g_io_output = NULL; uint32_t g_io_output_index; uint32_t g_io_comp_status; bool g_child_io_status_flag; void *g_rpc_req; uint32_t g_rpc_req_size; TAILQ_HEAD(bdev, spdk_bdev); struct bdev g_bdev_list; TAILQ_HEAD(waitq, spdk_bdev_io_wait_entry); struct waitq g_io_waitq; uint32_t g_block_len; uint32_t g_strip_size; uint32_t g_max_io_size; uint8_t g_max_base_drives; uint8_t g_max_raids; uint8_t g_ignore_io_output; uint8_t g_rpc_err; char *g_get_raids_output[MAX_RAIDS]; uint32_t g_get_raids_count; uint8_t g_json_decode_obj_err; uint8_t g_json_decode_obj_create; uint8_t g_config_level_create = 0; uint8_t g_test_multi_raids; struct raid_io_ranges g_io_ranges[MAX_TEST_IO_RANGE]; uint32_t g_io_range_idx; uint64_t g_lba_offset; DEFINE_STUB_V(spdk_io_device_register, (void *io_device, spdk_io_channel_create_cb create_cb, spdk_io_channel_destroy_cb destroy_cb, uint32_t ctx_size, const char *name)); DEFINE_STUB_V(spdk_io_device_unregister, (void *io_device, spdk_io_device_unregister_cb unregister_cb)); DEFINE_STUB(spdk_get_io_channel, struct spdk_io_channel *, (void *io_device), NULL); DEFINE_STUB_V(spdk_bdev_module_examine_done, (struct spdk_bdev_module *module)); DEFINE_STUB_V(spdk_bdev_module_list_add, (struct spdk_bdev_module *bdev_module)); DEFINE_STUB(spdk_bdev_register, int, (struct spdk_bdev *bdev), 0); DEFINE_STUB(spdk_bdev_get_io_channel, struct spdk_io_channel *, (struct spdk_bdev_desc *desc), (void *)1); DEFINE_STUB(spdk_bdev_io_type_supported, bool, (struct spdk_bdev *bdev, enum spdk_bdev_io_type io_type), true); DEFINE_STUB_V(spdk_bdev_close, (struct spdk_bdev_desc *desc)); DEFINE_STUB(spdk_bdev_flush_blocks, int, (struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg), 0); DEFINE_STUB(spdk_conf_next_section, struct spdk_conf_section *, (struct spdk_conf_section *sp), NULL); DEFINE_STUB_V(spdk_rpc_register_method, (const char *method, spdk_rpc_method_handler func, uint32_t state_mask)); DEFINE_STUB_V(spdk_rpc_register_alias_deprecated, (const char *method, const char *alias)); DEFINE_STUB_V(spdk_jsonrpc_end_result, (struct spdk_jsonrpc_request *request, struct spdk_json_write_ctx *w)); DEFINE_STUB(spdk_json_decode_string, int, (const struct spdk_json_val *val, void *out), 0); DEFINE_STUB(spdk_json_decode_uint32, int, (const struct spdk_json_val *val, void *out), 0); DEFINE_STUB(spdk_json_decode_array, int, (const struct spdk_json_val *values, spdk_json_decode_fn decode_func, void *out, size_t max_size, size_t *out_size, size_t stride), 0); DEFINE_STUB(spdk_json_write_name, int, (struct spdk_json_write_ctx *w, const char *name), 0); DEFINE_STUB(spdk_json_write_named_string, int, (struct spdk_json_write_ctx *w, const char *name, const char *val), 0); DEFINE_STUB(spdk_json_write_object_begin, int, (struct spdk_json_write_ctx *w), 0); DEFINE_STUB(spdk_json_write_named_object_begin, int, (struct spdk_json_write_ctx *w, const char *name), 0); DEFINE_STUB(spdk_json_write_object_end, int, (struct spdk_json_write_ctx *w), 0); DEFINE_STUB(spdk_json_write_array_begin, int, (struct spdk_json_write_ctx *w), 0); DEFINE_STUB(spdk_json_write_array_end, int, (struct spdk_json_write_ctx *w), 0); DEFINE_STUB(spdk_json_write_named_array_begin, int, (struct spdk_json_write_ctx *w, const char *name), 0); DEFINE_STUB(spdk_json_write_bool, int, (struct spdk_json_write_ctx *w, bool val), 0); DEFINE_STUB(spdk_json_write_null, int, (struct spdk_json_write_ctx *w), 0); DEFINE_STUB(spdk_strerror, const char *, (int errnum), NULL); DEFINE_STUB(spdk_bdev_queue_io_wait, int, (struct spdk_bdev *bdev, struct spdk_io_channel *ch, struct spdk_bdev_io_wait_entry *entry), 0); static void set_test_opts(void) { g_max_base_drives = MAX_BASE_DRIVES; g_max_raids = MAX_RAIDS; g_block_len = 4096; g_strip_size = 64; g_max_io_size = 1024; printf("Test Options\n"); printf("blocklen = %u, strip_size = %u, max_io_size = %u, g_max_base_drives = %u, " "g_max_raids = %u\n", g_block_len, g_strip_size, g_max_io_size, g_max_base_drives, g_max_raids); } /* Set globals before every test run */ static void set_globals(void) { uint32_t max_splits; g_bdev_io_submit_status = 0; if (g_max_io_size < g_strip_size) { max_splits = 2; } else { max_splits = (g_max_io_size / g_strip_size) + 1; } if (max_splits < g_max_base_drives) { max_splits = g_max_base_drives; } g_io_output = calloc(max_splits, sizeof(struct io_output)); SPDK_CU_ASSERT_FATAL(g_io_output != NULL); g_io_output_index = 0; memset(g_get_raids_output, 0, sizeof(g_get_raids_output)); g_get_raids_count = 0; g_io_comp_status = 0; g_ignore_io_output = 0; g_config_level_create = 0; g_rpc_err = 0; g_test_multi_raids = 0; g_child_io_status_flag = true; TAILQ_INIT(&g_bdev_list); TAILQ_INIT(&g_io_waitq); g_rpc_req = NULL; g_rpc_req_size = 0; g_json_decode_obj_err = 0; g_json_decode_obj_create = 0; g_lba_offset = 0; } static void base_bdevs_cleanup(void) { struct spdk_bdev *bdev; struct spdk_bdev *bdev_next; if (!TAILQ_EMPTY(&g_bdev_list)) { TAILQ_FOREACH_SAFE(bdev, &g_bdev_list, internal.link, bdev_next) { free(bdev->name); TAILQ_REMOVE(&g_bdev_list, bdev, internal.link); free(bdev); } } } static void check_and_remove_raid_bdev(struct raid_bdev_config *raid_cfg) { struct raid_bdev *raid_bdev; /* Get the raid structured allocated if exists */ raid_bdev = raid_cfg->raid_bdev; if (raid_bdev == NULL) { return; } for (uint8_t i = 0; i < raid_bdev->num_base_bdevs; i++) { assert(raid_bdev->base_bdev_info != NULL); if (raid_bdev->base_bdev_info[i].bdev) { raid_bdev_free_base_bdev_resource(raid_bdev, i); } } assert(raid_bdev->num_base_bdevs_discovered == 0); raid_bdev_cleanup(raid_bdev); } /* Reset globals */ static void reset_globals(void) { if (g_io_output) { free(g_io_output); g_io_output = NULL; } g_rpc_req = NULL; g_rpc_req_size = 0; } void spdk_bdev_io_get_buf(struct spdk_bdev_io *bdev_io, spdk_bdev_io_get_buf_cb cb, uint64_t len) { cb(bdev_io->internal.ch->channel, bdev_io, true); } /* Store the IO completion status in global variable to verify by various tests */ void spdk_bdev_io_complete(struct spdk_bdev_io *bdev_io, enum spdk_bdev_io_status status) { g_io_comp_status = ((status == SPDK_BDEV_IO_STATUS_SUCCESS) ? true : false); } static void set_io_output(struct io_output *output, struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg, enum spdk_bdev_io_type iotype) { output->desc = desc; output->ch = ch; output->offset_blocks = offset_blocks; output->num_blocks = num_blocks; output->cb = cb; output->cb_arg = cb_arg; output->iotype = iotype; } /* It will cache the split IOs for verification */ int spdk_bdev_writev_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *iov, int iovcnt, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct io_output *output = &g_io_output[g_io_output_index]; struct spdk_bdev_io *child_io; if (g_ignore_io_output) { return 0; } if (g_max_io_size < g_strip_size) { SPDK_CU_ASSERT_FATAL(g_io_output_index < 2); } else { SPDK_CU_ASSERT_FATAL(g_io_output_index < (g_max_io_size / g_strip_size) + 1); } if (g_bdev_io_submit_status == 0) { set_io_output(output, desc, ch, offset_blocks, num_blocks, cb, cb_arg, SPDK_BDEV_IO_TYPE_WRITE); g_io_output_index++; child_io = calloc(1, sizeof(struct spdk_bdev_io)); SPDK_CU_ASSERT_FATAL(child_io != NULL); cb(child_io, g_child_io_status_flag, cb_arg); } return g_bdev_io_submit_status; } int spdk_bdev_reset(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct io_output *output = &g_io_output[g_io_output_index]; struct spdk_bdev_io *child_io; if (g_ignore_io_output) { return 0; } if (g_bdev_io_submit_status == 0) { set_io_output(output, desc, ch, 0, 0, cb, cb_arg, SPDK_BDEV_IO_TYPE_RESET); g_io_output_index++; child_io = calloc(1, sizeof(struct spdk_bdev_io)); SPDK_CU_ASSERT_FATAL(child_io != NULL); cb(child_io, g_child_io_status_flag, cb_arg); } return g_bdev_io_submit_status; } int spdk_bdev_unmap_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct io_output *output = &g_io_output[g_io_output_index]; struct spdk_bdev_io *child_io; if (g_ignore_io_output) { return 0; } if (g_bdev_io_submit_status == 0) { set_io_output(output, desc, ch, offset_blocks, num_blocks, cb, cb_arg, SPDK_BDEV_IO_TYPE_UNMAP); g_io_output_index++; child_io = calloc(1, sizeof(struct spdk_bdev_io)); SPDK_CU_ASSERT_FATAL(child_io != NULL); cb(child_io, g_child_io_status_flag, cb_arg); } return g_bdev_io_submit_status; } void spdk_bdev_unregister(struct spdk_bdev *bdev, spdk_bdev_unregister_cb cb_fn, void *cb_arg) { bdev->fn_table->destruct(bdev->ctxt); if (cb_fn) { cb_fn(cb_arg, 0); } } int spdk_bdev_open(struct spdk_bdev *bdev, bool write, spdk_bdev_remove_cb_t remove_cb, void *remove_ctx, struct spdk_bdev_desc **_desc) { *_desc = (void *)0x1; return 0; } void spdk_put_io_channel(struct spdk_io_channel *ch) { CU_ASSERT(ch == (void *)1); } char * spdk_sprintf_alloc(const char *format, ...) { return strdup(format); } int spdk_json_write_named_uint32(struct spdk_json_write_ctx *w, const char *name, uint32_t val) { struct rpc_bdev_raid_create *req = g_rpc_req; if (strcmp(name, "strip_size_kb") == 0) { CU_ASSERT(req->strip_size_kb == val); } else if (strcmp(name, "blocklen_shift") == 0) { CU_ASSERT(spdk_u32log2(g_block_len) == val); } else if (strcmp(name, "raid_level") == RAID0) { CU_ASSERT(req->raid_level == val); } else if (strcmp(name, "num_base_bdevs") == 0) { CU_ASSERT(req->base_bdevs.num_base_bdevs == val); } else if (strcmp(name, "state") == 0) { CU_ASSERT(val == RAID_BDEV_STATE_ONLINE); } else if (strcmp(name, "destruct_called") == 0) { CU_ASSERT(val == 0); } else if (strcmp(name, "num_base_bdevs_discovered") == 0) { CU_ASSERT(req->base_bdevs.num_base_bdevs == val); } return 0; } void spdk_for_each_thread(spdk_msg_fn fn, void *ctx, spdk_msg_fn cpl) { fn(ctx); cpl(ctx); } void spdk_bdev_free_io(struct spdk_bdev_io *bdev_io) { if (bdev_io) { free(bdev_io); } } /* It will cache split IOs for verification */ int spdk_bdev_readv_blocks(struct spdk_bdev_desc *desc, struct spdk_io_channel *ch, struct iovec *iov, int iovcnt, uint64_t offset_blocks, uint64_t num_blocks, spdk_bdev_io_completion_cb cb, void *cb_arg) { struct io_output *output = &g_io_output[g_io_output_index]; struct spdk_bdev_io *child_io; if (g_ignore_io_output) { return 0; } SPDK_CU_ASSERT_FATAL(g_io_output_index <= (g_max_io_size / g_strip_size) + 1); if (g_bdev_io_submit_status == 0) { set_io_output(output, desc, ch, offset_blocks, num_blocks, cb, cb_arg, SPDK_BDEV_IO_TYPE_READ); g_io_output_index++; child_io = calloc(1, sizeof(struct spdk_bdev_io)); SPDK_CU_ASSERT_FATAL(child_io != NULL); cb(child_io, g_child_io_status_flag, cb_arg); } return g_bdev_io_submit_status; } void spdk_bdev_module_release_bdev(struct spdk_bdev *bdev) { CU_ASSERT(bdev->internal.claim_module != NULL); bdev->internal.claim_module = NULL; } struct spdk_conf_section * spdk_conf_first_section(struct spdk_conf *cp) { if (g_config_level_create) { return (void *) 0x1; } return NULL; } bool spdk_conf_section_match_prefix(const struct spdk_conf_section *sp, const char *name_prefix) { if (g_config_level_create) { return true; } return false; } char * spdk_conf_section_get_val(struct spdk_conf_section *sp, const char *key) { struct rpc_bdev_raid_create *req = g_rpc_req; if (g_config_level_create) { if (strcmp(key, "Name") == 0) { return req->name; } } return NULL; } int spdk_conf_section_get_intval(struct spdk_conf_section *sp, const char *key) { struct rpc_bdev_raid_create *req = g_rpc_req; if (g_config_level_create) { if (strcmp(key, "StripSize") == 0) { return req->strip_size_kb; } else if (strcmp(key, "NumDevices") == 0) { return req->base_bdevs.num_base_bdevs; } else if (strcmp(key, "RaidLevel") == 0) { return req->raid_level; } } return 0; } char * spdk_conf_section_get_nmval(struct spdk_conf_section *sp, const char *key, int idx1, int idx2) { struct rpc_bdev_raid_create *req = g_rpc_req; if (g_config_level_create) { if (strcmp(key, "Devices") == 0) { if (idx2 >= g_max_base_drives) { return NULL; } return req->base_bdevs.base_bdevs[idx2]; } } return NULL; } int spdk_bdev_module_claim_bdev(struct spdk_bdev *bdev, struct spdk_bdev_desc *desc, struct spdk_bdev_module *module) { if (bdev->internal.claim_module != NULL) { return -1; } bdev->internal.claim_module = module; return 0; } int spdk_json_decode_object(const struct spdk_json_val *values, const struct spdk_json_object_decoder *decoders, size_t num_decoders, void *out) { struct rpc_bdev_raid_create *req, *_out; size_t i; if (g_json_decode_obj_err) { return -1; } else if (g_json_decode_obj_create) { req = g_rpc_req; _out = out; _out->name = strdup(req->name); SPDK_CU_ASSERT_FATAL(_out->name != NULL); _out->strip_size_kb = req->strip_size_kb; _out->raid_level = req->raid_level; _out->base_bdevs.num_base_bdevs = req->base_bdevs.num_base_bdevs; for (i = 0; i < req->base_bdevs.num_base_bdevs; i++) { _out->base_bdevs.base_bdevs[i] = strdup(req->base_bdevs.base_bdevs[i]); SPDK_CU_ASSERT_FATAL(_out->base_bdevs.base_bdevs[i]); } } else { memcpy(out, g_rpc_req, g_rpc_req_size); } return 0; } struct spdk_json_write_ctx * spdk_jsonrpc_begin_result(struct spdk_jsonrpc_request *request) { return (void *)1; } int spdk_json_write_string(struct spdk_json_write_ctx *w, const char *val) { if (g_test_multi_raids) { g_get_raids_output[g_get_raids_count] = strdup(val); SPDK_CU_ASSERT_FATAL(g_get_raids_output[g_get_raids_count] != NULL); g_get_raids_count++; } return 0; } void spdk_jsonrpc_send_error_response(struct spdk_jsonrpc_request *request, int error_code, const char *msg) { g_rpc_err = 1; } void spdk_jsonrpc_send_error_response_fmt(struct spdk_jsonrpc_request *request, int error_code, const char *fmt, ...) { g_rpc_err = 1; } struct spdk_bdev * spdk_bdev_get_by_name(const char *bdev_name) { struct spdk_bdev *bdev; if (!TAILQ_EMPTY(&g_bdev_list)) { TAILQ_FOREACH(bdev, &g_bdev_list, internal.link) { if (strcmp(bdev_name, bdev->name) == 0) { return bdev; } } } return NULL; } static void bdev_io_cleanup(struct spdk_bdev_io *bdev_io) { if (bdev_io->u.bdev.iovs) { if (bdev_io->u.bdev.iovs->iov_base) { free(bdev_io->u.bdev.iovs->iov_base); } free(bdev_io->u.bdev.iovs); } free(bdev_io); } static void bdev_io_initialize(struct spdk_bdev_io *bdev_io, struct spdk_io_channel *ch, struct spdk_bdev *bdev, uint64_t lba, uint64_t blocks, int16_t iotype) { struct spdk_bdev_channel *channel = spdk_io_channel_get_ctx(ch); bdev_io->bdev = bdev; bdev_io->u.bdev.offset_blocks = lba; bdev_io->u.bdev.num_blocks = blocks; bdev_io->type = iotype; if (bdev_io->type == SPDK_BDEV_IO_TYPE_UNMAP || bdev_io->type == SPDK_BDEV_IO_TYPE_FLUSH) { return; } bdev_io->u.bdev.iovcnt = 1; bdev_io->u.bdev.iovs = calloc(1, sizeof(struct iovec)); SPDK_CU_ASSERT_FATAL(bdev_io->u.bdev.iovs != NULL); bdev_io->u.bdev.iovs->iov_base = calloc(1, bdev_io->u.bdev.num_blocks * g_block_len); SPDK_CU_ASSERT_FATAL(bdev_io->u.bdev.iovs->iov_base != NULL); bdev_io->u.bdev.iovs->iov_len = bdev_io->u.bdev.num_blocks * g_block_len; bdev_io->internal.ch = channel; } static void verify_reset_io(struct spdk_bdev_io *bdev_io, uint8_t num_base_drives, struct raid_bdev_io_channel *ch_ctx, struct raid_bdev *raid_bdev, uint32_t io_status) { uint8_t index = 0; struct io_output *output; SPDK_CU_ASSERT_FATAL(raid_bdev != NULL); SPDK_CU_ASSERT_FATAL(num_base_drives != 0); SPDK_CU_ASSERT_FATAL(io_status != INVALID_IO_SUBMIT); SPDK_CU_ASSERT_FATAL(ch_ctx->base_channel != NULL); CU_ASSERT(g_io_output_index == num_base_drives); for (index = 0; index < g_io_output_index; index++) { output = &g_io_output[index]; CU_ASSERT(ch_ctx->base_channel[index] == output->ch); CU_ASSERT(raid_bdev->base_bdev_info[index].desc == output->desc); CU_ASSERT(bdev_io->type == output->iotype); } CU_ASSERT(g_io_comp_status == io_status); } static void verify_io(struct spdk_bdev_io *bdev_io, uint8_t num_base_drives, struct raid_bdev_io_channel *ch_ctx, struct raid_bdev *raid_bdev, uint32_t io_status) { uint32_t strip_shift = spdk_u32log2(g_strip_size); uint64_t start_strip = bdev_io->u.bdev.offset_blocks >> strip_shift; uint64_t end_strip = (bdev_io->u.bdev.offset_blocks + bdev_io->u.bdev.num_blocks - 1) >> strip_shift; uint32_t splits_reqd = (end_strip - start_strip + 1); uint32_t strip; uint64_t pd_strip; uint8_t pd_idx; uint32_t offset_in_strip; uint64_t pd_lba; uint64_t pd_blocks; uint32_t index = 0; uint8_t *buf = bdev_io->u.bdev.iovs->iov_base; struct io_output *output; if (io_status == INVALID_IO_SUBMIT) { CU_ASSERT(g_io_comp_status == false); return; } SPDK_CU_ASSERT_FATAL(raid_bdev != NULL); SPDK_CU_ASSERT_FATAL(num_base_drives != 0); CU_ASSERT(splits_reqd == g_io_output_index); for (strip = start_strip; strip <= end_strip; strip++, index++) { pd_strip = strip / num_base_drives; pd_idx = strip % num_base_drives; if (strip == start_strip) { offset_in_strip = bdev_io->u.bdev.offset_blocks & (g_strip_size - 1); pd_lba = (pd_strip << strip_shift) + offset_in_strip; if (strip == end_strip) { pd_blocks = bdev_io->u.bdev.num_blocks; } else { pd_blocks = g_strip_size - offset_in_strip; } } else if (strip == end_strip) { pd_lba = pd_strip << strip_shift; pd_blocks = ((bdev_io->u.bdev.offset_blocks + bdev_io->u.bdev.num_blocks - 1) & (g_strip_size - 1)) + 1; } else { pd_lba = pd_strip << raid_bdev->strip_size_shift; pd_blocks = raid_bdev->strip_size; } output = &g_io_output[index]; CU_ASSERT(pd_lba == output->offset_blocks); CU_ASSERT(pd_blocks == output->num_blocks); CU_ASSERT(ch_ctx->base_channel[pd_idx] == output->ch); CU_ASSERT(raid_bdev->base_bdev_info[pd_idx].desc == output->desc); CU_ASSERT(bdev_io->type == output->iotype); buf += (pd_blocks << spdk_u32log2(g_block_len)); } CU_ASSERT(g_io_comp_status == io_status); } static void verify_io_without_payload(struct spdk_bdev_io *bdev_io, uint8_t num_base_drives, struct raid_bdev_io_channel *ch_ctx, struct raid_bdev *raid_bdev, uint32_t io_status) { uint32_t strip_shift = spdk_u32log2(g_strip_size); uint64_t start_offset_in_strip = bdev_io->u.bdev.offset_blocks % g_strip_size; uint64_t end_offset_in_strip = (bdev_io->u.bdev.offset_blocks + bdev_io->u.bdev.num_blocks - 1) % g_strip_size; uint64_t start_strip = bdev_io->u.bdev.offset_blocks >> strip_shift; uint64_t end_strip = (bdev_io->u.bdev.offset_blocks + bdev_io->u.bdev.num_blocks - 1) >> strip_shift; uint8_t n_disks_involved; uint64_t start_strip_disk_idx; uint64_t end_strip_disk_idx; uint64_t nblocks_in_start_disk; uint64_t offset_in_start_disk; uint8_t disk_idx; uint64_t base_io_idx; uint64_t sum_nblocks = 0; struct io_output *output; if (io_status == INVALID_IO_SUBMIT) { CU_ASSERT(g_io_comp_status == false); return; } SPDK_CU_ASSERT_FATAL(raid_bdev != NULL); SPDK_CU_ASSERT_FATAL(num_base_drives != 0); SPDK_CU_ASSERT_FATAL(bdev_io->type != SPDK_BDEV_IO_TYPE_READ); SPDK_CU_ASSERT_FATAL(bdev_io->type != SPDK_BDEV_IO_TYPE_WRITE); n_disks_involved = spdk_min(end_strip - start_strip + 1, num_base_drives); CU_ASSERT(n_disks_involved == g_io_output_index); start_strip_disk_idx = start_strip % num_base_drives; end_strip_disk_idx = end_strip % num_base_drives; offset_in_start_disk = g_io_output[0].offset_blocks; nblocks_in_start_disk = g_io_output[0].num_blocks; for (base_io_idx = 0, disk_idx = start_strip_disk_idx; base_io_idx < n_disks_involved; base_io_idx++, disk_idx++) { uint64_t start_offset_in_disk; uint64_t end_offset_in_disk; output = &g_io_output[base_io_idx]; /* round disk_idx */ if (disk_idx >= num_base_drives) { disk_idx %= num_base_drives; } /* start_offset_in_disk aligned in strip check: * The first base io has a same start_offset_in_strip with the whole raid io. * Other base io should have aligned start_offset_in_strip which is 0. */ start_offset_in_disk = output->offset_blocks; if (base_io_idx == 0) { CU_ASSERT(start_offset_in_disk % g_strip_size == start_offset_in_strip); } else { CU_ASSERT(start_offset_in_disk % g_strip_size == 0); } /* end_offset_in_disk aligned in strip check: * Base io on disk at which end_strip is located, has a same end_offset_in_strip * with the whole raid io. * Other base io should have aligned end_offset_in_strip. */ end_offset_in_disk = output->offset_blocks + output->num_blocks - 1; if (disk_idx == end_strip_disk_idx) { CU_ASSERT(end_offset_in_disk % g_strip_size == end_offset_in_strip); } else { CU_ASSERT(end_offset_in_disk % g_strip_size == g_strip_size - 1); } /* start_offset_in_disk compared with start_disk. * 1. For disk_idx which is larger than start_strip_disk_idx: Its start_offset_in_disk * mustn't be larger than the start offset of start_offset_in_disk; And the gap * must be less than strip size. * 2. For disk_idx which is less than start_strip_disk_idx, Its start_offset_in_disk * must be larger than the start offset of start_offset_in_disk; And the gap mustn't * be less than strip size. */ if (disk_idx > start_strip_disk_idx) { CU_ASSERT(start_offset_in_disk <= offset_in_start_disk); CU_ASSERT(offset_in_start_disk - start_offset_in_disk < g_strip_size); } else if (disk_idx < start_strip_disk_idx) { CU_ASSERT(start_offset_in_disk > offset_in_start_disk); CU_ASSERT(output->offset_blocks - offset_in_start_disk <= g_strip_size); } /* nblocks compared with start_disk: * The gap between them must be within a strip size. */ if (output->num_blocks <= nblocks_in_start_disk) { CU_ASSERT(nblocks_in_start_disk - output->num_blocks <= g_strip_size); } else { CU_ASSERT(output->num_blocks - nblocks_in_start_disk < g_strip_size); } sum_nblocks += output->num_blocks; CU_ASSERT(ch_ctx->base_channel[disk_idx] == output->ch); CU_ASSERT(raid_bdev->base_bdev_info[disk_idx].desc == output->desc); CU_ASSERT(bdev_io->type == output->iotype); } /* Sum of each nblocks should be same with raid bdev_io */ CU_ASSERT(bdev_io->u.bdev.num_blocks == sum_nblocks); CU_ASSERT(g_io_comp_status == io_status); } static void verify_raid_config_present(const char *name, bool presence) { struct raid_bdev_config *raid_cfg; bool cfg_found; cfg_found = false; TAILQ_FOREACH(raid_cfg, &g_raid_config.raid_bdev_config_head, link) { if (raid_cfg->name != NULL) { if (strcmp(name, raid_cfg->name) == 0) { cfg_found = true; break; } } } if (presence == true) { CU_ASSERT(cfg_found == true); } else { CU_ASSERT(cfg_found == false); } } static void verify_raid_bdev_present(const char *name, bool presence) { struct raid_bdev *pbdev; bool pbdev_found; pbdev_found = false; TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, name) == 0) { pbdev_found = true; break; } } if (presence == true) { CU_ASSERT(pbdev_found == true); } else { CU_ASSERT(pbdev_found == false); } } static void verify_raid_config(struct rpc_bdev_raid_create *r, bool presence) { struct raid_bdev_config *raid_cfg = NULL; uint8_t i; int val; TAILQ_FOREACH(raid_cfg, &g_raid_config.raid_bdev_config_head, link) { if (strcmp(r->name, raid_cfg->name) == 0) { if (presence == false) { break; } CU_ASSERT(raid_cfg->raid_bdev != NULL); CU_ASSERT(raid_cfg->strip_size == r->strip_size_kb); CU_ASSERT(raid_cfg->num_base_bdevs == r->base_bdevs.num_base_bdevs); CU_ASSERT(raid_cfg->raid_level == r->raid_level); if (raid_cfg->base_bdev != NULL) { for (i = 0; i < raid_cfg->num_base_bdevs; i++) { val = strcmp(raid_cfg->base_bdev[i].name, r->base_bdevs.base_bdevs[i]); CU_ASSERT(val == 0); } } break; } } if (presence == true) { CU_ASSERT(raid_cfg != NULL); } else { CU_ASSERT(raid_cfg == NULL); } } static void verify_raid_bdev(struct rpc_bdev_raid_create *r, bool presence, uint32_t raid_state) { struct raid_bdev *pbdev; uint8_t i; struct spdk_bdev *bdev = NULL; bool pbdev_found; uint64_t min_blockcnt = 0xFFFFFFFFFFFFFFFF; pbdev_found = false; TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, r->name) == 0) { pbdev_found = true; if (presence == false) { break; } CU_ASSERT(pbdev->config->raid_bdev == pbdev); CU_ASSERT(pbdev->base_bdev_info != NULL); CU_ASSERT(pbdev->strip_size == ((r->strip_size_kb * 1024) / g_block_len)); CU_ASSERT(pbdev->strip_size_shift == spdk_u32log2(((r->strip_size_kb * 1024) / g_block_len))); CU_ASSERT(pbdev->blocklen_shift == spdk_u32log2(g_block_len)); CU_ASSERT(pbdev->state == raid_state); CU_ASSERT(pbdev->num_base_bdevs == r->base_bdevs.num_base_bdevs); CU_ASSERT(pbdev->num_base_bdevs_discovered == r->base_bdevs.num_base_bdevs); CU_ASSERT(pbdev->raid_level == r->raid_level); CU_ASSERT(pbdev->destruct_called == false); for (i = 0; i < pbdev->num_base_bdevs; i++) { if (pbdev->base_bdev_info && pbdev->base_bdev_info[i].bdev) { bdev = spdk_bdev_get_by_name(pbdev->base_bdev_info[i].bdev->name); CU_ASSERT(bdev != NULL); CU_ASSERT(pbdev->base_bdev_info[i].remove_scheduled == false); } else { CU_ASSERT(0); } if (bdev && bdev->blockcnt < min_blockcnt) { min_blockcnt = bdev->blockcnt; } } CU_ASSERT((((min_blockcnt / (r->strip_size_kb * 1024 / g_block_len)) * (r->strip_size_kb * 1024 / g_block_len)) * r->base_bdevs.num_base_bdevs) == pbdev->bdev.blockcnt); CU_ASSERT(strcmp(pbdev->bdev.product_name, "Raid Volume") == 0); CU_ASSERT(pbdev->bdev.write_cache == 0); CU_ASSERT(pbdev->bdev.blocklen == g_block_len); if (pbdev->num_base_bdevs > 1) { CU_ASSERT(pbdev->bdev.optimal_io_boundary == pbdev->strip_size); CU_ASSERT(pbdev->bdev.split_on_optimal_io_boundary == true); } else { CU_ASSERT(pbdev->bdev.optimal_io_boundary == 0); CU_ASSERT(pbdev->bdev.split_on_optimal_io_boundary == false); } CU_ASSERT(pbdev->bdev.ctxt == pbdev); CU_ASSERT(pbdev->bdev.fn_table == &g_raid_bdev_fn_table); CU_ASSERT(pbdev->bdev.module == &g_raid_if); break; } } if (presence == true) { CU_ASSERT(pbdev_found == true); } else { CU_ASSERT(pbdev_found == false); } pbdev_found = false; if (raid_state == RAID_BDEV_STATE_ONLINE) { TAILQ_FOREACH(pbdev, &g_raid_bdev_configured_list, state_link) { if (strcmp(pbdev->bdev.name, r->name) == 0) { pbdev_found = true; break; } } } else if (raid_state == RAID_BDEV_STATE_CONFIGURING) { TAILQ_FOREACH(pbdev, &g_raid_bdev_configuring_list, state_link) { if (strcmp(pbdev->bdev.name, r->name) == 0) { pbdev_found = true; break; } } } else if (raid_state == RAID_BDEV_STATE_OFFLINE) { TAILQ_FOREACH(pbdev, &g_raid_bdev_offline_list, state_link) { if (strcmp(pbdev->bdev.name, r->name) == 0) { pbdev_found = true; break; } } } if (presence == true) { CU_ASSERT(pbdev_found == true); } else { CU_ASSERT(pbdev_found == false); } } static void verify_get_raids(struct rpc_bdev_raid_create *construct_req, uint8_t g_max_raids, char **g_get_raids_output, uint32_t g_get_raids_count) { uint8_t i, j; bool found; CU_ASSERT(g_max_raids == g_get_raids_count); if (g_max_raids == g_get_raids_count) { for (i = 0; i < g_max_raids; i++) { found = false; for (j = 0; j < g_max_raids; j++) { if (construct_req[i].name && strcmp(construct_req[i].name, g_get_raids_output[i]) == 0) { found = true; break; } } CU_ASSERT(found == true); } } } static void create_base_bdevs(uint32_t bbdev_start_idx) { uint8_t i; struct spdk_bdev *base_bdev; char name[16]; for (i = 0; i < g_max_base_drives; i++, bbdev_start_idx++) { snprintf(name, 16, "%s%u%s", "Nvme", bbdev_start_idx, "n1"); base_bdev = calloc(1, sizeof(struct spdk_bdev)); SPDK_CU_ASSERT_FATAL(base_bdev != NULL); base_bdev->name = strdup(name); SPDK_CU_ASSERT_FATAL(base_bdev->name != NULL); base_bdev->blocklen = g_block_len; base_bdev->blockcnt = BLOCK_CNT; TAILQ_INSERT_TAIL(&g_bdev_list, base_bdev, internal.link); } } static void create_test_req(struct rpc_bdev_raid_create *r, const char *raid_name, uint8_t bbdev_start_idx, bool create_base_bdev) { uint8_t i; char name[16]; uint8_t bbdev_idx = bbdev_start_idx; r->name = strdup(raid_name); SPDK_CU_ASSERT_FATAL(r->name != NULL); r->strip_size_kb = (g_strip_size * g_block_len) / 1024; r->raid_level = RAID0; r->base_bdevs.num_base_bdevs = g_max_base_drives; for (i = 0; i < g_max_base_drives; i++, bbdev_idx++) { snprintf(name, 16, "%s%u%s", "Nvme", bbdev_idx, "n1"); r->base_bdevs.base_bdevs[i] = strdup(name); SPDK_CU_ASSERT_FATAL(r->base_bdevs.base_bdevs[i] != NULL); } if (create_base_bdev == true) { create_base_bdevs(bbdev_start_idx); } g_rpc_req = r; g_rpc_req_size = sizeof(*r); } static void create_raid_bdev_create_req(struct rpc_bdev_raid_create *r, const char *raid_name, uint8_t bbdev_start_idx, bool create_base_bdev, uint8_t json_decode_obj_err) { create_test_req(r, raid_name, bbdev_start_idx, create_base_bdev); g_rpc_err = 0; g_json_decode_obj_create = 1; g_json_decode_obj_err = json_decode_obj_err; g_config_level_create = 0; g_test_multi_raids = 0; } static void create_raid_bdev_create_config(struct rpc_bdev_raid_create *r, const char *raid_name, uint8_t bbdev_start_idx, bool create_base_bdev) { create_test_req(r, raid_name, bbdev_start_idx, create_base_bdev); g_config_level_create = 1; g_test_multi_raids = 0; } static void free_test_req(struct rpc_bdev_raid_create *r) { uint8_t i; free(r->name); for (i = 0; i < r->base_bdevs.num_base_bdevs; i++) { free(r->base_bdevs.base_bdevs[i]); } } static void create_raid_bdev_delete_req(struct rpc_bdev_raid_delete *r, const char *raid_name, uint8_t json_decode_obj_err) { r->name = strdup(raid_name); SPDK_CU_ASSERT_FATAL(r->name != NULL); g_rpc_req = r; g_rpc_req_size = sizeof(*r); g_rpc_err = 0; g_json_decode_obj_create = 0; g_json_decode_obj_err = json_decode_obj_err; g_config_level_create = 0; g_test_multi_raids = 0; } static void create_get_raids_req(struct rpc_bdev_raid_get_bdevs *r, const char *category, uint8_t json_decode_obj_err) { r->category = strdup(category); SPDK_CU_ASSERT_FATAL(r->category != NULL); g_rpc_req = r; g_rpc_req_size = sizeof(*r); g_rpc_err = 0; g_json_decode_obj_create = 0; g_json_decode_obj_err = json_decode_obj_err; g_config_level_create = 0; g_test_multi_raids = 1; g_get_raids_count = 0; } static void test_create_raid(void) { struct rpc_bdev_raid_create req; struct rpc_bdev_raid_delete delete_req; set_globals(); CU_ASSERT(raid_bdev_init() == 0); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, true, 0); spdk_rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config(&req, true); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); free_test_req(&req); create_raid_bdev_delete_req(&delete_req, "raid1", 0); spdk_rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } static void test_delete_raid(void) { struct rpc_bdev_raid_create construct_req; struct rpc_bdev_raid_delete delete_req; set_globals(); CU_ASSERT(raid_bdev_init() == 0); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&construct_req, "raid1", 0, true, 0); spdk_rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config(&construct_req, true); verify_raid_bdev(&construct_req, true, RAID_BDEV_STATE_ONLINE); free_test_req(&construct_req); create_raid_bdev_delete_req(&delete_req, "raid1", 0); spdk_rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } static void test_create_raid_invalid_args(void) { struct rpc_bdev_raid_create req; struct rpc_bdev_raid_delete destroy_req; struct raid_bdev_config *raid_cfg; set_globals(); CU_ASSERT(raid_bdev_init() == 0); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, true, 0); req.raid_level = 1; spdk_rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 1); free_test_req(&req); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, false, 1); spdk_rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 1); free_test_req(&req); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, false, 0); req.strip_size_kb = 1231; spdk_rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 1); free_test_req(&req); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, false, 0); spdk_rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config(&req, true); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); free_test_req(&req); create_raid_bdev_create_req(&req, "raid1", 0, false, 0); spdk_rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 1); free_test_req(&req); create_raid_bdev_create_req(&req, "raid2", 0, false, 0); spdk_rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 1); free_test_req(&req); verify_raid_config_present("raid2", false); verify_raid_bdev_present("raid2", false); create_raid_bdev_create_req(&req, "raid2", g_max_base_drives, true, 0); free(req.base_bdevs.base_bdevs[g_max_base_drives - 1]); req.base_bdevs.base_bdevs[g_max_base_drives - 1] = strdup("Nvme0n1"); SPDK_CU_ASSERT_FATAL(req.base_bdevs.base_bdevs[g_max_base_drives - 1] != NULL); spdk_rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 1); free_test_req(&req); verify_raid_config_present("raid2", false); verify_raid_bdev_present("raid2", false); create_raid_bdev_create_req(&req, "raid2", g_max_base_drives, true, 0); free(req.base_bdevs.base_bdevs[g_max_base_drives - 1]); req.base_bdevs.base_bdevs[g_max_base_drives - 1] = strdup("Nvme100000n1"); SPDK_CU_ASSERT_FATAL(req.base_bdevs.base_bdevs[g_max_base_drives - 1] != NULL); spdk_rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); free_test_req(&req); verify_raid_config_present("raid2", true); verify_raid_bdev_present("raid2", true); raid_cfg = raid_bdev_config_find_by_name("raid2"); SPDK_CU_ASSERT_FATAL(raid_cfg != NULL); check_and_remove_raid_bdev(raid_cfg); raid_bdev_config_cleanup(raid_cfg); create_raid_bdev_create_req(&req, "raid2", g_max_base_drives, false, 0); spdk_rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); free_test_req(&req); verify_raid_config_present("raid2", true); verify_raid_bdev_present("raid2", true); verify_raid_config_present("raid1", true); verify_raid_bdev_present("raid1", true); create_raid_bdev_delete_req(&destroy_req, "raid1", 0); spdk_rpc_bdev_raid_delete(NULL, NULL); create_raid_bdev_delete_req(&destroy_req, "raid2", 0); spdk_rpc_bdev_raid_delete(NULL, NULL); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } static void test_delete_raid_invalid_args(void) { struct rpc_bdev_raid_create construct_req; struct rpc_bdev_raid_delete destroy_req; set_globals(); CU_ASSERT(raid_bdev_init() == 0); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&construct_req, "raid1", 0, true, 0); spdk_rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config(&construct_req, true); verify_raid_bdev(&construct_req, true, RAID_BDEV_STATE_ONLINE); free_test_req(&construct_req); create_raid_bdev_delete_req(&destroy_req, "raid2", 0); spdk_rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 1); create_raid_bdev_delete_req(&destroy_req, "raid1", 1); spdk_rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 1); free(destroy_req.name); verify_raid_config_present("raid1", true); verify_raid_bdev_present("raid1", true); create_raid_bdev_delete_req(&destroy_req, "raid1", 0); spdk_rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } static void test_io_channel(void) { struct rpc_bdev_raid_create req; struct rpc_bdev_raid_delete destroy_req; struct raid_bdev *pbdev; struct raid_bdev_io_channel *ch_ctx; uint8_t i; set_globals(); CU_ASSERT(raid_bdev_init() == 0); create_raid_bdev_create_req(&req, "raid1", 0, true, 0); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); spdk_rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config(&req, true); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, "raid1") == 0) { break; } } CU_ASSERT(pbdev != NULL); ch_ctx = calloc(1, sizeof(struct raid_bdev_io_channel)); SPDK_CU_ASSERT_FATAL(ch_ctx != NULL); CU_ASSERT(raid_bdev_create_cb(pbdev, ch_ctx) == 0); for (i = 0; i < req.base_bdevs.num_base_bdevs; i++) { CU_ASSERT(ch_ctx->base_channel && ch_ctx->base_channel[i] == (void *)0x1); } raid_bdev_destroy_cb(pbdev, ch_ctx); CU_ASSERT(ch_ctx->base_channel == NULL); free_test_req(&req); create_raid_bdev_delete_req(&destroy_req, "raid1", 0); spdk_rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); free(ch_ctx); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } static void test_write_io(void) { struct rpc_bdev_raid_create req; struct rpc_bdev_raid_delete destroy_req; struct raid_bdev *pbdev; struct spdk_io_channel *ch; struct raid_bdev_io_channel *ch_ctx; uint8_t i; struct spdk_bdev_io *bdev_io; uint64_t io_len; uint64_t lba = 0; struct spdk_io_channel *ch_b; struct spdk_bdev_channel *ch_b_ctx; set_globals(); CU_ASSERT(raid_bdev_init() == 0); create_raid_bdev_create_req(&req, "raid1", 0, true, 0); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); spdk_rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config(&req, true); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, "raid1") == 0) { break; } } CU_ASSERT(pbdev != NULL); ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct raid_bdev_io_channel)); SPDK_CU_ASSERT_FATAL(ch != NULL); ch_b = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct spdk_bdev_channel)); SPDK_CU_ASSERT_FATAL(ch_b != NULL); ch_b_ctx = spdk_io_channel_get_ctx(ch_b); ch_b_ctx->channel = ch; ch_ctx = spdk_io_channel_get_ctx(ch); SPDK_CU_ASSERT_FATAL(ch_ctx != NULL); CU_ASSERT(raid_bdev_create_cb(pbdev, ch_ctx) == 0); for (i = 0; i < req.base_bdevs.num_base_bdevs; i++) { CU_ASSERT(ch_ctx->base_channel && ch_ctx->base_channel[i] == (void *)0x1); } /* test 2 IO sizes based on global strip size set earlier */ for (i = 0; i < 2; i++) { bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io)); SPDK_CU_ASSERT_FATAL(bdev_io != NULL); io_len = (g_strip_size / 2) << i; bdev_io_initialize(bdev_io, ch_b, &pbdev->bdev, lba, io_len, SPDK_BDEV_IO_TYPE_WRITE); lba += g_strip_size; memset(g_io_output, 0, ((g_max_io_size / g_strip_size) + 1) * sizeof(struct io_output)); g_io_output_index = 0; raid_bdev_submit_request(ch, bdev_io); verify_io(bdev_io, req.base_bdevs.num_base_bdevs, ch_ctx, pbdev, g_child_io_status_flag); bdev_io_cleanup(bdev_io); } free_test_req(&req); raid_bdev_destroy_cb(pbdev, ch_ctx); CU_ASSERT(ch_ctx->base_channel == NULL); free(ch); free(ch_b); create_raid_bdev_delete_req(&destroy_req, "raid1", 0); spdk_rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } static void test_read_io(void) { struct rpc_bdev_raid_create req; struct rpc_bdev_raid_delete destroy_req; struct raid_bdev *pbdev; struct spdk_io_channel *ch; struct raid_bdev_io_channel *ch_ctx; uint8_t i; struct spdk_bdev_io *bdev_io; uint64_t io_len; uint64_t lba; struct spdk_io_channel *ch_b; struct spdk_bdev_channel *ch_b_ctx; set_globals(); CU_ASSERT(raid_bdev_init() == 0); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, true, 0); spdk_rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config(&req, true); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, "raid1") == 0) { break; } } CU_ASSERT(pbdev != NULL); ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct raid_bdev_io_channel)); SPDK_CU_ASSERT_FATAL(ch != NULL); ch_b = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct spdk_bdev_channel)); SPDK_CU_ASSERT_FATAL(ch_b != NULL); ch_b_ctx = spdk_io_channel_get_ctx(ch_b); ch_b_ctx->channel = ch; ch_ctx = spdk_io_channel_get_ctx(ch); SPDK_CU_ASSERT_FATAL(ch_ctx != NULL); CU_ASSERT(raid_bdev_create_cb(pbdev, ch_ctx) == 0); for (i = 0; i < req.base_bdevs.num_base_bdevs; i++) { CU_ASSERT(ch_ctx->base_channel && ch_ctx->base_channel[i] == (void *)0x1); } free_test_req(&req); /* test 2 IO sizes based on global strip size set earlier */ lba = 0; for (i = 0; i < 2; i++) { bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io)); SPDK_CU_ASSERT_FATAL(bdev_io != NULL); io_len = (g_strip_size / 2) << i; bdev_io_initialize(bdev_io, ch_b, &pbdev->bdev, lba, io_len, SPDK_BDEV_IO_TYPE_READ); lba += g_strip_size; memset(g_io_output, 0, ((g_max_io_size / g_strip_size) + 1) * sizeof(struct io_output)); g_io_output_index = 0; raid_bdev_submit_request(ch, bdev_io); verify_io(bdev_io, req.base_bdevs.num_base_bdevs, ch_ctx, pbdev, g_child_io_status_flag); bdev_io_cleanup(bdev_io); } raid_bdev_destroy_cb(pbdev, ch_ctx); CU_ASSERT(ch_ctx->base_channel == NULL); free(ch); free(ch_b); create_raid_bdev_delete_req(&destroy_req, "raid1", 0); spdk_rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } static void raid_bdev_io_generate_by_strips(uint64_t n_strips) { uint64_t lba; uint64_t nblocks; uint64_t start_offset; uint64_t end_offset; uint64_t offsets_in_strip[3]; uint64_t start_bdev_idx; uint64_t start_bdev_offset; uint64_t start_bdev_idxs[3]; int i, j, l; /* 3 different situations of offset in strip */ offsets_in_strip[0] = 0; offsets_in_strip[1] = g_strip_size >> 1; offsets_in_strip[2] = g_strip_size - 1; /* 3 different situations of start_bdev_idx */ start_bdev_idxs[0] = 0; start_bdev_idxs[1] = g_max_base_drives >> 1; start_bdev_idxs[2] = g_max_base_drives - 1; /* consider different offset in strip */ for (i = 0; i < 3; i++) { start_offset = offsets_in_strip[i]; for (j = 0; j < 3; j++) { end_offset = offsets_in_strip[j]; if (n_strips == 1 && start_offset > end_offset) { continue; } /* consider at which base_bdev lba is started. */ for (l = 0; l < 3; l++) { start_bdev_idx = start_bdev_idxs[l]; start_bdev_offset = start_bdev_idx * g_strip_size; lba = g_lba_offset + start_bdev_offset + start_offset; nblocks = (n_strips - 1) * g_strip_size + end_offset - start_offset + 1; g_io_ranges[g_io_range_idx].lba = lba; g_io_ranges[g_io_range_idx].nblocks = nblocks; SPDK_CU_ASSERT_FATAL(g_io_range_idx < MAX_TEST_IO_RANGE); g_io_range_idx++; } } } } static void raid_bdev_io_generate(void) { uint64_t n_strips; uint64_t n_strips_span = g_max_base_drives; uint64_t n_strips_times[5] = {g_max_base_drives + 1, g_max_base_drives * 2 - 1, g_max_base_drives * 2, g_max_base_drives * 3, g_max_base_drives * 4 }; uint32_t i; g_io_range_idx = 0; /* consider different number of strips from 1 to strips spanned base bdevs, * and even to times of strips spanned base bdevs */ for (n_strips = 1; n_strips < n_strips_span; n_strips++) { raid_bdev_io_generate_by_strips(n_strips); } for (i = 0; i < SPDK_COUNTOF(n_strips_times); i++) { n_strips = n_strips_times[i]; raid_bdev_io_generate_by_strips(n_strips); } } static void test_unmap_io(void) { struct rpc_bdev_raid_create req; struct rpc_bdev_raid_delete destroy_req; struct raid_bdev *pbdev; struct spdk_io_channel *ch; struct raid_bdev_io_channel *ch_ctx; uint8_t i; struct spdk_bdev_io *bdev_io; uint32_t count; uint64_t io_len; uint64_t lba; set_globals(); CU_ASSERT(raid_bdev_init() == 0); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, true, 0); spdk_rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config(&req, true); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, "raid1") == 0) { break; } } CU_ASSERT(pbdev != NULL); ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct raid_bdev_io_channel)); SPDK_CU_ASSERT_FATAL(ch != NULL); ch_ctx = spdk_io_channel_get_ctx(ch); SPDK_CU_ASSERT_FATAL(ch_ctx != NULL); CU_ASSERT(raid_bdev_create_cb(pbdev, ch_ctx) == 0); for (i = 0; i < req.base_bdevs.num_base_bdevs; i++) { SPDK_CU_ASSERT_FATAL(ch_ctx->base_channel && ch_ctx->base_channel[i] == (void *)0x1); } CU_ASSERT(raid_bdev_io_type_supported(pbdev, SPDK_BDEV_IO_TYPE_UNMAP) == true); CU_ASSERT(raid_bdev_io_type_supported(pbdev, SPDK_BDEV_IO_TYPE_FLUSH) == true); raid_bdev_io_generate(); for (count = 0; count < g_io_range_idx; count++) { bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io)); SPDK_CU_ASSERT_FATAL(bdev_io != NULL); io_len = g_io_ranges[count].nblocks; lba = g_io_ranges[count].lba; bdev_io_initialize(bdev_io, ch, &pbdev->bdev, lba, io_len, SPDK_BDEV_IO_TYPE_UNMAP); memset(g_io_output, 0, g_max_base_drives * sizeof(struct io_output)); g_io_output_index = 0; raid_bdev_submit_request(ch, bdev_io); verify_io_without_payload(bdev_io, req.base_bdevs.num_base_bdevs, ch_ctx, pbdev, g_child_io_status_flag); bdev_io_cleanup(bdev_io); } free_test_req(&req); raid_bdev_destroy_cb(pbdev, ch_ctx); CU_ASSERT(ch_ctx->base_channel == NULL); free(ch); create_raid_bdev_delete_req(&destroy_req, "raid1", 0); spdk_rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } /* Test IO failures */ static void test_io_failure(void) { struct rpc_bdev_raid_create req; struct rpc_bdev_raid_delete destroy_req; struct raid_bdev *pbdev; struct spdk_io_channel *ch; struct raid_bdev_io_channel *ch_ctx; uint8_t i; struct spdk_bdev_io *bdev_io; uint32_t count; uint64_t io_len; uint64_t lba; set_globals(); CU_ASSERT(raid_bdev_init() == 0); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, true, 0); spdk_rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config(&req, true); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, req.name) == 0) { break; } } CU_ASSERT(pbdev != NULL); ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct raid_bdev_io_channel)); SPDK_CU_ASSERT_FATAL(ch != NULL); ch_ctx = spdk_io_channel_get_ctx(ch); SPDK_CU_ASSERT_FATAL(ch_ctx != NULL); CU_ASSERT(raid_bdev_create_cb(pbdev, ch_ctx) == 0); for (i = 0; i < req.base_bdevs.num_base_bdevs; i++) { CU_ASSERT(ch_ctx->base_channel && ch_ctx->base_channel[i] == (void *)0x1); } free_test_req(&req); lba = 0; for (count = 0; count < 1; count++) { bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io)); SPDK_CU_ASSERT_FATAL(bdev_io != NULL); io_len = (g_strip_size / 2) << count; bdev_io_initialize(bdev_io, ch, &pbdev->bdev, lba, io_len, SPDK_BDEV_IO_TYPE_INVALID); lba += g_strip_size; memset(g_io_output, 0, ((g_max_io_size / g_strip_size) + 1) * sizeof(struct io_output)); g_io_output_index = 0; raid_bdev_submit_request(ch, bdev_io); verify_io(bdev_io, req.base_bdevs.num_base_bdevs, ch_ctx, pbdev, INVALID_IO_SUBMIT); bdev_io_cleanup(bdev_io); } lba = 0; g_child_io_status_flag = false; for (count = 0; count < 1; count++) { bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io)); SPDK_CU_ASSERT_FATAL(bdev_io != NULL); io_len = (g_strip_size / 2) << count; bdev_io_initialize(bdev_io, ch, &pbdev->bdev, lba, io_len, SPDK_BDEV_IO_TYPE_WRITE); lba += g_strip_size; memset(g_io_output, 0, ((g_max_io_size / g_strip_size) + 1) * sizeof(struct io_output)); g_io_output_index = 0; raid_bdev_submit_request(ch, bdev_io); verify_io(bdev_io, req.base_bdevs.num_base_bdevs, ch_ctx, pbdev, g_child_io_status_flag); bdev_io_cleanup(bdev_io); } raid_bdev_destroy_cb(pbdev, ch_ctx); CU_ASSERT(ch_ctx->base_channel == NULL); free(ch); create_raid_bdev_delete_req(&destroy_req, "raid1", 0); spdk_rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } /* Test reset IO */ static void test_reset_io(void) { struct rpc_bdev_raid_create req; struct rpc_bdev_raid_delete destroy_req; struct raid_bdev *pbdev; struct spdk_io_channel *ch; struct raid_bdev_io_channel *ch_ctx; uint8_t i; struct spdk_bdev_io *bdev_io; set_globals(); CU_ASSERT(raid_bdev_init() == 0); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, true, 0); spdk_rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config(&req, true); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, "raid1") == 0) { break; } } CU_ASSERT(pbdev != NULL); ch = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct raid_bdev_io_channel)); SPDK_CU_ASSERT_FATAL(ch != NULL); ch_ctx = spdk_io_channel_get_ctx(ch); SPDK_CU_ASSERT_FATAL(ch_ctx != NULL); SPDK_CU_ASSERT_FATAL(raid_bdev_create_cb(pbdev, ch_ctx) == 0); for (i = 0; i < req.base_bdevs.num_base_bdevs; i++) { CU_ASSERT(ch_ctx->base_channel && ch_ctx->base_channel[i] == (void *)0x1); } free_test_req(&req); g_bdev_io_submit_status = 0; g_child_io_status_flag = true; CU_ASSERT(raid_bdev_io_type_supported(pbdev, SPDK_BDEV_IO_TYPE_RESET) == true); bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io)); SPDK_CU_ASSERT_FATAL(bdev_io != NULL); bdev_io_initialize(bdev_io, ch, &pbdev->bdev, 0, 1, SPDK_BDEV_IO_TYPE_RESET); memset(g_io_output, 0, g_max_base_drives * sizeof(struct io_output)); g_io_output_index = 0; raid_bdev_submit_request(ch, bdev_io); verify_reset_io(bdev_io, req.base_bdevs.num_base_bdevs, ch_ctx, pbdev, true); bdev_io_cleanup(bdev_io); raid_bdev_destroy_cb(pbdev, ch_ctx); CU_ASSERT(ch_ctx->base_channel == NULL); free(ch); create_raid_bdev_delete_req(&destroy_req, "raid1", 0); spdk_rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } /* Create multiple raids, destroy raids without IO, get_raids related tests */ static void test_multi_raid_no_io(void) { struct rpc_bdev_raid_create *construct_req; struct rpc_bdev_raid_delete destroy_req; struct rpc_bdev_raid_get_bdevs get_raids_req; uint8_t i; char name[16]; uint8_t bbdev_idx = 0; set_globals(); construct_req = calloc(MAX_RAIDS, sizeof(struct rpc_bdev_raid_create)); SPDK_CU_ASSERT_FATAL(construct_req != NULL); CU_ASSERT(raid_bdev_init() == 0); for (i = 0; i < g_max_raids; i++) { snprintf(name, 16, "%s%u", "raid", i); verify_raid_config_present(name, false); verify_raid_bdev_present(name, false); create_raid_bdev_create_req(&construct_req[i], name, bbdev_idx, true, 0); bbdev_idx += g_max_base_drives; spdk_rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config(&construct_req[i], true); verify_raid_bdev(&construct_req[i], true, RAID_BDEV_STATE_ONLINE); } create_get_raids_req(&get_raids_req, "all", 0); spdk_rpc_bdev_raid_get_bdevs(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_get_raids(construct_req, g_max_raids, g_get_raids_output, g_get_raids_count); for (i = 0; i < g_get_raids_count; i++) { free(g_get_raids_output[i]); } create_get_raids_req(&get_raids_req, "online", 0); spdk_rpc_bdev_raid_get_bdevs(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_get_raids(construct_req, g_max_raids, g_get_raids_output, g_get_raids_count); for (i = 0; i < g_get_raids_count; i++) { free(g_get_raids_output[i]); } create_get_raids_req(&get_raids_req, "configuring", 0); spdk_rpc_bdev_raid_get_bdevs(NULL, NULL); CU_ASSERT(g_rpc_err == 0); CU_ASSERT(g_get_raids_count == 0); create_get_raids_req(&get_raids_req, "offline", 0); spdk_rpc_bdev_raid_get_bdevs(NULL, NULL); CU_ASSERT(g_rpc_err == 0); CU_ASSERT(g_get_raids_count == 0); create_get_raids_req(&get_raids_req, "invalid_category", 0); spdk_rpc_bdev_raid_get_bdevs(NULL, NULL); CU_ASSERT(g_rpc_err == 1); CU_ASSERT(g_get_raids_count == 0); create_get_raids_req(&get_raids_req, "all", 1); spdk_rpc_bdev_raid_get_bdevs(NULL, NULL); CU_ASSERT(g_rpc_err == 1); free(get_raids_req.category); CU_ASSERT(g_get_raids_count == 0); create_get_raids_req(&get_raids_req, "all", 0); spdk_rpc_bdev_raid_get_bdevs(NULL, NULL); CU_ASSERT(g_rpc_err == 0); CU_ASSERT(g_get_raids_count == g_max_raids); for (i = 0; i < g_get_raids_count; i++) { free(g_get_raids_output[i]); } for (i = 0; i < g_max_raids; i++) { SPDK_CU_ASSERT_FATAL(construct_req[i].name != NULL); snprintf(name, 16, "%s", construct_req[i].name); create_raid_bdev_delete_req(&destroy_req, name, 0); spdk_rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config_present(name, false); verify_raid_bdev_present(name, false); } raid_bdev_exit(); for (i = 0; i < g_max_raids; i++) { free_test_req(&construct_req[i]); } free(construct_req); base_bdevs_cleanup(); reset_globals(); } /* Create multiple raids, fire IOs on raids */ static void test_multi_raid_with_io(void) { struct rpc_bdev_raid_create *construct_req; struct rpc_bdev_raid_delete destroy_req; uint8_t i, j; char name[16]; uint8_t bbdev_idx = 0; struct raid_bdev *pbdev; struct spdk_io_channel *ch; struct raid_bdev_io_channel *ch_ctx; struct spdk_bdev_io *bdev_io; uint64_t io_len; uint64_t lba = 0; int16_t iotype; struct spdk_io_channel *ch_b; struct spdk_bdev_channel *ch_b_ctx; set_globals(); construct_req = calloc(g_max_raids, sizeof(struct rpc_bdev_raid_create)); SPDK_CU_ASSERT_FATAL(construct_req != NULL); CU_ASSERT(raid_bdev_init() == 0); ch = calloc(g_max_raids, sizeof(struct spdk_io_channel) + sizeof(struct raid_bdev_io_channel)); SPDK_CU_ASSERT_FATAL(ch != NULL); ch_b = calloc(1, sizeof(struct spdk_io_channel) + sizeof(struct spdk_bdev_channel)); SPDK_CU_ASSERT_FATAL(ch_b != NULL); ch_b_ctx = spdk_io_channel_get_ctx(ch_b); ch_b_ctx->channel = ch; for (i = 0; i < g_max_raids; i++) { snprintf(name, 16, "%s%u", "raid", i); verify_raid_config_present(name, false); verify_raid_bdev_present(name, false); create_raid_bdev_create_req(&construct_req[i], name, bbdev_idx, true, 0); bbdev_idx += g_max_base_drives; spdk_rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config(&construct_req[i], true); verify_raid_bdev(&construct_req[i], true, RAID_BDEV_STATE_ONLINE); TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, construct_req[i].name) == 0) { break; } } CU_ASSERT(pbdev != NULL); ch_ctx = spdk_io_channel_get_ctx(&ch[i]); SPDK_CU_ASSERT_FATAL(ch_ctx != NULL); CU_ASSERT(raid_bdev_create_cb(pbdev, ch_ctx) == 0); SPDK_CU_ASSERT_FATAL(ch_ctx->base_channel != NULL); for (j = 0; j < construct_req[i].base_bdevs.num_base_bdevs; j++) { CU_ASSERT(ch_ctx->base_channel[j] == (void *)0x1); } } /* This will perform a write on the first raid and a read on the second. It can be * expanded in the future to perform r/w on each raid device in the event that * multiple raid levels are supported. */ for (i = 0; i < g_max_raids; i++) { bdev_io = calloc(1, sizeof(struct spdk_bdev_io) + sizeof(struct raid_bdev_io)); SPDK_CU_ASSERT_FATAL(bdev_io != NULL); io_len = g_strip_size; iotype = (i) ? SPDK_BDEV_IO_TYPE_WRITE : SPDK_BDEV_IO_TYPE_READ; memset(g_io_output, 0, ((g_max_io_size / g_strip_size) + 1) * sizeof(struct io_output)); g_io_output_index = 0; TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, construct_req[i].name) == 0) { break; } } bdev_io_initialize(bdev_io, ch_b, &pbdev->bdev, lba, io_len, iotype); CU_ASSERT(pbdev != NULL); raid_bdev_submit_request(ch, bdev_io); verify_io(bdev_io, g_max_base_drives, ch_ctx, pbdev, g_child_io_status_flag); bdev_io_cleanup(bdev_io); } for (i = 0; i < g_max_raids; i++) { TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, construct_req[i].name) == 0) { break; } } CU_ASSERT(pbdev != NULL); ch_ctx = spdk_io_channel_get_ctx(&ch[i]); SPDK_CU_ASSERT_FATAL(ch_ctx != NULL); raid_bdev_destroy_cb(pbdev, ch_ctx); CU_ASSERT(ch_ctx->base_channel == NULL); snprintf(name, 16, "%s", construct_req[i].name); create_raid_bdev_delete_req(&destroy_req, name, 0); spdk_rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config_present(name, false); verify_raid_bdev_present(name, false); } raid_bdev_exit(); for (i = 0; i < g_max_raids; i++) { free_test_req(&construct_req[i]); } free(construct_req); free(ch); free(ch_b); base_bdevs_cleanup(); reset_globals(); } static void test_io_type_supported(void) { CU_ASSERT(raid_bdev_io_type_supported(NULL, SPDK_BDEV_IO_TYPE_READ) == true); CU_ASSERT(raid_bdev_io_type_supported(NULL, SPDK_BDEV_IO_TYPE_WRITE) == true); CU_ASSERT(raid_bdev_io_type_supported(NULL, SPDK_BDEV_IO_TYPE_INVALID) == false); } static void test_create_raid_from_config(void) { struct rpc_bdev_raid_create req; struct spdk_bdev *bdev; struct rpc_bdev_raid_delete destroy_req; bool can_claim; struct raid_bdev_config *raid_cfg; uint8_t base_bdev_slot; set_globals(); create_raid_bdev_create_config(&req, "raid1", 0, true); CU_ASSERT(raid_bdev_init() == 0); verify_raid_config_present("raid1", true); verify_raid_bdev_present("raid1", true); TAILQ_FOREACH(bdev, &g_bdev_list, internal.link) { raid_bdev_examine(bdev); } can_claim = raid_bdev_can_claim_bdev("Invalid", &raid_cfg, &base_bdev_slot); CU_ASSERT(can_claim == false); verify_raid_config(&req, true); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); create_raid_bdev_delete_req(&destroy_req, "raid1", 0); spdk_rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); raid_bdev_exit(); free_test_req(&req); base_bdevs_cleanup(); reset_globals(); } static void test_create_raid_from_config_invalid_params(void) { struct rpc_bdev_raid_create req; set_globals(); create_raid_bdev_create_config(&req, "raid1", 0, true); free(req.name); req.name = NULL; CU_ASSERT(raid_bdev_init() != 0); free_test_req(&req); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_config(&req, "raid1", 0, false); req.strip_size_kb = 1234; CU_ASSERT(raid_bdev_init() != 0); free_test_req(&req); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_config(&req, "raid1", 0, false); req.raid_level = 1; CU_ASSERT(raid_bdev_init() != 0); free_test_req(&req); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_config(&req, "raid1", 0, false); req.raid_level = 1; CU_ASSERT(raid_bdev_init() != 0); free_test_req(&req); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_config(&req, "raid1", 0, false); req.base_bdevs.num_base_bdevs++; CU_ASSERT(raid_bdev_init() != 0); req.base_bdevs.num_base_bdevs--; free_test_req(&req); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_config(&req, "raid1", 0, false); req.base_bdevs.num_base_bdevs--; CU_ASSERT(raid_bdev_init() != 0); req.base_bdevs.num_base_bdevs++; free_test_req(&req); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); if (g_max_base_drives > 1) { create_raid_bdev_create_config(&req, "raid1", 0, false); snprintf(req.base_bdevs.base_bdevs[g_max_base_drives - 1], 15, "%s", "Nvme0n1"); CU_ASSERT(raid_bdev_init() != 0); free_test_req(&req); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); } raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } static void test_raid_json_dump_info(void) { struct rpc_bdev_raid_create req; struct rpc_bdev_raid_delete destroy_req; struct raid_bdev *pbdev; set_globals(); CU_ASSERT(raid_bdev_init() == 0); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); create_raid_bdev_create_req(&req, "raid1", 0, true, 0); spdk_rpc_bdev_raid_create(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_bdev(&req, true, RAID_BDEV_STATE_ONLINE); TAILQ_FOREACH(pbdev, &g_raid_bdev_list, global_link) { if (strcmp(pbdev->bdev.name, "raid1") == 0) { break; } } CU_ASSERT(pbdev != NULL); CU_ASSERT(raid_bdev_dump_info_json(pbdev, NULL) == 0); free_test_req(&req); create_raid_bdev_delete_req(&destroy_req, "raid1", 0); spdk_rpc_bdev_raid_delete(NULL, NULL); CU_ASSERT(g_rpc_err == 0); verify_raid_config_present("raid1", false); verify_raid_bdev_present("raid1", false); raid_bdev_exit(); base_bdevs_cleanup(); reset_globals(); } static void test_context_size(void) { CU_ASSERT(raid_bdev_get_ctx_size() == sizeof(struct raid_bdev_io)); } int main(int argc, char **argv) { CU_pSuite suite = NULL; unsigned int num_failures; if (CU_initialize_registry() != CUE_SUCCESS) { return CU_get_error(); } suite = CU_add_suite("raid", NULL, NULL); if (suite == NULL) { CU_cleanup_registry(); return CU_get_error(); } if ( CU_add_test(suite, "test_create_raid", test_create_raid) == NULL || CU_add_test(suite, "test_delete_raid", test_delete_raid) == NULL || CU_add_test(suite, "test_create_raid_invalid_args", test_create_raid_invalid_args) == NULL || CU_add_test(suite, "test_delete_raid_invalid_args", test_delete_raid_invalid_args) == NULL || CU_add_test(suite, "test_io_channel", test_io_channel) == NULL || CU_add_test(suite, "test_reset_io", test_reset_io) == NULL || CU_add_test(suite, "test_write_io", test_write_io) == NULL || CU_add_test(suite, "test_read_io", test_read_io) == NULL || CU_add_test(suite, "test_unmap_io", test_unmap_io) == NULL || CU_add_test(suite, "test_io_failure", test_io_failure) == NULL || CU_add_test(suite, "test_multi_raid_no_io", test_multi_raid_no_io) == NULL || CU_add_test(suite, "test_multi_raid_with_io", test_multi_raid_with_io) == NULL || CU_add_test(suite, "test_io_type_supported", test_io_type_supported) == NULL || CU_add_test(suite, "test_create_raid_from_config", test_create_raid_from_config) == NULL || CU_add_test(suite, "test_create_raid_from_config_invalid_params", test_create_raid_from_config_invalid_params) == NULL || CU_add_test(suite, "test_raid_json_dump_info", test_raid_json_dump_info) == NULL || CU_add_test(suite, "test_context_size", test_context_size) == NULL ) { CU_cleanup_registry(); return CU_get_error(); } CU_basic_set_mode(CU_BRM_VERBOSE); set_test_opts(); CU_basic_run_tests(); num_failures = CU_get_number_of_failures(); CU_cleanup_registry(); return num_failures; }